Package ‘SpaceTrooper’

February 2, 2026

Type Package

Title SpaceTrooper performs Quality Control analysis of Image-Based
spatial

Version 1.1.4

Description SpaceTrooper performs Quality Control analysis using data driven
GLM models of Image-Based spatial data, providing exploration plots,
QC metrics computation, outlier detection.
It implements a GLM strategy for the detection of low quality cells in
imaging-based spatial data (Transcriptomics and Proteomics).
It additionally implements several plots for the visualization of
imaging based polygons through the ggplot2 package.

License MIT + file LICENSE
Encoding UTF-8
Depends R (>=4.4.0), SpatialExperiment

Imports DropletUtils, S4Vectors, SummarizedExperiment, arrow,
data.table, dplyr, e1071, ggplot2, ggpubr, robustbase, scater,
scuttle, sf, stheaders, cowplot, glmnet, rhdf5, methods, rlang,
SpatialExperimentIO

Suggests knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), withr,
viridis

biocViews Software, Transcriptomics, GeneExpression, QualityControl,
Spatial, SingleCell, Datalmport, ImmunoOncology

RoxygenNote 7.3.3

VignetteBuilder knitr
BugReports https://github.com/drighelli/SpaceTrooper/issues

URL https://github.com/drighelli/SpaceTrooper
Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/SpaceTrooper
git_branch devel

git_last_commit 775e82f

https://github.com/drighelli/SpaceTrooper/issues
https://github.com/drighelli/SpaceTrooper

2 Contents

git_last_commit_date 2026-01-26
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Dario Righelli [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1504-3583>),
Benedetta Banzi [aut],
Oriana Romano [ctb],
Matteo Merchionni [ctb],
Mattia Forcato [ctb],
Silvio Bicciato [aut],
Davide Risso [ctb]

Maintainer Dario Righelli <dario.righelli@gmail.com>

Contents
.addPolygonsToCD e 3
.centroid_image_theme L 4
.checkFovPositionVersion L 4
.checkPolygonsValidity 5
.computeBorderDistanceCosMX e 6
createPolygons . . . L L L L L 6
dark theme L L L e 7
fov_image_theme 7
.getActiveGeometryName 8
Jight_theme L L e e 8
.negative_image_theme oL L oL 9
renameGeometry e 9
SEtACtIVEGEOMELY o L L e e e e e e 10
addPolygonsToSPE 10
checkOutliers e 11
computeAreaFromPolygons Lo 12
computeAspectRatioFromPolygonso oL 12
computeCenterFromPolygons oo 13
computeLambda L 13
computeMissingMetricsMerfish oL 0oL 14
computeMissingMetricsXeniumo 15
computeOutliersQCScore 17
computeQCScore e e e e 18
computeQCScoreFlags 19
computeSpatialOutlier oo 20
computeThresholdFlags L 21
computeTrainDF 22
createPaletteFromColData L 23
dot-addFovFromTx 23
dot-checkSkw L 24

dot-computeCosmxProteinTrainSet 25

https://orcid.org/0000-0003-1504-3583

.addPolygonsToCD 3

dot-computeCosmxTrainSet e 25
dot-computeXenMerTrainSet 26
firstFlagPalette 26
getFencesOutlier 27
getModelFormula 28
plotCellsFovs e 28
plotCentroids e 30
plotMetricHist e 31
plotPolygons e e e e 32
plotQScoreTerms e e e e 34
plotZoomFovsMap e e e e 35
qcFlagPlots e 37
readAndAddPolygonsToSPE 38
readCosmxSPE 39
readhSpolygons L. 40
readMerfishSPE 41
readPolygons 43
readPolygonsCosmx e e 44
readPolygonsMerfish 45
readPolygonsXenium e e e 46
readXeniumSPE 47
spatialPerCellQC L 48
trainModel 50
updateCosmxProteinSPE 51
updateCosmxSPE 52
updateXeniumSPE 0oL 53
Index 55
.addPolygonsToCD .addPolygonsToCD
Description

This function enriches a DataFrame (e.g., from colData) with matching polygon geometries.

Usage

.addPolygonsToCD(cd, polygons, polygonsCol = "polygons")

Arguments
cd A DataFrame containing at least ‘fov‘ and ‘cellID* columns.
polygons An sf object with matching ‘fov‘ and ‘cellID* columns.
polygonsCol character indicating the name of the polygons column to add into the colData

(default is ‘polygons®).

4 .checkFovPosition Version

Value

A DataFrame identical to ‘cd‘, but row-subset to cells present in ‘polygons‘ and with a new ‘poly-
gons‘ list-column of sf geometries.

.centroid_image_theme .centroid_image_theme

Description

internal function to setup the theme for the centroid plot background

Usage

.centroid_image_theme (backBorder = NA)

Arguments

backBorder color for the borders of the background (default=NA)
Value

a ggplot2 theme object

.checkFovPositionVersion
.checkFovPositionVersion

Description

Check and Standardize FOV Position Column Names

This internal utility function standardizes column names of a data frame containing Field of View
(FOV) positional information. It modifies column names to ensure compatibility with expected
naming conventions, including support for older formats.

Specifically, it: - Renames any column containing "FOV" to "fov" - Converts columns with co-
ordinates matching "X", "Y", or "Z" to lowercase - Replaces suffix "_px" with "_global_px" for
coordinate pixel columns - If the input contains ‘x_mm* and ‘y_mm* columns, the function com-
putes corresponding ‘x_global_px‘ and ‘y_global_px* values by converting from millimeters to
pixels using a fixed resolution factor (0.12028 mm/pixel).

Usage

.checkFovPositionVersion(spe)

.checkPolygons Validity 5

Arguments
spe A ‘SpatialExperiment‘ containing FOV position information in the metadata to
be standardized.
Value

A ‘SpatialExperiment* with updated and standardized column names for the metadata ‘fov_position*
‘data.frame’.

.checkPolygonsValidity
.checkPolygonsValidity

Description

checks validity on a geometry of ‘sf* object. It removes multipolygons when ‘keepMultiPol* is
‘FALSE*

Usage

.checkPolygonsValidity(
sf,
geometry = NULL,
keepMultiPol = TRUE,
verbose = FALSE

)
Arguments
sf An ‘sf* class object containing the spatial data.
geometry character for the geometry to check validity, if ‘NULL* it checks the active ge-

ometry (default is ‘NULL*)

keepMultiPol logical for keeping/removing moltipolygons, if any (default is “TRUE®, so keep-
ing the multipolygons)

verbose logical to print verbose output (default is ‘FALSE®)

Details

In case geometry is NULL validity is checked on the active geometry, otherwise it is checked
on the passed geometry without changing the active geometry of the sf object. In case of not
valid polygons, these are removed. If keeMultiPol is FALSE, possible detected multipolygons are
removed.

Value

An ‘sf object with valid geometries, possibly with multipolygons removed.

6 .createPolygons

.computeBorderDistanceCosMx
.computeBorderDistance CosMx

Description

Calculates the minimum distance of each cell to the field-of-view border and adds it to ‘colData“.

Usage

.computeBorderDistanceCosMx(
spe,
xwindim = metadata(spe)$fov_dim[["xdim"]1],
ywindim = metadata(spe)$fov_dim[["ydim"]]

)
Arguments
spe A ‘SpatialExperiment‘ object with CosMx data.
xwindim Width of FOV in x (default from ‘metadata(spe)$fov_dim®).
ywindim Height of FOV in y (default from ‘metadata(spe)$fov_dim®).
Value

A ‘SpatialExperiment‘ object with ‘dist_border‘ columns in ‘colData‘.

.createPolygons .createPolygons

Description

This internal function creates polygons from a data.frame or similar object.

Usage
.createPolygons(
spat_obj,
x = NULL,
y = NULL,
polygon_id = NULL,
geometry = "Geometry"

.dark theme

Arguments
spat_obj A data frame or similar object containing spatial data.
X A character vector specifying the x-coordinates.
y A character vector specifying the y-coordinates.
polygon_id A character string specifying the polygon ID.

Value

An ‘sf* object containing the created polygons.

.dark_theme .dark_theme

Description

internal function to setup the black background theme for the First Filter plot

Usage

.dark_theme(fillColor = "black”, foreColor = "white")

Arguments

fillColor color to fill the element_rect (default is "black")

foreColor color for all the other elements (default is "white")

Value

a ggplot2 theme object

.fov_image_theme Jov_image_theme

Description

internal function to setup the theme for the fov background on the whole image

Usage

.fov_image_theme(backColor = "black"”, backBorder = NA, titleCol = "white")

Arguments
backColor not used
backBorder color for the borders of the background (default=NA)
titleCol character indicating the color of the title
Value
a ggplot2 theme object

light_theme

.getActiveGeometryName
.getActiveGeometryName

Description

.getActiveGeometryName

Usage

.getActiveGeometryName (sf)

Arguments

sf an sf object

Value

character with the name of the active geometry

Examples

example(readPolygonsCosmx)
.getActiveGeometryName(polygons)

.light_theme light_theme

Description

internal function to setup the white background theme for the First Filter plot

Usage
.light_theme(fillColor = "white"”, foreColor = "black")

Value

a ggplot2 theme object

.negative_image_theme 9

.negative_image_theme .negative_image_theme

Description

internal function to setup the theme for the negative background for negative plots

Usage
.negative_image_theme(fillColor = "black"”, foreColor = "white")
Arguments
fillColor color to fill the element_rect (default is "black")
foreColor color for all the other elements (default is "white")
Value
a ggplot2 theme object
.renameGeometry .renameGeometry
Description

renames the ‘from‘ to ‘to‘ geometry of the ‘sf* object. If ‘activate’ is “TRUE" it set as the active
geometry the new geometry name. Default behaviour is to check if the renamed geometry is already
active and leave it as active with the new name.

