Package ‘SpaceMarkers’

February 2, 2026

Type Package
Title Spatial Interaction Markers
Version 2.1.0

BugReports https://github.com/DeshpandeLab/SpaceMarkers/issues

URL https://github.com/DeshpandelLab/SpaceMarkers

Description Spatial transcriptomic technologies have helped to resolve the connection
between gene expression and the 2D orientation of tissues relative to each other.
However, the limited single-cell resolution makes it difficult to highlight the most
important molecular interactions in these tissues. SpaceMarkers, R/Bioconductor software,
can help to find molecular interactions, by identifying genes associated with latent space
interactions in spatial transcriptomics.

Depends R (>=4.4.0)

biocViews SingleCell, GeneExpression, Software, Spatial,
Transcriptomics

Imports matrixStats, matrixTests, rstatix, spatstat.explore,
spatstat.geom, ape, hdf5r, nanoparquet, jsonlite, Matrix,
qvalue, stats, utils, methods, ggplot2, reshape2, RColorBrewer,
circlize, mixtools, dplyr, readbitmap, rlang, effsize, viridis

Suggests data.table, devtools, knitr, cowplot, rjson, rmarkdown,
BiocStyle, testthat (>= 3.0.0), CoGAPS, ComplexHeatmap

Enhances BiocParallel

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

License MIT + file LICENSE

git_url https://git.bioconductor.org/packages/SpaceMarkers
git_branch devel

https://github.com/DeshpandeLab/SpaceMarkers/issues
https://github.com/DeshpandeLab/SpaceMarkers

2 Contents

git_last_commit 2b359d8
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Atul Deshpande [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5144-6924>),
Ludmila Danilova [ctb],
Dmitrijs Lvovs [ctb] (ORCID: <https://orcid.org/0009-0003-2152-6853>)

Maintainer Atul Deshpande <adeshpande@jhu.edu>

Contents
calc IM_SCOreS . . v v v v o o e s 3
.calc_threshold e 4
find_genes_of_interest L 4
.get BTME _features 5
.get_cogaps_features 5
get_csv_features L L L e 6
.get_seurat_features Lo 6
Anfer method L 6
pick_image e e e e 7
dead_format L L L e 7
JOW_ L tESE. . o o o o o e e e e 8
calculate_gene_scores_directed 8
calculate_gene_set_SCOrettt e e 9
calculate_gene_set_specificity 10
calculate_influence e 11
calculate_Ir_SCOres o e 11
calculate_overlap_directed L 12
calculate_overlap_undirected L. 13
calculate_thresholds e 14
curated_geneSt e e e e e e e e e e 15
find_all_hotspots e 15
find_hotspots_gmm 16
find_pattern_hotspots 16
GEL_AM_SCOTES .+ . v v v v v e e e e e e e e e e e e e e e e e e 18
get_interacting_genes e e e e e e e e 19
get_pairwise_interacting_genes e e e e e e e e 21
get_spatial_features 23
get_spatial_parametersol 24
get_spatial_params_MOTans_i.« o v v vttt e e e e e e 26
load10XCoords e e e e 27
0adlOXEXPr o o e e 28
Irdf . . . e 28
optParams L e e 29

plot_cell_interaction_CircoS ot it i e 29

https://orcid.org/0000-0001-5144-6924
https://orcid.org/0009-0003-2152-6853

.calc_IM_scores 3

PIOt_IM_SCOTES v o o v e i e e e e e e e e e e e e e e e e 32
plot_overlap_scores e e e e e 33
plot_source_to_target_Circos ot e e 34
plot_spatial_data_over_image e 37
plot_target_from_sources_Circost ot 38
Index 41
.calc_IM_scores Calculate interaction scores for a specific pattern pair
Description

This function calculates interaction scores for a specific pattern pair using the .classify_spots
function to determine the region of each spot.

Usage

.calc_IM_scores(

data,

pat_hotspots,
influence_hotspots,
patternpair,
avoid_confounders = FALSE,

Arguments

data

A numeric matrix with genes as rows and barcodes as columns.

pat_hotspots A data frame with pattern hotspots, containing columns for x, y, and barcode.

influence_hotspots

A data frame with influence hotspots, containing columns for x, y, and barcode.

patternpair A character vector of length 2 specifying the pattern pair to analyze.

avoid_confounders

Value

Logical (default=FALSE) indicating whether to avoid confounding effects due
to colocalization.

Additional parameters to pass to lower level functions.

A data frame with interaction scores for the specified pattern pair.

4 .find_genes_of_interest

.calc_threshold Compute the threshold for identifying outlier values or hotspots

Description

This function computes the threshold for identifying outlier values or hotspots by fitting a normal
mixture model to the data.

Usage
.calc_threshold(df, minval = 0.01, maxval = .99, method = c("abs"”, "pct"))

Arguments
df A vector containing pattern values
minval Minimum value for quantile threshold
maxval Maximum value for quantile threshold
method Method to use for threshold calculation. Options are "abs" for absolute (default)
and "pct" for percentile.
Value

A list containing the computed thresholds

.find_genes_of_interest
Jind_genes_of _interest Identify genes associated with pattern inter-
action. This function identifies genes exhibiting significantly higher
values of testMat in the Interaction region of the two patterns com-
pared to regions with exclusive influence from either pattern. It uses
Kruskal-Wallis test followed by posthoc analysis using Dunn’s Test to
identify the genes.

Description

find_genes_of_interest Identify genes associated with pattern interaction. This function identifies
genes exhibiting significantly higher values of testMat in the Interaction region of the two patterns
compared to regions with exclusive influence from either pattern. It uses Kruskal-Wallis test fol-
lowed by posthoc analysis using Dunn’s Test to identify the genes.

Usage

.find_genes_of_interest(testMat, goodGenes, region, fdr.level=0.05,
analysis=c("enrichment”,"overlap"),...)

.get BTME_features

Arguments

testMat

goodGenes

region
fdr.level

analysis

Value

A matrix of counts with cells as columns and genes as rows

A vector of user specified genes expected to interact a priori. The default for
this is NULL as the function can find these genes itself

A data frame of the reference pattern regions that overlap with the other patterns
False Discovery Rate. The default value is 0.05.

a character string that specifies the type of analysis to carry out, whether overlap
or enrichment.

Additional arguments to be passed to lower level functions

a list of genes exhibiting significantly higher values of testMat in the Interaction region of the two
patterns compared to regions with exclusive influence from either pattern.

.get_BTME_features .get_BTME_features Load features BayesTME object

Description

.get_ BTME_features Load features BayesTME object

Usage

.get_BTME_features(hf)

.get_cogaps_features .get_cogaps_features Load features CoGAPS object

Description

.get_cogaps_features Load features COGAPS object

Usage

.get_cogaps_features(obj)

6 .infer_method

.get_csv_features .get_csv_features Load features from dataframe

Description

.get_csv_features Load features from dataframe

Usage

.get_csv_features(obj)

.get_seurat_features .get_seurat_features Load features Seurat object

Description

.get_seurat_features Load features Seurat object

Usage

.get_seurat_features(obj)

.infer_method inferMethod Infer the method used to obtain spatial features

Description

inferMethod Infer the method used to obtain spatial features

Usage

.infer_method(spObject, method)

.pick_image 7

.pick_image .pick_image

Description

The function picks the appropriate histology image file from the spatial directory based on the
specified resolution.

Usage

.pick_image(sp_dir, res)

Arguments

sp_dir path to the spatial directory

res a character string specifying the resolution of the image
Value

a character string of the image file name

.read_format readFormat Reads a format into an R object

Description

readFormat Reads a format into an R object

Usage

.read_format (path)

calculate_gene_scores_directed

.row_t_test Perform row-wise t-tests from scratch

Description

This function iterates over the rows of a matrix and performs a t-test comparing two groups of

columns. It calculates the t-statistic, p-value, and sample sizes without relying on stats: :t.test()
for the core logic.

