
Package ‘StatescopeR’
February 4, 2026

Type Package

Title StatescopeR framework for discovery of cell states from cell
type-specific gene expression profiles inferred from bulk mRNA
profiles

Version 0.99.34

Depends R (>= 4.6.0)

Imports S4Vectors, SummarizedExperiment, reticulate, methods,
SingleCellExperiment, matrixStats, scran, basilisk, Matrix,
ComplexHeatmap, ggplot2, cowplot, utils

Suggests BiocStyle, knitr, RefManageR, rmarkdown, sessioninfo,
scRNAseq, scuttle, testthat

Description
StatescopeR is an R wrapper around Statescope, a computational framework designed to dis-
cover cell states from cell type-specific gene expression profiles inferred from bulk RNA profiles.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

StagedInstall no

biocViews GeneExpression, RNASeq, SingleCell, Bayesian,
Transcriptomics, Software

URL https://github.com/tgac-vumc/StatescopeR

BugReports https://github.com/tgac-vumc/StatescopeR/issues

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/StatescopeR

git_branch devel

git_last_commit 4437c8a

git_last_commit_date 2026-01-28

Repository Bioconductor 3.23

1

https://github.com/tgac-vumc/StatescopeR
https://github.com/tgac-vumc/StatescopeR/issues

2 StatescopeR-package

Date/Publication 2026-02-03

Author Mischa Steketee [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7138-7554>),

Bauke Ylstra [ths] (ORCID: <https://orcid.org/0000-0001-9479-3010>),
Yongsoo Kim [ths] (ORCID: <https://orcid.org/0000-0002-2995-2131>),
KWF Kankerbestrijding [fnd]

Maintainer Mischa Steketee <m.f.b.steketee@amsterdamumc.nl>

Contents
StatescopeR-package . 2
autogenes . 3
barplot_stateloadings . 3
BLADE_deconvolution . 4
create_signature . 6
fetch_signature . 7
fraction_eval . 8
fraction_heatmap . 8
gather_true_fractions . 9
Refinement . 10
select_genes . 12
StateDiscovery . 13

Index 15

StatescopeR-package The StatescopeR package

Description

framework for discovery of cell states from bulk mRNA profiles

Details

StatescopeR starts from lognormalized cp10k single cell data and a bulk RNA dataset to be used
for deconvolution and cell state analysis. From this point StatescopeR has some functions to create
a signature and select genes for deconvolution. create_signature creates a signature of lognor-
malized cp10k single cell data for deconvolution and cell state analysis. select_genes selects
genes which best discriminate cell types for use in deconvolution. Alternatively you can also use:
fetch_signature to fetch one of the premade signatures + selected_genes from https://github.com/tgac-
vumc/StatescopeData After these steps and proper cp10k normalization of the bulk mRNA decon-
volution and cell state analysis can be done with the following functions: BLADE_deconvolution
estimates cell fractions from bulk mRNA. Refinement refines cell type-specific gene expression
profile estimates to better capture inter-sample variability. StateDiscovery discovery cell states
from inferred cell type-specific gene expression profiles.

https://orcid.org/0000-0001-7138-7554
https://orcid.org/0000-0001-9479-3010
https://orcid.org/0000-0002-2995-2131

autogenes 3

After these steps the following functions provide some evaluation and plotting functions: gather_true_fractions
gets true cell fractions from scRNAseq data. fraction_eval plots the correlation of estimated vs
true cell fractionsover all samples. fraction_heatmap plots a heatmap of estimated cell fractions.
barplot_stateloadings plots a barplot showing the top n most important stateloadings.

Author(s)

Maintainer: Mischa Stetketee <m.f.b.steketee@amsterdamumc.nl> (ORCID)

Other contributors:

• KWF [funder]

See Also

Useful links:

• https://github.com/tgac-vumc/StatescopeR

• Report bugs at https://github.com/tgac-vumc/StatescopeR/issues

autogenes Python environments

Description

Python environments

Usage

autogenes

Format

An object of class BasiliskEnvironment of length 1.

barplot_stateloadings Create a barplot of top stateloadings

Description

Create a barplot of top stateloadings

Usage

barplot_stateloadings(Statescope, top_n = 1)

https://orcid.org/0000-0001-7138-7554
https://github.com/tgac-vumc/StatescopeR
https://github.com/tgac-vumc/StatescopeR/issues

4 BLADE_deconvolution

Arguments

Statescope SummarizedExperiment object from StateDiscovery

top_n integer selecting how many genes to show per state

Value

A barplot rendered to the active graphics device

Examples

#' ## Load Discovered Statescope object
load(system.file("extdata", "example_Statescope_Discovered.RData",

package = "StatescopeR"
))