Usage

.renameGeometry(sf, from, to, activate = FALSE)

Arguments

sf an sf object with the ‘from* geometry

from character indicating the name of the geometry to change

to character indicating the new name of the geometry

activate logical indicating if the renamed geometry has to be activated
Value

an sf object

10 addPolygonsToSPE
Examples
example(readPolygonsCosmx)
.renameGeometry(polygons, "global”, "globall")
.setActiveGeometry .setActiveGeometry
Description
.setActiveGeometry
Usage
.setActiveGeometry(sf, name)
Arguments
sf an sf object
name character for the geometry to activate
Value
an sf object
Examples
example(readPolygonsCosmx)
.setActiveGeometry(polygons, "local")
addPolygonsToSPE addPolygonsToSPE
Description
This function adds polygon data to a ‘SpatialExperiment* object.
Usage
addPolygonsToSPE (spe, polygons, polygonsCol = "polygons")
Arguments
spe A ‘SpatialExperiment® object to which polygons will be added.
polygons An ‘sf* object containing the polygon data.
polygonsCol character indicating the name of the polygons column to add into the colData

(default is ‘polygons®).

checkOutliers 11

Value

The ‘SpatialExperiment* object with polygons added to the ‘colData‘.

Examples

example(readCosmxSPE)

polygons <- readPolygonsCosmx(metadata(spe)$polygons)
spe <- addPolygonsToSPE(spe, polygons)

spe$polygons

checkOutliers checkOutliers

Description

Checks if computed outliers meet the minimum numerical requirement, being at least 0.1 If the
requirement is not met, the variable is removed from the formula.

Usage

checkOutliers(spe, verbose = FALSE)

Arguments

spe A ‘SpatialExperiment‘ object with spatial omics data.

verbose Logical. If “TRUE®, prints how many outliers were found for each metric.
Details

The function checks if computed outliers for each metric meet the minimum number to get the
metric included in the QC score formula. If verbose is TRUE, it also prints how many outliers were
found for each metric.

Value

The ‘SpatialExperiment* object with added QCScore metric variables in the ‘metadata‘.

Examples

example(computeQutliersQCScore)
spe <- checkOutliers(spe, verbose = TRUE)
metadata(spe)$formula_variables

12 computeAspectRatioFromPolygons

computeAreaFromPolygons
computeAreaFromPolygons

Description

This function computes the area from polygon data.

Usage

computeAreaFromPolygons(polygons)

Arguments

polygons An ‘sf* object containing polygon data.

Value

A ‘numeric‘ vector with the area information.

Examples

example(readPolygonsMerfish)
area <- computeAreaFromPolygons(polygons)
area

computeAspectRatioFromPolygons
computeAspectRatioFromPolygons

Description

This function computes the aspect ratio (width / height) from polygon data.

Usage

computeAspectRatioFromPolygons(polygons)

Arguments

polygons An ‘sf* object containing polygon data.

Value

A ‘numeric‘ vector with the aspect ratio information.

computeCenterFromPolygons 13

Examples

example(readPolygonsMerfish)
ar <- computeAspectRatioFromPolygons(polygons)
ar

computeCenterFromPolygons
computeCenterFromPolygons

Description
This function computes the center coordinates on x and y axis from polygon data and adds it to the
‘colData‘. It is necessary only for Merfish.

Usage

computeCenterFromPolygons(polygons, coldata)

Arguments
polygons An ‘sf* object containing polygon data.
coldata A ‘DataFrame* containing the ‘colData‘ to which center coordinates information
will be added.
Value

A ‘DataFrame*‘ with the added center information.

Examples

example(readPolygonsMerfish)
coldata <- computeCenterFromPolygons(polygons, colData(spe))
colData(spe) <- coldata

computelLambda computeLambda

Description

Compute Optimal Ridge Regularization Parameter \ via Cross-Validation

computelLambda performs ridge (L2) logistic regression with cross-validation to identify the optimal
regularization parameter A for a binary response.

Usage

computelLambda(trainDF, modelFormula)

14 computeMissingMetricsMerfish

Arguments
trainDF ‘data.frame‘ A data frame for training that must include: Predictor columns:
All columns referenced in the formula returned by ‘getModelFormula()‘. ‘gs-
core_train‘ A binary (0/1) response vector to be modeled.
modelFormula ‘character* A character string representing the model formula ‘~ log2SignalDensity
+...%, as returned by ‘getModelFormula()°.
Details

Internally, the function: Constructs the design matrix via model.matrix(), Runs ridge logistic re-
gression cross-validation using ‘cv.glmnet® with ‘alpha = 0°, Extracts and returns ‘ridge_cv$lambda.min*.

Value

‘numeric‘ The value of A (i.e., ‘lambda.min‘) from ‘cv.glmnet‘ that minimizes the cross-validation
error.

Examples

example(computeTrainDF)

modform <- getModelFormula(metadata(spe)$formula_variables)
best_lambda <- computeLambda(df_train, modform)
print(best_lambda)

computeMissingMetricsMerfish
computeMissingMetricsMerfish

Description

‘computeMissingMetricsMerfish()* takes cell metadata and boundary polygons, calculates per-cell
area and aspect-ratio, and optionally appends the raw polygon geometries.

Usage

computeMissingMetricsMerfish(
polFile,
coldata,
boundariesType = c("parquet”, "HDF5"),
keepPolygons = FALSE,
polygonsCol = "polygons”,
useVolume = TRUE

computeMissingMetricsXenium 15

Arguments
polFile character for the path to the polygon file. Tipically a parquet file or a folder of
HDF5 files in the ‘metadata(spe)$polygons*.
coldata ‘DataFrame* or ‘data.frame‘ Cell metadata with at least a ‘cell_id* column.

boundariesType ‘character(1)* One of ‘"HDF5"‘ or ‘"parquet"‘—passed on to ‘readPolygons-
Merfish()*.

keepPolygons ‘logical(1)‘ If “TRUE", cbinds the raw polygon ‘sf* columns onto ‘coldata‘.

polygonsCol character indicating the name of the polygons column to add into the colData
(default is ‘polygons®).

useVolume ‘logical(1)* it assigns the area from the "volume" column. If the column is not
present it computes the area from the polygons. Default: “TRUE".

Details

‘computeMissingMetricsMerfish() reads polygon geometries via ‘readPolygonsMerfish(polFile,
type=boundariesType)‘ where ‘polFile‘ is a Parquet file (parquet) or a folder of HDFS5 files (HDFS).
It expects ‘coldata‘ to contain at least ‘cell_id*.

Behavior: - If ‘useVolume=TRUE" and ‘coldata‘ contains a ‘volume*‘ column, the returned ‘Area_um*
is set to ‘volume*. Otherwise ‘Area_um* is computed from the polygons using ‘compute AreaFromPoly-
gons(). - ‘AspectRatio’ is computed from polygons using ‘computeAspectRatioFromPolygons()‘.

- If ‘keepPolygons=TRUE‘, geometries are attached to the returned ‘DataFrame‘ under the name
given by ‘polygonsCol°.

Important: polygons must align (in order or by matching logic) with the rows of ‘coldata‘; otherwise
area/aspect values may be assigned incorrectly.

Value

A ‘DataFrame* (or ‘data.frame‘) with: - all columns of ‘coldata‘ - ‘Area_um*: area/volume of each
cell’s polygon - ‘AspectRatio‘: width/height aspect ratio - (optionally) the polygon geometries

Examples

example (readMerfishSPE)

cd <- computeMissingMetricsMerfish(metadata(spe)$polygons, colData(spe),
boundariesType="parquet”)

colData(spe) <- cd

cd

computeMissingMetricsXenium
computeMissingMetricsXenium

16 computeMissingMetricsXenium

Description

Compute Missing Metrics for Xenium Data

This function computes missing metrics, such as the aspect ratio, from polygon data in a Xenium
dataset and optionally appends the polygon data to the resulting ‘colData‘.

Usage

computeMissingMetricsXenium(
polFile,
colData,
keepPolygons = FALSE,
polygonsCol = "polygons”

)

Arguments
polFile A character string specifying the file path to the polygon data.
colData A ‘DataFrame* containing the ‘colData‘ for the Xenium dataset.

keepPolygons A logical value indicating whether to keep the polygon data in the resulting
‘colData‘. Default is ‘FALSE".

polygonsCol character indicating the name of the polygons column to add into the colData
(default is ‘polygons®).

Details
The function reads the polygon data from the specified file, computes the aspect ratio for each
polygon, and merges these metrics with the provided ‘colData‘. Optionally, the polygon data can
be kept in the returned ‘colData‘.

Value

A ‘DataFrame* containing the updated ‘colData‘ with computed metrics. If ‘keepPolygons® is
‘TRUE’, the polygon data is also included.

Examples

example(readXeniumSPE)
colData(spe) <- computeMissingMetricsXenium(metadata(spe)$polygons,
colData(spe), keepPolygons=TRUE)

computeQutliersQCScore 17

computeQutliersQCScore
computeQutliersQCScore

Description

Compute outlier cells for each metric that can be used in QC score formula for SpatialExperiment.

This function calculates outlier cells for each variable specified in ‘metricList‘ for a ‘SpatialEx-
periment‘. log2SignalDensity must be present in the ‘colData‘ of the ‘SpatialExperiment‘ object
as a minimum requirement. The user can choose which metrics to include among the following:
Area_um, log2Ctrl_total_ratio, log2 AspectRatio. For Xenium and Merfish datasets, log2 AspectRatio
is automatically removed from the formula.

Usage

computeOutliersQCScore(
spe,
metricList = c("log2SignalDensity”, "Area_um”, "log2AspectRatio”,
"log2Ctrl_total_ratio”)

)
Arguments
spe A ‘SpatialExperiment‘ object with spatial omics data.
metricList A character vector specifying the metrics to include in the QC score formula.
Defaultis ‘c("log2SignalDensity", "Area_um", "log2 AspectRatio", "log2Ctrl_total_ratio")".
Details

The function computes outliers for each specified metric after automatically choosing the appropri-
ate method according to the skewness of the distribution. Internally the function:

1. Calls .checkSkw() to choose the proper outlier detection method according to the variable
skewness,

2. Calls computeSpatialOutlier() on each included metric to get fences,
3. Labels cells as “LOW”/“HIGH” outliers or “NO”

Value

The ‘SpatialExperiment* object with added outlier variables in ‘colData‘ and the temporary QC-
Score metric variables that in the ‘metadata‘.

Examples

example (readCosmxSPE)

spe <- spatialPerCellQC(spe)

spe <- computeQutliersQCScore(spe)
table(spe$log2SignalDensity_outlier_train)

18 computeQCScore

computeQCScore computeQCScore

Description

Compute QC score and automatically define weights for QC score through glm training. This func-
tion computes QC score with a formula that is defined based on the metrics specified in metric_list
and on the number of available outliers for each metric.

