Package ‘SmartPhos’

February 2, 2026
Type Package

Title A phosphoproteomics data analysis package with an interactive
ShinyApp

Version 1.1.0

Description To facilitate and streamline phosphoproteomics data analysis, we developed
SmartPhos, an R package for the pre-processing, quality control, and
exploratory analysis of phosphoproteomics data generated by MaxQuant and
Spectronaut. The package can be used either through the R command line or
through an interactive ShinyApp called SmartPhos Explorer. The package
contains methods such as normalization and normalization correction,
transformation, imputation, batch effect correction, PCA, heatmap,
differential expression, time-series clustering, gene set enrichment analysis,
and kinase activity inference.

License GPL-3
biocViews Visualization, ShinyApps, GUI, QualityControl, Proteomics,
DifferentialExpression, Normalization, Preprocessing,

GeneSetEnrichment, Clustering, GeneExpression,
MassSpectrometry, BatchEffect

BugReports https://github.com/Bioconductor/SmartPhos/issues

Imports MultiAssayExperiment, SummarizedExperiment, data.table, shiny,
shinythemes, shinyjs, shinyBS, shinyWidgets, parallel, DT,
tools, stats, ggplot2, plotly, ggbeeswarm, pheatmap, grid, XML,
MsCoreUtils, imputeLCMD, missForest, limma, proDA, decoupleR,
piano, BiocParallel, doParallel, doRNG, e1071, magrittr,
matrixStats, rlang, stringr, tibble, dplyr, tidyr, Biobase,
vsn, factoextra, cowplot

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.3

Depends R (>=4.4.0)

Suggests knitr, BiocStyle, PhosR, testthat

Config/testthat/edition 3


https://github.com/Bioconductor/SmartPhos/issues

2 Contents

URL https://lu-group-ukhd.github.io/SmartPhos/
git_url https://git.bioconductor.org/packages/SmartPhos
git_branch devel

git_last_commit 9abaf07

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Shubham Agrawal [aut, cre] (ORCID:
<https://orcid.org/0009-0005-2630-9342>),
Junyan Lu [aut] (ORCID: <https://orcid.org/0000-0002-9211-0746>)

Maintainer Shubham Agrawal <shubhamagrawal2706@gmail.com>

Contents
addZeroTime . . . . . . . . . L 3
calcKinaseScore . . . . . . . . ... e 4
checkRatioMat . . . . . . . . . . . . . e 6
clusterEnrich . . . . . . ... 6
clusterTS . . . . . e 8
dda_example . . . . . . .. 9
dia_example . . . . . .. L 10
enrichDifferential . . . . . . . . . . .. L 10
generatelnputTable . . . . . . . .. .. 12
generatelnputTable DIA . . . . . . . . .. ... oL 13
getDecouplerNetwork . . . . . . . . . . L e 14
getOneSymbol . . . . . .. 14
getRatioMatrix . . . . . . . L 15
Homo_sapien_kinase_substrate_network . . . . . . . .. .. ... ... ... ... .. 16
intensityBoxPlot . . . . . ... 16
makeSmartPhosDirectory . . . . . . . . ..o oo 17
medianNorm . . . ... e 18
mscale . . .. e 19
Mus_musculus_kinase_substrate_ network . . . . . . . . ... ... ... 20
normByFullProteome . . . . . . . . .. ... 21
performCombinedNormalization . . . . . . . . .. ... ... L 22
performDifferentialExp . . . . . . . . ... 23
plotAdjustmentResults . . . . . . ... 25
plotHeatmap . . . . . . . . . . . . 26
plotlntensity . . . . . . . . ... 27
plotKinaseDE . . . . . . . ... 28
plotKinaseTimeSeries . . . . . . . . . . . . . e e e e 29
plotLogRatio . . . . . . . ... 30
plotMiSSIng . . . . . . . e e 30
PIOtPCA . . . . e e 31

plotTimeSeries . . . . . . . . . . 32


https://lu-group-ukhd.github.io/SmartPhos/
https://orcid.org/0009-0005-2630-9342
https://orcid.org/0000-0002-9211-0746

addZeroTime 3

plotVolcano . . . . . . . . L e e e e e 34
preprocessPhos . . . . .. L e 35
preprocessProteome . . . . . ... L L e e e e 36
readExperiment . . . . . . ... L. e e e e e 37
readExperimentDIA . . . . . . . ... 39
readOnePhos . . . . . . .. 40
readOnePhosDIA . . . . . . . . . .. 41
readOneProteom . . . . . . . ... 42
readOneProteomDIA . . . . . . . .. 43
readPhosphoExperiment . . . . . . . . . . . ... .. 43
readPhosphoExperimentDIA . . . . . . . . . . ... ... ... 44
readProteomeExperiment . . . . . . . . ... L. 45
readProteomeExperimentDIA . . . . . . . . ... L L 47
runFisher . . . . . . . L 48
runGSEAforPhospho . . . . . . . .. 49
runPhosphoAdjustment . . . . . . . . . ... 50
runSmartPhos . . . . . oL 51
splineFilter . . . . . . . . .. 51
SWISSProt . . . . L 53
Index 54
addZeroTime Add Zero Timepoint Data to Treatment Subset
Description

addZeroTime adds a zero timepoint to a specific treatment’s data subset.

Usage

addZeroTime(data, condition, treat, zeroTreat, timeRange)

Arguments
data A SummarizedExperiment object containing the experimental data.
condition Character string corresponds to one of the columns from the colData of SE
object.
treat Character string specifying the treatment to which zero timepoint should be
added.
zeroTreat Character string specifying the treatment representing the zero timepoint.

timeRange Character vector specifying the timepoints to include for the treatment.



4 calcKinaseScore
Details
The function performs the following steps:
1. Subsets the data for the specified treatment and time range.
2. Subsets the data for the zero timepoint of the specified zero treatment.
3. Combines the assays from the treatment and zero timepoint subsets.
4. Updates the column data to reflect the combined treatment.
5. Returns a SummarizedExperiment object with the combined data.
Value
A SummarizedExperiment object with the zero timepoint added to the specified treatment’s data.
Examples
library(SummarizedExperiment)
# Load multiAssayExperiment object
data("dia_example")
# Get SummarizedExperiment object
se <- dia_example[["Phosphoproteome”]]
colData(se) <- colData(dia_example)
# Call the function
addZeroTime(se, condition = "treatment”, treat = "EGF",
zeroTreat = "1stCrtl”, timeRange = c("20min","40min", "6h"))
calcKinaseScore Calculate Kinase Activity Scores using decoupleR
Description
calcKinaseScore calculates kinase activity scores based on input data and a specified network of
regulatory relationships (decoupler network).
Usage
calcKinaseScore(
resTab,

decoupler_network,
corrThreshold = 0.9,

statType = c("stat”, "log2FC"),
nPerm = 100



calcKinaseScore 5

Arguments

resTab A data frame containing the input data with columns site, stat, and log2FC.
decoupler_network
A data frame representing the decoupleR network with columns source and
target.

corrThreshold A numeric value specifying the correlation threshold for filtering correlated reg-
ulons. Default is 0.9.

statType A character string specifying the type of statistic to use. Options are "stat" or
"log2FC". Default is "stat".
nPerm A numeric value specifying the number of permutations for the null distribution.

Default is 100.

Details
The function performs the following steps:

1. Removes duplicate rows based on the site column.

2. Filters the data to include only those sites present in the target column of the decoupler
network.

Prepares the input table based on the specified statType.
Intersects the input table with the decoupler network to find common regulons.
Checks for correlated regulons and filters out those exceeding the correlation threshold.

Calculates kinase activity using a weighted mean approach.

N AW

Processes the results to handle NA values and formats the output.

Value

A data frame with kinase activity scores, including columns for ‘source’, ‘score‘, and ‘p_value".

Examples

resTab <- data.frame(

site = c("EGFR_Y1172", "EGFR_Y1197", "EGFR_S1166", "ROCK2_S1374",
"WASL_Y256", "GAB1_Y259", "ADD1_S586", "EPHA2_Y772", "PRKDC_T2638",
"PRKDC_T2609", "PRKDC_S2612"),

stat = c(-10.038770, -5.945562, 5.773384, -7.303834, 5.585326, 5.971104,
5.199119, -5.169500, 5.130228, 5.407387, 4.493933),

log2FC = ¢(-2.6113343, -2.4858615, 1.0056629, -1.1561780, 1.6421145,
2.0296634, 1.3766283, -0.8531656, 1.0742881, 1.0042942, 1.0608129)

)

decoupler_network <- data.frame(

source = c(rep("ABL1", 5), rep("CDK2", 6)),

mor = c(rep(1, 11)),

target = c("EGFR_Y1172", "EGFR_Y1197", "EGFR_S1166", "ROCK2_S1374",
"WASL_Y256", "GAB1_Y259", "ADD1_S586", "EPHA2_Y772", "PRKDC_T2638",
"PRKDC_T2609", "PRKDC_S2612"),

likelihood = c(rep(1, 11))



6 clusterEnrich

)
# Call the function

calcKinaseScore(resTab, decoupler_network)

checkRatioMat Check the PP/FP ratio matrix and remove feature that do not meet
requirements

Description

checkRatioMat checks the ratio matrix for samples that do not have sufficient overlap of phospho-
peptides between enriched (PP) and unenriched (FP) samples.