Usage
.row_t_test(in.data, region, min_bins = 50, ...)
Arguments
in.data A numeric matrix. Rows represent features, columns represent samples.
region A factor or vector indicating the group membership for each column of in.data.
Must have exactly two levels/unique values. Its length must equal ncol (in.data).
min_bins Minimum number of non-missing observations required in each group to per-
form the t-test.
Additional parameters to pass to the t-test function.
Value

A matrix with rows corresponding to the features and columns: - statistic: The calculated t-
statistic. - p.value: The calculated two-sided p-value. - n1: Number of non-missing observations
in group 1 for that row. - n2: Number of non-missing observations in group 2 for that row.

calculate_gene_scores_directed

Calculate interaction scores for all pattern pairs

Description

This function calculates interaction scores for all pattern pairs using the . calc_IM_scores function.
It can run in parallel if BiocParallel is available.

Usage

calculate_gene_scores_directed(
data,
pat_hotspots,
influence_hotspots,
pattern_pairs = NULL,

calculate_gene_set_score 9

Arguments

data A numeric matrix with genes as rows and barcodes as columns.

pat_hotspots A data frame with pattern hotspots, containing columns for X, y, and barcode.
influence_hotspots
A data frame with influence hotspots, containing columns for x, y, and barcode.

pattern_pairs A data frame with pattern pairs to calculate interaction scores for. If NULL, all
combinations of patterns in pat_hotspots will be used. If provided, it should
have two columns with pattern names. Each row should represent a pair of
patterns for which interaction scores will be calculated.

Additional parameters to pass to lower level functions.

Value

A data frame with interaction scores for all pattern pairs.

calculate_gene_set_score
calculate_gene_set_score

Description

Calculate the mean interaction score for a set of genes

Usage
calculate_gene_set_score(
IMscores,
gene_sets,
weighted = TRUE,
method = c("geometric_mean”, "arithmetic_mean")
)
Arguments
IMscores A matrix of interaction scores
gene_sets A list of gene sets, where each set is a vector of gene names
weighted Logical; if TRUE, gene scores are weighted by their occurrence in multiple gene
sets
method Character; specifies the aggregation method for gene set scores. Options are
"geometric_mean" or "arithmetic_mean"
Details

This function computes mean interaction scores for given gene sets across cell interactions. It
supports both geometric and arithmetic means, and can weight gene contributions based on their
presence in multiple gene sets.

10 calculate_gene_set_specificity

Value

A matrix of mean interaction scores for genes in each gene set, with attributes for log p-value sums
and number of genes for later fisher combination

calculate_gene_set_specificity
calculate_gene_set_specificity

Description

This function computes specificity scores for given gene sets across cell types or spatial patterns.
It uses fold-change scores and p-values to weight gene contributions, and supports both geometric
and arithmetic means.

Usage
calculate_gene_set_specificity(
data,
spPatterns,
gene_sets,
weighted = TRUE,
method = c("geometric_mean”, "arithmetic_mean")
)
Arguments
data A numeric matrix or data frame of gene expression values (genes x samples).
spPatterns A data frame or matrix containing spatial pattern information, with columns for
cell types and optionally "x", "y", "barcode".
gene_sets A named list of character vectors, where each vector contains gene names for a
gene set.
weighted Logical; if TRUE, gene scores are weighted by their occurrence in multiple gene
sets.
method Character; specifies the aggregation method for gene set scores. Options are
"geometric_mean" or "arithmetic_mean".
Details

Calculate Gene Set Specificity Scores

» Genes not present in the data are excluded.

* Genes with all zero expression are removed.

* Fold-change scores and p-values are calculated using .calculate_all_fc_scores.
* Scores are normalized and weighted by p-value significance.

* For each gene set, scores are aggregated using the specified method and gene weights.

calculate_influence 11

Value

A numeric matrix of gene set specificity scores (gene sets x cell types).

Examples

Example usage:
gene_set_scores <- calculate_gene_set_specificity(expr_matrix, spPatterns, gene_sets)

calculate_influence Compute the spatial influence of a spatial feature

Description

This function computes the spatial influence of a specified pattern

Usage
calculate_influence(spPatterns, optParams, ...)
Arguments
spPatterns A data frame containing x, y coordinates and pattern name
optParams A data frame with optimal parameters for the pattern
Additional parameters for the Smooth function
Value

A data frame with the spatial influence of the specified pattern

calculate_lr_scores calculate_lIr_scores

Description

Calculate L-R pair scores using Fisher’s method

Usage

calculate_lr_scores(
ligand_scores,
receptor_scores,

1lr_pairs,
ligand_test = c("greater”, "two.sided"),
method = c("geometric_mean”, "arithmetic_mean"),

weighted = TRUE

12 calculate_overlap_directed

Arguments

ligand_scores Output from getGeneSetScore for ligands
receptor_scores
Output from getGeneSetScore for receptors

lr_pairs Data frame with columns ’ligand’ and "receptor’

ligand_test Character; specifies the type of test for ligand overexpression. Options are
"greater” or "two.sided"

method Character; specifies the aggregation method for L-R scores. Options are " geo-
metric_mean" or "arithmetic_mean"

weighted Logical; if TRUE, L-R scores are weighted by their occurrence in multiple L-R
pairs

Details

This function computes L-R pair scores by combining ligand and receptor overexpression scores
using either geometric or arithmetic mean. It can also weight L-R pairs based on their presence in
multiple pairs to reduce bias from promiscuous ligands or receptors.

Value

Data frame with L-R scores and p-values

calculate_overlap_directed
calculate_overlap_directed

Description

Calculate the overlap scores between patterns in hotspots

Usage

calculate_overlap_directed(
pat_hotspots,
influence_hotspots,
patternList = NULL,
method = c("relative-abundance”, "differential-abundance”, "absolute")

Arguments

pat_hotspots A data frame with columns X, y, barcode and pattern names

influence_hotspots
A data frame with columns X, y, barcode and pattern names

calculate_overlap_undirected 13

patternList A character vector of pattern names to calculate overlap scores for. If NULL, all
patterns in pat_hotspots and influence_hotspots will be used.

method The method to calculate overlapping abundance scores. Options are "relative-
abundance", "differential-abundance" and "absolute"

Details

The function calculates the overlap scores between patterns hotspots using the specified method.
The default method is "relative-abundance”

Value

A data frame with columns pattern, influence and overlapping abundance

Examples

hotspots <- data.frame(x = c(1,2,3,4,5),
y =c(1,2,3,4,5),
barcode = c("A","B","C","D","E"),
patternl = ¢(1,0,1,0,1),
pattern2 = ¢(1,1,0,0,1))
influence_hotspots <- data.frame(x = c(1,2,3,4,5),
y = c(1,2,3,4,5),
barcode = c("A","B","C","D","E"),
patternl = c(0,1,1,0,0),
pattern2 = c(0,1,0,1,1))
calculate_overlap_directed(pat_hotspots = hotspots, influence_hotspots = influence_hotspots)

calculate_overlap_undirected
calculate_overlap_undirected

Description

Calculate the overlap scores between patterns in hotspots

Usage

calculate_overlap_undirected(
hotspots,
patternList = NULL,
method = c("Szymkiewicz-Simpson”, "Jaccard"”, "Sorensen-Dice”, "Ochiai”, "absolute")

)

Arguments
hotspots A data frame with columns X, y, barcode and pattern names
patternList A character vector of pattern names to calculate overlap scores for
method The method to calculate overlap scores. Options are "Szymkiewicz-Simpson",

"Jaccard", "Sorensen-Dice", "Ochiai" and "absolute"

14 calculate_thresholds

Details

The function calculates the overlap scores between patterns hotspots using the specified method.
The default method is "Szymkiewicz-Simpson" overlap coefficient.