Usage

computeQCScore(spe, bestLambda = NULL, verbose = FALSE)

Arguments
spe A ‘SpatialExperiment* object with spatial transcriptomics data.
bestLambda the best lambda typically computed using ‘computeLambda‘.
verbose logical for having a verbose output. Default is FALSE.

Details

For CosMx datasets, also CosMx Protein, the QC Score formula is defined as follows:
QC score ~ count density - aspect ratio - control-total ratio - area

count density is total counts-to-area ratio, aspect ratio represents FOV border effect typical of
CosMx datasets and control-total ratio is the aspecific signal. For each couple of variables in-
teraction terms are computed.

For Xenium and Merscope datasets, QC score cannot depend on aspect ratio as no FOV border
effect was captured through this metric.

Inclusion of metrics in the formula depends also on the number of available outliers. If the number
of outliers for each metric is < 0.1 entire dataset, the metric will be excluded from the QC score
formula.

- Model fitting: ridge (L2) logistic regression is fitted (via ‘glmnet‘) on the balanced training set.
The function uses ‘trainModel()‘ for fitting and ‘computeLambda()‘ (cross-validation) to select
lambda unless ‘bestLambda‘ is supplied.

- Lmbda details: because of the randomness in the training set selection, results may vary so that it
is possible to set a fixed lambda value previously computed with ‘computeLambda‘ preceeded by
‘computeTrainDF* and ‘getModelFormula‘. This is useful for reproducibility across different runs.
Otherwise, an easier way is to let be lambda computed internally, just set a seed with ‘set.seed()’
before running ‘computeQCScore*.

Value

The ‘SpatialExperiment‘ object with added QC score in ‘colData‘.

computeQCScoreFlags 19

Examples

example(spatialPerCellQC)
set.seed(1998)

spe <- computeQCScore(spe)
summary (spe$QC_score)

computeQCScoreFlags computeQCScoreFlags

Description

Compute flagged cells based on a manually chosen threshold on quality score

This function Compute flagged cells based on a manually chosen threshold on quality score stored
in ‘SpatialExperiment object.

Usage

computeQCScoreFlags(spe, gsThreshold = 0.5, useQSQuantiles = FALSE)

Arguments

spe A ‘SpatialExperiment® object with spatial transcriptomics data.
gsThreshold Numeric threshold or quantile for quality score. Default ‘0.5°.

useQSQuantiles Logical; if ‘TRUE®, treat ‘qsThreshold‘ as a percentile.

Value

The ‘SpatialExperiment‘ object with added filter flags in ‘colData‘.

Examples

example (computeQCScore)

spe <- computeQCScoreFlags(spe)

table(spe$low_qgcscore)

if fixed filters are defined we have an additional column
spe <- computeThresholdFlags(spe)

spe <- computeQCScoreFlags(spe)
table(spe$low_threshold_gcscore)

20 computeSpatialOutlier

computeSpatialOutlier computeSpatialOutlier

Description

Computes outliers based on the Area (in micron) of the experiment. It gives the possibility to choose
between the medcouple (mc method argument) and the MADs (scuttle method argument).

Usage

computeSpatialOutlier(
spe,
computeBy = NULL,
method = c("mc", "scuttle”, "both"),
mcDoScale = FALSE,
scuttleType = c("both”, "lower”, "higher")

)
Arguments

spe a SpatialExperiment object with target_counts, area in micron and log2 of the
aspect ratio in the ‘colData‘.

computeBy character indicating a ‘colData‘ column name on which compute the outlier.

method one of ‘mc’, ‘scuttle’, ‘both‘. Use ‘mc* for medcouple, ‘scuttle’ for median
absolute deviations as computed in ‘scuttle‘, ‘both‘ for computing both of them.

mcDoScale logical indicating if the values to compute the medcouple for the outlier detec-

tion should be scaled (default is FALSE, as suggested by the original Medcouple
authors.). See mc for further readings.

scuttleType One of “"both"*, “"lower"*, ‘"higher"‘ for scuttle method.

Details

The medcouple method is a measure for the skeweness of univariate distribution as described in
Hubert M. et al. (2008). In particular, the computed medcouple value must be in a range between
-0.6 and 0.6 to computed adjusted boxplots and perform the outlier detection. For median absolute
deviations (MADs) method we just wrap the isOutlier function in the scuttle package. Please see
McCarthy DJ et al (2017) for further details.

Value

a SpatialExperiment object with additional column(s) (named as the column name indicated in ‘col-
umn_by* followed by the outlier_sc/mc nomenclature) with the outlier detection as ‘outlier.filter

logical class object. This allows to store the thresholds as attributes of the column. use attr(,"thresholds")

to retrieve them.

computeThresholdFlags 21

Examples

example(spatialPerCellQC)

spe <- computeSpatialOutlier(spe, computeBy="log2SignalDensity", method="both")
table(spe$log2SignalDensity_outlier_mc)

table(spe$log2SignalDensity_outlier_sc)

computeThresholdFlags computeThresholdFlags

Description

Compute Flagged cells using fixed thresholds for SpatialExperiment.

This function calculates flagged cells only for total counts and control on total probe counts ratio
using fixed thresholds for a ‘SpatialExperiment‘ object.

Usage

computeThresholdFlags(spe, totalThreshold = @, ctrlTotRatioThreshold = 9.1)

Arguments

spe A ‘SpatialExperiment* object with spatial transcriptomics data.

totalThreshold A numeric value for the threshold of total counts to identify cells with low
counts. Default is ‘0°.
ctrlTotRatioThreshold

A numeric value for the threshold of control-to-total ratio to flag cells over a
certain threshold. Default is ‘0.1°.
Details
The function flags cells basing on zero counts and control-to-total ratio to identify junk cells. It also
combines these flags into a single filter flag.
Value

The ‘SpatialExperiment‘ object with added filter flags in ‘colData‘.

Examples

example (readCosmxSPE)

spe <- spatialPerCellQC(spe)

spe <- computeThresholdFlags(spe)
table(spe$threshold_flags)

22 computeTrainDF

computeTrainDF computeTrainDF

Description

Build a Balanced Training Data Frame from a SpatialExperiment

computeTrainDF takes a SpatialExperiment object and assembles a balanced training set of
“good” vs “bad” cells for subsequent model fitting.

Usage

computeTrainDF (colData, formulaVars, tech, verbose = FALSE)

Arguments
colData A per-cell metadata table. Typically ‘as.data.frame(colData(spe))‘. Must in-
clude at least: ‘cell_id‘, raw metric columns named in ‘formulaVars‘ (e.g. ‘log2SignalDensity°,
‘Area_um°, ‘log2Ctrl_total_ratio‘, optionally ‘log2 AspectRatio‘), and the corre-
sponding outlier-label columns referenced by ‘formulaVars®.
formulaVars A named character vector mapping variable name to its outlier label column
name, e.g. ‘c(log2SignalDensity="log2SignalDensity_outlier_train", ...)".
tech Character string with the acquisition technology. Used to enable CosMx-specific
handling for ‘log2AspectRatio‘. Expected values include ‘"Nanostring_CosMx"*
or ‘"Nanostring_CosMx_Protein"*.
verbose ‘logical(1)‘ (default FALSE) If TRUE, prints the number of “bad” and “good” cells
selected.
Details

The function builds a training set using the variables specified in the ‘metadata‘ of the ‘SpatialEx-
periment* object.

Value

A data. frame with one row per cell, including: qcscore_train (0/1) indicating “bad” vs “good”,
relevant colData columns used for modeling. Deduplicates and down-samples “good” cells to
match the number of “bad” cells.

Examples

example(spatialPerCellQC)

spe <- computeQutliersQCScore(spe)

spe <- checkOutliers(spe)

df_train <- computeTrainDF (colData(spe), metadata(spe)$formula_variables,
metadata(spe)$technology)

table(df_train$qcscore_train)

createPaletteFromColData 23

createPaletteFromColData
createPaletteFromColData

Description

Create a Palette from colData in a SpatialExperiment Object

This function generates a palette mapping based on specified columns in the ‘colData‘ of a ‘Spa-
tialExperiment* object.

Usage

createPaletteFromColData(spe, paletteNames, paletteColors)

Arguments

spe A ‘SpatialExperiment* object with spatial transcriptomics data.

paletteNames A character string specifying the column in ‘colData(spe)‘ to be used for the
names in the palette.

paletteColors A character string specifying the column in ‘colData(spe)‘ to be used for the
colors in the palette.

Details
The function creates a new palette based on the unique combinations of values in the specified
‘paletteNames* and ‘paletteColors‘ columns in ‘colData(spe)‘.

Value

A character vector representing the palette mapping, where each element is a string in the format

o ne

name=color"*.

dot-addFovFromTx .addFovFromTx

Description

Add FOV information from transcript file to cell metadata.

This function retrieves FOV information from transcript file and appends the data to the resulting
‘colData‘.

Usage

.addFovFromTx(txFile, colData)

24 dot-checkSkw

Arguments

txFile ‘character(1)‘ path to a Xenium Output tx file.

colData A ‘DataFrame* containing the ‘colData‘ for the Xenium dataset.
Details

The function reads the transcript file then groups it by cell_id and merges the FOV information to
the cell metadata in ‘colData‘. Only parquet file is supported for this operation

Value

A ‘DataFrame‘ containing the updated ‘colData‘ with FOV information.

dot-checkSkw .checkSkw

Description

Check skewness of metrics to choose outlier detection method.

Usage

.checkSkw(
cd,
metricList = c("log2SignalDensity", "Area_um"”, "log2AspectRatio”,
"log2Ctrl_total_ratio”)

)
Arguments
cd colData of ‘SpatialExperiment‘ object.
metricList A character vector specifying the metrics to include in the QC score formula.
Defaults are "log2SignalDensity", "Area_um", "log2 AspectRatio", "log2Ctrl_total_ratio".
Value

A vector containing the list of chosen outlier detection method for each metric.

dot-computeCosmxProteinTrainSet 25

dot-computeCosmxProteinTrainSet
.computeCosmxProteinTrainSet

Description
Internal: Build Training Set for CosMx-Protein Splits a SpatialExperiment into “bad” vs “good”
cells based on outliers in aspect ratio near tissue border or low count area.