Usage

checkRatioMat(ratioMat, minOverlap = 3)

Arguments
ratioMat A numeric matrix representing the ratio of phosphoproteome data to full pro-
teome data.
minOverlap A numeric specifying the minimum number of overlapping peptides required
between samples. Default is 3.
Value

A character vector of sample names that do not meet the overlap criteria.

clusterEnrich Perform Cluster Enrichment Analysis

Description

clusterEnrich performs enrichment analysis on gene clusters, using Fisher’s Exact Test to deter-
mine the significance of enrichment for each cluster.



clusterEnrich 7

Usage

clusterEnrich(
clusterTab,
se,
inputSet,
reference = NULL,
ptm = FALSE,
adj = "BH",
filterP = @.05,
ifFDR = FALSE

)
Arguments
clusterTab A data frame containing cluster information, where each row corresponds to a
gene and its assigned cluster.
se A SummarizedExperiment object containing gene expression data and meta-
data.
inputSet A list or data frame of gene sets to be used for enrichment analysis.
reference A character vector of reference genes. If NULL, it will be extracted from se
object. Default is NULL.
ptm Logical. If TRUE, the function will perform enrichment analysis on post-translational
modification (PTM) gene sets. Default is FALSE.
adj Character. The method for adjusting p-values. Default is "BH".
filterP Numeric. The p-value threshold for filtering significant results. Default is 0.05.
ifFDR Logical. If TRUE, the function will use FDR-adjusted p-values for significance
filtering. Default is FALSE.
Details

The function first retrieves or computes the reference set of genes or PTM sites. It then performs
enrichment analysis for each cluster using the runFisher function. The results are filtered based
on the p-value threshold and adjusted for multiple testing if ifFDR is TRUE. The function generates
a dot plot where the size and color of the points represent the significance of enrichment.

Value
A list containing two elements:

* ‘table‘: A data frame with enrichment results for each cluster and pathway.

e ‘plot: A ggplot2 object showing the significance of enrichment for each pathway across
clusters.



8 clusterTS

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data("dia_example")

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]

colData(se) <- colData(dia_example)

seProcess <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
result <- addZeroTime(seProcess, condition = "treatment”, treat = "EGF",
zeroTreat = "1stCrtl”, timeRange = c("20min","40min", "6h"))

# Get the numeric matrix

exprMat <- SummarizedExperiment::assay(result)

# Call the clustering function

clust <- clusterTS(x = exprMat, k = 3)

genesetPath <- appDir <- system.file("”shiny-app/geneset”,

package = "SmartPhos")

inGMT <- piano::loadGSC(paste@(genesetPath,

"/Cancer_Hallmark.gmt"), type="gmt")

# Call the function

clusterEnrich(clust$cluster, seProcess, inGMT)

clusterTS Perform Clustering on Time-Series Data

Description

clusterTsS performs clustering on time-series data and generates plots for visualization.

Usage
clusterTS(x, k = 5, pCut = NULL, twoCondition = FALSE)

Arguments
X A numeric matrix with rows as features and columns as time points.
k A numeric value specifying the number of clusters. Default is 5.
pCut A numeric value specifying the probability cutoff for cluster membership. De-

fault is NULL.

twoCondition A logical value indicating if the data contains two conditions. Default is
FALSE.
Details
The function performs the following steps:

1. Sets a seed for reproducibility.

2. Removes rows with missing values.



dda_example 9

3. Performs clustering using fuzzy C-means.
4. Filters clusters based on the probability cutoff if provided.

5. Generates plots for visualizing clustering results.

Value

A list containing:

cluster A tibble with clustering information for each feature.
plot A ggplot?2 object for visualizing the clustering results.
Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]

colData(se) <- colData(dia_example)

seProcess <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
result <- addZeroTime(seProcess, condition = "treatment”, treat = "EGF",
zeroTreat = "1stCrtl”, timeRange = c(”"20min","40min", "6h"))

# Get the numeric matrix

exprMat <- assay(result)

# Call the function

clusterTS(x = exprMat, k = 3)

dda_example dda_example

Description

A sample of Data Dependent Acquisition (DDA) mass spectrometry data from Max Quant.

Usage

data(dda_example)

Format

a class S4 object of MultiAssayExperiment

Value

A MultiAssayExperiment object containing a sample of DDA mass spectrometry data from Max
Quant.



10 enrichDifferential

Examples

data(dda_example)

dia_example dia_example

Description

A sample of Data Independent Acquisition (DIA) mass spectrometry data from Spectronaut.

Usage

data(dia_example)

Format

a class S4 object of MultiAssayExperiment

Value

A MultiAssayExperiment object containing a sample of DIA mass spectrometry data from Spec-
tronaut.

Examples

data(dia_example)

enrichDifferential Perform Enrichment analysis on differentially expressed genes or
phospho-sites

Description

enrichDifferential performs enrichment analysis on differentially expressed genes and phospho-
sites for either pathway or phospho-specific enrichment, depending on the input parameters. It
supports multiple statistical methods such as PAGE and GSEA for pathway enrichment and a
Kolmogorov-Smirnov approach for phospho-enrichment.



enrichDifferential

11

Usage
enrichDifferential(
dea,
type = c("Pathway enrichment”, "Phospho-signhature enrichment”),
gsaMethod = c("PAGE"”, "GSEA"),
geneSet,
ptmSet,

statType = c("stat”, "log2FC"),

nPerm = 100,

siglevel = 0.05,

ifFDR = FALSE

Arguments

dea

type

gsaMethod

geneSet
ptmSet

statType

nPerm

siglevel

ifFDR

Details

A data frame containing the differential expression analysis results. It should
include columns like ‘pvalue‘, ‘Gene* (or ‘site‘), ‘stat‘, and ‘log2FC".

A character string indicating the type of enrichment. Options are ‘"Pathway
enrichment"*

ne

or ‘"Phospho-signature enrichment" ‘.

A character string specifying the gene set analysis method for pathway enrich-
ment. Options are ‘"PAGE"* or “"GSEA"*.

A gene set collection to use for pathway enrichment.
A post-translational modification (PTM) set database for phospho-enrichment

analysis.

on ne

A character string specifying the statistic type to use. Options are ‘"stat"‘ or

3 ||10g2FC" ‘.
A numeric specifying the number of permutations for GSEA. Default is 100.

A numeric value representing the significance threshold for filtering results.
Ddefault is 0.05.

A logical value indicating whether to filter results using FDR-adjusted p-
values. Default is ‘FALSE®.

The ‘enrichDifferential‘ function performs either pathway enrichment or phospho-enrichment anal-

ysis based on the

‘type‘ parameter. For pathway enrichment, it uses either the PAGE or GSEA

method with a provided gene set collection. For phospho-enrichment, it uses a Kolmogorov-
Smirnov test with a PTM set database. Results can be filtered by significance level and optionally

adjusted for FDR.

Value

A data frame containing the results of the enrichment analysis, including columns such as the gene
set name, statistical significance, and adjusted p-values.



12 generatelnputTable

Examples

library(SummarizedExperiment)

library(piano)

# Load multiAssayExperiment object

data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]

colData(se) <- colData(dia_example)

# Preprocess the proteome assay

result <- preprocessPhos(se, normalize = TRUE)

# Call the function to perform differential expression analyis

dea <- performDifferentialExp(se = result, assay = "Intensity”,
method = "limma", reference = "1stCrtl"”, target = "EGF",
condition = "treatment")

# Load the gene set

genesetPath <- appDir <- system.file("shiny-app/geneset”,

package = "SmartPhos")

inGMT <- loadGSC(paste@(genesetPath,"/Cancer_Hallmark.gmt"),type="gmt")

# Call the function

resTab <- enrichDifferential(dea = dea$resDE, type = "Pathway enrichment”,
gsaMethod = "PAGE", geneSet = inGMT, statType = "stat"”, nPerm = 200,
siglevel = 0.05, ifFDR = FALSE)

generatelnputTable Generate Input Table for Proteomic and Phosphoproteomic Analysis

Description

generatelnputTable generates an input table for proteomic and phosphoproteomic analysis by
reading files from a specified folder.

Usage
generatelnputTable(rawFolder, batchAsFolder = FALSE)

Arguments

rawFolder A character string specifying the path to the folder containing the raw files.

batchAsFolder A logical value indicating whether to treat subdirectories as separate batches.
Default is FALSE.

Details

The function performs the following steps:

* Optionally treats subdirectories as separate batches.

* Reads the summary file containing experimental information.



generatelnputTable_DIA 13

* Generates unique experimental IDs based on batch and sample names.
* Processes file paths for full proteome and phosphoproteome data.

* Creates a combined input table with file names, sample names, search types, batches, and IDs.

Value

A data. frame with columns fileName, sample, searchType, batch, and id that can be used as input
for further analysis.

generatelnputTable_DIA
Generate Input Table for DIA Analysis

Description

generatelnputTable_DIA generates an input table for DIA analysis by reading files from a speci-
fied folder.

Usage

generatelnputTable_DIA(rawFolder)

Arguments

rawFolder A character string specifying the path to the folder containing the raw files.

