
Package ‘SingleCellExperiment’
February 2, 2026

Version 1.33.0

Date 2025-06-27

Title S4 Classes for Single Cell Data

Depends SummarizedExperiment

Imports methods, utils, stats, S4Vectors, BiocGenerics, GenomicRanges,
DelayedArray

Suggests testthat, BiocStyle, knitr, rmarkdown, Matrix, scRNAseq (>=
2.9.1), Rtsne

biocViews ImmunoOncology, DataRepresentation, DataImport,
Infrastructure, SingleCell

Description Defines a S4 class for storing data from single-cell
experiments. This includes specialized methods to store and
retrieve spike-in information, dimensionality reduction
coordinates and size factors for each cell, along with the
usual metadata for genes and libraries.

License GPL-3

VignetteBuilder knitr

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/SingleCellExperiment

git_branch devel

git_last_commit bdf6af0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Aaron Lun [aut, cph],
Davide Risso [aut, cre, cph],
Keegan Korthauer [ctb],
Kevin Rue-Albrecht [ctb],
Luke Zappia [ctb] (ORCID: <https://orcid.org/0000-0001-7744-8565>,
github: lazappi)

Maintainer Davide Risso <risso.davide@gmail.com>

1

https://orcid.org/0000-0001-7744-8565

2 altExps

Contents
altExps . 2
applySCE . 5
colLabels . 7
colPairs . 9
Combining LEMs . 11
defunct . 12
Getter/setter methods . 13
LinearEmbeddingMatrix . 15
Miscellaneous LEM . 16
reduced.dim.matrix . 17
reducedDims . 18
rowPairs . 20
rowSubset . 22
SCE-assays . 24
SCE-combine . 25
SCE-internals . 27
SCE-miscellaneous . 29
simplifyToSCE . 30
SingleCellExperiment-class . 31
sizeFactors . 33
splitAltExps . 35
Subsetting LEMs . 36
swapAltExp . 37
unsplitAltExps . 39
updateObject . 40

Index 42

altExps Alternative Experiment methods

Description

In some experiments, different features must be normalized differently or have different row-level
metadata. Typical examples would be for spike-in transcripts in plate-based experiments and anti-
body or CRISPR tags in CITE-seq experiments. These data cannot be stored in the main assays of
the SingleCellExperiment itself. However, it is still desirable to store these features somewhere in
the SingleCellExperiment. This simplifies book-keeping in long workflows and ensure that samples
remain synchronised.

To facilitate this, the SingleCellExperiment class allows for “alternative Experiments”. Nested
SummarizedExperiment-class objects are stored inside the SingleCellExperiment object x, in a
manner that guarantees that the nested objects have the same columns in the same order as those
in x. Methods are provided to enable convenient access to and manipulation of these alternative
Experiments. Each alternative Experiment should contain experimental data and row metadata for
a distinct set of features.

altExps 3

Getters

In the following examples, x is a SingleCellExperiment object.

altExp(x, e, withDimnames=TRUE, withColData=FALSE): Retrieves a SummarizedExperiment
containing alternative features (rows) for all cells (columns) in x. e should either be a string
specifying the name of the alternative Experiment in x to retrieve, or a numeric scalar speci-
fying the index of the desired Experiment, defaulting to the first Experiment is missing.
If withDimnames=TRUE, the column names of the output object are set to colnames(x). In
addition, if withColData=TRUE, colData(x) is cbinded to the front of the column data of the
output object.

altExpNames(x): Returns a character vector containing the names of all alternative Experiments
in x. This is guaranteed to be of the same length as the number of results, though the names
may not be unique.

altExps(x, withDimnames=TRUE, withColData=FALSE): Returns a named List of matrices con-
taining one or more SummarizedExperiment objects. Each object is guaranteed to have the
same number of columns, in a 1:1 correspondence to those in x.
If withDimnames=TRUE, the column names of each output object are set to colnames(x). In
addition, if withColData=TRUE, colData(x) is cbinded to the front of the column data of
each output object.

Single-object setter

altExp(x, e, withDimnames=TRUE, withColData=FALSE) <- value will add or replace an alter-
native Experiment in a SingleCellExperiment object x. The value of e determines how the result is
added or replaced:

• If e is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed1".

• If e is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If e is a string and a result exists with this name, value is assigned to to that result. Otherwise
a new result with this name is append to the existing list of results.

value is expected to be a SummarizedExperiment object with number of columns equal to ncol(x).
Alternatively, if value is NULL, the alternative Experiment at e is removed from the object.

If withDimnames=TRUE, the column names of value are checked against those of x. A warning is
raised if these are not identical, with the only exception being when value=NULL. This is inspired
by the argument of the same name in assay<-.

If withColData=TRUE, we assume that the left-most columns of colData(value) are identical to
colData(x). If so, these columns are removed, effectively reversing the withColData=TRUE setting
for the altExp getter. Otherwise, a warning is raised.

Other setters

In the following examples, x is a SingleCellExperiment object.

4 altExps

altExps(x, withDimnames=TRUE, withColData=FALSE) <- value: Replaces all alterrnative Ex-
periments in x with those in value. The latter should be a list-like object containing any
number of SummarizedExperiment objects with number of columns equal to ncol(x).

If value is named, those names will be used to name the alternative Experiments in x. Other-
wise, unnamed results are assigned default names prefixed with "unnamed".