Usage

.computeCosmxProteinTrainSet (spe)

Arguments

spe SpatialExperiment

Value

A list with elements bad and good, each a data.frame with gscore_train and (for “good”) an
is_a_bad_boy flag.

dot-computeCosmxTrainSet
.computeCosmxTrainSet

Description
Internal: Build Training Set for CosMx Splits a SpatialExperiment into “bad” vs “good” cells based
on outliers in aspect ratio near tissue border or low count area.

Usage

.computeCosmxTrainSet (spe)

Arguments

spe SpatialExperiment

Value

A list with elements bad and good, each a data.frame with gscore_train and (for “good”) an
is_a_bad_boy flag.

26 firstFlagPalette

dot-computeXenMerTrainSet
.computeXenMerTrainSet

Description

Internal: Build Training Set for Xenium & MERFISH Splits a SpatialExperiment into “bad” vs
“good” cells based on pre-computed outlier labels on log2SignalDensity.

Usage

.computeXenMerTrainSet(spe)

Arguments

spe SpatialExperiment

Value

A list with elements bad and good, each a data.frame with gscore_train and (for “good”) an
is_a_bad_boy flag.

firstFlagPalette firstFlagPalette

Description

neon color palette for firstFlagPlot

Usage

firstFlagPalette

Format

An object of class character of length 6.

Value

a palette for firstFlagPlot

getFencesOutlier 27

getFencesOutlier getFencesOutlier

Description

Retrieve Threshold (Fence) Values from a SpatialExperiment Object

This function extracts the threshold values, also known as fences, from a specified column in the
‘colData‘ of a ‘SpatialExperiment* object.

Usage

getFencesOutlier(
spe,
fencesOf,
highLow = c("both”, "lower”, "higher"),
decimalRound = NULL

)
Arguments
spe A ‘SpatialExperiment‘ object containing spatial transcriptomics data.
fencesOf A character string specifying the name of the column in ‘colData(spe)‘ from
which to extract the fence values. This column should contain an ‘outlier.filter*
object (see ‘computeSpatialOutlier).
highLow character indicating which fence to get if "higher", "lower" or "both" (default is

"both").

decimalRound An optional integer specifying the number of decimal places to which the fence
values should be rounded. If ‘NULL‘, no rounding is applied. Default is
‘NULL".

Value

A numeric vector containing the lower and upper threshold values extracted from the specified
column.
Examples

example (computeSpatialOutlier)
getFencesOutlier(spe, fencesOf="log2SignalDensity_outlier_mc")

28 plotCellsFovs

getModelFormula getModelFormula

Description
Returns the right-hand side of a model formula string based on formula variables found in the
‘metadata‘ of a ‘SpatialExperiment* object.

Usage

getModelFormula(formulaVars, verbose = FALSE)

Arguments
formulaVvars A named character vector mapping variable names (e.g. ‘"log2SignalDensity"*,
“"Area_um"*, etc.) to their corresponding outlier label columns, typically from
‘metadata(spe)$formula_variables®.
verbose Logical. If “TRUE, prints the final formula used for QC score
Value

‘character® A one-sided formula as a string (e.g. "~ log2SignalDensity + ...").

Examples

example(checkOutliers)
getModelFormula(metadata(spe)$formula_variables)

plotCellsFovs plotCelisFovs

Description

Plot cell centroids in FoVs, creating a map of the whole experiment, where cells are plotted as
points and FoV boundaries and numbers are overlaid.

Usage

plotCellsFovs(
spe,
sampleId = unique(spe$sample_id),
pointCol = "firebrick"”,
numbersCol = "black",
alphaNumbers = 0.8,
fovDim = metadata(spe)$fov_dim,
size = 0.05,

plotCellsFovs 29

alpha = 0.8,
scaleBar = TRUE,
micronConvFact = 0.12

)
Arguments
spe A ‘SpatialExperiment‘ object with ‘fov‘ in ‘colData‘.
sampleld Character string identifying which sample to plot. Default: ‘unique(spe$sample_id)‘.
pointCol Color for the cell centroids. Default: ‘"firebrick"‘.
numbersCol Color for the FoV labels. Default: ‘"black"‘.
alphaNumbers Numeric transparency for FoV labels. Default: ‘0.8°.
fovDim numeric with two named dimensions xdim, ydim. (Default is metadata(spe)$fov_dim)
size Numeric point size for the cell centroids. Default: ‘0.05°.
alpha Numeric transparency for the cell centroids. Default: ‘0.8
scaleBar A logical value indicating whether to add a scale bar to the plot. (Default is
‘TRUE®)

micronConvFact Numeric conversion factor from pixels to microns. Default is ‘0.12°.

Details

The function expects spe (a SpatialExperiment) to include field-of-view metadata in metadata(spe):
- ‘metadata(spe)$fov_positions‘: a matrix or data.frame (or list with named elements) containing
at minimum ‘x_global_px‘, ‘y_global_px°‘, and ‘fov‘. Values ‘x_global_px‘/‘y_global_px* are in
pixels and represent the origin (top-left) of each FoV. - ‘metadata(spe)$fov_dim* (or the ‘fovDim*

argument): a named numeric with ‘xdim*‘ and ‘ydim* giving FoV width/height in pixels.

For each FoV the rectangle is drawn as: - ‘xmin‘ = ‘x_global_px°, - ‘xmax‘ = ‘x_global_px‘ +
‘xdim*, - ‘ymin‘ = ‘y_global_px°, - ‘ymax‘ = ‘y_global_px‘ + ‘ydim°.

‘sampleld‘: if ‘NULL" no plot title is added; if a vector of length > 1 is provided the first element
is used. Prefer passing a single sample identifier string. ‘micronConvFact’ is the conversion factor
from pixels to micrometers (um/pixel). It is forwarded to ‘.plotScaleBar()‘ and controls how the
scale bar is labeled (useful for technologies where coordinates are in pixels but the scale should
display um). The function uses the coordinates returned by ‘spatialCoords(spe)‘ and the names from
‘spatialCoordsNames(spe)‘. It performs basic input checks but assumes the described metadata
structures are present; if they are missing or malformed the function will raise an informative error.

Value

A ‘ggplot‘ object showing cell centroids and FoV boundaries.

Examples

example (readCosmxSPE)
g <- plotCellsFovs(spe)
print(g)

30 plotCentroids

plotCentroids plotCentroids

Description

Plot Spatial Coordinates for a SpatialExperiment Object This function generates a ggplot of spatial
coordinates from a ‘SpatialExperiment object, optionally coloring the points by a specified column
in ‘colData‘.

Usage

plotCentroids(
spe,
colourBy = NULL,
colourlLog = FALSE,
sampleld = unique(spe$sample_id),
isNegativeProbe = FALSE,
palette = NULL,

pointCol = "darkmagenta",
size = 0.05,
alpha = 0.8,

aspectRatio = 1,
scaleBar = TRUE,
micronConvFact = 0.12

)
Arguments

spe A ‘SpatialExperiment‘ object containing spatial transcriptomics data.

colourBy An optional character string specifying the column in ‘colData(spe)‘ to use for
coloring the points. If ‘NULL, all points will be colored the same.

colourlLog Logical to log-transform the data to enhance visualization (Default is FALSE).

sampleld A character string specifying the sample identifier to be used as the plot title.
(Default is the unique sample ID from ‘spe*)

isNegativeProbe

A logical value indicating whether to apply a custom color gradient for negative
probe data. (Default is ‘FALSE)

palette A vector of colors to be used as a custom palette. For categorical data, this
should be a vector of colors with the same length as the number of levels in
‘colourBy*. For continuous data, this should be a vector of colors used to create
a gradient.

pointCol A character string specifying the color of the points when ‘colourBy‘is ‘NULL".
(Default is ‘"darkmagenta"*)

size A numeric value specifying the size of the points. (Default is ‘0.05°)

plotMetricHist 31

alpha A numeric value specifying the transparency level of the points. (Default is
‘0.8%)

aspectRatio A numeric value specifying the aspect ratio of the plot. (Default is ‘1°)

scaleBar A logical value indicating whether to add a scale bar to the plot. (Default is
‘TRUE")

micronConvFact Numeric conversion factor from pixels to microns. DEFAULT is ‘0.12°.

Details

This function plots cell centroids from a ‘SpatialExperiment‘ object using coordinates returned
by ‘spatialCoords(spe)‘ and the coordinate names from ‘spatialCoordsNames(spe)‘ (the function
expects at least two spatial coordinate dimensions). If ‘colourBy‘ is ‘NULL* all points are drawn
using ‘pointCol‘; otherwise the function colors points using the specified ‘colData‘ column or a
provided palette.

Requirements and inputs: - ‘spe‘ must be a ‘SpatialExperiment® with valid spatial coordinates. - If
‘colourBy* is provided and is the name of a ‘colData‘ column, that column must exist and be suitable
for plotting (factor/logical for discrete palettes, numeric for continuous palettes). - ‘palette‘ may be
either (a) a vector of color values (used directly) or (b) the name of a column in ‘colData(spe)* from
which a palette will be built via ‘createPaletteFromColData()‘. The function detects which mode to
use at runtime.

Value

A ‘ggplot® object representing the spatial coordinates plot of polygon centroids.

Examples

example (readCosmxSPE)
g <- plotCentroids(spe, colourBy="Mean.DAPI")
print(g)

plotMetricHist plotMetricHist

Description

Plot a Histogram for a Given Metric in a SpatialExperiment Object

This function generates a histogram for a specified metric in a ‘SpatialExperiment object.

Usage
plotMetricHist(
spe,
metric,
fillColor = "#c@c8cf",
useFences = NULL,

32 plotPolygons

fencesColors = c(lower = "purple4”, higher = "tomato"),
bins = 30,
binWidth = NULL
)
Arguments
spe A ‘SpatialExperiment‘ object containing spatial transcriptomics data.
metric A character string specifying the name of the metric (column in ‘colData(spe) ‘)
to plot.
fillColor A character string specifying the fill color of the histogram bars. (Default is
“"#69b3a2")
useFences A character string specifying the name of the column in ‘colData(spe)‘ that con-

tains the fence thresholds (typically from an outlier filter). If ‘NULL, no fences
will be plotted. (Default is ‘NULL")

fencesColors A named character vector specifying the colors to use for the lower and higher

fences. The names should be “"lower"‘ and ‘"higher"‘ . (Default is ‘c("lower"="purple4",
"higher"="tomato"))

bins An integer specifying the number of bins to use in the histogram. (Default is
‘30()

binWidth A numeric value specifying the width of the bins. If ‘NULL*, the bin width will

be automatically determined based on the ‘bins‘ parameter. (Default is ‘NULL*)

Value

A ‘ggplot‘ object representing the histogram of the specified metric.