Details
The function performs the following steps:
* Reads the summary file containing experimental information.
* Generates unique experimental IDs based on sample type, treatment, timepoint, and replicate.

* Processes file paths for full proteome and phosphoproteome data.

* Creates a combined input table with file names, search types, and IDs.

Value

A data.frame with columns fileName, searchType, and id that can be used as input for further
analysis.



14 getOneSymbol

getDecouplerNetwork Load Kinase-Substrate Interaction Network

Description

getDecouplerNetwork loads the kinase-substrate interaction network for a specified species from
pre-defined files.

Usage
getDecouplerNetwork(speciesRef = c(”"Homo sapiens”, "Mus musculus”))
Arguments
speciesRef A character string specifying the species. Supported values are "Homo sapi-
ens" and "Mus musculus". Default is "Homo sapiens".
Value

A data frame containing the kinase-substrate interaction network for the specified species.

Examples

# Load the human kinase-substrate interaction network
getDecouplerNetwork("Homo sapiens”)

# Load the mouse kinase-substrate interaction network
getDecouplerNetwork(”Mus musculus”)

getOneSymbol Extract the Last Gene Symbol from a Semicolon-Separated List

Description

getOneSymbol extracts the last gene symbol from a semicolon-separated list of gene symbols.

Usage
getOneSymbol (Gene)
Arguments
Gene A character vector where each element is a semicolon-separated list of gene

symbols.



getRatioMatrix 15

Details

This function processes a character vector where each element consists of gene symbols separated
by semicolons. It splits each element by semicolons and extracts the last gene symbol from the
resulting list. The output is a character vector of these last gene symbols.

Value

A character vector containing the last gene symbol from each element of the input vector.

getRatioMatrix Get Ratio Matrix of Phosphoproteome Data

Description

getRatioMatrix calculates the ratio matrix of phosphoproteome data from aMultiAssayExperiment
object.

Usage

getRatioMatrix(maeData, normalization = FALSE, getAdjustedPP = FALSE)

Arguments

maeData A MultiAssayExperiment object containing phosphoproteome and full pro-
teome data.

normalization A logical value indicating whether to perform normalization. Default is FALSE.

getAdjustedPP A logical value indicating whether to use adjusted phosphoproteome data. De-
fault is FALSE.

Value

A numeric matrix representing the ratio of intensity of PP (phosphoproteome) data to FP (full
proteome) data.

Examples

# Load multiAssayExperiment object
data("dia_example”)

# Call the function

getRatioMatrix(dia_example, normalization = TRUE)



16 intensityBoxPlot

Homo_sapien_kinase_substrate_network
Homo_sapien_kinase_substrate_network

Description

A prior knowledge database about the known kinase-phosphosite interactions for Homo sapiens

Usage

data(Homo_sapien_kinase_substrate_network)

Format

a data.frame object

Value
A data frame containing the information about the known kinase-phosphosite interactions for

Homo sapiens.

Examples

data(Homo_sapien_kinase_substrate_network)

intensityBoxPlot Plot Boxplot of Intensity Data

Description
intensityBoxPlot creates a boxplot for the Intensity data of a given gene or feature, with optional
subject-specific lines.

Usage

intensityBoxPlot(se, id, symbol)

Arguments
se A SummarizedExperiment object containing the data.
id Character. The identifier of the gene or feature to plot.

symbol Character. The symbol or name of the gene or feature to use as the plot title.



makeSmartPhosDirectory 17

Details

This function generates a boxplot for the intensity data of a specified gene or feature from a
SummarizedExperiment (SE) object. The plot shows the distribution of normalized intensities
across different groups specified in the comparison column of the SE object.

The function can handle both grouped data and repeated measures: - If the SE object does not
contain a subjectID column, the function plots a standard boxplot grouped by the comparison
column. - If the SE object contains a subjectID column, the function adds lines connecting the
points for each subject across the groups, providing a visual indication of subject-specific changes.

The boxplot is customized with various aesthetic elements, such as box width, transparency, point
size, axis labels, and title formatting.

Value

A ggplot?2 object representing the boxplot of the intensity data.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data(”"dda_example”)

# Get SummarizedExperiment object

se <- dda_example[["Proteome”]]

colData(se) <- colData(dda_example)

# Preprocess the proteome assay

result <- preprocessProteome(se, normalize = TRUE)

# Call the function to perform differential expression analyis

de <- performDifferentialExp(se = result, assay = "Intensity”,
method = "limma"”, reference = "1stCrtl”, target = "EGF",
condition = "treatment")

# Plot the box plot for the given id and symbol
intensityBoxPlot(de$seSub, "p99", "PPP6C")

makeSmartPhosDirectory
Create SmartPhos Directory Structure

Description

makeSmartPhosDirectory creates a directory for the SmartPhos shiny app, and copies the neces-
sary Shiny app files into the newly created directory.

Usage

makeSmartPhosDirectory(path)



18 medianNorm

Arguments
path A character string specifying the directory path where the SmartPhos folder
should be created.
Details

on

The function first creates the main directory at the specified path and a subdirectory named ‘"save"*
for storing MultiAssayExperiment object. It then locates the Shiny application files from the
SmartPhos package and copies them into the new directory.

Value

None (invisible NULL). The function creates the necessary directories and copies files.

Examples

makeSmartPhosDirectory(”shinyApp")

medianNorm Normalize a Matrix Using Median or Mean

Description

medianNorm normalizes the columns of a matrix by either the median or the mean.

Usage
medianNorm(x, method = "median")
Arguments
X A numeric matrix to be normalized.
method A character string specifying the normalization method. Options are "median"
or "mean". Default is "median".
Details

The function performs the following steps:
1. If the method is "median", it calculates the median of each column and adjusts by the overall
median of these medians.

2. If the method is "mean", it calculates the mean of each column and adjusts by the overall mean
of these means.

3. It constructs a matrix of these adjusted values and subtracts it from the original matrix to
normalize the columns.



mscale 19

Value

A numeric matrix with normalized columns.

Examples

# Example usage:
x <= matrix(rnorm(20), nrow=5, ncol=4)

medianNorm(x, method = "median")
mscale Scale and Center a Matrix
Description

mscale scales and centers each row of a matrix, with options for using mean or median, standard
deviation or mean absolute deviation, and censoring extreme values.

Usage
mscale(x, center = TRUE, scale = TRUE, censor = NULL, useMad = FALSE)

Arguments
X A numeric matrix where rows are features and columns are samples.
center Logical. If TRUE, the rows are centered by subtracting the mean or median.
Default is TRUE.
scale Logical. If TRUE, the rows are scaled by dividing by the standard deviation or
mean absolute deviation. Default is TRUE.
censor A numeric vector of length one or two for censoring the scaled values. If length

one, values are censored symmetrically at positive and negative values. If length
two, the first value is the lower limit and the second value is the upper limit.
Default is NULL.

useMad Logical. If TRUE, the mean absolute deviation is used for scaling instead of the
standard deviation. Default is FALSE.

Details

The function allows for flexible scaling and centering of the rows of a matrix:

e If both center and scale are TRUE, rows are centered and scaled.

* If only center is TRUE, rows are centered but not scaled.

* If only scale is TRUE, rows are scaled but not centered.

* If neither center nor scale is TRUE, the original matrix is returned.

The function can also censor extreme values, either symmetrically or asymmetrically, based on the
censor parameter.



20 Mus_musculus_kinase_substrate_network

Value

A scaled and centered numeric matrix with the same dimensions as the input matrix ‘x‘.

Examples

# Create a sample matrix (3 rows by 5 columns)
sample_matrix <- matrix(c(1:15), nrow = 3, byrow = TRUE)

# Scale and center the matrix using the default settings
mscale(sample_matrix, center = TRUE, scale = TRUE)

# Only center the matrix without scaling
mscale(sample_matrix, center = TRUE, scale = FALSE)

# Only scale the matrix without centering
mscale(sample_matrix, center = FALSE, scale = TRUE)

Mus_musculus_kinase_substrate_network
Mus_musculus_kinase_substrate_network

Description

A prior knowledge database about the known kinase-phosphosite interactions for Mus musculus

Usage

data(Mus_musculus_kinase_substrate_network)

Format

a data.frame object

Value

A data frame containing the information about the known kinase-phosphosite interactions for Mus
musculus.

Examples

data(Mus_musculus_kinase_substrate_network)



normByFullProteome 21

normByFullProteome Normalize Phosphoproteome by Full Proteome

Description

normByFullProteome normalizes the phosphoproteome data by the corresponding full proteome
data in a MultiAssayExperiment object. The "Phosphoproteome" assay in the MultiAssayExperi-
ment will be replaced by the ratio.

Usage

normByFullProteome(mae, replace = TRUE)

Arguments
mae A MultiAssayExperiment object containing both phosphoproteome and pro-
teome assays.
replace Logical, whether to replace the existing phosphoproteome assay in the MultiAssayExperiment
object. If replace = FALSE, a new assay, phosphoRatio, will be created. Default
is TRUE.
Details

The function performs the following steps:

 Checks if both phosphoproteome and proteome assays are present in the MultiAssayExperiment

object.
 Extracts the phosphoproteome and proteome assays along with the sample annotations.
* Matches the samples between the phosphoproteome and proteome assays.
* Normalizes the phosphoproteome data by dividing it by the corresponding proteome data.

