Package ‘StructuralVariantAnnotation’

February 2, 2026

Type Package

Title Variant annotations for structural variants

Version 1.27.0

Date 2024-04-23

Description Structural VariantAnnotation provides a framework for
analysis of structural variants within the Bioconductor ecosystem.
This package contains
contains useful helper
functions for dealing with structural variants in VCF format.
The packages contains functions for parsing VCFs from a number
of popular callers as well as functions for dealing with
breakpoints involving two separate genomic loci encoded as
GRanges objects.

License GPL-3 + file LICENSE

Depends GenomicRanges, rtracklayer, VariantAnnotation, BiocGenerics, R
(>=4.1.0)

Imports assertthat, Biostrings, pwalign, stringr, dplyr, methods,
rlang, GenomicFeatures, [Ranges, S4 Vectors,
SummarizedExperiment, GenomeIlnfoDb,

Suggests ggplot2, devtools, testthat (>= 2.1.0), roxygen2, rmarkdown,
tidyverse, knitr, ggbio, biovizBase,
TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19,

RoxygenNote 7.1.1
Encoding UTF-8
VignetteBuilder knitr

biocViews Datalmport, Sequencing, Annotation, Genetics,
VariantAnnotation

git_url https://git.bioconductor.org/packages/Structural VariantAnnotation
git_branch devel

git_last_commit 72cd374

git_last_commit_date 2025-10-29

align_breakpoints

Repository Bioconductor 3.23
Date/Publication 2026-02-01
Author Daniel Cameron [aut, cre] (ORCID:

<https://orcid.org/0000-0002-0951-7116>),
Ruining Dong [aut] (ORCID: <https://orcid.org/0000-0003-1433-0484>)

Maintainer Daniel Cameron <daniel.l.cameron@gmail.com>

Contents
align_breakpoints L. 2
breakendRanges L 3
breakpointgr2bedpe L 4
breakpoint@r2pairs L e e e e 5
breakpointGRangesToVCF 6
breakpointRanges e 7
calculateReferenceHomology 8
countBreakpointOverlaps L e 9
elementExtract L. 10
extractBreakpointSequence L. L 11
extractReferenceSequence L L 12
findBreakpointOverlaps L 12
findIlnsDupOverlaps 14
findTransitiveCalls 15
hasPartner 16
isStructural L. L e 17
isSymbolic 18
numtDetect L. e e e e e 19
PAtNer L. e e e e e e e e 20
rtDetect L L e e 20
simpleEventLength 21
simpleEventType e 22
StructuralVariantAnnotationo 22

Index 23

align_breakpoints Adjusting the nominal position of a pair of partnered breakpoint.
Description

Adjusting the nominal position of a pair of partnered breakpoint.

https://orcid.org/0000-0002-0951-7116
https://orcid.org/0000-0003-1433-0484

breakendRanges 3

Usage

align_breakpoints(
vcf,
align = c("centre"),
is_higher_breakend = names(vcf) < info(vcf)$PARID

)

Arguments
vcf A VCF object.
align The alignment type.

is_higher_breakend
Breakpoint ID ordering.

Value

A VCF object with adjusted nominal positions.

breakendRanges Extracting unpartnered breakend structural variants as a GRanges

Description

Extracting unpartnered breakend structural variants as a GRanges

Usage

breakendRanges(x, ...)

S4 method for signature 'VCF'

breakendRanges(x, ...)
Arguments
X A VCF object.

Parameters of .breakpointRanges(). See breakpointRanges for more details.

Details

The VCF standard supports single breakends where a breakend is not part of a novel adjacency and
lacks a mate. This function supports parsing single breakends to GRanges, where a dot symbol is
used in the ALT field to annotate the directional information. Single breakends provide insights to
situations when one side of the structural variant is not observed, due to e.g. low mappability, non-
reference contigs, complex multi-break operations, etc. See Section 5.4.9 of https://samtools.
github.io/hts-specs/VCFv4.3.pdf for details of single breakends.