Examples

example(readCosmxSPE)
g <- plotMetricHist(spe, metric="Mean.DAPI")
print(g)

plotPolygons plotPolygons

Description

Plot polygons from a ‘SpatialExperiment* object using ggplot2.

plotPolygons 33

Usage

plotPolygons(

spe,

colourBy = "darkgrey"”,

colourLog = FALSE,

polyColumn = "polygons.global”,

sampleId = unique(spe$sample_id),

bgColor = "white"”,

fillAlpha = 1,

palette = NULL,

borderCol = NA,

borderAlpha = 1,

borderLineWidth = 0.1,

drawBorders = TRUE,

scaleBar = TRUE,

micronConvFact = 0.12
)

Arguments
spe A ‘SpatialExperiment‘ object with polygon data as an ‘sf* object.
colourBy A column in ‘colData(spe)‘ for coloring the polygons or a string color in col-
ors(). (Default is "darkgrey")
colourLog Logical to log-transform the data to enhance visualization (Default is FALSE).
polyColumn character for the name of the column where the polygons sf are stored (default
is "polygons.global")

sampleld Sample ID for plot title. Default is the unique sample ID.
bgColor character indicating color for the background (default is "white")
fillAlpha Transparency level for polygon fill. Default is ‘1°.
palette Colors to use if ‘colourBy* is a factor. Default is ‘NULL".
borderCol Color of polygon borders. Default is ‘"black" ‘.
borderAlpha Transparency level for borders. Default is ‘1°.
borderLineWidth

Width of polygon borders. Default is 0.1°.
drawBorders Logical; whether to draw borders. Default is ‘TRUE®.

scaleBar A logical value indicating whether to add a scale bar to the plot. (Default is
‘TRUE®)

micronConvFact Numeric conversion factor from pixels to microns. DEFAULT is ‘0.12°.

Details
Renders polygon geometries stored in ‘colData‘ of a ‘SpatialExperiment‘ object using ‘ggplot2::geom_sf()*
and provides options for fill, borders and an optional scale bar.

Input expectations: - ‘spe‘ must be a ‘SpatialExperiment‘ and ‘polyColumn‘ must name a column
in ‘colData(spe)‘ that contains polygon geometries (‘sfc‘/‘sf* or a list of geometry objects) suitable

34 plotQScoreTerms

for ‘geom_sf(). - ‘colourBy*‘ supports two modes: (a) the name of a ‘colData‘ column to map fill
to data values, or (b) a literal colour name (e.g. ‘"darkgrey"‘) used as a constant fill.

Colour / palette behaviour: - If ‘colourBy* refers to a ‘colData‘ column and ‘colourLog = TRUE",
the function computes ‘loglp()‘ of that column in the local plotting data frame (it does not mutate
‘spe‘). - ‘palette‘ may be a vector of colour values (used for discrete scales). Numeric ‘colourBy*
values use a continuous Viridis-like scale by default.

Scale bar and units: - If ‘scaleBar = TRUE' the function calls ‘.plotScaleBar()‘ to add a length scale.
‘micronConvFact is the conversion factor (um per pixel) used by ‘.plotScaleBar()‘ to label the bar
in micrometres when appropriate.

Robustness notes: - If ‘colourBy* is neither a ‘colData‘ column nor a valid colour name the function
issues a warning and falls back to the default fill.
Value

A ‘ggplot® object representing the polygon plot of the spatial data.

Examples

example(readAndAddPolygonsToSPE)
plotPolygons(spe, colourBy="Mean.DAPI")

plotQScoreTerms plotQScoreTerms

Description

Plots the individual terms that combine into the quality score formula, allowing assessment of each
term’s impact on the final score.

Usage

plotQScoreTerms(
spe,
sampleld = unique(spe$sample_id),
size = 0.05,
alpha = 0.8,
aspectRatio = 1,
custom = FALSE

)
Arguments
spe A ‘SpatialExperiment® object with ‘quality_score‘ and term columns in ‘col-
Data“.
sampleld Character string for plot title. Must match values in the ‘fov‘ column of ‘col-

Data(spe)‘. Default: ‘unique(spe$sample_id)°.

plotZoomFovsMap 35

size Numeric point size for the scatter plots. Default: ‘0.05°.

alpha Numeric transparency for the scatter plots. Default: ‘0.2°.

aspectRatio Numeric aspect ratio of the plots. Default: ‘1°.

custom Logical; if “TRUE®, use custom polygon-derived metrics.
Value

A combined plot (via ‘cowplot::plot_grid‘) showing spatial maps of each QS term.

Examples

example(readAndAddPolygonsToSPE)
example(spatialPerCellQC)

p <- plotQScoreTerms(spe)
print(p)

plotZoomFovsMap plotZoomFovsMap

Description

Plot Zoomed-in FOVs with Map and Polygons

This function generates a plot that shows a map of all fields of view (FOVs) within a ‘SpatialExper-
iment‘ object, alongside a zoomed-in view of the specified FOVs with an overlay of polygons and
optional coloring.

Usage

plotZoomFovsMap(
spe,
fovs = NULL,
title = NULL,
mapPointCol = "darkmagenta”,
mapNumbersCol = "black”,
mapAlphaNumbers = 0.8,
csize = 0.05,
calpha = 0.8,
scaleBars = NULL,
scaleBarMap = TRUE,
scaleBarPol = TRUE,

36 plotZoomFovsMap

Arguments

spe A ‘SpatialExperiment‘ object containing spatial transcriptomics data.

fovs A character vector specifying the FOVs to be zoomed in and plotted. Must
match values in the ‘fov* column of ‘colData(spe)‘.

title An optional character string specifying the title of the final plot. If ‘NULL", no
title is added. Default is ‘NULL".

mapPointCol A character string specifying the color of the points in the map. Default is
“"darkmagenta"*.

mapNumbersCol A character string specifying the color of the numbers on the map. Default is
3 ||blaCkH 6.

mapAlphaNumbers
A numeric value specifying the transparency of the numbers on the map. Default
is ‘0.8".

csize A numeric value specifying the size of the points in the map. Default is ‘0.05°.

calpha A numeric value specifying the transparency of the points in the map. Default
is ‘0.8".

scaleBars Logical or NULL. Default is ‘NULL*. Master switch controlling the presence

of scale bars in both panels. If TRUE, scale bars are shown in both the map
and polygon panels. If FALSE, scale bars are hidden in both panels. If NULL,
individual settings defined by scaleBarMap and scaleBarPol are used.
scaleBarMap, scaleBarPol

Logical. Default is TRUE. Control the presence of the scale bar in the map
(cells/FOV overview) and polygon (segmentation) panels, respectively. These
parameters are only used when scaleBars is NULL; otherwise they are overrid-
den by scaleBars.

Additional arguments passed to ‘plotPolygons*.

Details

The function first filters the ‘SpatialExperiment® object to the specified FOVs, generates a plot of
the cells for the entire map, then creates a detailed polygon plot of the selected FOVs, and finally
combines these into a single side-by-side visualization. If ‘title‘ is not ‘NULL, it adds a title to the
combined plot.

Value

A combined plot showing a map of all FOVs with zoomed-in views of the specified FOVs and their
associated polygons.

Examples

example(readAndAddPolygonsToSPE)
plotZoomFovsMap(spe, fovs=16, title="FOV 16")

qcFlagPlots 37

gcFlagPlots qcFlagPlots

Description

Plots the flagged cells identified with first filter, based on control count on total count ratio, area in
um and DAPI signal.

This function generates a plot that shows selected (FOVs) within a ‘SpatialExperiment* object, with
cells flagged in different colors over a light or dark layout chosen by the user.

Usage

gcFlagPlots(
spe,
fov = unique(spe$fov),
theme = c("light”, "dark"),
custom = FALSE

)
Arguments

spe A ‘SpatialExperiment‘ object containing spatial transcriptomics data.

fov An integer or numeric vector specifying the FOVs to be plotted Must match

values in the ‘fov‘ column of ‘colData(spe)‘.

theme A character string among "light" or "dark".

custom A boolean value. If TRUE, custom polygons derived metrics will be used.
Value

A panel with multiple plots showing flagged cells for different variables.

Examples

example (readAndAddPolygonsToSPE)

spe <- spatialPerCellQC(spe)

spe <- computeThresholdFlags(spe)

p <- gcFlagPlots(spe, fov=16, theme="dark")
print(p)

38 readAndAddPolygonsToSPE

readAndAddPolygonsToSPE
readAndAddPolygonsToSPE

Description

Read and Add Polygons to a SpatialExperiment Object

This function reads polygon boundary data based on the technology associated with the provided
SpatialExperiment (SPE) object and adds the polygons to the SPE.

Usage

readAndAddPolygonsToSPE (
spe,
polygonsCol = "polygons”,
keepMultiPol = TRUE,
boundariesType = c("csv", "HDF5", "parquet")

)
Arguments
spe A SpatialExperiment object. The object should contain metadata with the
field "technology”, specifying the technology used (e.g., "Nanostring_CosMx",
"Vizgen_MERFISH", or "10X_Xenium").
polygonsCol character indicating the name of the polygons column to add into the colData

(default is ‘polygons®).

keepMultiPol Logical. If TRUE, multi-polygon features will be kept when reading the boundary
data. Defaults to TRUE.

boundariesType Character. Specifies the type of boundary file format to read. Options are
"HDF5" or "parquet"”. Defaults to "HDF5".

Details

The function first checks the technology specified in the SPE’s metadata. Based on the tech-
nology, it reads the appropriate polygon data using the corresponding reading function: - For
"Nanostring_CosMx" or "Nanostring_CosMx_Protein", it uses ‘readPolygonsCosmx()‘. - For "Viz-
gen_MERFISH", it uses ‘readPolygonsMerfish()‘. - For "10X_Xenium", it uses ‘readPolygonsXe-
nium()‘. After reading the polygons, it adds them to the SPE using ‘addPolygonsToSPE()‘.