* Replaces the phosphoproteome assay in the MultiAssayExperiment object or adds the nor-
malized data as a new assay, depending on the replace parameter.

Value

A MultiAssayExperiment object with the normalized phosphoproteome data.

Examples

# load mae object
data("dia_example”)

# call the function
normByFullProteome(dia_example)



22 performCombinedNormalization

performCombinedNormalization
Perform Combined Normalization on MultiAssayExperiment Data

Description
performCombinedNormalization performs combined normalization on proteome and phospho-
proteome data from a MultiAssayExperiment object.

Usage

performCombinedNormalization(maeData)

Arguments
maeData A MultiAssayExperiment object containing proteome and phosphoproteome
data.
Details

The function performs the following steps:

1. Extracts the count matrices for Full Proteome (FP) samples.
2. Combines the proteome and phosphoproteome data into a single matrix.
3. Removes rows with all NA values.

4. Performs median normalization and log2 transformation on the combined matrix.

Value

A numeric matrix with normalized and log2-transformed data.

Examples

# Load multiAssayExperiment object
data("dia_example”)

# Call the function
performCombinedNormalization(dia_example)



performDifferential Exp 23

performDifferentialExp
Perform Differential Expression Analysis

Description

performDifferentialExp performs differential expression analysis on a given SummarizedExperiment
object using either the 1imma or ProDA method.

Usage

performDifferentialExp(
se,
assay,
method = c(”"limma”, "ProDA"),
condition = NULL,
reference,
target,
refTime = NULL,
targetTime = NULL,
pairedTtest = FALSE

)
Arguments

se A SummarizedExperiment object containing the data.

assay A character string specifying the assay to use for the analysis.

method A character string specifying the method to use for differential expression
analysis ("limma" or "ProDA"). Default is "limma".

condition A character string specifying the condition column in colData(se). Default is
NULL.

reference A character string or vector specifying the reference group.

target A character string or vector specifying the target group.

refTime A character string or vector specifying the reference time points. Default is
NULL.

targetTime A character string or vector specifying the target time points. Default is NULL.

pairedTtest A logical value specifying to perform paired t-test or not. Default is FALSE.

Details

This function is designed to facilitate differential expression analysis on a SummarizedExperiment
(SE) object. The function allows users to specify various parameters to tailor the analysis to their
specific experimental setup.

The main steps of the function are as follows:



24

performDifferential Exp

1. Sample Selection: Based on the provided condition, reference, and target arguments, the
function identifies the relevant samples for the analysis. If time points (refTime and targetTime)
are provided, it further refines the sample selection.

2. Subsetting the SE Object: The SE object is subsetted to include only the selected samples. A
new column comparison is added to the colData, indicating whether each sample belongs to the
reference or target group.

3. Design Matrix Construction: The function constructs a design matrix for the differential ex-
pression analysis. If the SE object contains a subjectID column, this is included in the design to
account for repeated measures or paired samples.

4. Differential Expression Analysis: Depending on the specified method, the function performs the
differential expression analysis using either the 1imma or ProDA package: - Limma: The function fits
a linear model to the expression data and applies empirical Bayes moderation to the standard errors.
The results are then extracted and formatted. - ProDA: The function fits a probabilistic dropout
model to the expression data and tests for differential expression. The results are then extracted and
formatted.

5. Result Formatting: The differential expression results are merged with the metadata from the SE
object, and the resulting table is formatted into a tibble. The table includes columns for log2 fold
change (1og2FC), test statistic (stat), p-value (pvalue), adjusted p-value (padj), and gene/feature ID
(D).

The function returns a 1ist containing the formatted differential expression results and the subset-
ted SE object. This allows users to further explore or visualize the results as needed.

Value

A list containing:

resDE A tibble with the differential expression results.
seSub A SummarizedExperiment object subset to the samples used in the analysis.
Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data("dda_example")

# Get SummarizedExperiment object

se <- dda_example[["Proteome”]]

colData(se) <- colData(dda_example)

# Preprocess the proteome assay

result <- preprocessProteome(se, normalize = TRUE)

# Call the function to perform differential expression analyis
performDifferentialExp(se = result, assay = "Intensity”, method = "limma”,
reference = "1stCrtl”, target = "EGF"”, condition = "treatment"”)



plotAdjustmentResults 25

plotAdjustmentResults Plot Adjustment Results

Description

plotAdjustmentResults generates plots to visualize the results of phosphoproteome adjustment.

Usage

plotAdjustmentResults(maeData, normalization = FALSE)

Arguments

maeData A MultiAssayExperiment object containing phosphoproteome and full pro-
teome data.

normalization A logical value indicating whether normalization was performed. Default is
FALSE.

Details

The function performs the following steps:

1. Checks if the adjustment factor is present in the sample annotation.
2. Calculates the ratio matrix before and after adjustment.

3. Creates a trend line plot for features present in all samples.

4

. Creates box plots of the PP/FP ratios and phosphorylation intensities before and after adjust-
ment.

Value

A list containing:
ratioTrendPlot A ggplot2 object showing the line plot of PP/FP ratios for features present in
all samples.

ratioBoxplot A ggplot2 object showing the box plot of PP/FP ratios before and after adjust-
ment.

ppBoxplot A ggplot2 object showing the box plot of phosphorylation intensities in PP
samples before and after adjustment.



26 plotHeatmap

plotHeatmap Plot Heatmap of Intensity assay

Description

plotHeatmap generates a heatmap for intensity assay for different conditions, including top vari-
ants, differentially expressed genes, and selected time series clusters.

Usage
plotHeatmap(
type = c("Top variant”, "Differentially expressed”, "Selected time series cluster"),
se,
data = NULL,
top = 100,
cutCol =1,
cutRow = 1,
clustCol = TRUE,
clustRow = TRUE,
annotationCol = NULL,
title = NULL
)
Arguments
type A character string specifying the type of heatmap to plot. Options are "Top
variant", "Differentially expressed", and "Selected time series cluster".
se A SummarizedExperiment object containing the imputed intensity assay.
data An optional data frame containing additional data for "Differentially expressed”
and "Selected time series cluster" types. Default is NULL.
top A numeric value specifying the number of top variants to plot. Default is 100.
cutCol A numeric value specifying the number of clusters for columns. Default is 1.
cutRow A numeric value specifying the number of clusters for rows. Default is 1.
clustCol A logical value indicating whether to cluster columns. Default is TRUE.
clustRow A logical value indicating whether to cluster rows. Default is TRUE.

annotationCol A character vector specifying the columns in the metadata to use for annota-
tion. Default is NULL.

title A character string specifying the title of the heatmap. Default is NULL.

Details

This function creates a heatmap using the Intensity assay from a SummarizedExperiment object.
The heatmap can show the top variants based on standard deviation, differentially expressed genes,
or selected time series clusters. Row normalization is performed, and the heatmap can include
annotations based on specified metadata columns.



plotIntensity 27

Value

A pheatmap object showing the heatmap of Intensity data.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]

colData(se) <- colData(dia_example)

# Generate the imputed assay

result <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
# Plot heatmap for top variant

plotHeatmap(type = "Top variant”, top = 10, se = result, cutCol = 2)

plotIntensity Plot Intensity Boxplots

Description

plotIntensity generates boxplots of assay intensities for each sample in a SummarizedExperiment
object. Optionally, the boxplots can be colored based on a specified metadata column. The function
handles missing values by filtering them out before plotting.

Usage

plotIntensity(se, colorByCol = "none")

Arguments
se A SummarizedExperiment object containing the assay data and metadata.
colorByCol A character string specifying the metadata column to use for coloring the box-
plots. Default is "none".
Value

A ggplot2 object showing boxplots of intensities for each sample.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object
data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]
colData(se) <- colData(dia_example)



28 plotKinaseDE

# Preprocess the phosphoproteome assay

result <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
# Call the plotting function

plotIntensity(result, colorByCol = "replicate")

plotKinaseDE Plot Kinase score for Differential Expression data

Description
‘plotKinaseDE* generates a bar plot of the top kinases associated with the differentially expressed
genes based on their scores.

Usage
plotKinaseDE(scoreTab, nTop = 10, pCut = 0.05)

Arguments
scoreTab A data frame containing kinase scores with columns source, score, and p_value.
nTop A numeric value specifying the number of top kinases to plot for each direction.
Default is 10.
pCut A numeric value specifying the p-value cutoff for significance. Default is 0.05.
Details

The function performs the following steps:

Adds a column for significance based on the p-value cutoff.
. Adds a column for the sign of the score.
. Filters out kinases with a score of 0.

. Selects the top nTop kinases by absolute score for each sign of the score.

wnohk W =

. Creates a bar plot with the selected kinases.

Value

A ggplot?2 object representing the bar plot of kinase score.

Examples

# Example usage:

scoreTab <- data.frame(

source = c("Kinasel”, "Kinase2", "Kinase3", "Kinase4"),
score = ¢(2.3, -1.5, 9, 3.1),

p_value = c(0.01, 0.2, 0.05, 0.03)

)
plotKinaseDE(scoreTab, nTop = 3, pCut = 0.05)



plotKinaseTimeSeries 29

plotKinaseTimeSeries  Plot Kinase Activity Time Series

Description

plotKinaseTimeSeries creates a heatmap to visualize the result of kinase activity inference for
time-series clustering, with significant activity changes marked.