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

4 breakpointgr2bedpe

Value

A GRanges object of SVs.

Methods (by class)

* VCF: Extracting unpartnered structural variants as GRanges.

Examples
vcf.file <- system.file("extdata"”, "gridss.vcf"”,
package = "StructuralVariantAnnotation")
vef <- VariantAnnotation::readVcf(vcf.file, "hgl19")
breakendRanges(vcf)

breakendRanges(vcf, nominalPosition=TRUE)

breakpointgr2bedpe Converting breakpoint GRanges to BEDPE-like dataframe

Description

Converting breakpoint GRanges to BEDPE-like dataframe

Usage
breakpointgr2bedpe(gr)

Arguments

gr A GRanges object.

Details

breakpointgr2bedpe converts a breakpoint GRanges to a BEDPE-formatted dataframe. The
BEDPE format consists of two sets of genomic loci, optional columns of name, score, strandl,

strand2 and any user-defined fields. See https://bedtools.readthedocs.io/en/latest/content/

general-usage.html for more details on the BEDPE format.

Value

A BEDPE-formatted data frame.

Examples

#coverting a GRanges object to BEDPE-like dataframe

vcf.file <- system.file("extdata”, "gridss.vcf"”, package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hgl19")

gr <- breakpointRanges(vcf)

breakpointgr2bedpe(gr)

https://bedtools.readthedocs.io/en/latest/content/general-usage.html
https://bedtools.readthedocs.io/en/latest/content/general-usage.html

breakpointgr2pairs 5

breakpointgr2pairs Converts a breakpoint GRanges object to a Pairs object

Description

Converts a breakpoint GRanges object to a Pairs object

Converts a BEDPE Pairs containing pairs of GRanges loaded using to a breakpoint GRanges object.

Usage

breakpointgr2pairs(
bpgr,
writeQualAsScore = TRUE,
writeName = TRUE,
bedpeName = NULL,
firstInPair = NULL

)
pairs2breakpointgr(
pairs,
placeholderName = "bedpe”,
firstSuffix = "_1",
secondSuffix = "_2",
nameField = "name”,
renameScoreToQUAL = TRUE
)
Arguments
bpgr breakpoint GRanges object
writeQualAsScore
write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export
writeName write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export
bedpeName function that returns the name to use for the breakpoint. Defaults to the sourceld,
name column, or row names (in that priority) of the first breakend of each pair.
firstInPair function that returns TRUE for breakends that are considered the first in the pair,
and FALSE for the second in pair breakend. By default, the first in the pair is
the breakend with the lower ordinal in the breakpoint GRanges object.
pairs a Pairs object consisting of two parallel genomic loci.
placeholderName

prefix to use to ensure each entry has a unique ID.

firstSuffix first in pair name suffix to ensure breakend name uniqueness

6 breakpointGRangesToVCF

secondSuffix second in pair name suffix to ensure breakend name uniqueness

nameField Fallback field for row names if the Pairs object does not contain any names.
BEDPE files loaded using rtracklayer use the "name" field.
renameScoreToQUAL

renames the ’score’ column to ’QUAL’. Performing this rename results in a con-
sistent variant quality score column name for variant loaded from BEDPE and
VCE

Details

Breakpoint-level column names will override breakend-level column names.

Value

Pairs GRanges object suitable for export to BEDPE by rtracklayer
Breakpoint GRanges object.

Examples

vcf.file <- system.file("extdata”, "gridss.vcf"”, package = "StructuralVariantAnnotation")
bpgr <- breakpointRanges(VariantAnnotation::readVcf(vcf.file))

pairgr <- breakpointgr2pairs(bpgr)

#rtracklayer: :export(pairgr, con="example.bedpe")

bedpe.file <- system.file("extdata"”, "gridss.bedpe”, package = "StructuralVariantAnnotation”)

bedpe.pairs <- rtracklayer::import(bedpe.file)
bedpe.bpgr <- pairs2breakpointgr(bedpe.pairs)

breakpointGRangesToVCF
Converts the given breakpoint GRanges object to VCF format in
breakend notation.