Value

A data frame with columns patternl, pattern2 and overlapScore

Examples

hotspots <- data.frame(x = c(1,2,3,4,5),
y = c(1,2,3,4,5),
barcode = c("A","B","C","D","E"),
patternl = c("pattern1”,NA,"pattern1” NA,"patternl”),
pattern2 = c("pattern2”,"pattern2” ,NA,NA,"pattern2"))
calculate_overlap_undirected(hotspots)
calculate_overlap_undirected(hotspots, c("patternl”,”pattern2"))

calculate_thresholds Compute the thresholds for all columns in a data frame

Description

This function computes the thresholds for all columns in a data frame. The data frame could be an
spPatterns object or an spInfluence object.

Usage
calculate_thresholds(df, minvals = 0.01, maxvals = 0.99, ...)
Arguments
df A data frame with pattern values (optionally with x, y, barcode columns)
minvals Minimum value for quantile threshold
maxvals Maximum value for quantile threshold
Additional parameters to pass to lower level functions
Value

A list containing the computed thresholds for each pattern

curated_genes

15

curated_genes

Curated Genes for example purposes

Description

A vector with genes selected based on previous runs of SpaceMarkers on the Visium 10x breast
ductal carcinoma spatial transcriptomics dataset

Format

A vector with 114 pre-selected genes

Value

a vector of genes

find_all_hotspots

Find hotSpots for all spatial patterns

Description

Convenience function to find hotspots for all spatial patterns

Usage
find_all_hotspots(
spPatterns,
params = NULL,
outlier = "positive”,
nullSamples = 1000,
includeSelf = TRUE,
)
Arguments
spPatterns A data frame that contains the spatial coordinates and metrics for spatial features
(cell types/cell processes). The column names must include "x’ and ’y’ as well
as the spatially varying features.
params a named vector of the optimal sigma and threshold for a given spatial pattern.
The names are should be ’sigmaOpt’ and ’threshOpt’. The default value is
NULL.
outlier a character string specifying whether to apply the outlier threshold to the kernel

density distribution in a one-sided manner (specify "positive’ the default) or in a
two sided manner (specify 'two.sided’).

16 find_pattern_hotspots

nullSamples a numeric values specifying the number of spatial patterns to randomly sample
for a null distribution.

includeSelf a logic value specifying whether to consider the spatial influence the pattern has
on surrounding regions only (set to FALSE), or whether to also consider the
influence of the pattern itself (set to TRUE , the default).

Arguments passed to methods

find_hotspots_gmm Find hotspots for all patterns or influences based on values

Description

Convenience function to find hotspots for all spatial patterns or influence dataframes based on pro-
vided thresholds

Usage
find_hotspots_gmm(df, threshold = 0.1, ...)
Arguments
df A data frame with pattern values (optionally with x, y, barcode columns)
threshold a scalar or vector of thresholds for each column in the data frame. Either user
provided or the output of @calculate_thresholds
Additional parameters to pass to lower level functions
Value

a data frame with the same dimensions as the input data frame.

find_pattern_hotspots Identify hotspots of spatial pattern influence

Description

This function calculates "hotspots’ which are regions of high spatial influence based on an outlier
threshold from a null distribution.

find_pattern_hotspots 17

Usage

find_pattern_hotspots(
spPatterns,
params = NULL,
patternName = "Pattern_1",
outlier = "positive”,
nullSamples = 1000,
includeSelf = TRUE,

)
Arguments
spPatterns A data frame that contains the spatial coordinates and metrics for spatial features
(cell types/cell processes). The column names must include "x’ and ’y’ as well
as the spatially varying features.
params a named vector of the optimal sigma and threshold for a given spatial pattern.
The names are should be ’sigmaOpt’ and ’threshOpt’. The default value is
NULL.
patternName a character string that specifies the pattern of interest
outlier a character string specifying whether to apply the outlier threshold to the kernel
density distribution in a one-sided manner (specify "positive’ the default) or in a
two sided manner (specify 'two.sided’).
nullSamples a numeric values specifying the number of spatial patterns to randomly sample
for a null distribution.
includeSelf a logic value specifying whether to consider the spatial influence the pattern has
on surrounding regions only (set to FALSE), or whether to also consider the
influence of the pattern itself (set to TRUE , the default).
Arguments passed to methods
Value

a character vector with the spatial feature name if the spatial influence exceeded the threshold for
that spot/cell, and NA otherwise

See Also

Other getIntGenes: get_interacting_genes(), get_pairwise_interacting_genes()

Examples

library(SpaceMarkers)

#Visium data links

urls <- read.csv(system.file("extdata"”,"visium_data.txt",
package="SpaceMarkers"” ,mustWork = TRUE))

sp_url <- urls[["visium_url”]1]1[2]

#Remove present Directories if any

unlink(basename(sp_url))

18 get_im_scores

unlink("spatial”, recursive = TRUE)

#0btaining CoGAPS Patterns i.e Spatial Features

cogaps_result <- readRDS(system.file("extdata”,"CoGAPS_result.rds"”,
package="SpaceMarkers"” ,mustWork = TRUE))

spFeatures <- slot(cogaps_result,”sampleFactors")

#0btaining Spatial Coordinates

download.file(sp_url, basename(sp_url), mode = "wb")

untar(basename(sp_url))

spCoords <- load1@XCoords(visiumDir =

rownames (spCoords) <- spCoords$barcode

#Match Dimensions

barcodes <- intersect(rownames(spFeatures),spCoords$barcode)

spCoords <- spCoords[barcodes,]

spFeatures <- spFeatures[barcodes,]

spPatterns <- chind(spCoords, spFeatures[barcodes,])

spPatterns<-spPatterns[c("barcode”,"y","x","Pattern_1","Pattern_5")]

data("optParams")

hotspots <- find_pattern_hotspots(

spPatterns = spPatterns,

patternName = "Pattern_1",

params = optParams[,"Pattern_1"],

outlier = "positive”,nullSamples = 1000,includeSelf = TRUE)

#Remove present Directories if any

unlink(basename(sp_url))

unlink("spatial”, recursive = TRUE)

non

, version = "1.0")

get_im_scores get_im_scores

Description

Get the interaction scores for SpaceMarkers

Usage

get_im_scores(SpaceMarkers)

Arguments

SpaceMarkers A list of SpaceMarkers objects

Value

A data frame with columns Gene and SpaceMarkersMetric

Examples

example(get_pairwise_interacting_genes)
get_im_scores(SpaceMarkers)

get_interacting_genes

19

get_interacting_genes Calculate Interaction Regions and Associated Genes

Description

This function calculates statistically significant genes using a non-parametric Kruskal-Wallis test
for genes in any one region of influence and a post hoc Dunn’s test is used for analysis of genes

between regions.

Usage

get_interacting_genes(

data,
spPatterns,

refPattern = "Pattern_1",

mode = c("DE", "residual”),

optParams = NULL,

reconstruction = NULL,

hotspots = NULL,

analysis = c("enrichment”, "overlap"),
minOverlap = 50,

Arguments

data

spPatterns

refPattern

mode

optParams

reconstruction

hotspots

analysis

original spatial data matrix.

A data frame that contains the spatial coordinates and metrics for spatial features
(cell types/cell processes). The column names must include "x’ and ’y’ as well
as the spatially varying features.

a character string that specifies the pattern whose "interaction" with every other
pattern we want to study. The default value is "Pattern_1".