Usage
plotKinaseTimeSeries(scoreTab, pCut = 0.05, clusterName = "cluster1”)
Arguments
scoreTab A data frame containing kinase activity scores, p-values, and time points.
pCut A numeric value specifying the p-value threshold for significance. Default is
0.05.
clusterName A character string specifying the name of the cluster for the plot title. Default
is "cluster1".
Details

The heatmap shows kinase activity scores over different time points. Significant activities (based
on the specified p-value threshold) are marked with an asterisk (*). The color gradient represents
the activity score, with blue indicating low activity, red indicating high activity, and white as the
midpoint.

Value

A ggplot?2 object representing the heatmap of kinase activity score.

Examples

# Example usage:
scoreTab <- data.frame(
timepoint = rep(c(”0h”, "1h", "2h"), each = 3),
source = rep(c("KinaseA”, "KinaseB", "KinaseC"), times = 3),
score = runif(9, -2, 2),
p_value = runif(9, 0, 0.1)
)

plotKinaseTimeSeries(scoreTab)



30 plotMissing

plotLogRatio Plot Log Ratio of PP/FP (Phosphoproteome to Full Proteome) inten-
sities

Description
plotLogRatio generates a boxplot of the log2 ratio of intensities of phosphoproteome to full pro-
teome data from a MultiAssayExperiment object.

Usage

plotLogRatio(maeData, normalization = FALSE)

Arguments

maeData A MultiAssayExperiment object containing phosphoproteome and full pro-
teome data.

normalization A logical value indicating whether to perform normalization. Default is FALSE.

Value

A ggplot?2 object representing the boxplot of the log2 ratios.

Examples

# Load multiAssayExperiment object
data("dia_example”)

# Call the function

plotLogRatio(dia_example, normalization = TRUE)

plotMissing Plot Missing Data Completeness

Description
plotMissing generates a bar plot showing the completeness (percentage of non-missing values)
for each sample in a SummarizedExperiment object.

Usage

plotMissing(se)

Arguments

se A SummarizedExperiment object containing the assay data.



plotPCA 31

Details

This function calculates the percentage of non-missing values for each sample in the provided
SummarizedExperiment object. It then generates a bar plot where each bar represents a sample,
and the height of the bar corresponds to the completeness (percentage of non-missing values) of
that sample.

Value

A ggplot?2 object showing the percentage of completeness for each sample.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object
data("dda_example")

# Get SummarizedExperiment object

se <- dda_example[["Phosphoproteome”]]
colData(se) <- colData(dda_example)

# Call the function

plotMissing(se)

plotPCA Plot PCA

Description

plotPCA generates a PCA plot using the results from a PCA analysis and a SummarizedExperiment
object. The points on the plot can be colored and shaped based on metadata.

Usage
plotPCA(pca, se, xaxis = "PC1", yaxis = "PC2", color = "none", shape = "none")
Arguments
pca A PCA result object, typically obtained from prcomp.
se A SummarizedExperiment object containing the metadata.
xaxis A character string specifying which principal component to use for the x-axis.
Default is "PC1".
yaxis A character string specifying which principal component to use for the y-axis.
Default is "PC2".
color A character string specifying the metadata column to use for coloring the
points. Default is "none".
shape A character string specifying the metadata column to use for shaping the

points. Default is "none".



32 plotTimeSeries

Details

This function creates a PCA plot using the scores from a PCA result object and metadata from a
SummarizedExperiment object. The x-axis and y-axis can be customized to display different prin-
cipal components, and the points can be optionally colored and shaped based on specified metadata
columns.

Value

A ggplot2 object showing the PCA plot.

Examples

# Load multiAssayExperiment object

data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]

SummarizedExperiment: :colData(se) <- SummarizedExperiment::colData(
dia_example)

# Generate the imputed assay

result <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
# Perform PCA

pcaResult <- stats::prcomp(t(

SummarizedExperiment: :assays(result)[["imputed”]1]),

center = TRUE, scale. = TRUE)

# Plot PCA results

plotPCA(pca = pcaResult, se = result, color = "treatment")

plotTimeSeries Plot Time Series Data for a gene or phospho site from SummarizedEx-
periment object

Description

plotTimeSeries plots time series data for a given gene or phospho site from a given SummarizedExperiment
object, allowing different types of plots such as expression, log fold change, or two-condition ex-
pression.

Usage

plotTimeSeries(
se,
type = c("expression”, "logFC", "two-condition expression”),
genelD,
symbol,
condition,
treatment,
refTreat,



plotTimeSeries 33

addZero = FALSE,
zeroTreat = NULL,

timerange
)
Arguments
se A SummarizedExperiment object containing the data.
type Character. The type of plot to generate. Options are " expression”, "logFC",
or "two-condition expression".
genelD Character. The identifier of the gene or feature to plot.
symbol Character. The symbol or name of the gene or feature to use as the plot title.
condition Character. The condition corresponds to one of the columns from the colData
of SE object.
treatment Character. The treatment to use for filtering the data.
refTreat Character. The reference treatment to compare against.
addZero Logical, whether to add a zero time point to the data. Default is FALSE.
zeroTreat Character. The treatment to use for adding the zero time point. Default is
NULL.
timerange Character vector.The range of time points to include in the plot.
Details

This function generates time series plots for a specified gene or feature from a SummarizedExperiment
(SE) object. The type of plot can be one of the following: - "expression": Plots normalized expres-
sion levels over time. - "logFC": Plots log fold change (ogFC) over time, comparing a treatment to

a reference treatment. - "two-condition expression": Plots normalized expression levels over time
for two conditions.

The function can add a zero time point if specified and handles data with and without subject-
specific information. The plot includes points for each time point and a summary line representing
the mean value.

The x-axis represents time, and the y-axis represents the selected metric (normalized expression or
logFC). The plot is customized with various aesthetic elements, such as point size, line type, axis
labels, and title formatting.

Value

A ggplot2 object representing the time series plot.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object
data("dda_example")

# Get SummarizedExperiment object
se <- dda_example[["Proteome”]]



34

plotVolcano

colData(se) <- colData(dda_example)

# Preprocess the proteome assay

result <- preprocessProteome(se, normalize = TRUE)

# Plot a specific gene experssion over time

timerange <- unique(se$timepoint)

plotTimeSeries(result, type = "expression”, genelD = "p18",
symbol = "TMEM238", condition = "treatment”, treatment = "EGF",
timerange = timerange)

plotVolcano Plot Volcano Plot for Differential Expression Analysis

Description

plotVolcano generates a volcano plot to visualize differential expression results.

Usage

plotVolcano(tableDE, pFilter = 0.05, fcFilter = 0.5)

Arguments
tableDE A data frame containing differential expression results with columns *ID’, "1og2FC’,
‘pvalue’, and *Gene’.
pFilter A numeric value specifying the p-value threshold for significance. Default is
0.05.
fcFilter A numeric value specifying the log2 fold-change threshold for significance.
Default is 0.5.
Details

This function creates a volcano plot where differentially expressed genes are categorized as *Up’,
’Down’, or ’Not Sig’ based on the provided p-value and log2 fold-change thresholds. Points on the
plot are color-coded to indicate their expression status.

Value

A ggplot?2 object representing the volcano plot.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object
data("dda_example”)

# Get SummarizedExperiment object
se <- dda_example[["Proteome”]]
colData(se) <- colData(dda_example)



preprocessPhos 35

# Preprocess the proteome assay
result <- preprocessProteome(se, normalize = TRUE)
# Call the function to perform differential expression analyis

de <- performDifferentialExp(se = result, assay = "Intensity”,
method = "limma”, reference = "1stCrtl”, target = "EGF",
condition = "treatment")

# Plot the volcano plot from the result
plotVolcano(de$resDE)

preprocessPhos Preprocess Phosphoproteome Data

Description

preprocessPhos preprocesses phosphoproteome data stored in a SummarizedExperiment object
by performing filtering, transformation, normalization, imputation, and batch effect removal.

Usage

preprocessPhos(
seData,
filterList = NULL,
missCut = 50,
transform = c("log2",
normalize = FALSE,
getFP = FALSE,
removeOutlier = NULL,
assayName = NULL,
batch = NULL,
scaleFactorTab = NULL,
impute = c("none”, "QRILC", "MLE", "bpca", "missForest"”, "MinDet"),
verbose = FALSE

n

vst", "none"),

)
Arguments

seData A SummarizedExperiment object containing phosphoproteome data.

filterList A list of filters to apply on the samples. Default is NULL.

missCut Numeric value specifying the missing value cutoff percentage for filtering fea-
tures. Default is 50.

transform Character string specifying the transformation method ("log2", "vst", "none").
Default is "log2".

normalize Logical value indicating whether to normalize the data. Default is FALSE.

getFP Logical value indicating whether to retrieve FP samples. Default is FALSE.

removeQutlier Character vector of samples to be removed as outliers. Default is NULL.