Description

Converts the given breakpoint GRanges object to VCF format in breakend notation.

Usage
breakpointGRangesToVCF(gr, ...)
Arguments
gr breakpoint GRanges object. Can contain both breakpoint and single breakend

SV records.

For cbind and rbind a list of VCF objects. For all other methods ... are additional
arguments passed to methods. See VCF class in VariantAnnotation for more
details.

breakpointRanges 7

Value

A VCF object.

breakpointRanges Extracting the structural variants as a GRanges.

Description

Extracting the structural variants as a GRanges.

.breakpointRanges() is an internal function for extracting structural variants as GRanges.

Usage

breakpointRanges(x, ...)

S4 method for signature 'VCF'

breakpointRanges(x, ...)
.breakpointRanges(
vef,
nominalPosition = FALSE,
placeholderName = "svrecord”,
suffix = "_bp”,

info_columns = NULL,
unpartneredBreakends = FALSE,
inferMissingBreakends = FALSE,
ignoreUnknownSymbolicAlleles = FALSE

)
Arguments

X A VCF object
Parameters of .breakpointRanges(). See below.

vef A VCF object.

nominalPosition
Determines whether to call the variant at the nominal VCF position, or to call
the confidence interval (incorporating any homology present). Default value is
set to FALSE, where the interval is called based on the CIPOS tag. When set to
TRUE, the ranges field contains the nominal variant position only.

placeholderName
Variant name prefix to assign to unnamed variants.

suffix The suffix to append to variant names.

info_columns VCF INFO columns to include in the GRanges object.
unpartneredBreakends
Determining whether to report unpartnered breakends. Default is set to FALSE.

calculateReferenceHomology

inferMissingBreakends
Infer missing breakend records from ALT field of records without matching part-
ners

ignoreUnknownSymbolicAlleles

Ignore unknown symbolic alleles. StructuralVariantAnnotation currently han-
dles INS, INV, DEL, DUP as well as the VCF specifications non-compliant
RPL, TRA symbolic alleles.

Details

Structural variants are converted to breakend notation. Due to ambiguities in the VCF specifica-
tions, structural variants with multiple alt alleles are not supported. The CIPOS tag describes the
uncertainty interval around the position of the breakend. See Section 5.4.8 of https://samtools.
github.io/hts-specs/VCFv4.3.pdf for details of CIPOS. If HOMLEN or HOMSEQ is defined
without CIPOS, it is assumed that the variant position is left aligned. A breakend on the *+’ strand
indicates a break immediately after the given position, to the left of which is the DNA segment
involved in the breakpoint. The ’-* strand indicates a break immediately before the given position,
rightwards of which is the DNA segment involved in the breakpoint. Unpaired variants are removed
at this stage.

Value
A GRanges object of SVs.
Methods (by class)
* VCF: Extracting structural variants as GRanges.
Examples
vcf.file <- system.file("extdata”, "vcf4.2.example.sv.vcf",

package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hgl19")
breakpointRanges(vcf)
breakpointRanges(vcf, nominalPosition=TRUE)

calculateReferenceHomology
Calculates the length of inexact homology between the breakpoint se-
quence and the reference

Description

Calculates the length of inexact homology between the breakpoint sequence and the reference

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

countBreakpointOverlaps 9

Usage
calculateReferenceHomology(
gr,
ref,
anchorLength = 300,
margin = 5,
match = 2,
mismatch = -6,
gapOpening = 5,
gapExtension = 3
)
Arguments
gr reakpoint GRanges
ref reference BSgenome

anchorLength ~ Number of bases to consider for homology

margin Number of additional reference bases include. This allows for inexact homology
to be detected even in the presence of indels.