Value

A SpatialExperiment object with the added polygon data.

readCosmxSPE 39

Examples

example (readCosmxSPE)
spe <- readAndAddPolygonsToSPE(spe)
colData(spe)

readCosmxSPE readCosmxSPE

Description

Read and Construct a SpatialExperiment Object from CosMx Data

This function reads in data from Nanostring CosMx files and constructs a ‘SpatialExperiment’
object, optionally including polygons data.

Usage
readCosmxSPE (
dirName,
sampleName = "sample@1”,
coordNames = c("CenterX_global_px", "CenterY_global_px"),
countMatFPattern = "exprMat_file.csv",
metadataFPattern = "metadata_file.csv”,
polygonsFPattern = "polygons.csv”,
fovPosFPattern = "fov_positions_file.csv"”,

fovdims = c(xdim = 4256, ydim = 4256),
keepPolygons = FALSE

)
Arguments
dirName A character string specifying the directory containing the CosMx data files.
sampleName A character string specifying the sample name. Default is “"sample01"*.
coordNames A character vector specifying the names of the spatial coordinate columns in the
data. Default is ‘c("CenterX_global_px", "CenterY_global_px")".
countMatFPattern

A character string specifying the pattern to match the count matrix file. Default

o ne

is “"exprMat_file.csv"‘.
metadataFPattern
A character string specifying the pattern to match the metadata file. Default is

o ne

metadata_file.csv"*.
polygonsFPattern
A character string specifying the pattern to match the polygons file. Default is

o ne

polygons.csv"*.

fovPosFPattern A character string specifying the pattern to match the FOV positions file. Default

ne

is “"fov_positions_file.csv"*.

40 readh5polygons

fovdims A named numeric vector specifying the dimensions of the FOV in pixels. De-
fault is ‘c(xdim=4256, ydim=4256)°.

keepPolygons Logical indicating if the polygons need to be loaded into memory or not (Default
is ‘FALSE®).

Details

The function firstly relies on readCosmxSXE to read in the specified files for count matrices, meta-
data, and FOV positions constructing a ‘SpatialExperiment‘ object. Then it harmonizes the object
to have the same metadata as for the other technologies, setting the colData names as required in
further QC analysis.

Optionally, polygons data can be read and added to the object by seeting the ‘keepPolygons‘ argu-
ment to “TRUE®, otherwise it only stores the polygons file path into the object metadata.

readCosmxProteinSPE is a wrapper of readCosmxSPE, it changes the technology metadata in
Nanostring_CosMx_Protein.

Value

A ‘SpatialExperiment‘ object containing the read CosMx data, including count matrices, metadata,
and optionally polygons.

Author(s)

Dario Righelli, Benedetta Banzi

Examples

cospath <- system.file(file.path("extdata”, "CosMx_DBKero_Tiny"),
package="SpaceTrooper")
spe <- readCosmxSPE(cospath, sampleName="DBKero_Tiny")

readh5polygons readh5polygons

Description

This function reads polygon data from an HDFS file.

Usage
readh5polygons(polFile)

Arguments

polFile A character string specifying the file path to the HDF5 polygon data.

readMerfishSPE 41

Value

A list containing the polygon geometries and their associated cell_id

Author(s)
Lambda Moses

readMerfishSPE readMerfishSPE

Description

‘readMerfishSPE()‘ imports MERFISH/Merscore outputs (counts, metadata, and optionally cell
boundary polygons) from a directory and builds a SpatialExperiment object.

Usage

readMerfishSPE(
dirName,
sampleName = "sample@1”,
computeMissingMetrics = TRUE,
keepPolygons = FALSE,
boundariesType = c("parquet”, "HDF5"),

countmatFPattern = "cell_by_gene.csv",
metadataFPattern = "cell_metadata.csv”,
polygonsFPattern = "cell_boundaries.parquet”,
coordNames = c("center_x", "center_y"),

polygonsCol = "polygons”,
useVolume = TRUE

)
Arguments
dirName ‘character(1)‘ Path to a folder containing MERFISH output files.
sampleName ‘character(1)‘ Identifier to assign to the ‘sample_id* field in the returned object.

Default: “"sample01"*.

computeMissingMetrics
‘logical(1) If ‘TRUE®, compute area and aspect-ratio metrics from the cell
boundary polygons. Default: “TRUE‘. In particular for area, if a "volume"
column is present in the colData, it will be used as area value, otherwise area
will be computed from polygons. This is relevant for MERFISH as the volume
is computed on the entire 3D cell available data, while polygons are 2D sections.

keepPolygons ‘logical(1)‘ If ‘TRUE", attach raw polygon geometries as extra columns in ‘col-
Data‘. Default: ‘FALSE".

boundariesType ‘character(1)‘ One of ‘"parquet"‘ or ‘"HDF5"‘. If ‘"parquet"*, reads a single
Parquet file of boundaries; if ‘"HDF5"¢, uses a folder of HDF5 polygon files.

ne

42 readMerfishSPE

countmatFPattern
‘character(1)‘ Regex passed to ‘list.files()* to find the count matrix CSV. Default:

o ne

cell_by_gene.csv"".
metadataFPattern

‘character(1)‘ Pattern to find the cell metadata CSV. Default: ‘"cell_metadata.csv"*.
polygonsFPattern

‘character(1)‘ Pattern to find the cell boundaries file. Default: ‘"cell_boundaries.parquet"*.

coordNames ‘character(2)‘ Names of the columns in ‘colData‘ that store X/Y spatial coordi-

non

nates. Default: ‘c("center_x", "center_y")‘.

polygonsCol character indicating the name of the polygons column to add into the colData
(default is ‘polygons®).

useVolume ‘logical(1)‘ If “‘TRUE", prefer a "volume" column in the metadata for area (when
present). Default: ‘“TRUE".

Details

The function searches ‘dirName* for three resources using the provided filename patterns: the
count matrix (‘countmatFPattern®), the cell metadata (‘metadataFPattern‘), and the polygon re-
source (‘polygonsFPattern). The count matrix and metadata are expected to contain a ‘cell_id*
column (aliases ‘V1°, ‘cell’, or ‘EntityID* are renamed). If ‘computeMissingMetrics‘ is TRUE,
‘computeMissingMetricsMerfish()‘ is invoked and receives ‘useVolume*.

The returned ‘SpatialExperiment® contains: - ‘assays$counts‘: gene x cell count matrix (rows =
genes, cols = ‘cell_id"); - ‘colData‘: per-cell metadata (may be reordered by the function); - spatial
coordinates named by ‘coordNames‘; - ‘metadata$polygons‘: path(s) matched by ‘polygonsFPat-
tern‘; - ‘metadata$technology‘: ‘"Vizgen_ MERFISH".

Side effects: the function may reorder ‘colData‘ columns, attach polygon file paths to ‘meta-
data(spe)$polygons*, and (when requested) append ‘Area_um"‘ and ‘AspectRatio* to ‘colData’.

Value

A ‘SpatialExperiment® object with: - ‘assays$counts‘: gene x cell count matrix - ‘colData‘: per-
cell metadata (including computed metrics) - spatial coordinates named by ‘coordNames* - ‘meta-
data$polygons*: path to the boundaries file - ‘metadata$technology*: ‘"Vizgen_MERFISH"*.

Author(s)

Dario Righelli, Benedetta Banzi

Examples

path <- system.file("extdata"”, "Merfish_Tiny",
package = "SpaceTrooper")
spe <- readMerfishSPE(
dirName = path,

sampleName = "Patient2"”,
keepPolygons = TRUE,
boundariesType = "parquet”

)

spe

readPolygons 43

readPolygons readPolygons

Description

Read and Validate Polygons from a File

This function reads polygon data from a specified file, validates the polygons, and returns them as
an ‘sf* object. It supports multiple file formats and can handle both global and local coordinates.

Usage
readPolygons(
polygonsFile,
type = c("csv”, "parquet”, "h5"),
x = c("x_global_px", "vertex_x"),
y = c("y_global_px", "vertex_y"),
xloc = "x_local_px",

yloc = "y_local_px",
keepMultiPol = TRUE,
verbose = FALSE

Arguments

polygonsFile A character string specifying the path to the polygon file.

type A character string specifying the file type. Supported types are ‘"csv"‘, “"par-
quet"‘, and ‘"h5"‘. Default is “"csv"*.

X A character vector specifying the column names for the x-coordinates in the
polygon data. Default is ‘c("x_global_px", "vertex_x")*.

y A character vector specifying the column names for the y-coordinates in the
polygon data. Default is ‘c("y_global_px", "vertex_y")‘.

xloc A character string specifying the column name for the local x-coordinates. De-
fault is “"x_local_px"*.

yloc A character string specifying the column name for the local y-coordinates. De-
fault is “"y_local_px"*.

keepMultiPol A logical value indicating whether to keep multipolygons during validation. De-
fault is “TRUE".

verbose A logical value indicating whether to print additional information during pro-
cessing. Default is ‘FALSE‘.

Details

The function reads polygon data from the specified file and formats. It validates the polygons and
handles both global and local coordinates if provided. If the file type is ‘"h5"*, the function currently
does not handle the data, as this part of the code is not implemented.

44 readPolygonsCosmx

Value

An ‘sf object with the loaded and validated polygons.

Examples

example(readCosmxSPE)
polygons <- readPolygons(metadata(spe)$polygons)
polygons

readPolygonsCosmx readPolygonsCosmx

Description

This function reads polygon data specific to CosMx technology.

Usage

readPolygonsCosmx (
polygonsFile,
type = c("csv"”, "parquet”),
x = "x_global_px",
y = "y_global_px",
xloc = "x_local_px",
yloc = "y_local_px",
keepMultiPol = TRUE,
verbose = FALSE

Arguments

polygonsFile A character string specifying the file path to the polygon data.

type A character string specifying the file type ("csv" or "parquet").
X A character string specifying the x-coordinate column.

y A character string specifying the y-coordinate column.

xloc A character string specifying the local x-coordinate column.
yloc A character string specifying the local y-coordinate column.

keepMultiPol A logical value indicating whether to keep multipolygons.

verbose A logical value indicating whether to print additional information.

Value

An ‘sf* object containing the CosMx polygon data.

readPolygonsMerfish 45

Examples

example (readCosmxSPE)
polygons <- readPolygonsCosmx(metadata(spe)$polygons)
polygons

readPolygonsMerfish readPolygonsMerfish

Description

This function reads polygon data specific to MERFISH technology.