36 preprocessProteome
assayName Character string specifying the assay name in the SummarizedExperiment ob-
ject. Default is NULL.
batch Character vector specifying batch effects to remove. Default is NULL.
scaleFactorTab Data frame containing scale factors for normalization. Default is NULL.
impute Character string specifying the imputation method ("QRILC", "MLE", "bpca",
"missForest", "MinDet", "none"). Default is "none".
verbose Logical value indicating whether to print detailed information. Default is FALSE.
Value

A SummarizedExperiment object with preprocessed phosphoproteome data.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object
data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Phosphoproteome”]]
colData(se) <- colData(dia_example)

# Call the function

preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
preprocessProteome Preprocess Proteome Data
Description

preprocessProteome preprocesses proteome data stored in a SummarizedExperiment object by
performing filtering, transformation, normalization, imputation, and batch effect removal.

Usage

preprocessProteome (
seData,
filterList = NULL,
missCut = 50,
transform = c("log2",
normalize = FALSE,
getPP = FALSE,
removeOutlier = NULL,
impute = c("none”, "QRILC", "MLE", "bpca", "missForest"”, "MinDet"),
batch = NULL,
verbose = FALSE,
scaleFactorTab = NULL

n

vst”, "none"),



readExperiment

Arguments

seData
filterList

missCut

transform

normalize
getPP
removeQutlier

impute

batch

verbose

37

A SummarizedExperiment object containing proteome data.
A list of filters to apply on the samples. Default is NULL.

Numeric value specifying the missing value cutoff percentage for filtering fea-
tures. Default is 50.

non

Character string specifying the transformation method ("log2", "vst", "none").
Default is "log2".

Logical value indicating whether to normalize the data. Default is FALSE.
Logical value indicating whether to retrieve PP samples. Default is FALSE.
Character vector of samples to be removed as outliers. Default is NULL.

Character string specifying the imputation method ("QRILC", "MLE", "bpca",

"non

"missForest", "MinDet", "none"). Default is "none".
Character vector specifying batch effects to remove. Default is NULL.

Logical value indicating whether to print detailed information. Default is FALSE.

scaleFactorTab Data frame containing scale factors for normalization. Default is NULL.

Value

A SummarizedExperiment object with preprocessed proteome data.

Examples

library(SummarizedExperiment)

# Load multiAssayExperiment object

data("dia_example”)

# Get SummarizedExperiment object

se <- dia_example[["Proteome”]]

colData(se) <- colData(dia_example)

# Call the function

preprocessProteome(seData = se, normalize = TRUE, impute = "QRILC")

readExperiment

Read and Process the DDA experiment.

Description

readExperiment reads and processes DDA (Data-Dependent Acquisition) phosphoproteomic and
proteomic data from a given file table, and returns a MultiAssayExperiment object.



38 readExperiment

Usage
readExperiment (
fileTable,
localProbCut = 0.75,
scoreDiffCut = 5,
fdrCut = 0.1,

scoreCut = 10,
pepNumCut = 1,

ifLFQ = TRUE,
annotation_col = c(),
verbose = FALSE

Arguments

fileTable A data. frame containing information about the input files, including searchType,
id, sample, and other annotations.

localProbCut Numeric, local probability cutoff for filtering phosphoproteomic data. Default

is 0.75.
scoreDiffCut  Numeric, score difference cutoff for filtering phosphoproteomic data. Default is
5.
fdrCut Numeric, false discovery rate cutoff for filtering proteomic data. Default is 0.1.
scoreCut Numeric, score cutoff for filtering proteomic data. Default is 10.
pepNumCut Numeric, peptide number cutoff for filtering proteomic data. Default is 1.
ifLFQ Logical, whether to use LFQ quantification for proteomic data. Default is TRUE.

annotation_col A character vector specifying additional columns to be included in the sample
annotation. Default is an empty vector.

verbose Logical value indicating whether to print detailed information. Default is FALSE.

Details
The function performs the following steps:
* Reads and processes the phosphoproteomic data using the readPhosphoExperiment function.
* Reads and processes the proteomic data using the readProteomeExperiment function.

* Prepares the sample annotation table.

* Constructs and returns a MultiAssayExperiment object containing the processed data.

Value

A MultiAssayExperiment object containing the processed phosphoproteomic and proteomic data
from a DDA experiment.



readExperimentDIA 39

Examples

# Example usage:
filel <- system.file("extdata”, "phosDDA_1.x1s", package = "SmartPhos")
file2 <- system.file("extdata”, "proteomeDDA_1.x1s", package = "SmartPhos")
# Create fileTable
fileTable <- data.frame(

searchType = c("phosphoproteome”, "proteome”),

fileName = c(filel, file2),

sample = c("Samplel”, "samplel”),

id = c("s1", "s2")
)
# Call the function
readExperiment(fileTable, localProbCut
fdrCut = 0.1, scoreCut = 10, pepNumCut
annotation_col = c("id"))

0.75, scoreDiffCut = 5,
1, ifLFQ = TRUE,

readExperimentDIA Read and Process a DIA Experiment

Description

readExperimentDIA reads and processes DIA (Data-Independent Acquisition) data for both phos-
phoproteome and proteome experiments, and constructs a MultiAssayExperiment object.

Usage

readExperimentDIA(
fileTable,
localProbCut = 0.75,
annotation_col = c(),
onlyReviewed = TRUE,
normalizeByProtein = FALSE,
verbose = FALSE

Arguments

fileTable A data frame containing metadata about the files to be read. Must contain
columns searchType, fileName, id, and optionally outputID.

localProbCut Numeric, the local probability cutoff for phosphoproteomic data. Default is
0.75.

annotation_col A character vector specifying the columns in fileTable to be used for sample
annotation.

onlyReviewed A logical value indicating whether to include only reviewed proteins. Default

is TRUE.
normalizeByProtein

Logical, whether to normalize the data by protein. Default is FALSE.
verbose Logical value indicating whether to print detailed information. Default is FALSE.



40 readOnePhos

Details
The function performs the following steps:

* Reads and processes phosphoproteomic data using readPhosphoExperimentDIA.

* Reads and processes proteomic data using readProteomeExperimentDIA.

* Prepares sample annotations based on the provided fileTable and annotation_col.

» Constructs a MultiAssayExperiment object with the processed data and sample annotations.

The readPhosphoExperimentDIA and readProteomeExperimentDIA functions are used to read
and filter the data for phosphoproteome and proteome experiments, respectively, and they must be
available in the environment.

Value

A MultiAssayExperiment object containing the processed phosphoproteome and proteome data.

Examples

# Example usage:
filel <- system.file("extdata”, "phosDIA_1.xls", package = "SmartPhos")
file2 <- system.file("extdata”, "proteomeDIA_1.x1s"”, package = "SmartPhos")
# Create fileTable
fileTable <- data.frame(

searchType = c("phosphoproteome”, "proteome”, "proteome"),

fileName = c(filel, file2, file2),

id = c("Sample_1", "samplel”, "sample2"),

outputID = c("s1", "s2", "s3")
)
# Call the function
readExperimentDIA(fileTable, localProbCut = @.75, annotation_col = c("id"),
onlyReviewed = FALSE, normalizeByProtein = FALSE)

readOnePhos Read and Filter Phosphorylation Data for a Specific Sample

Description

readOnePhos reads phosphorylation data from an input table, filters it based on localization proba-
bility, score difference, and intensity, and returns the filtered data for a specific sample.

Usage

readOnePhos(
inputTab,
sampleName,
localProbCut
scoreDiffCut
multiMap

|
[ IS}
~
(6]



readOnePhosDIA 41

Arguments
inputTab A data.table or data.frame containing phosphorylation data with columns
for localization probability, score difference, and intensity for various samples.
sampleName A character string specifying the sample name to filter data for.

localProbCut A numeric value specifying the cutoff for localization probability. Default is
0.75.

scoreDiffCut A numeric value specifying the cutoff for score difference. Default is 5.

multiMap A logical value indicating whether to allow multiple mapping (not used in this
function but could be relevant for further extensions).

Details

The function filters the input phosphorylation data based on three criteria: localization probability,
score difference, and intensity. Only rows that meet or exceed the specified cutoffs for these criteria
and have non-zero intensity are retained. The filtered data is then returned with a unique identifier
for each row.

Value

A data. frame containing the filtered phosphorylation data for the specified sample, with columns
for intensity, Uniprot ID, gene name, position within proteins, amino acid residue, and sequence
window.

readOnePhosDIA Read Phosphorylation Data for One Sample from DIA

Description
readOnePhosDIA reads and processes phosphorylation data for a single sample from a DIA experi-
ment, applying filters for localization probability and removing duplicates if specified.

Usage

readOnePhosDIA(inputTab, sampleName, localProbCut = .75, removeDup = FALSE)

Arguments
inputTab A data.table or data. frame containing phosphorylation data.
sampleName A character string specifying the sample name.
localProbCut A numeric value specifying the cutoff for localization probability. Default is
0.75.
removeDup A logical value indicating whether to remove duplicate entries based on Unipro-

tID and intensity. Default is FALSE.



42 readOneProteom

Details

This function processes phosphorylation data for a single sample by filtering based on localization
probability and non-zero intensity. It handles multiplicity by summarizing intensities and optionally
removes duplicates. The resulting data is returned as a data.table with unique identifiers.