match see pwalign::pairwiseAlignment

mismatch see pwalign::pairwiseAlignment

gapOpening see pwalign::pairwise Alignment

gapExtension see pwalign::pairwiseAlignment

Value

A dataframe containing the length of inexact homology between the breakpoint sequence and the
reference.

countBreakpointOverlaps
Counting overlapping breakpoints between two breakpoint sets

Description

Counting overlapping breakpoints between two breakpoint sets

Usage

countBreakpointOverlaps(
querygr,
subjectgr,
countOnlyBest = FALSE,
breakpointScoreColumn = "QUAL",
maxgap = -1L,

10 elementExtract

minoverlap = 0L,

ignore.strand = FALSE,

sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

Arguments

querygr, subjectgr, maxgap, minoverlap, ignore.strand, sizemargin,
restrictMarginToSizeMultiple
See findBreakpointOverlaps().

countOnlyBest Default value set to FALSE. When set to TRUE, the result count each subject
breakpoint as overlaping only the best overlapping query breakpoint. The best
breakpoint is considered to be the one with the highest QUAL score.

breakpointScoreColumn
Query column defining a score for determining which query breakpoint is con-

sidered the best when countOnlyBest=TRUE.
Details
countBreakpointOverlaps() returns the number of overlaps between breakpoint objects, based
on the output of findBreakpointOverlaps(). See GenomicRanges::countOverlaps-methods
Value

An integer vector containing the tabulated query overlap hits.

Examples

truth_vcf = VariantAnnotation::readVcf(system.file("extdata”, "nal12878_chr22_Sudmunt2015.vcf",

package = "StructuralVariantAnnotation”))
crest_vcf = VariantAnnotation::readVcf(system.file("extdata”, "na12878_chr22_crest.vcf”,
package = "StructuralVariantAnnotation”))

caller_bpgr = breakpointRanges(crest_vcf)
caller_bpgr$true_positive = countBreakpointOverlaps(caller_bpgr, breakpointRanges(truth_vcf),
maxgap=100, sizemargin=0.25, restrictMarginToSizeMultiple=0.5, countOnlyBest=TRUE)

elementExtract Extracts the element of each element at the given position

Description

Extracts the element of each element at the given position

Usage

elementExtract(x, offset = 1)

extractBreakpointSequence 11

Arguments
X list-like object
offset offset of list
Value

The element of each element at given positions.

extractBreakpointSequence
Extracts the breakpoint sequence.

Description

Extracts the breakpoint sequence.

Usage

extractBreakpointSequence(gr, ref, anchoredBases, remoteBases = anchoredBases)

Arguments
gr breakpoint GRanges
ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

remoteBases Number of bases from other side of breakpoint to extract

Details
The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

Value

Breakpoint sequence around the variant position.

12 findBreakpointOverlaps

extractReferenceSequence
Returns the reference sequence around the breakpoint position

Description

Returns the reference sequence around the breakpoint position

Usage
extractReferenceSequence(
gr,
ref,
anchoredBases,
followingBases = anchoredBases
)
Arguments
gr breakpoint GRanges
ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

followingBases Number of reference bases past breakpoint to extract

Details

The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

Value

Reference sequence around the breakpoint position.

findBreakpointOverlaps
Finding overlapping breakpoints between two breakpoint sets

Description

Finding overlapping breakpoints between two breakpoint sets

findBreakpointOverlaps 13

Usage
findBreakpointOverlaps(
query,
subject,
maxgap = -1L,

minoverlap = 0L,

ignore.strand = FALSE,

sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

Arguments

query, subject Both of the input objects should be GRanges objects. Unlike findOverlaps(),
subject cannot be ommitted. Each breakpoint must be accompanied with a
partner breakend, which is also in the GRanges, with the partner’s id recorded
in the partner field. See GenomicRanges::findOverlaps-methods for details.