Plot fraction heatmap
barplot_stateloadings(Statescope, top_n = 1)

BLADE_deconvolution Run BLADE deconvolution

Description

BLADE_deconvolution.R Runs BLADE to estimate cell fractions from bulk mRNA

Usage

BLADE_deconvolution(
signature,
bulk,
genes,
prior = NULL,
cores = 1L,
Alpha = 1L,
Alpha0 = 1000L,
Kappa0 = 1L,
sY = 1L,
Nrep = 10L,
Nrepfinal = 1000L

)

Arguments

signature SimpleList with mu and sigma, both nGene x nCelltype dataframes, respectively
mean gene expression and mean-variance corrected variance per cell type

bulk nSample x nGene mRNA to be deconvolved

BLADE_deconvolution 5

genes subset of genes to be used for deconvolution

prior (optional) nSample x nCelltype matrix with prior fraction expectations

cores number of cores to use for paralellization

Alpha BLADE Hyperparameter

Alpha0 BLADE Hyperparameter

Kappa0 BLADE Hyperparameter

sY BLADE Hyperparameter

Nrep Number of BLADE initializations

Nrepfinal Number of maximum optimization iterations

Value

SummarizedExperiment object with BLADE output and estimated fractions

Examples

if (requireNamespace("scRNAseq", quietly = TRUE)) {
library(scRNAseq)
library(scuttle)
Load SegerstolpePancreas data set
scRNAseq <- SegerstolpePancreasData()

remove duplicate genes
scRNAseq <- scRNAseq[!duplicated(rownames(scRNAseq)),]
Subset to 1 healthy and 2 type 2 diabetes samples
scRNAseq <- scRNAseq[, scRNAseq$individual %in% c(

"H3",
"T2D1", "T2D2"

)]
remove cells with no cell type label
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

remove very rare cell types (<100 cells in total data set)
celltypes_to_remove <-
names(table(scRNAseq$`cell type`)[(table(scRNAseq$`cell type`) < 100)])
scRNAseq <- scRNAseq[, !scRNAseq$`cell type` %in% celltypes_to_remove]

Create pseudobulk and normalize to cp10k
pseudobulk <- aggregateAcrossCells(scRNAseq, ids = scRNAseq$individual)
normcounts(pseudobulk) <- calculateCPM(pseudobulk) / 100
pseudobulk <- as(pseudobulk, "SummarizedExperiment")
rownames(pseudobulk) <- rownames(scRNAseq)

Load signature
load(system.file("extdata", "example_signature.RData",

package = "StatescopeR"
))

Load selected_genes

6 create_signature

load(system.file("extdata", "example_selected_genes.RData",
package = "StatescopeR"

))

Load prior
load(system.file("extdata", "example_prior.RData",

package = "StatescopeR"
))

Perform Deconvolution with BLADE
Statescope <- BLADE_deconvolution(

signature, pseudobulk, selected_genes,
prior, 1L,
Nrep = 1L

)

show estimated fractions
S4Vectors::metadata(Statescope)$fractions

}

create_signature Create scRNAseq Signature

Description

create_signature Creates signature from scRNAseq data

Usage

create_signature(scRNAseq, hvg_genes = FALSE, n_hvg_genes = 3000L, labels)

Arguments

scRNAseq SingleCellExperiment object of which to make signature

hvg_genes boolean which chooses if mu and omega should be subset to highly variable
genes or not

n_hvg_genes int which allows the users to choose the number of highly variable genes

labels character vector for the cell type labels

Value

SimpleList DataFrames for Mu (mean per gene per cell type) and Omega (variance corrected std.dev
per gene per cell type)

fetch_signature 7

Examples

if (requireNamespace("scRNAseq", quietly = TRUE)) {
library(scRNAseq)
library(scuttle)
Load scRNaseq
scRNAseq <- scRNAseq::SegerstolpePancreasData()

remove NA cells
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

Normalize (cp10k) and logtransform scRNAseq
cpm(scRNAseq) <- scuttle::calculateCPM(scRNAseq)
SingleCellExperiment::logcounts(scRNAseq) <- log1p(cpm(scRNAseq) / 100)

Create signature
signature <- create_signature(scRNAseq, labels = scRNAseq$`cell type`)

}

fetch_signature Fetch scRNAseq Signature

Description

fetch_signature Fetches signature from StatescopeData repository

Usage

fetch_signature(tumor_type, n_celltypes)

Arguments

tumor_type string choosing the tumor type from available signatures at: https://github.com/tgac-
vumc/StatescopeData

n_celltypes integer choosing the number of cell types of the signature from: https://github.com/tgac-
vumc/StatescopeData