SpaceMarkers mode of operation. Possible values are "DE" (the default) or
"residual".

a matrix with dimensions 2 X N, where N is the number of spatial patterns with
optimal parameters. The first row contains the kernel width ’sigmaOpt’ for each
pattern, and the second row is the threshOpt (outlier threshold) for each pattern.
Users can also input their preferred param values. The default value is NULL.

reconstruction of the data matrix from latent spaces. Required for "residual”
mode.

a vector that specifies the patterns to compare to the ‘refPattern’. The default is
NULL which indicates that all patterns would be compared to the 'refPattern’.

a character string that specifies the type of downstream analysis to be performed.
Possible values are "enrichment” (default) and "overlap”. In enrichment mode,
all genes are returned, ranked by the SpaceMarkers metric. In overlap mode,

20 get_interacting_genes

only the genes which are significantly overexpressed in the interaction region
are returned.

minOverlap a number that specifies the minimum overlap between genes in two patterns to
be considered for the statistical tests. The default is 50.

Arguments passed to methods

Value

a list of data frames with information about the interacting genes of the refPattern and each latent
feature pattern matrix (interacting_genes object). There is also a data frame with all of the regions
of influence for any two of patterns (the hotspots object).

See Also

Other getIntGenes: find_pattern_hotspots(), get_pairwise_interacting_genes()

Examples

library(SpaceMarkers)

#Visium data links

urls <- read.csv(system.file("extdata”,"visium_data.txt",
package="SpaceMarkers” ,mustWork = TRUE))

counts_url <- urls[["visium_url”]][1]

sp_url <- urls[["visium_url”]11[2]

#Remove present Directories if any

unlink(basename(sp_url))

unlink("spatial”, recursive = TRUE)

files <- list.files(".")[grepl(basename(counts_url),list.files("."))]

unlink(files)
download.file(counts_url,basename(counts_url), mode = "wb")
counts_matrix<-load1@XExpr(visiumDir="." h5filename = basename(counts_url))

#0btaining CoGAPS Patterns

cogaps_result <- readRDS(system.file("extdata”,"CoGAPS_result.rds"”,

package="SpaceMarkers” ,mustWork = TRUE))

features <- intersect(rownames(counts_matrix),rownames(
slot(cogaps_result, "featureLoadings”)))

barcodes <- intersect(colnames(counts_matrix),rownames(
slot(cogaps_result, "sampleFactors”)))

counts_matrix <- counts_matrix[features,barcodes]

cogaps_matrix <- slot(cogaps_result,"featurelLoadings")[features, 1%x%
t(slot(cogaps_result, "sampleFactors”)[barcodes,])

#0btaining Spatial Coordinates

download.file(sp_url, basename(sp_url), mode = "wb")

untar(basename(sp_url))

spCoords <- load1@XCoords(visiumDir =

rownames (spCoords) <- spCoords$barcode

spCoords <- spCoords[barcodes,]

spPatterns <- cbind(spCoords,slot(cogaps_result,

"sampleFactors”)[barcodes,])

data("curated_genes")

spPatterns<-spPatterns[c("barcode”,”y","x","Pattern_1","Pattern_5")]

n on

, version = "1.0")

get_pairwise_interacting_genes 21

counts_matrix <- counts_matrix[curated_genes,]

cogaps_matrix <- cogaps_matrix[curated_genes,]

data("optParams")

SpaceMarkersMode <- "DE"

ref_Pattern <- "Pattern_1"

SpaceMarkers_test <- get_interacting_genes(
data=counts_matrix,reconstruction=NULL,
optParams = optParams,
spPatterns = spPatterns,
refPattern = "Pattern_1",
mode="DE" ,analysis="overlap")

#Remove present Directories if any

unlink(basename(sp_url))

unlink("spatial”, recursive = TRUE)

files <- list.files(".")[grepl(basename(counts_url),list.files("."))]

unlink(files)

get_pairwise_interacting_genes
get_pairwise_interacting_genes

Description

Performs pairwise analysis to find genes associated with spatial interaction between pairs of spa-
tially varying patterns.

Usage
get_pairwise_interacting_genes(
data,
spPatterns,
mode = c("DE", "residual"),

optParams = NULL,

reconstruction = NULL,

hotspots = NULL,

minOverlap = 50,

analysis = c("enrichment”, "overlap"),
pattern_pairs = NULL,

L

workers = NULL

)
Arguments
data original spatial data matrix.
spPatterns A data frame that contains the spatial coordinates and metrics for spatial features

(cell types/cell processes). The column names must include "x’ and "y’ as well
as the spatially varying features.

22

get_pairwise_interacting_genes

mode SpaceMarkers mode of operation. Possible values are "DE" (the default) or
"residual”.
optParams a matrix with dimensions 2 X N, where N is the number of spatial patterns with

optimal parameters. The first row contains the kernel width ’sigmaOpt’ for each
pattern, and the second row is the threshOpt (outlier threshold) for each pattern.
Users can also input their preferred param values. The default value is NULL.

reconstruction reconstruction of the data matrix from latent spaces. Required for "residual”
mode.

hotspots a vector that specifies the patterns to compare to the ‘refPattern’. The default is
NULL which indicates that all patterns would be compared to the 'refPattern’.

minOverlap a number that specifies the minimum overlap between genes in two patterns to
be considered for the statistical tests. The default is 50.

analysis a character string that specifies the type of downstream analysis to be performed.
Possible values are "enrichment" (default) and "overlap". In enrichment mode,
all genes are returned, ranked by the SpaceMarkers metric. In overlap mode,
only the genes which are significantly overexpressed in the interaction region
are returned.

pattern_pairs A matrix of pattern pairs to be analyzed. Default is
Arguments passed to methods

workers (optional) Number of workers to be used for parallel processing.

Details

Value

a list of data frames for each pattern with 1) names of the patterns (patterns object) 2) data frame
with the hotspots of influence for the two patterns (the hotspots object). 3) data frame with the
genes associated with the interaction between the two patterns (interacting genes object, empty if
insufficient interaction).

See Also

Other getIntGenes: find_pattern_hotspots(), get_interacting_genes()

Examples

library(SpaceMarkers)

#Visium data links

urls <- read.csv(system.file("extdata"”,"visium_data.txt",
package="SpaceMarkers" ,mustWork = TRUE))

counts_url <- urls[["visium_url”J]1[1]

sp_url <- urls[["visium_url”]]1[2]

#Remove present Directories if any

unlink(basename(sp_url))

unlink("spatial”, recursive = TRUE)

files <- list.files(".")[grepl(basename(counts_url),list.files("."))]