maxgap, minoverlap
Valid overlapping thresholds of a maximum gap and a minimum overlapping
positions between breakend intervals. Both should be scalar integers. max-
gap allows non-negative values, and minoverlap allows positive values. See
GenomicRanges::findOverlaps-methods for details.

ignore.strand Default value is FALSE. strand information is ignored when set to TRUE. See
GenomicRanges::findOverlaps-methods for details.

sizemargin Error margin in allowable size to prevent matching of events of different sizes,
e.g. a 200bp event matching a 1bp event when maxgap is set to 200.

restrictMarginToSizeMultiple
Size restriction multiplier on event size. The default value of 0.5 requires that
the breakpoint positions can be off by at maximum, half the event size. This
ensures that small deletion do actually overlap at least one base pair.

Details

findBreakpointOverlaps() is an efficient adaptation of findOverlaps-methods() for breakend
ranges. It searches for overlaps between breakpoint objects, and return a matrix including index of
overlapping ranges as well as error stats. All breakends must have their partner breakend included
in the partner field. A valid overlap requires that breakends on boths sides meets the overlapping
requirements.

See GenomicRanges::findOverlaps-methods for details of overlap calculation.

Value

A dataframe containing index and error stats of overlapping breakpoints.

Examples

#treading in VCF files
query.file <- system.file("extdata”, "gridss-na12878.vcf"”, package = "StructuralVariantAnnotation”)

14 findInsDupOverlaps

subject.file <- system.file("extdata"”, "gridss.vcf"”, package = "StructuralVariantAnnotation”)
query.vcf <- VariantAnnotation::readVcf(query.file, "hg19")

subject.vcf <- VariantAnnotation::readVcf(subject.file, "hgl19")

#parsing vcfs to GRanges objects

query.gr <- breakpointRanges(query.vcf)

subject.gr <- breakpointRanges(subject.vcf)

#find overlapping breakpoint intervals

findBreakpointOverlaps(query.gr, subject.gr)

findBreakpointOverlaps(query.gr, subject.gr, ignore.strand=TRUE)
findBreakpointOverlaps(query.gr, subject.gr, maxgap=100, sizemargin=0.5)

findInsDupOverlaps Finds duplication events that are reported as inserts. As sequence
alignment algorithms do no allow backtracking, long read-based vari-
ant callers will frequently report small duplication as insertion events.
Whilst both the duplication and insertion representations result in the
same sequence, this representational difference is problematic when
comparing variant call sets.

Description

WARNING: this method does not check that the inserted sequence actually matched the duplicated

sequence.
Usage

findInsDupOverlaps(query, subject, maxgap = -1L, maxsizedifference = QL)
Arguments

query a breakpoint GRanges object

subject a breakpoint GRanges object

maxgap maximum distance between the insertion position and the duplication

maxsizedifference

maximum size difference between the duplication and insertion.

Value

Hits object containing the ordinals of the matching breakends in the query and subject

findTransitiveCalls 15

findTransitiveCalls Identifies potential transitive imprecise calls that can be explained by
traversing multiple breakpoints.

Description

Transitive calls are imprecise breakpoints or breakpoints with inserted sequence that can be ex-
plained by a sequence of breakpoints. That is, A-C calls in which additional sequence may be
between A and C that can be explained by A-B-C.

Usage

findTransitiveCalls(
transitiveGr,
subjectGr,
maximumImpreciselnsertSize = 700,
minimumTraversedBreakpoints = 2,
maximumTraversedBreakpoints = 6,
positionalMargin = 8,
insertionLengthMargin = 50,
insLen = transitiveGr$insLen,
impreciseTransitiveCalls = (transitiveGr$HOMLEN == @ | is.null(transitiveGr$HOMLEN))
& start(transitiveGr) != end(transitiveGr),
impreciseSubjectCalls = (subjectGr$HOMLEN == @ | is.null(subjectGr$HOMLEN)) &
start(subjectGr) != end(subjectGr),
allowImprecise = FALSE
)