Value

A data. table containing the processed phosphorylation data for the specified sample.

readOneProteom Read and Process One Proteomics Sample

Description

readOneProteom reads and processes proteomics data for a single sample, applying filters for pep-
tide count and optionally using LFQ quantification. It returns a data.table with useful columns
and unique identifiers.

Usage

readOneProteom(inputTab, sampleName, pepNumCut = 1, ifLFQ = TRUE)

Arguments
inputTab A data.table ordata. frame containing the input data for the proteomics sam-
ple.
sampleName A character string specifying the name of the sample to be processed.
pepNumCut A numeric value specifying the minimum number of peptides required for a
protein to be included. Default is 1.
ifLFQ A logical value indicating whether to use LFQ quantification. Default is TRUE.
Details

This function processes proteomics data for a single sample by filtering based on the number of
peptides and optionally using LFQ quantification. It ensures that unique identifiers are created for
each protein, and removes rows with missing or zero quantification values.

Value

A data.table with the processed proteomics data, including columns for intensity, Uniprot ID,
peptide counts, and gene names.



readOneProteomDIA 43

readOneProteomDIA Read and Process a Single DIA Proteomics Sample

Description

readOneProteomDIA reads and processes data from a single DIA proteomics sample, applying
filtering and data transformation steps.

Usage

readOneProteomDIA(inputTab, sampleName)

Arguments
inputTab A data.table or data. frame containing the input data.
sampleName A character string specifying the sample name.
Details

This function processes DIA proteomics data for a single sample by filtering out rows with non-
quantitative data, converting character values to numeric, and renaming columns for consistency. It
also ensures that each protein group has a unique identifier.

Value

A data.table containing the processed data with columns for intensity, UniProt ID, and gene
name.

readPhosphoExperiment Read Phosphorylation Experiment Data

Description

readPhosphoExperiment reads and processes phosphorylation experiment data from multiple files,
filtering based on localization probability and score difference, and constructs a SummarizedExperiment
object.

Usage

readPhosphoExperiment(fileTable, localProbCut = 0.75, scoreDiffCut = 5)



44 readPhosphoExperimentDIA

Arguments

fileTable A data.table or data. frame containing information about the files, including
columns for file names, sample names, and other relevant metadata. It must in-
clude a column named "searchType" with value "phosphoproteome" for relevant
entries.

localProbCut A numeric value specifying the cutoff for localization probability. Default is
0.75.

scoreDiffCut A numeric value specifying the cutoff for score difference. Default is 5.

Details

This function reads phosphorylation data from multiple files as specified in fileTable, filters the data
based on localization probability and score difference, and removes reverse and potential contami-
nant entries. It constructs an intensity matrix and annotation data, which are then used to create a
SummarizedExperiment object.

Value

A SummarizedExperiment object containing the processed phosphorylation data.

Examples

filel <- system.file("extdata”, "phosDDA_1.x1s", package = "SmartPhos")
file2 <- system.file("extdata”, "proteomeDDA_1.x1s", package = "SmartPhos")
# Create fileTable
fileTable <- data.frame(
searchType = c("phosphoproteome”, "proteome”),
fileName = c(filel, file2),
sample = c("Samplel1”, "samplel"),
id = c("s1", "s2")
)
# Call the function
readPhosphoExperiment (fileTable, localProbCut = @.75, scoreDiffCut = 5)

readPhosphoExperimentDIA
Read Phosphorylation Experiment Data from DIA

Description

readPhosphoExperimentDIA reads and processes phosphorylation data from DIA experiments,
applying filters for localization probability, and optionally including only reviewed proteins. It
constructs a SummarizedExperiment object.



readProteomeExperiment 45

Usage
readPhosphoExperimentDIA(
fileTable,
localProbCut = 0.75,
onlyReviewed = TRUE,
showProgressBar = FALSE
)
Arguments
fileTable A data.table or data. frame containing metadata about the files to read. Must

include columns fileName, searchType, and optionally outputID.

localProbCut A numeric value specifying the cutoff for localization probability. Default is

0.75.

onlyReviewed A logical value indicating whether to include only reviewed proteins. Default
is TRUE.

showProgressBar

A logical value indicating whether to show a progress bar. Default is FALSE.

Details

This function processes phosphorylation data from DIA experiments by filtering based on local-
ization probability and non-zero intensity, handling multiplicity, and optionally including only re-
viewed proteins. The resulting data is returned as a SummarizedExperiment object with annota-
tions and an intensity matrix.

Value

A SummarizedExperiment object containing the processed phosphorylation data.

Examples

file <- system.file("extdata”, "phosDIA_1.x1s", package = "SmartPhos")
fileTable <- data.frame(searchType = "phosphoproteome”, fileName = file,
id = c("Sample_1"))

readPhosphoExperimentDIA(fileTable, localProbCut = 0.75,

onlyReviewed = FALSE, showProgressBar = FALSE)

readProteomeExperiment
Read and Process Proteomics Experiment Data

Description

readProteomeExperiment reads and processes proteomics data from multiple samples, applying
various quality filters, and returns a SummarizedExperiment object.



46 readProteomeExperiment

Usage

readProteomeExperiment (
fileTable,
fdrCut = 0.1,
scoreCut = 10,
pepNumCut = 1,

ifLFQ = TRUE
)
Arguments
fileTable A data.table or data. frame containing the file information with columns for
file names, sample names, and IDs.
fdrCut A numeric value specifying the maximum false discovery rate (FDR) threshold.
Default is 0.1.
scoreCut A numeric value specifying the minimum score threshold. Default is 10.
pepNumCut A numeric value specifying the minimum number of peptides required for a
protein to be included. Default is 1.
ifLFQ A logical value indicating whether to use LFQ quantification. Default is TRUE.
Details

This function processes proteomics data by filtering based on FDR, score, and peptide count, and
optionally using LFQ quantification. It aggregates the data from multiple samples and constructs a
SummarizedExperiment object.

Value

A SummarizedExperiment object containing the processed proteomics data.

Examples

filel <- system.file("extdata”, "phosDDA_1.x1ls", package = "SmartPhos")
file2 <- system.file("extdata”, "proteomeDDA_1.x1s", package = "SmartPhos")
# Create fileTable
fileTable <- data.frame(

searchType = c("phosphoproteome”, "proteome"),

fileName = c(filel, file2),

sample = c("Samplel”, "samplel"),

id = c("s1", "s2")
)
# Call the function
readProteomeExperiment(fileTable, fdrCut = 0.1, scoreCut = 10,
pepNumCut = 1, ifLFQ = TRUE)



readProteomeExperimentDIA 47

readProteomeExperimentDIA
Read and Process a DIA Proteome Experiment

Description
readProteomeExperimentDIA reads and processes DIA (Data-Independent Acquisition) proteome
data from multiple files and constructs a SummarizedExperiment object.

Usage

readProteomeExperimentDIA(fileTable, showProgressBar = FALSE)

Arguments
fileTable A data frame containing metadata about the files to be read. Must contain
columns searchType, fileName, id, and optionally outputID.
showProgressBar
Logical, whether to show a progress bar during processing. Default is FALSE.
Value

A SummarizedExperiment object containing the processed proteome data. # @details The func-
tion performs the following steps:

* Filters the ‘fileTable‘ to include only rows where ‘searchType® is "proteome".

* For each file specified in ‘fileTable‘, reads the data using ‘data.table::fread‘.

* Removes rows where the ‘PG.ProteinGroups‘ column is NA or empty.

* Processes each sample in parallel using ‘BiocParallel::bplapply‘, applying the ‘readOnePro-
teomDIA * function to filter and clean the data for each sample.

* Combines the processed data from all files.

» Constructs a matrix of intensities with rows corresponding to proteins and columns corre-
sponding to samples.

* Constructs a ‘SummarizedExperiment‘ object with the intensity matrix and protein annota-
tions.

The readOneProteomDIA function is used to read and filter the data for each individual sample, and
it must be available in the environment.

Examples

file <- system.file("extdata"”, "proteomeDIA_1.x1s"”, package = "SmartPhos")
fileTable <- data.frame(searchType = "proteome”, fileName = file,

id = c("samplel”, "sample2"))

readProteomeExperimentDIA(fileTable)



48 runFisher

runFisher Perform Fisher’s Exact Test on Gene Sets

Description

runFisher performs Fisher’s Exact Test to determine the enrichment of a set of genes within refer-
ence gene sets.

Usage

runFisher(genes, reference, inputSet, ptm = FALSE)

Arguments
genes A character vector of genes of interest.
reference A character vector of reference genes.
inputSet A list containing gene set collections. If ptm is TRUE, this should be a data
frame with specific columns.
ptm Logical. If TRUE, perform the test on post-translational modification (PTM)
gene sets. Default is FALSE.
Details

The function can operate in two modes: standard gene sets and PTM-specific gene sets. For PTM-
specific gene sets, additional filtering and processing are performed.

Value

A data frame with the results of the Fisher’s Exact Test, including the gene set name, the number
of genes in the set, set size, p-value, adjusted p-value, and the genes in the set.