Usage

readPolygonsMerfish(
polygons,
type = c("parquet”, "HDF5"),
keepMultiPol = TRUE,
hdf5pattern = "hdf5",

zlev = 3L,
zcolumn = "ZIndex",
geometry = "Geometry”,
verbose = FALSE

)

Arguments
polygons A character string specifying the folder containing the polygon data files in case
of HDFS5, or a path to a parquet file (see ‘type®).
type A character string specifying the file type("HDF5" or "parquet"). Default is

parquet.
keepMultiPol A logical value indicating whether to keep multipolygons.
hdf5pattern A character string specifying the pattern to match HDFS files.

zlev An integer specifying the Z level to filter the data. Default is ‘3L°.

zcolumn A character string specifying the column name for the Z index.

geometry A character string specifying the geometry column name.

verbose A logical value indicating whether to print additional information.
Value

An ‘st object containing the MERFISH polygon data.

Examples

example(readMerfishSPE)
polygons <- readPolygonsMerfish(metadata(spe)$polygons, type="parquet")
polygons

46

readPolygonsXenium

readPolygonsXenium readPolygonsXenium

Description

This function reads polygon data specific to Xenium technology.

Usage

readPolygonsXenium(

polygonsFile,

type = c("parquet”, "csv"),
x = "vertex_x",

y = "vertex_y",
keepMultiPol = TRUE,
verbose = FALSE

Arguments

polygonsFile A character string specifying the file path to the polygon data.

type A character string specifying the file type ("parquet” or "csv"). Default is par-

X

y

quet.
A character string specifying the x-coordinate column.

A character string specifying the y-coordinate column.

keepMultiPol A logical value indicating whether to keep multipolygons.

verbose A logical value indicating whether to print additional information.

Value

An ‘sf object containing the Xenium polygon data.

Examples

example (readXeniumSPE)
polygons <- readPolygonsXenium(metadata(spe)$polygons, type="parquet”)
polygons

readXeniumSPE 47

readXeniumSPE Load data from a 10x Genomics Xenium experiment

Description

Creates a [‘SpatialExperiment ‘] from an unzipped Xenium Output Bundle directory containing spa-
tial gene expression data.

Usage
readXeniumSPE (
dirName,
sampleName = "sample@1”,
type = c("HDF5", "sparse"),
coordNames = c("x_centroid”, "y_centroid”),
boundariesType = c("parquet”, "csv"),

computeMissingMetrics = TRUE,
keepPolygons = FALSE,

countsFilePattern = "cell_feature_matrix”,
metadataFPattern = "cells.csv.gz",
polygonsFPattern = "cell_boundaries”,
polygonsCol = "polygons”,
txPattern = "transcripts”,
addFOVs = FALSE
)
Arguments
dirName ‘character(1)‘ Path to a Xenium Output Bundle directory.
sampleName ‘character(1)‘ Sample identifier to assign to ‘sample_id‘. Default: ‘"sample01"*.
type ‘character(1)‘ One of “"HDF5"* or ‘"sparse"‘; method to read the feature matrix.
coordNames ‘character(2)‘ Names of X/Y spatial coordinate columns. Default: ‘c("x_centroid",

"y_centroid")‘.

o ne

boundariesType ‘character(1)‘ One of ‘"parquet"‘ or “"csv"‘; format of the polygon file.
computeMissingMetrics

‘logical(1)‘ If “TRUE', compute area and aspect-ratio from boundary polygons.
keepPolygons ‘logical(1)‘ If ‘TRUE", append raw polygon geometries to ‘colData‘.

countsFilePattern

‘character(1)° Pattern to locate the feature matrix file. Default: ‘"cell_feature_matrix"*.
metadataFPattern

‘character(1) Pattern to locate the cell metadata file. Default: “"cells"*.
polygonsFPattern

o

cell_boundaries"*.

poly-

‘character(1)° Pattern to locate the cell boundaries file. Default:

o

polygonsCol ‘character(1)‘ Name of the polygons column to add to ‘colData‘. Default:

ne

gons"*.

48 spatialPerCellQC

txPattern ‘character(1)‘ Pattern (base filename, without extension) to locate the transcript
file (usually a ‘.parquet’ file) from which to extract Field-Of-View (FOV) infor-
mation for each cell. Default: “"transcripts"*.

addFQVs ‘logical(1)‘ If “TRUE®, extract Field-Of-View (FOV) information from the tran-
script file (as located by ‘txPattern‘) and append it to cell metadata (‘colData®).
Default: ‘FALSE".

o

Details

readXeniumSPE
Expects the unzipped bundle to contain an ‘outs/* folder with: - ‘cell_feature_matrix.h5° or ‘cell_feature_matrix/*
- ‘cells.csv.gz*

Value

A [‘SpatialExperiment‘] object with assays, ‘colData‘, spatial coordinates, and ‘metadata$polygons*
& ‘metadata$technology ‘.

Author(s)

Dario Righelli, Benedetta Banzi

Examples

xepath <- system.file(
"extdata”, "Xenium_small”, package = "SpaceTrooper"”
)
(spe <- readXeniumSPE(
dirName = xepath,
keepPolygons = TRUE
)

spatialPerCellQC spatialPerCellQC

Description

Computes quality-control metrics for each cell and adds them to ‘colData‘.

Usage

spatialPerCellQC(
spe,
micronConvFact = 0.12,
rmZeros = TRUE,
negProbList = c("NegPrb"”, "Negative”, "SystemControl”, "Ms IgG1", "Rb IgG", "BLANK_",
"NegControlProbe”, "NegControlCodeword”, "UnassignedCodeword”, "Blank"),
use_altexps = NULL

)

spatialPerCellQC 49

Arguments

spe A ‘SpatialExperiment* object containing spatial data.
micronConvFact Numeric factor to convert pixels to microns. Default ‘0.12°.
rmZeros logical for removing zero counts cells (default is TRUE).

negProbList Character vector of patterns to identify negative probes. Defaults include: Nanos-
tring CosMx: ‘"NegPrb"‘, ‘"Negative"‘, ‘"SystemControl"* Xenium: ‘"Neg-
ControlProbe"*, *"NegControlCodeword"*, ‘"UnassignedCodeword"* MERFISH:
‘||B1ank"6

use_altexps logical for ‘use_altexps® in ‘scuttle‘ package. If TRUE uses the altexps for com-
puting some metrics on it. Useful for interoperability with ‘SpatialExperimen-
tIO*. (See addPerCellQC for additional details).

Details

The function computes and appends per-cell QC metrics to ‘colData(spe)‘ and may subset the re-
turned SpatialExperiment.

Key behaviours and expectations: - Feature detection: negative-probe patterns supplied in ‘neg-
ProbList* are used to build ‘subsets_*‘ groups passed to ‘scater::addPerCellQC()* (via ‘use_altexps*
when requested). ‘addPerCellQC()‘ must be able to find matching feature names (‘rownames* of
spe) and will create ‘subsets_*_sum‘ and ‘subsets_*_detected‘ columns used below. - Required
columns: the function expects ‘sum‘, ‘detected® and ‘total® (from ‘addPerCellQC()‘ and the SPE
assays) to be present; these are used to compute ‘control_sum‘, ‘control_detected’, ‘target_sum’
and ‘target_detected.‘ - Control metrics: ‘control_sum® and ‘control_detected® are computed by
summing matching ‘subsets_*‘ columns; ‘target_*‘ metrics are computed as the complement vs
sum / detected. - Ratios and logs: ‘ctrl_total_ratio® (‘control‘ / 9) and its stabilized log2 trans-
form ‘log2Ctrl_total_ratio* are added. - Coordinate and area handling: - For CosMx technolo-
gies (Nanostring_CosMx and Nanostring_CosMx_Protein) spatial coordinates are converted from
pixels to microns using ‘micronConvFact‘ and appended to ‘colData‘ (column names have px ->
um). - For CosMx, ‘Area_um* is derived from an existing Area column scaled by micronCon-
vFact"2 and ‘.computeBorderDistanceCosMx()‘ is invoked to compute ‘dist_border‘. - For Nanos-
tring_CosMx_Protein, a legacy ‘Area.um2‘ column (if present) is renamed to ‘Area_um° to stan-
dardize naming. - For Xenium (10X_Xenium), if ‘Area_um* is missing the function will attempt
to use ‘cell_area‘ as a fallback and issue a warning. - Aspect ratio: if ‘AspectRatio* exists it is
logged (‘log2AspectRatio®); if missing a warning is emitted. - Signal density: ‘SignalDensity* is
computed as ‘sum‘/ ‘Area_um* for most technologies; for Nanostring_CosMx_Protein it is set to
total. A log transform ‘log2SignalDensity‘ is also added. - Zero-count removal: when ‘rmZeros =
TRUE® cells with ‘sum == 0 are removed from the returned SpatialExperiment (message printed).
- Side effects: the function modifies ‘colData(spe)‘ (adds multiple new columns), may add spatial
coordinates into ‘colData‘ if missing, and may subset the SPE to remove zero-count cells. It issues
warnings when expected inputs (e.g. area, aspect ratio, polygon-derived fields) are missing or when
fallbacks are used.

Use this information to ensure the input SpatialExperiment contains the necessary assays and fields
(feature names, ‘sum‘/‘detected’/‘total‘, ‘Area‘/‘cell_area‘ when available) so metrics are computed
and assigned correctly.

50 trainModel

Value

A ‘SpatialExperiment‘ object with added QC metrics in ‘colData‘.

Examples

example(readCosmxSPE)
spe <- spatialPerCellQC(spe)

trainModel trainModel

Description

Fit a Ridge Logistic Regression Model

trainModel fits an L2-regularized (ridge) logistic regression using glmnet, given a design matrix
and a training data frame.

Usage

trainModel (modelMatrix, trainDF)

Arguments
modelMatrix a matrix describing the model variables, tipically created with ‘getModelFor-
mula‘ and ‘model.matrix‘ functions.
trainDF ‘data.frame‘ A data frame containing at least the response column ‘gscore_train‘,
coded as O/1.
Value

A glmnet model object fitted with family="binomial”, alpha=0 (ridge), and a sequence of A
values.