Arguments

transitiveGr a breakpoint GRanges object containing imprecise calls

subjectGr breakpoints to traverse
maximumImpreciselnsertSize
Expected number of bases to traverse imprecise calls.
minimumTraversedBreakpoints
Minimum number of traversed breakpoints to consider a transitive
maximumTraversedBreakpoints
Maximum number of breakpoints to traverse when looking for an explanation
of the transitive calls
positionalMargin
Allowable margin of error when matching call positional overlaps. A non-zero
margin allows for matching of breakpoint with imperfect homology.
insertionLengthMargin
Allowable difference in length between the inserted sequence and the traversed
path length. Defaults to 50bp to allow for long read indel errors.

16 hasPartner

insLen Integer vector of same length as ‘transitiveGr* indicating the number of bases
inserted at the breakpoint.

Defaults to transitiveGr$insLen which will be present if the GRanges was loaded
from a VCF using breakpointRanges()

impreciseTransitiveCalls
Boolean vector of same length as ‘transitiveGr* indicating which calls are impre-
cise calls. Defaults to calls with a non-zero interval size that have no homology.

impreciseSubjectCalls
Boolean vector of same length as ‘subjectGr* indicating which calls are impre-
cise calls. Defaults to calls with a non-zero interval size that have no homology.

allowImprecise Allow traversal of imprecise calls. Defaults to FALSE as to prevent spurious
results which skip some breakpoints when traversing multiple breakpoints E.g.
An A-D transitive from an underlying A-B-C-D rearrangement will include A-
B-D and A-C-D results if allowImprecise=TRUE.

Value

‘DataFrame* containing the transitive calls traversed with the following columns: | column | mean-
ing | | —— | —— | | transitive_breakpoint_name | Name of the transitive breakpoint a path was
found for | | total_distance | Total length (in bp) of the path | | traversed_breakpoint_names | ‘Char-
acterList‘ of names of breakpoint traversed in the path | | distance_to_traversed_breakpoint | ‘Inte-
gerList® of distances from start of path to end of traversing breakpoint |

hasPartner Determines whether this breakend has a valid partner in this GRanges

Description

Determines whether this breakend has a valid partner in this GRanges

Usage

hasPartner(gr, selfPartnerSingleBreakends = FALSE)

Arguments

gr GRanges object of SV breakends

selfPartnerSingleBreakends
treat single breakends as their own partner.

Value

True/False for each row in the breakpoint GRanges

isStructural 17

Examples

#Subset to chromosome 6 intra-chromosomal events \code{vcf}

vcf.file <- system.file("extdata”, "COLO829T.purple.sv.ann.vcf.gz",
package = "StructuralVariantAnnotation”)

vef <- VariantAnnotation::readVcf(vcf.file)

gr <- breakpointRanges(vcf)

gr <- grlseqgnames(gr) == "6"]

We now need to filter out inter-chromosomal events to ensure

our GRanges doesn't contain any breakpoints whose partner

has already been filtered out and no longer exists in the GRanges.

gr <- grlhasPartner(gr)]

isStructural Determining whether the variant is a structural variant

Description

Determining whether the variant is a structural variant
Usage
isStructural(x, ...)

S4 method for signature 'CollapsedVCF'
isStructural(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'
isStructural(x, ...)

S4 method for signature 'VCF'

isStructural(x, ...)
Arguments
X A VCF object.

Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

Details
The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a structural variant.

Value

A logical list of which the length is the same with the input object.

18 isSymbolic

Methods (by class)

* CollapsedVCF: Determining whether a CollapsedVCF object is a strucrual variant. Only
single ALT values are accepted.

* ExpandedVCF: Determining whether a ExpandedVCF object is a structural variant.

* VCF: Determining whether a VCF object is a structural variant.