Value

SimpleList with DataFrames for Mu (mean per gene per cell type) and Omega (variance corrected
std.dev per gene per cell type) and vector of selected genes for deconvolution chosen by AutoGeneS

Examples

signature <- fetch_signature('PDAC', 7)
selected_genes <- signature$selected_genes

8 fraction_heatmap

fraction_eval Create a barplot of TRUE vs estimated cfs

Description

Create a barplot of TRUE vs estimated cfs

Usage

fraction_eval(Statescope, true_fractions)

Arguments

Statescope SummarizedExperiment object from BLADE_deconvolution

true_fractions s4 Dataframe with true fractions to compare with estimated fractions

Value

A barplot rendered to the active graphics device

Examples

Load True fractions
load(system.file("extdata", "example_true_fractions.RData",

package = "StatescopeR"
))

Load Deconvolved Statescope object
load(system.file("extdata", "example_Statescope_Deconvolved.RData",

package = "StatescopeR"
))

Plot fraction correlation and RMSE per ct
fraction_eval(Statescope, true_fractions)

fraction_heatmap Create a heatmap of the estimated fractions

Description

Create a heatmap of the estimated fractions

Usage

fraction_heatmap(Statescope, ...)

gather_true_fractions 9

Arguments

Statescope SummarizedExperiment object from BLADE_deconvolution

... other parameters to pass to [ComplexHeatmap::Heatmap()]

Value

A heatmap rendered to the active graphics device

Examples

Load Deconvolved Statescope object
load(system.file("extdata", "example_Statescope_Deconvolved.RData",

package = "StatescopeR"
))

Plot fraction heatmap
fraction_heatmap(Statescope)

gather_true_fractions Gather true fractions

Description

gather_true_fractions Gathers true fractions of all cell types per sample from scRNAseq data

Usage

gather_true_fractions(scRNAseq, ids, label_col)

Arguments

scRNAseq SingleCellExperiment object of which to gather fractions per sample

ids character vector with ids of samples

label_col character for the column name with the cell type labels

Value

DataFrame with fractions of all cell types per sample

10 Refinement

Examples

if (requireNamespace("scRNAseq", quietly = TRUE)) {
library(scRNAseq)
Load data
scRNAseq <- scRNAseq::SegerstolpePancreasData()
Subset to 1 healthy and 3 type 2 diabetes samples
scRNAseq <- scRNAseq[, scRNAseq$individual %in% c(

"H3",
"T2D1", "T2D2"

)]
remove NA cells
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

remove cells with less than 100 in total cohort
celltypes_to_remove <- names(table(scRNAseq$`cell type`)
[(table(scRNAseq$`cell type`) < 100)])
scRNAseq <- scRNAseq[, !scRNAseq$`cell type` %in% celltypes_to_remove]

true_fractions <- gather_true_fractions(scRNAseq,
ids = scRNAseq$individual, label_col = "cell type"

)
}

Refinement Run Refinement

Description

Refinement.R # Perform Gene Expression Refinement

Usage

Refinement(Statescope, signature, bulk, cores = 1L)

Arguments

Statescope SummarizedExperiment object from BLADE_deconvolution

signature SimpleList with mu and sigma, respectively mean gene expression and mean-
variance corrected variance per cell type

bulk mRNA to be refined

cores number of cores to use for paralellization

Details

This function takes the output from BLADE_deconvolution and refines the cell type specific gene
expression by reoptimizing the initial estimates. It reoptimzes by fixing the estimated fractions and
weighing the objective function value in a way that it tries to resemble the bulk RNA expression
more than initially

Refinement 11

Value

updated SummarizedExperiment object with ct_specific_gep added

Examples

if (requireNamespace("scRNAseq", quietly = TRUE)) {
library(scRNAseq)
library(scuttle)
Load SegerstolpePancreas data set
scRNAseq <- SegerstolpePancreasData()

remove duplicate genes
scRNAseq <- scRNAseq[!duplicated(rownames(scRNAseq)),]

Subset to 1 healthy and 2 type 2 diabetes samples
scRNAseq <- scRNAseq[, scRNAseq$individual %in% c(

"H3",
"T2D1", "T2D2"

)]
remove cells with no cell type label
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

remove very rare cell types (<100 cells in total data set)
celltypes_to_remove <- names(table(scRNAseq$`cell type`)
[(table(scRNAseq$`cell type`) < 100)])
scRNAseq <- scRNAseq[, !scRNAseq$`cell type` %in% celltypes_to_remove]