get_spatial_features

unlink(files)
download.file(counts_url,basename(counts_url), mode = "wb")
counts_matrix<-load1@XExpr(visiumDir=".",
h5filename = basename(counts_url))
#0btaining CoGAPS Patterns
cogaps_result <- readRDS(system.file("extdata”,"CoGAPS_result.rds"”,
package="SpaceMarkers"” ,mustWork = TRUE))
features <- intersect(rownames(counts_matrix),rownames(
slot(cogaps_result, "featureLoadings”)))
barcodes <- intersect(colnames(counts_matrix),rownames(
slot(cogaps_result, "sampleFactors”)))
counts_matrix <- counts_matrix[features,barcodes]
cogaps_matrix <- slot(cogaps_result,"featureLoadings")[features, 1%x%
t(slot(cogaps_result, "sampleFactors"”)[barcodes,])
#0btaining Spatial Coordinates
download.file(sp_url, basename(sp_url), mode = "wb")
untar(basename(sp_url))
spCoords <- load1@XCoords(visiumDir =
rownames (spCoords) <- spCoords$barcode
spCoords <- spCoords[barcodes,]
spPatterns <- cbhind(spCoords,
slot(cogaps_result, "sampleFactors”)[barcodes,])
data("curated_genes")
spPatterns<-spPatterns[c("barcode”,"y","x","Pattern_1",
"Pattern_3","Pattern_5")]
counts_matrix <- counts_matrix[curated_genes,]
cogaps_matrix <- cogaps_matrix[curated_genes,]
optParams <- matrix(c(6, 2, 6, 2, 6, 2), nrow = 2)
rownames (optParams) <- c("sigmaOpt”,"threshOpt")
colnames(optParams) <- c("Pattern_1","Pattern_3","Pattern_5")
SpaceMarkersMode <- "DE"
pattern_pairs <- matrix(c("Pattern_1", "Pattern_1",
"Pattern_3", "Pattern_5"), nrow=2)
SpaceMarkers <- get_pairwise_interacting_genes(
data=counts_matrix,reconstruction=NULL,
optParams = optParams,
spPatterns = spPatterns,
mode="DE",analysis="enrichment”, pattern_pairs=pattern_pairs)
#Remove present Directories if any
unlink(basename(sp_url))
unlink("spatial”, recursive = TRUE)
files <- list.files(".")[grepl(basename(counts_url),list.files("."))]
unlink(files)

non

, version = "1.0")

get_spatial_features Load spatial features

Description

This function loads spatial features from a file containing spatial features

24 get_spatial_parameters

Usage
get_spatial_features(filePath, method = NULL, featureNames = ".")
Arguments
filePath A string path to the location of the file containing the spatial features.
method A string specifying the type of object to obtain spatial feature from. Default

NULL, where the method is inferred based on object type. Other methods are:
"CoGAPS", "Seurat", or "BayesTME".

featureNames An array of strings specifying the column names corresponding to the feature
names or a regex string. In the case of Seurat, all metadata columns with "_Fea-
ture" suffix are selected.

Value

a matrix of spatial features with barcodes associated with individual coordinates

Examples

library(SpaceMarkers)

#CoGAPS data filePath

filePath <- system.file("extdata”,"CoGAPS_result.rds”,

package = "SpaceMarkers"”,mustWork = TRUE)

spFeatures <- get_spatial_features(filePath, method = "CoGAPS")
head(spFeatures)

get_spatial_parameters
Read optimal parameters for spatial kernel density from user input or
Json file

Description

This function obtains the width of a spatial kernel density (sigma) from either the user input or from
a scale factors .json file. The outlier threshold around the set of spots (threshold) for each pattern is
specified by the user (default is 4).

Usage

get_spatial_parameters(
spatialPatterns,
visiumDir = ".",
spatialDir = "spatial”,
pattern = "scalefactors_json.json",
sigma = NULL,
threshold = 4,

get_spatial_parameters 25

resolution = c("fullres”, "lowres”, "hires"),
)
Arguments
spatialPatterns
A data frame that contains the spatial coordinates for each cell type. The column
names must include ’x’ and 'y’ as well as a set of numbered columns named
’Pattern_1.....N’.
visiumDir A string path specifying the location of the 10xVisium directory
spatialDir A string path specifying the location of the spatial folder containing the .json
file of the spot characteristics
pattern A string specifying the name of the .json file
sigma A numeric value specifying the width of the kernel density estimate to be used
for smoothing
threshold A numeric value specifying how many standard deviations above the mean of a
null distribution to use an outlier threshold for identifying "hotspots’
resolution A string specifying image resolution to be used for spot diameter. Can take
values of "fullres" (default), "lowres" or "hires".
Arguments passed to methods
Value

a numeric matrix of sigmaOpts - the optimal width of the gaussian distribution, and the threshOpt -
outlier threshold around the set of spots for each pattern

Examples

library(SpaceMarkers)
Create test data
cells <- c()
test_num <- 500
for(i in 1:test_num){
cells[length(cells)+1] <- paste@("cell_",i)
3
spPatterns <- data.frame(barcode = cells,
y = runif(test_num, min=0, max=test_num),
X = runif(test_num, min=0, max=test_num),
Pattern_1 = runif(test_num, min=0, max=1),
Pattern_2 = runif(test_num, min=0, max=1))
Call the get_spatial_parameters function with the test data
optParams <- get_spatial_parameters(spPatterns, sigma = 10)

26 get_spatial_params_morans_i

get_spatial_params_morans_i
Calculate the optimal parameters from spatial kernel density for cell-
cell interactions

Description

This function uses Morans.I to calculate the optimal width of the kernel density (sigmaOpt) as well
as the outlier threshold around the set of spots (threshOpt) for a null distribution.

Usage

get_spatial_params_morans_i(spatialPatterns, ...)

Arguments

spatialPatterns
A data frame that contains the spatial coordinates for each cell type. The column
names must include ’x’ and ’y’ as well as a set of numbered columns named
’Pattern_1....N’.

Arguments passed to methods

Value

a numeric matrix of sigmaOpts - the optimal width of the gaussian distribution, and the threshOpt -
outlier threshold around the set of spots for each pattern

Examples

library(SpaceMarkers)
Create test data
cells <- c()
test_num <- 500
for(i in 1:test_num){
cells[length(cells)+1] <- paste@("cell_",i)
}
spPatterns <- data.frame(barcode = cells,
y = runif(test_num, min=0, max=test_num),
X = runif(test_num, min=0, max=test_num),
Pattern_1 = runif(test_num, min=0, max=1),
Pattern_2 = runif(test_num, min=0, max=1))
Call the get_spatial_params_morans_i function with the test data
optParams <- get_spatial_params_morans_i(spPatterns)

load10XCoords 27

load10XCoords Load 10x Visium Spatial Coordinates

Description

This function loads spatial coordinates for each cell from a 10X Visium spatial folder.

Usage
load10@XCoords(
visiumDir,
resolution = c("fullres”, "lowres”, "hires"),
version = NULL
)
Arguments
visiumDir A string path to the location of the folder containing the spatial coordinates.
The folder in your visiumDir must be named ’spatial’ and must contain files
’scalefactors_json.json’ and ’tissue_positions_list.csv.’
resolution A string specifying which values to look for in the .json object. Can be either
fullres (default), lowres or hires.
version A string specifying the version of the spaceranger data.
Value

a data frame of the spatial coordinates (x and y) for each spot/cell

Examples

library(SpaceMarkers)

#Visium data links

urls <- read.csv(system.file("extdata”,"visium_data.txt",
package = "SpaceMarkers"”,mustWork = TRUE))

sp_url <- urls[["visium_url”]1]1[2]

Spatial Coordinates

download.file(sp_url, basename(sp_url), mode = "wb")
untar(basename(sp_url))

spCoords <- load1@XCoords(visiumDir =
unlink("spatial”, recursive = TRUE)
unlink("Visium_Human_Breast_Cancer_spatial.tar.gz")

non

, version = "1.0")

28 Irdf

load1@XExpr Load 10X Visium Expression Data

Description

This loads log-transformed 10X Visium expression data from standard 10X Visium folder.