Examples

vcf.file <- system.file("extdata”, "gridss.vcf”, package = "StructuralVariantAnnotation")
vef <- VariantAnnotation::readVcf(vcf.file, "hgl19")
isStructural (vcf)

isSymbolic Determining whether the variant is a symbolic allele.

Description

Determining whether the variant is a symbolic allele.
Usage
isSymbolic(x, ...)

S4 method for signature 'CollapsedVCF'
isSymbolic(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'

isSymbolic(x, ...)
Arguments
X A VCF object.

Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

Details

The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a symbolic allele.

Value

A logical list of which the length is the same with the input object.

numtDetect 19

Methods (by class)

* CollapsedVCF: Determining whether a Collapsed VCF object is a symbolic allele. Only single
ALT values are accepted.

* ExpandedVCF: Determining whether a ExpandedVCF object is a symbolic allele
Examples
vcf.file <- system.file("extdata”, "gridss.vcf"”, package = "StructuralVariantAnnotation")

vcf <- VariantAnnotation::readVcf(vcf.file, "hgl9")
isSymbolic(vcf)

numtDetect Detecting nuclear mitochondria fusion events.

Description

Detecting nuclear mitochondria fusion events.

Usage

numtDetect(gr, nonStandardChromosomes = FALSE, max_ins_dist = 1000)

Arguments

gr A GRanges object
nonStandardChromosomes

Whether to report insertion sites on non-standard reference chromosomes. De-
fault value is set to FALSE.

max_ins_dist The maxium distance allowed on the reference genome between the paired in-

sertion sites. Only intra-chromosomal NUMT events are supported. Default
value is 1000.

Details

Nuclear mitochondrial fusion (NUMT) is a common event found in human genomes. This function
searches for NUMT events by identifying breakpoints supporting the fusion of nuclear chromosome
and mitochondrial genome. Only BND notations are supported at the current stage. Possible linked
nuclear insertion sites are reported using SV IDs in the candidatePartnerld metadata column.

Value

A GRanges object of possible NUMT loci.

Examples

vcf.file <- system.file("extdata”, "MT.vcf”, package = "StructuralVariantAnnotation”)
vcf <- VariantAnnotation::readVcf(vcf.file, "hgl9")

gr <- breakpointRanges(vcf, nominalPosition=TRUE)

numt.gr <- numtDetect(gr)

20 rtDetect

partner GRanges representing the breakend coordinates of structural variants
#@export Partner breakend for each breakend.

Description
GRanges representing the breakend coordinates of structural variants #@export Partner breakend
for each breakend.

Usage

partner(gr, selfPartnerSingleBreakends = FALSE)

Arguments

gr GRanges object of SV breakends
selfPartnerSingleBreakends
treat single breakends as their own partner.

Details

All breakends must have their partner breakend included in the GRanges.

Value

A GRanges object in which each entry is the partner breakend of those in the input object.

Examples

#reading in a VCF file as \code{vcf}

vcf.file <- system.file("extdata”, "gridss.vcf"”, package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hgl19")

#parsing \code{vcf} to GRanges object \code{gr}

gr <- breakpointRanges(vcf)

#output partner breakend of each breakend in \code{gr}

partner(gr)

rtDetect Detecting retrotranscript insertion in nuclear genomes.

Description

Detecting retrotranscript insertion in nuclear genomes.

Usage

rtDetect(gr, genes, maxgap = 100, minscore = 0.3)

simpleEventLength 21

Arguments
gr A GRanges object
genes TxDb object of genes. hg19 and hg38 are supported in the current version.
maxgap The maxium distance allowed on the reference genome between the paired exon
boundries.
minscore The minimum proportion of intronic deletions of a transcript should be identi-
fied.
Details

This function searches for retroposed transcripts by identifying breakpoints supporting intronic
deletions and fusions between exons and remote loci. Only BND notations are supported at the
current stage.