Create pseudobulk and normalize to cp10k
pseudobulk <- aggregateAcrossCells(scRNAseq, ids = scRNAseq$individual)
normcounts(pseudobulk) <- calculateCPM(pseudobulk) / 100
pseudobulk <- as(pseudobulk, "SummarizedExperiment")
rownames(pseudobulk) <- rownames(scRNAseq)
Load signature
load(system.file("extdata", "example_signature.RData",

package = "StatescopeR"
))

Load Deconvolved Statescope object
load(system.file("extdata", "example_Statescope_Deconvolved.RData",

package = "StatescopeR"
))

Run Refinement
Statescope <- Refinement(Statescope, signature, pseudobulk, 2L)

Show cell type specific gene expression profile estimates
S4Vectors::metadata(Statescope)$ct_specific_gep

}

12 select_genes

select_genes Select genes using AutoGeneS

Description

select_genes.R select genes using AutoGeneS for deconvolution

Usage

select_genes(scRNAseq, fixed_n_features = NA, n_hvg_genes = 3000L, labels)

Arguments

scRNAseq SingleCellExperiment object to use for gene selection, should be same as signa-
ture dataset

fixed_n_features

integer number of genes to pick with autogenes, default is NA which lets auto-
genes itself pick

n_hvg_genes int which allows the users to choose the number of highly variable genes

labels character vector with cell type labels

Value

Vector of genes to use for deconvolution

Examples

if (requireNamespace("scRNAseq", quietly = TRUE)) {
library(scRNAseq)
library(scuttle)
Load SegerstolpePancreas data set
scRNAseq <- SegerstolpePancreasData()

remove duplicate genes
scRNAseq <- scRNAseq[!duplicated(rownames(scRNAseq)),]

Subset to 1 healthy and 2 type 2 diabetes samples
scRNAseq <- scRNAseq[, scRNAseq$individual %in% c(

"H3",
"T2D1", "T2D2"

)]
remove cells with no cell type label
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

remove rare cell types (<100 cells in total data set)
celltypes_to_remove <-names(table(scRNAseq$`cell type`)

[(table(scRNAseq$`cell type`) < 100)])
scRNAseq <- scRNAseq[, !scRNAseq$`cell type` %in% celltypes_to_remove]

StateDiscovery 13

remove NA cells
scRNAseq <- scRNAseq[, !is.na(scRNAseq$`cell type`)]

Normalize (cp10k) and logtransform scRNAseq
cpm(scRNAseq) <- scuttle::calculateCPM(scRNAseq)
logcounts(scRNAseq) <- log1p(cpm(scRNAseq) / 100)

Select genes by autogenes
selected_genes <- select_genes(scRNAseq, 3L,

n_hvg_genes = 5L,
labels = scRNAseq$`cell type`

) # 3 genes
}

StateDiscovery Run StateDiscovery

Description

StateDiscovery.R Discovers states from refined ct-specific gep

Usage

StateDiscovery(
Statescope,
k = NA,
max_clusters = 10L,
n_iter = 10L,
n_final_iter = 100L,
min_cophenetic = 0.9,
Ncores = 1L

)

Arguments

Statescope SummarizedExperiment object from Statescope Refinement.

k number of cluster to choose, default is NA for automatic selection

max_clusters maximum allowed states per cell type.

n_iter Number of initial cNMF restarts.

n_final_iter Number of final cNMF restarts.

min_cophenetic Minimum cophenetic coefficient to determine K.

Ncores number of cores to use for paralellization.

Value

SummarizedExperiment object with statescores per celltype added

14 StateDiscovery

Examples

Load Refined Statescope object
load(system.file("extdata", "example_Statescope_Refined.RData",

package = "StatescopeR"
))

Discover states
Statescope <- StateDiscovery(Statescope, k = 2L, Ncores = 2L)

Look at statescores and stateloadings
S4Vectors::metadata(Statescope)$statescores
S4Vectors::metadata(Statescope)$stateloadings

Index

∗ datasets
autogenes, 3

∗ internal
StatescopeR-package, 2

autogenes, 3

barplot_stateloadings, 3, 3
BLADE_deconvolution, 2, 4

create_signature, 2, 6

fetch_signature, 2, 7
fraction_eval, 3, 8
fraction_heatmap, 3, 8

gather_true_fractions, 3, 9

Refinement, 2, 10

select_genes, 2, 12
StateDiscovery, 2, 13
StatescopeR (StatescopeR-package), 2
StatescopeR-package, 2

15

	StatescopeR-package
	autogenes
	barplot_stateloadings
	BLADE_deconvolution
	create_signature
	fetch_signature
	fraction_eval
	fraction_heatmap
	gather_true_fractions
	Refinement
	select_genes
	StateDiscovery
	Index