Usage
load10XExpr(visiumDir = NULL, h5filename = "filtered_feature_bc_matrix.h5")

Arguments
visiumDir A string path to the h5 file with expression information.
h5filename A string of the name of the h5 file in the directory.
Value

A matrix of class dgeMatrix or Matrix that contains the expression info for each sample (cells)
across multiple features (genes)

Examples

library(SpaceMarkers)

#Visium data links

urls <- read.csv(system.file("extdata"”,"visium_data.txt",

package = "SpaceMarkers",mustWork = TRUE))

counts_url <- urls[["visium_url”]1][1]

#Remove present Directories if any

files <- list.files(".")[grepl(basename(counts_url),list.files("."))]

unlink(files)
download.file(counts_url,basename(counts_url), mode = "wb")
counts_matrix<-load10XExpr(visiumDir="." h5filename = basename(counts_url))
files <- list.files(".")[grepl(basename(counts_url),list.files("."))]
unlink(files)
lrdf Curated Ligand-receptor interaction genes A list of vectors with genes
associated with ligand-receptor interactions from CellChat database
Description

Curated Ligand-receptor interaction genes A list of vectors with genes associated with ligand-
receptor interactions from CellChat database

optParams 29

Format

A data frame with LR interaction genes

Value

A list of vectors of LR genes

optParams Optimal paramters of 5 patterns from CoGAPS.

Description

A dataset with the optimal width of the gaussian distribution (sigmaOpt) and the outlier threshold
around the set of spots (thresOpt) for each pattern obtained from CoGAPS. CoGAPS was ran on
spatial transcriptomic data from a breast cancer sample.

Format
A data frame with 2 rows and 5 columns:
Pattern_1 immune cell pattern paramters
Pattern_2 Disp.1 parameters
Pattern_3 intraductal carcinoma (DCIS) parameters

Pattern_4 Disp.2 parameters

Pattern_S invasive carcinoma lesion pattern paramters

Value

A matrix of optimal parameters for patterns identified by CoGAPS

plot_cell_interaction_circos
Plot Ligand-Receptor Interactions between Cell Types

Description

Visualizes ligand-receptor interactions as a circular plot, allowing for selection of cell types, cus-
tomization of segment and link appearance, and different modes of representing interactions.

30 plot_cell_interaction_circos

Usage

plot_cell_interaction_circos(
lr_interactions_df,
selected_cell_types = NULL,
cell_order = NULL,
gap_degree_after_sector = 5,
track_height_molecules = 0.1,
molecule_label _cex = 0.6,
cell_label _cex = 0.9
link_transparency = 0.5,
link_connection_rou = 0.7,
link_arrowhead_type = "big.arrow”,
link_arrowhead_width = NULL,
link_arrowhead_length = NULL,
score_color_palette_fun = NULL,
split_segments_for_links = TRUE,
link_buffer_fraction = 0.1,
scale_link_width_by_score = FALSE,
score_transform_for_width = function(s) s,
use_individual_molecule_colors = TRUE,
default_ligand_color = "lightgreen”,
default_receptor_color = "lightblue”,
individual_ligand_palette_generator = NULL,
individual_receptor_palette_generator = NULL,
molecule_segment_border_col = NA,
inter_molecule_segment_gap = 0.1

N o -

Arguments

lr_interactions_df
A data.frame with columns: 1igand, receptor, source_cell_type, target_cell_type,
score.
selected_cell_types
Optional character vector. If provided, only these cell types and interactions
between them will be shown.

cell_order Optional character vector for specific cell type ordering. If NULL, alphabetical
order is used for the (selected) cell types.
gap_degree_after_sector
Numeric, gap in degrees after each sector. Default is 5.
track_height_molecules
Numeric, height of the track for molecule segments. Default is 0.1.
molecule_label_cex
Numeric, cex for molecule labels. Default is 0.6.

cell_label_cex Numeric, cex for cell type labels. Default is 0.9.

link_transparency
Numeric, alpha for links (0 to 1). Default is 0.5.

plot_cell_interaction_circos 31

link_connection_rou

Numeric (0-1) or vector of two for rou in circos.link. Default is 0.7.
link_arrowhead_type

Character. Type of arrowhead (e.g., "triangle", "big.arrow"). Default is "big.arrow".
link_arrowhead_width

Numeric. Width of the arrowhead. Default uses circlize default.
link_arrowhead_length

Numeric. Length of the arrowhead. Default uses circlize default.
score_color_palette_fun

A function (e.g., from circlize: :colorRamp2) to map scores to colors.
split_segments_for_links

Logical. If TRUE, molecule segments are sized by interaction count/score and

links connect to unique sub-segments. Default is TRUE.
link_buffer_fraction

Numeric (0 to <0.5). Buffer around each link within its sub-segment. Applies if

split_segments_for_links is TRUE. Default is 0.1.
scale_link_width_by_score

Logical. If TRUE (and split_segments_for_links is TRUE), link/sub-segment

width is proportional to score. Default is FALSE.
score_transform_for_width

Function to transform scores for width scaling. Default is function(s) s.
use_individual_molecule_colors

Logical. If TRUE, each unique ligand/receptor name gets a distinct color. De-
fault is TRUE.

default_ligand_color
Character, color for all ligand segments if use_individual_molecule_colors
is FALSE. Default is "lightgreen".
default_receptor_color
Character, color for all receptor segments if use_individual_molecule_colors
is FALSE. Default is "lightblue".
individual_ligand_palette_generator
Function (takes n, returns n colors) for unique ligands. Default generates a green
palette.
individual_receptor_palette_generator
Function (takes n, returns n colors) for unique receptors. Default generates a
blue palette.
molecule_segment_border_col
Color for the border of L/R segments. Default NA (no border).
inter_molecule_segment_gap
Numeric, gap between L/R segments on the same track. Default is 0.1.

Value

Invisibly returns NULL. The function is called for its side effect of creating a plot.

32 plot_im_scores

Examples

Not run:
if (requireNamespace(”circlize”, quietly = TRUE) &&
requireNamespace("RColorBrewer”, quietly = TRUE)) {
1r_data <- data.frame(
ligand = c("LGF1", "LGF1", "LGF2", "LGF3", "LGF4", "LGF1", "LGF5", "LGF6"),
receptor = c("REC1", "REC2A", "REC1", "REC3B", "REC1", "REC4", "REC4", "REC2A"),
source_cell_type = c("CellA”, "CellA", "CellB", "CellC",
"CellA", "CellD", "CellD", "CellB"),
target_cell_type = c("CellB”, "CellC", "CellB", "CellA",
"CellD", "CellA", "CellD"”, "CellC"),
score = c(4, 0.9, 0.7, 0.95, 0.6, 0.1, 0.88, 2.5),
stringsAsFactors = FALSE

)

Basic plot with defaults

plot_cell_interaction_circos(lr_data)

Plot with selected cell types and custom order

plot_cell_interaction_circos(lr_data,

selected_cell_types = c("CellA”, "CellB", "CellD"),
cell_order = c("CellD"”, "CellA"”, "CellB"))
}

End(Not run)

plot_im_scores plot_im_scores

Description

Plot the top SpaceMarkers IMScores

Usage

plot_im_scores(
df,
interaction,
cutoff = 0,
nGenes = 20,
geneText = 12,

metricText = 12,
increments = 1,
out = NULL
)
Arguments

df A data frame with columns Gene and SpaceMarkersMetric

plot_overlap_scores

interaction The interaction to plot
cutOoff The cut off value for the plot
nGenes The number of genes to plot
geneText The font size for the gene text
metricText The font size for the metric text
increments The increments for the y-axis
out The output path for the plot
Examples

example(get_pairwise_interacting_genes)
plot_im_scores(get_im_scores(SpaceMarkers), "Pattern_1_Pattern_3")

33

plot_overlap_scores plot_overlap_scores

Description

Plot the overlap scores between patterns in hotspots

Usage
plot_overlap_scores(
df,
title = "Spatial Overlap Scores”,
out = NULL,
fontsize = 15
)
Arguments
df A data frame with columns patternl, pattern2 and overlapScore
title The title of the plot
out The output path for the plot
fontsize The font size of the plot
Value
A ggplot object
Examples

df <- data.frame(patternl = c("patternl1”,"patternl”,"pattern2”,"pattern2”),
pattern2 = c("patternl”,"pattern2”,"pattern1”,"pattern2"),
overlapScore = ¢(0.5,0.7,0.3,0.9))

plot_overlap_scores(df)

plot_overlap_scores(df, "Overlap Scores”, "overlapScores.png”, 15)

34 plot_source_to_target_circos

plot_source_to_target_circos
Plot Ligand-Receptor Interactions from a Single Source to Target Cell
Types

Description

Visualizes ligand-receptor interactions focusing on a single source cell type and its outgoing inter-
actions to a specified set of target cell types. Only ligands from the source and relevant receptors on
the targets are shown.