Examples

example(computeTrainDF)

model_formula <- getModelFormula(metadata(spe)$formula_variables)
model_matrix <- model.matrix(as.formula(model_formula), data=df_train)
fit <- trainModel(model_matrix, df_train)

coef(fit, s = 0.01)

updateCosmxProteinSPE

51

updateCosmxProteinSPE updateCosmxProteinSPE

Description

Update a SpatialExperiment object corresponding to Nanostring CosMx Protein data by adding
metadata identifying the technology and optionally passing through file-location parameters.

Usage
updateCosmxProteinSPE(
spe,
dirName,
sampleName = "sample@1”,
coordNames = c("CenterX_global_px", "CenterY_global_px"),
countMatFPattern = "exprMat_file.csv”,
metadataFPattern = "metadata_file.csv”,
polygonsFPattern = "polygons.csv",
fovPosFPattern = "fov_positions_file.csv",

fovdims = c(xdim

4256, ydim = 4256),

keepPolygons = FALSE

)
Arguments

spe SpatialExperiment object.

dirName Directory containing CosMx Protein data files.

sampleName Character sample ID. Default "sample@1”.

coordNames Character vector of length two indicating coordinate column names in the per-
cell metadata. Default c("CenterX_global_px", "CenterY_global_px").

countMatFPattern
Character pattern for the counts matrix file.

metadataFPattern
Character pattern for the single-cell metadata file.

polygonsFPattern

Character pattern for the polygon file(s).

fovPosFPattern Character pattern for the FOV positions file.

fovdims Named numeric vector with FOV size in pixels.

keepPolygons Logical indicating if the polygons need to be loaded into memory or not (Default
is ‘FALSE®).

Details

This function sets metadata(spe)$technology <- "Nanostring_CosMx_Protein”. It does not
modify other assay or metadata components.

52 updateCosmxSPE

Value

SpatialExperiment object with updated technology metadata.

See Also

readCosmxProteinSPE, readCosmxSPE

Examples

protfolder <- system.file("extdata”, "S@1_prot”, package="SpaceTrooper")

spe <- SpatialExperimentIO::readCosmxSXE(dirName=protfolder,
addParquetPaths=FALSE)

spe <- updateCosmxProteinSPE(spe, protfolder, sampleName="cosmx_prots")

updateCosmxSPE updateCosmxSPE

Description

Update a SpatialExperiment object derived from CosMx data by adding polygons, FOV dimensions,
standardized column names, and metadata.

Usage

updateCosmxSPE (
spe,
dirName,
sampleName = "sample@1”,
polygonsFPattern = "polygons.csv”,
fovdims = c(xdim = 4256, ydim = 4256),
keepPolygons = FALSE

)
Arguments

spe SpatialExperiment object.

dirName Directory containing CosMx output files (e.g., polygon CSVs).

sampleName Character scalar, sample identifier stored in colData(spe) $sample_id. Default
"sample@1”.

polygonsFPattern
Character, pattern used by 1ist.files() tolocate polygon files. Default "polygons.csv".

fovdims Named numeric vector with entries xdim and ydim representing the FOV dimen-

sions in pixels.

keepPolygons Logical indicating if the polygons need to be loaded into memory or not (Default
is ‘FALSE®).

updateXeniumSPE 53

Details

The function standardizes CosMx SPE structure by: - creating unique cell names of the form
f<fov>_c<cell_ID>; - ensuring consistent cell identifiers and sample metadata; - recording FOV
dimensions, polygon paths, and technology type in metadata(spe).

Value

A SpatialExperiment object with updated metadata and column names.

See Also

readCosmxSPE, readCosmxProteinSPE

Examples

cospath <- system.file(file.path("extdata”, "CosMx_DBKero_Tiny"),
package="SpaceTrooper")

spe <- SpatialExperimentIO: :readCosmxSXE(dirName=cospath,
addParquetPaths=FALSE)

spe <- updateCosmxSPE(spe, dirName=cospath, sampleName="DBKero_Tiny")

updateXeniumSPE updateXeniumSPE

Description

Update a SpatialExperiment created from 10x Genomics Xenium outputs by wiring polygons/boundaries,
computing optional QC metrics, and standardizing metadata and column names. This is a thin wrap-
per that delegates to the internal helper ‘.setupXeniumSPE()‘.

Usage
updateXeniumSPE (
spe,
dirName,
sampleName = "sample@1”,
boundariesType = c("parquet”, "csv"),

computeMissingMetrics = TRUE,
keepPolygons = FALSE,

polygonsFPattern = "cell_boundaries”,
polygonsCol = "polygons”,
txPattern = "transcripts”,

addFOVs = FALSE

54 updateXeniumSPE

Arguments
spe SpatialExperiment object to update.
dirName Directory containing Xenium outputs.
sampleName Sample identifier to store (default "sample@1").

n o n

boundariesType One of c("parquet”,”csv") indicating the source format of cell boundaries.
computeMissingMetrics
Logical; if TRUE, compute metrics that are not already present from transcripts/polygons.

keepPolygons Logical; if TRUE, keep polygons in the resulting object (e.g., in metadata or
colData, depending on implementation).

polygonsFPattern
Character pattern used to locate polygon files when boundaries are provided as
CSVs (default "polygons.csv").

polygonsCol Name of the geometry/column storing polygons when reading from parquet (de-
fault "polygons”).
txPattern Pattern (file/glob) for transcript-level files (default "transcripts”).
addFOVs Logical; if TRUE, derive and attach FOV identifiers from transcript resources.
Details

This function performs input checks and then calls ‘.setupXeniumSPE()‘, which does the heavy
lifting (I/O, renaming, metadata updates, metrics).

Value

Updated SpatialExperiment object.

Examples

xepath <- system.file("extdata”, "Xenium_small”, package="SpaceTrooper")

(spe <- SpatialExperimentIO::readXeniumSXE(dirName=xepath))

spe <- updateXeniumSPE(spe, dirName=xepath, boundariesType="parquet”,
computeMissingMetrics=TRUE, keepPolygons=TRUE)

Index

* internal
.addPolygonsToCD, 3
.centroid_image_theme, 4
.checkFovPositionVersion, 4
.checkPolygonsValidity, 5
.computeBorderDistanceCosMx, 6
.createPolygons, 6
.dark_theme, 7
.fov_image_theme, 7
.light_theme, 8
.negative_image_theme, 9
createPaletteFromColData, 23
dot-addFovFromTx, 23
dot-checkSkw, 24
dot-computeCosmxProteinTrainSet,
25
dot-computeCosmxTrainSet, 25
dot-computeXenMerTrainSet, 26
firstFlagPalette, 26
readh5polygons, 40
.addFovFromTx (dot-addFovFromTx), 23
.addPolygonsToCD, 3
.centroid_image_theme, 4
.checkFovPositionVersion, 4
.checkPolygonsValidity, 5
.checkSkw (dot-checkSkw), 24
.computeBorderDistanceCosMx, 6
.computeCosmxProteinTrainSet
(dot-computeCosmxProteinTrainSet)
25
.computeCosmxTrainSet
(dot-computeCosmxTrainSet), 25
.computeXenMerTrainSet
(dot-computeXenMerTrainSet), 26
.createPolygons, 6
.dark_theme, 7
.fov_image_theme, 7
.getActiveGeometryName, 8
.light_theme, 8

s

55

.negative_image_theme, 9
.renameGeometry, 9
.setActiveGeometry, 10

addPerCellQC, 49
addPolygonsToSPE, 10

checkOutliers, 11
computeAreaFromPolygons, 12
computeAspectRatioFromPolygons, 12
computeCenterFromPolygons, 13
computelLambda, 13
computeMissingMetricsMerfish, 14
computeMissingMetricsXenium, 15
computeQutliersQCScore, 17
computeQCScore, 18
computeQCScoreFlags, 19
computeSpatialOutlier, 20
computeThresholdFlags, 21
computeTrainDF, 22
createPaletteFromColData, 23

dot-addFovFromTx, 23
dot-checkSkw, 24
dot-computeCosmxProteinTrainSet, 25
dot-computeCosmxTrainSet, 25
dot-computeXenMerTrainSet, 26

firstFlagPalette, 26

getFencesOutlier, 27
getModelFormula, 28
glmnet, 50

mc, 20

plotCellsFovs, 28
plotCentroids, 30
plotMetricHist, 31
plotPolygons, 32
plotQScoreTerms, 34

56

plotZoomFovsMap, 35
gcFlagPlots, 37

readAndAddPolygonsToSPE, 38
readCosmxProteinSPE (readCosmxSPE), 39
readCosmxSPE, 39
readCosmxSXE, 40
readh5polygons, 40
readMerfishSPE, 41
readPolygons, 43
readPolygonsCosmx, 44
readPolygonsMerfish, 45
readPolygonsXenium, 46
readXeniumSPE, 47

spatialPerCellQC, 48
trainModel, 50

updateCosmxProteinSPE, 51
updateCosmxSPE, 52
updateXeniumSPE, 53

INDEX

	.addPolygonsToCD
	.centroid_image_theme
	.checkFovPositionVersion
	.checkPolygonsValidity
	.computeBorderDistanceCosMx
	.createPolygons
	.dark_theme
	.fov_image_theme
	.getActiveGeometryName
	.light_theme
	.negative_image_theme
	.renameGeometry
	.setActiveGeometry
	addPolygonsToSPE
	checkOutliers
	computeAreaFromPolygons
	computeAspectRatioFromPolygons
	computeCenterFromPolygons
	computeLambda
	computeMissingMetricsMerfish
	computeMissingMetricsXenium
	computeOutliersQCScore
	computeQCScore
	computeQCScoreFlags
	computeSpatialOutlier
	computeThresholdFlags
	computeTrainDF
	createPaletteFromColData
	dot-addFovFromTx
	dot-checkSkw
	dot-computeCosmxProteinTrainSet
	dot-computeCosmxTrainSet
	dot-computeXenMerTrainSet
	firstFlagPalette
	getFencesOutlier
	getModelFormula
	plotCellsFovs
	plotCentroids
	plotMetricHist
	plotPolygons
	plotQScoreTerms
	plotZoomFovsMap
	qcFlagPlots
	readAndAddPolygonsToSPE
	readCosmxSPE
	readh5polygons
	readMerfishSPE
	readPolygons
	readPolygonsCosmx
	readPolygonsMerfish
	readPolygonsXenium
	readXeniumSPE
	spatialPerCellQC
	trainModel
	updateCosmxProteinSPE
	updateCosmxSPE
	updateXeniumSPE
	Index