Value

A GRangesList object, named insSite and rt, reporting breakpoints supporting insert sites and retro-
posed transcripts respectively. ’exon’ and ’txs’ in the metadata columns report exon_id and tran-
script_name from the ’genes’ object.

simpleEventLength Length of event if interpreted as an isolated breakpoint.

Description

Length of event if interpreted as an isolated breakpoint.

Usage

simpleEventLength(gr)

Arguments

gr breakpoint GRanges object

Value

Length of the simplest explanation of this breakpoint/breakend.

22 Structural VariantAnnotation

simpleEventType Type of simplest explanation of event. Possible types are: | Type |
Description | | BND | Single breakend | | CTX | Interchromosomal
translocation | | INV | Inversion. | | DUP | Tandem duplication | | INS
| Insertion | | DEL | Deletion |

Description

Note that both ++ and — breakpoint will be classified as inversions regardless of whether both
breakpoint that consistitute an actual inversion exists or not

Usage
simpleEventType(gr, insertionLengthThreshold = 0.5)

Arguments

gr breakpoint GRanges object

insertionLengthThreshold
portion of inserted bases compared to total event size to be classified as an in-
sertion. For example, a 5bp deletion with 5 inserted bases will be classified as
an INS event.

Value

Type of simplest explanation of event

StructuralVariantAnnotation
StructuralVariantAnnotation: a package for SV annotation

Description

Structural VariantAnnotation contains useful helper functions for reading and interpreting structural
variants calls. The packages contains functions for parsing VCFs from a number of popular caller
as well as functions for dealing with breakpoints involving two separate genomic loci. The package
takes a ‘GRanges* based breakend-centric approach.

Details

* Parse VCF objects with the ‘breakpointRanges()‘ and ‘breakendRanges() ‘functions. * Find break-
point overlaps with the ‘findBreakpointOverlaps()‘ and ‘countBreakpointOverlaps()‘ functions. *
Generate BEDPE files for circos plot with ‘breakpointgr2pairs()‘ function. * ...

For more details on the features of StructuralVariantAnnotation, read the vignette: ‘browseVi-
gnettes(package = "Structural VariantAnnotation")*

Index

* internal
elementExtract, 10
.breakpointRanges (breakpointRanges), 7

align_breakpoints, 2

breakendRanges, 3
breakendRanges, VCF-method
(breakendRanges), 3
breakpointgr2bedpe, 4
breakpointgr2pairs, 5
breakpointGRangesToVCF, 6
breakpointRanges, 7
breakpointRanges, VCF-method
(breakpointRanges), 7

calculateReferenceHomology, 8
countBreakpointOverlaps, 9

elementExtract, 10
extractBreakpointSequence, 11
extractReferenceSequence, 12

findBreakpointOverlaps, 12
findInsDupOverlaps, 14
findTransitiveCalls, 15

hasPartner, 16

isStructural, 17
isStructural,CollapsedVCF-method
(isStructural), 17
isStructural,ExpandedVCF-method
(isStructural), 17
isStructural,VCF-method (isStructural),

17
isSymbolic, 18
isSymbolic,CollapsedVCF-method
(isSymbolic), 18
isSymbolic,ExpandedVCF-method
(isSymbolic), 18

23

numtDetect, 19

pairs2breakpointgr
(breakpointgr2pairs), 5
partner, 20

rtDetect, 20

simpleEventLength, 21
simpleEventType, 22
StructuralVariantAnnotation, 22

	align_breakpoints
	breakendRanges
	breakpointgr2bedpe
	breakpointgr2pairs
	breakpointGRangesToVCF
	breakpointRanges
	calculateReferenceHomology
	countBreakpointOverlaps
	elementExtract
	extractBreakpointSequence
	extractReferenceSequence
	findBreakpointOverlaps
	findInsDupOverlaps
	findTransitiveCalls
	hasPartner
	isStructural
	isSymbolic
	numtDetect
	partner
	rtDetect
	simpleEventLength
	simpleEventType
	StructuralVariantAnnotation
	Index