Usage

plot_source_to_target_circos(
lr_interactions_df,
source_cell_name,
target_cell_names,
cell_order = NULL,
gap_degree_after_sector = 5,
track_height_molecules = 0.1,
molecule_label_cex = 0.6,
cell_label_cex = 0.9,
link_transparency = 0.5,
link_connection_rou = 0.7,
link_arrowhead_type = "triangle”,
link_arrowhead_width = NULL,
link_arrowhead_length = NULL,
score_color_palette_fun = NULL,
split_segments_for_links = TRUE,
link_buffer_fraction = 0.1
scale_link_width_by_score = FALSE,
score_transform_for_width = function(s) s,
use_individual_molecule_colors = TRUE,
default_ligand_color = "lightgreen”,
default_receptor_color = "lightblue”,
individual_ligand_palette_generator = NULL,
individual_receptor_palette_generator = NULL,
molecule_segment_border_col = NA,
inter_molecule_segment_gap = 0.1

Arguments

lr_interactions_df

A data.frame with columns: ligand, receptor, source_cell_type, target_cell_type,
score.

plot_source_to_target_circos 35

source_cell_name

Character, name of the source cell type.
target_cell_names

Character vector, names of target cell types to show.

cell_order Optional character vector for specific cell type ordering. If NULL, source cell is
first, then targets alphabetically.
gap_degree_after_sector
Numeric, gap in degrees after each sector. Default is 5.
track_height_molecules
Numeric, height of the track for molecule segments. Default is 0.1.
molecule_label_cex
Numeric, cex for molecule labels. Default is 0.6.

cell_label_cex Numeric, cex for cell type labels. Default is 0.9.
link_transparency

Numeric, alpha for links (0 to 1). Default is 0.5.
link_connection_rou

Numeric (0-1) or vector of two for rou in circos. link. Default is 0.7.
link_arrowhead_type

Character. Type of arrowhead (e.g., "triangle", "big.arrow"). Default is "big.arrow".
link_arrowhead_width

Numeric. Width of the arrowhead. Default uses circlize default.
link_arrowhead_length

Numeric. Length of the arrowhead. Default uses circlize default.
score_color_palette_fun

A function (e.g., from circlize: :colorRamp2) to map scores to colors.
split_segments_for_links

Logical. If TRUE, molecule segments are sized by interaction count/score and

links connect to unique sub-segments. Default is TRUE.
link_buffer_fraction

Numeric (0 to <0.5). Buffer around each link within its sub-segment. Applies if

split_segments_for_links is TRUE. Default is 0.1.
scale_link_width_by_score

Logical. If TRUE (and split_segments_for_links is TRUE), link/sub-segment

width is proportional to score. Default is FALSE.
score_transform_for_width

Function to transform scores for width scaling. Default is function(s) s.
use_individual_molecule_colors

Logical. If TRUE, each unique ligand/receptor name gets a distinct color. De-

fault is TRUE.
default_ligand_color

Character, color for all ligand segments if use_individual_molecule_colors

is FALSE. Default is "lightgreen".
default_receptor_color

Character, color for all receptor segments if use_individual_molecule_colors
is FALSE. Default is "lightblue".

36 plot_source_to_target_circos

individual_ligand_palette_generator
Function (takes n, returns n colors) for unique ligands. Default generates a green
palette.

individual_receptor_palette_generator
Function (takes n, returns n colors) for unique receptors. Default generates a
blue palette.

molecule_segment_border_col
Color for the border of L/R segments. Default NA (no border).

inter_molecule_segment_gap
Numeric, gap between L/R segments on the same track. Default is 0.1.

Value

Invisibly returns NULL. The function is called for its side effect of creating a plot.

Examples

Not run:
if (requireNamespace("circlize"”, quietly = TRUE) &&
requireNamespace("RColorBrewer”, quietly = TRUE)) {
1r_data <- data.frame(
ligand = c("LGF1", "LGF1", "LGF2", "LGF3", "LGF4", "LGF1", "LGF5", "LGF6", "LGF7"),
receptor = c("REC1", "REC2A", "REC1", "REC3B", "REC1", "REC4", "REC4", "REC2A", "REC5"),
source_cell_type = c("CellA"”, "CellA"”, "CellB", "CellC",
"CellA", "CellD", "CellD", "CellB", "CellA"),
target_cell_type = c("CellB"”, "CellC", "CellB", "CellA",
"CellD", "CellA", "CellD"”, "CellC", "CellE"),
score = ¢(4,0.9,0.7,0.95,0.6,0.1,0.88,2.5,3.0),
stringsAsFactors = FALSE

)

Plot interactions from CellA to CellB and CellC

plot_source_to_target_circos(lr_data,

source_cell_name = "CellA",

target_cell_names = c("CellB"”, "CellC"))
Custom order and score-based link widths

score_pal <- circlize::colorRamp2(c(@, 4), c("white”, "blue"))

plot_source_to_target_circos(lr_data,

source_cell_name = "CellD",

target_cell_names = c("CellA”, "CellD"), # Include autocrine
cell_order = c("CellD"”, "CellA"),

scale_link_width_by_score = TRUE,

score_color_palette_fun = score_pal)

End(Not run)

plot_spatial_data_over_image 37

plot_spatial_data_over_image
plotSpatialDataOverlmage

Description

This function plots spatial data over the complementary histology image of varing resolutions

Usage
plot_spatial_data_over_image(
visiumDir,
df,
feature_col,
barcode_col = "barcode”,
resolution = c("lowres”, "hires"”, "fullres"),

version = NULL,

colors = NULL,

point_size = 2.5,

stroke = 0.05,

alpha = 0.5,

title = "Spatial Heatmap”,
bg_color = NULL,

crop = TRUE,
text_size = 15
)
Arguments
visiumDir directory with a spatial folder containing scalefactors_json.json, images (lowres,or
hires), and coordinates (tissue_positons_(list).csv or probe.csv)
df a dataframe with the features of interest. For example, can behotspots (charac-
ter), and/or influence (numeric))
feature_col feature to plot over spots, Default: NULL
barcode_col barcode column name to match with coordinates, Default: *barcode’
resolution Image resoultion to scale coordinates too, Default: c("lowres", "hires", "fullres")
version Visium version. Automatically infers from load10XCoords if NULL,Default:
NULL
colors colors to be displayed over spots. If set to NULL, it automatically colors the
spots red for character values and uses viridis for numeric values. Default:
NULL
point_size size of spots displayed on the plot, Default: 2.5
stroke thickness of spot outline, Default: 0.05

alpha Transparency of the spots, Default: 0.5

38 plot_target_from_sources_circos

title Title displayed on the plot, Default: ’Spatial Heatmap’
bg_color background color of ggplot box, Default: NULL
crop crop spatial plot to a zoomed in window, Default: TRUE
text_size size of text on the plot, Default: 15

Value
a ggplot object

plot_target_from_sources_circos

Plot Ligand-Receptor Interactions from Multiple Source to a Single
Target Cell Type

Description

Visualizes ligand-receptor interactions focusing on a single target cell type and its incoming inter-
actions from a specified set of source cell types. Only relevant ligands from the source cells and
receptors on the target cell are shown.