Examples

library(SummarizedExperiment)

library(piano)

# Load multiAssayExperiment object

data("dda_example")

# Get SummarizedExperiment object

se <- dda_example[["Proteome”]]

colData(se) <- colData(dda_example)

# Preprocess the proteome assay

result <- preprocessProteome(se, normalize = TRUE)

# Call the function to perform differential expression analyis

de <- performDifferentialExp(se = result, assay = "Intensity”,
method = "limma"”, reference = "1stCrtl”, target = "EGF",
condition = "treatment"”)

genesList <- unique(de$resDE$Gene)
referenceList <- unique(SummarizedExperiment::rowData(result)$Gene)



runGSEAforPhospho

49

genesetPath <- appDir <- system.file("”shiny-app/geneset”,

package = "SmartPhos")

inGMT <- loadGSC(paste@d(genesetPath,"”/Cancer_Hallmark.gmt"), type="gmt")
# Run the function

runFisher(genes = genesList, reference = referencelList, inputSet = inGMT)
runGSEAforPhospho Run GSEA for Phosphorylation Data
Description

runGSEAforPhospho performs Gene Set Enrichment Analysis (GSEA) for phosphorylation data.

Usage
runGSEAforPhospho(
geneStat,
ptmSetDb,
nPerm,
weight =
correl.type = c("rank”, "symm.rank”, "z.score"),
statistic = c("Kolmogorov-Smirnov"”, "area.under.RES"),
min.overlap = 5
)
Arguments
geneStat A data frame containing gene statistics, with gene names as row names and a
column named ’stat’ for the statistics.
ptmSetDb A data frame of post-translational modification (PTM) signature sets.
nPerm A numeric value specifying the number of permutations for the null distribution.
weight A numeric value for the weight parameter in the GSEA algorithm. If weight ==

correl.type

statistic

min.overlap

Details

0 then the test statistics do not matter. Default is 1.

A character string specifying the correlation type. Options are "rank", "symm.rank",
and "z.score". Default is "rank".

A character string specifying the statistic to be used. Options are "Kolmogorov-
Smirnov" and "area.under.RES". Default is "Kolmogorov-Smirnov".

A numeric specifying the minimum overlap required between gene sets and the
input data. Default is 5.

This function runs GSEA on phosphorylation data to identify enriched PTM sets. It calculates
enrichment scores and p-values for each set, normalizes the scores, and adjusts p-values for multiple
testing.



50 runPhosphoAdjustment

Value

A tibble with enrichment scores and associated statistics for each PTM set.

runPhosphoAdjustment  Run Phospho Adjustment

Description

runPhosphoAdjustment performs phospho adjustment on aMultiAssayExperiment object to nor-
malize the phosphoproteome data.

Usage

runPhosphoAdjustment (
maeData,
normalization = FALSE,
minOverlap = 3,
completeness = 0,

ncore = 1
)
Arguments
maeData A MultiAssayExperiment object containing phosphoproteome and full pro-
teome data.
normalization A logical value indicating whether to perform normalization. Default is FALSE.
minOverlap A numeric value specifying the minimum number of overlapping peptides re-
quired between samples. Default is 3.
completeness A numeric value indicating the required completeness of data for features to be
included. Default is O.
ncore A numeric value specifying the number of cores to use for parallel processing.
Default is 1.
Details

The function performs the following steps:
1. Defines an optimization function to minimize the sum of squared differences between pairs of
samples.
Calculates the ratio matrix of phosphoproteome to full proteome data.
Subsets features based on completeness criteria.
Performs a sanity check to identify and exclude problematic samples.
Sets initial values for the adjustment factor based on column medians.

Estimates the adjustment factor using parallel optimization.

N kv

Adjusts the phosphoproteome measurements using the estimated adjustment factor.



runSmartPhos 51

Value

A MultiAssayExperiment object with adjusted phosphoproteome data.

runSmartPhos Launch the SmartPhos Shiny Application

Description

runSmartPhos launches the SmartPhos Shiny application, which provides an interactive interface
for analyzing phosphoproteomic data.

Usage

runSmartPhos ()

Details

The runSmartPhos function locates the Shiny app directory within the SmartPhos package and
launches the application. If the app directory cannot be found, the function will stop and prompt
the user to re-install the SmartPhos package.

Value

The function does not return a value; it starts the Shiny application for SmartPhos.

Examples

# To run the SmartPhos Shiny application, simply call:
# runSmartPhos()

splineFilter Filter Expression Matrix Using Spline Models

Description

splineFilter filters an expression matrix based on spline models fitted to time-series data, op-
tionally considering treatment and subject ID.



52 splineFilter

Usage

splineFilter(
exprMat,
subjectID = NULL,
time,
df,
pCut = 0.5,
ifFDR = FALSE,
treatment = NULL,
refTreatment = NULL

)
Arguments

exprMat A numeric matrix of expression data, where rows are features and columns are
samples.

subjectID Character. An optional vector of subject IDs corresponding to columns in
exprMat. Default is NULL.

time A numeric vector representing the time points corresponding to columns in ex-
prMat.

df A numeric value specifying the degrees of freedom for the spline basis.

pCut A numeric value for the p-value cutoff to filter significant features. Default is
0.05.

ifFDR A logical value indicating if the false discovery rate (FDR) should be used for
filtering. If FALSE, raw p-values are used. Default is FALSE.

treatment Character. An optional vector of treatment labels corresponding to columns in

exprMat. Default is NULL.

refTreatment  Character. An optional reference treatment label for the treatment vector. De-
fault is NULL.

Details

The function performs the following steps:

1. Converts time points from minutes to hours if both units are present.
2. Removes rows with missing values from the expression matrix.

3. Constructs a design matrix for the spline model, optionally including subject IDs and treat-
ments.

4. Fits a linear model using the design matrix and performs empirical Bayes moderation.

5. Extracts significant features based on the specified p-value or FDR cutoff.

Value

A filtered expression matrix containing only the features that meet the significance criteria.



swissProt 53

swissProt swissProt

Description

This is a high-quality, manually curated protein sequence database which provides a high level of
annotations (such as the description of the function of a protein, structure of its domains, post-
translational modifications, variants, etc.), a minimal level of redundancy and high level of integra-
tion with other databases.

Usage

data(swissProt)

Format

an object of "tbl_df" (tidy table)

Value

A data frame or tibble containing high-level annotations for manually curated proteins.

Examples

data(swissProt)



Index

+ datasets

dda_example, 9

dia_example, 10

Homo_sapien_kinase_substrate_network
16

Mus_musculus_kinase_substrate_network,
20

swissProt, 53

addZeroTime, 3

calcKinaseScore, 4
checkRatioMat, 6
clusterEnrich, 6
clusterTs, 8

dda_example, 9
dia_example, 10

enrichDifferential, 10

generatelnputTable, 12
generatelnputTable_DIA, 13
getDecouplerNetwork, 14
getOneSymbol, 14
getRatioMatrix, 15

Homo_sapien_kinase_substrate_network
16

intensityBoxPlot, 16
makeSmartPhosDirectory, 17
medianNorm, 18

mscale, 19

Mus_musculus_kinase_substrate_network,
20

normByFullProteome, 21

performCombinedNormalization, 22

54

performDifferentialExp, 23
plotAdjustmentResults, 25
plotHeatmap, 26
plotIntensity, 27
plotKinaseDE, 28
plotKinaseTimeSeries, 29
plotLogRatio, 30
plotMissing, 30
plotPCA, 31
plotTimeSeries, 32
plotVolcano, 34
preprocessPhos, 35
preprocessProteome, 36

readExperiment, 37
readExperimentDIA, 39
readOnePhos, 40
readOnePhosDIA, 41
readOneProteom, 42
readOneProteomDIA, 43
readPhosphoExperiment, 43

readPhosphoExperimentDIA, 44

readProteomeExperiment, 45

readProteomeExperimentDIA, 47

runFisher, 48
runGSEAforPhospho, 49
runPhosphoAdjustment, 50
runSmartPhos, 51

splineFilter, 51
swissProt, 53



	addZeroTime
	calcKinaseScore
	checkRatioMat
	clusterEnrich
	clusterTS
	dda_example
	dia_example
	enrichDifferential
	generateInputTable
	generateInputTable_DIA
	getDecouplerNetwork
	getOneSymbol
	getRatioMatrix
	Homo_sapien_kinase_substrate_network
	intensityBoxPlot
	makeSmartPhosDirectory
	medianNorm
	mscale
	Mus_musculus_kinase_substrate_network
	normByFullProteome
	performCombinedNormalization
	performDifferentialExp
	plotAdjustmentResults
	plotHeatmap
	plotIntensity
	plotKinaseDE
	plotKinaseTimeSeries
	plotLogRatio
	plotMissing
	plotPCA
	plotTimeSeries
	plotVolcano
	preprocessPhos
	preprocessProteome
	readExperiment
	readExperimentDIA
	readOnePhos
	readOnePhosDIA
	readOneProteom
	readOneProteomDIA
	readPhosphoExperiment
	readPhosphoExperimentDIA
	readProteomeExperiment
	readProteomeExperimentDIA
	runFisher
	runGSEAforPhospho
	runPhosphoAdjustment
	runSmartPhos
	splineFilter
	swissProt
	Index