Usage

plot_target_from_sources_circos(
lr_interactions_df,
source_cell_names,
target_cell_name,
cell_order = NULL,
gap_degree_after_sector = 5,
track_height_molecules = 0.1,
molecule_label_cex = 0.6,
cell_label _cex = 0.9
link_transparency = 0.5,
link_connection_rou = 0.7,
link_arrowhead_type = "triangle”,
link_arrowhead_width = 0.1,

N o -

link_arrowhead_length = 0.1,
score_color_palette_fun = NULL,
split_segments_for_links = TRUE,

link_buffer_fraction = 0.1,
scale_link_width_by_score = FALSE,
score_transform_for_width = function(s) s,
use_individual_molecule_colors = TRUE,
default_ligand_color = "lightgreen”,
default_receptor_color = "lightblue”,
individual_ligand_palette_generator = NULL,
individual_receptor_palette_generator = NULL,

plot_target_from_sources_circos 39

molecule_segment_border_col = NA,
inter_molecule_segment_gap = 0.1

)

Arguments

lr_interactions_df
A data.frame with columns: 1igand, receptor, source_cell_type, target_cell_type,
score.
source_cell_names
Character vector, names of source cell types to show.
target_cell_name
Character, name of the single target cell type.
cell_order Optional character vector for specific cell type ordering. If NULL, target cell is
first, then sources alphabetically.
gap_degree_after_sector
Numeric, gap in degrees after each sector. Default is 5.
track_height_molecules
Numeric, height of the track for molecule segments. Default is 0.1.
molecule_label_cex
Numeric, cex for molecule labels. Default is 0.6.

cell_label_cex Numeric, cex for cell type labels. Default is 0.9.
link_transparency

Numeric, alpha for links (0 to 1). Default is 0.5.
link_connection_rou

Numeric (0-1) or vector of two for rou in circos. link. Default is 0.7.
link_arrowhead_type

Character. Type of arrowhead (e.g., "triangle", "big.arrow"). Default is "big.arrow".
link_arrowhead_width

Numeric. Width of the arrowhead. Default uses circlize default.
link_arrowhead_length

Numeric. Length of the arrowhead. Default uses circlize default.
score_color_palette_fun

A function (e.g., from circlize: :colorRamp2) to map scores to colors.
split_segments_for_links

Logical. If TRUE, molecule segments are sized by interaction count/score and

links connect to unique sub-segments. Default is TRUE.
link_buffer_fraction

Numeric (0 to <0.5). Buffer around each link within its sub-segment. Applies if

split_segments_for_links is TRUE. Default is 0.1.
scale_link_width_by_score

Logical. If TRUE (and split_segments_for_links is TRUE), link/sub-segment

width is proportional to score. Default is FALSE.
score_transform_for_width

Function to transform scores for width scaling. Default is function(s) s.

40 plot_target_from_sources_circos

use_individual_molecule_colors
Logical. If TRUE, each unique ligand/receptor name gets a distinct color. De-
fault is TRUE.
default_ligand_color
Character, color for all ligand segments if use_individual_molecule_colors
is FALSE. Default is "lightgreen".
default_receptor_color
Character, color for all receptor segments if use_individual_molecule_colors
is FALSE. Default is "lightblue".
individual_ligand_palette_generator
Function (takes n, returns n colors) for unique ligands. Default generates a green
palette.
individual_receptor_palette_generator
Function (takes n, returns n colors) for unique receptors. Default generates a
blue palette.
molecule_segment_border_col
Color for the border of L/R segments. Default NA (no border).
inter_molecule_segment_gap
Numeric, gap between L/R segments on the same track. Default is 0.1.

Value

Invisibly returns NULL. The function is called for its side effect of creating a plot.

Examples

Not run:
if (requireNamespace("circlize"”, quietly = TRUE) &&
requireNamespace("RColorBrewer”, quietly = TRUE)) {
Use the same test data from previous examples
test_lr_data <- data.frame(
ligand = c("LGF1","LGF1","LGF2","LGF3","LGF4","LGF1","LGF5","LGF6","LGF5"),
receptor = c("REC1","”REC2","REC1","REC1","REC5", "REC4", "REC4","REC6" ,"REC2"),
source_cell_type = c("CellA"”,"CellA","CellB","CellC","CellA"”,"CellD","CellD","CellE", "CellD"),
target_cell_type = c("CellB"”,"CellC","CellA","CellD","CellD","CellA","CellD", "CellF","CellA"),
score = c(4.0,2.5,3.0,2.2,1.5,1.0,3.5,0.5,2.8),
stringsAsFactors = FALSE

)

Plot interactions from CellB and CellD converging on CellA

plot_target_from_sources_circos(test_lr_data,

source_cell_names = c("”CellB"”, "CellD"),
target_cell_name = "CellA")

Another example: Interactions from CellA and CellC targeting CellD
plot_target_from_sources_circos(test_lr_data,

source_cell_names = c("CellA”, "CellC"),
target_cell_name = "CellD",

scale_link_width_by_score = TRUE)

3

End(Not run)

Index

x getIntGenes
find_pattern_hotspots, 16
get_interacting_genes, 19
get_pairwise_interacting_genes, 21

* internal
.get_BTME_features, 5
.get_cogaps_features, 5
.get_csv_features, 6
.get_seurat_features, 6
.infer_method, 6
.read_format, 7

.calc_IM_scores, 3

.calc_threshold, 4

.find_genes_of_interest, 4

.get_BTME_features, 5

.get_cogaps_features, 5

.get_csv_features, 6

.get_seurat_features, 6

.infer_method, 6

.pick_image, 7

.read_format, 7

.row_t_test, 8

calculate_gene_scores_directed, 8
calculate_gene_set_score, 9
calculate_gene_set_specificity, 10
calculate_influence, 11
calculate_lr_scores, 11
calculate_overlap_directed, 12
calculate_overlap_undirected, 13
calculate_thresholds, 14
curated_genes, 15

find_all_hotspots, 15
find_hotspots_gmm, 16
find_pattern_hotspots, 16, 20, 22

get_im_scores, 18
get_interacting_genes, 17,19, 22

41

get_pairwise_interacting_genes, 17, 20,
21

get_spatial_features, 23

get_spatial_parameters, 24

get_spatial_params_morans_i, 26

load10XCoords, 27
load10XExpr, 28
1rdf, 28

optParams, 29

plot_cell_interaction_circos, 29
plot_im_scores, 32
plot_overlap_scores, 33
plot_source_to_target_circos, 34
plot_spatial_data_over_image, 37
plot_target_from_sources_circos, 38

	.calc_IM_scores
	.calc_threshold
	.find_genes_of_interest
	.get_BTME_features
	.get_cogaps_features
	.get_csv_features
	.get_seurat_features
	.infer_method
	.pick_image
	.read_format
	.row_t_test
	calculate_gene_scores_directed
	calculate_gene_set_score
	calculate_gene_set_specificity
	calculate_influence
	calculate_lr_scores
	calculate_overlap_directed
	calculate_overlap_undirected
	calculate_thresholds
	curated_genes
	find_all_hotspots
	find_hotspots_gmm
	find_pattern_hotspots
	get_im_scores
	get_interacting_genes
	get_pairwise_interacting_genes
	get_spatial_features
	get_spatial_parameters
	get_spatial_params_morans_i
	load10XCoords
	load10XExpr
	lrdf
	optParams
	plot_cell_interaction_circos
	plot_im_scores
	plot_overlap_scores
	plot_source_to_target_circos
	plot_spatial_data_over_image
	plot_target_from_sources_circos
	Index