If value is NULL, all alternative Experiments in x are removed.

If value is a Annotated object, any metadata will be retained in altExps(x). If value is a
Vector object, any mcols will also be retained.

If withDimnames=TRUE, the column names of each entry of value are checked against those
of x. A warning is raised if these are not identical.

If withColData=TRUE, we assume that the left-most columns of the colData for each entry
of value are identical to colData(x). If so, these columns are removed, effectively reversing
the withColData=TRUE setting for the altExps getter. Otherwise, a warning is raised.

altExpNames(x) <- value: Replaces all names for alternative Experiments in x with a character
vector value. This should be of length equal to the number of results currently in x.

removeAltExps(x) will remove all alternative Experiments from x. This has the same effect as
altExps(x) <- NULL but may be more convenient as it directly returns a SingleCellExperiment.

Main Experiment naming

The alternative Experiments are naturally associated with names (e during assignment). However,
we can also name the main Experiment in a SingleCellExperiment x:

mainExpName(x) <- value: Set the name of the main Experiment to a non-NA string value. This
can also be used to unset the name if value=NULL.

mainExpName(x): Returns a string containing the name of the main Experiment. This may also be
NULL if no name is specified.

The presence of a non-NULL main Experiment name is helpful for functions like swapAltExp. An
appropriate name is automatically added by functions like splitAltExps.

Note that, if a SingleCellExperiment is assigned as an alternative Experiment to another SingleCell-
Experiment via altExp(x, e) <- value, no attempt is made to synchronize mainExpName(value)
with e. In such cases, we suggest setting mainExpName(value) to NULL to avoid any confusion
during interpretation.

Author(s)

Aaron Lun

See Also

splitAltExps, for a convenient way of adding alternative Experiments from existing features.

swapAltExp, to swap the main and alternative Experiments.

applySCE 5

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
dim(counts(sce))

Mocking up some alternative Experiments.
se1 <- SummarizedExperiment(matrix(rpois(1000, 5), ncol=ncol(se)))
rowData(se1)$stuff <- sample(LETTERS, nrow(se1), replace=TRUE)
se2 <- SummarizedExperiment(matrix(rpois(500, 5), ncol=ncol(se)))
rowData(se2)$blah <- sample(letters, nrow(se2), replace=TRUE)

Setting the alternative Experiments.
altExp(sce, "spike-in") <- se1
altExp(sce, "CRISPR") <- se2

Getting alternative Experimental data.
altExpNames(sce)
altExp(sce, "spike-in")
altExp(sce, 2)

Setting alternative Experimental data.
altExpNames(sce) <- c("ERCC", "Ab")
altExp(sce, "ERCC") <- se1[1:2,]

applySCE Applying over parts of a SingleCellExperiment

Description

Apply a function over the main and alternative Experiments of a SingleCellExperiment.

Usage

applySCE(
X,
FUN,
WHICH = altExpNames(X),
...,
MAIN.ARGS = list(),
ALT.ARGS = list(),
SIMPLIFY = TRUE

)

Arguments

X A SingleCellExperiment object.

FUN A function to apply to each Experiment.

6 applySCE

WHICH A character or integer vector containing the names or positions of alternative
Experiments to loop over.

... Further (named) arguments to pass to all calls to FUN.

MAIN.ARGS A named list of arguments to pass to FUN for the main Experiment only. Alter-
natively NULL, in which case the function is not applied to the main Experiment.

ALT.ARGS A named list where each entry is named after an alternative Experiment and
contains named arguments to use in FUN for that Experiment.

SIMPLIFY Logical scalar indicating whether the output should be simplified to a single
SingleCellExperiment.

Details

The behavior of this function is equivalent to creating a list containing X as the first entry and
altExps(X) in the subsequent entries, and then lapplying over this list with FUN and the specified
arguments. In this manner, users can easily apply the same function to all the Experiments (main
and alternative) in a SingleCellExperiment object.

Arguments in ... are passed to all calls to FUN. Arguments in MAIN.ARGS are only used in the call to
FUN on the main Experiment. Arguments in ALT.ARGS are passed to the call to FUN on the alternative
Experiment of the same name. For the last two, any arguments therein will override arguments of
the same name in

By default, looping is performed over all alternative Experiments, but the order and identities can
be changed by setting WHICH. Values of WHICH should be unique if any simplification of the output
is desired. If MAIN.ARGS=NULL, the main Experiment is ignored and the function is only applied to
the alternative Experiments.

The default of SIMPLIFY=TRUE is intended as a user-level convenience when all calls to FUN return
a SingleCellExperiment with the same number of columns, and WHICH itself contains no more than
one reference to each alternative Experiment in x. Under these conditions, the results are collated
into a single SingleCellExperiment for easier downstream manipulation.

Value

In most cases or when SIMPLIFY=FALSE, a list is returned containing the output of FUN applied to
each Experiment. If MAIN.ARGS is not NULL, the first entry corresponds to the result generated from
the main Experiment; all other results are generated according to the entries specified in WHICH and
are named accordingly.

If SIMPLIFY=TRUE and certain conditions are fulfilled, a SingleCellExperiment is returned where
the results of FUN are mapped to the relevant main or alternative Experiments. This mirrors the
organization of Experiments in X.

Developer note

When using this function inside other functions, developers should set SIMPLIFY=FALSE to guaran-
tee consistent output for arbitrary WHICH. If simplification is necessary, the output of this function
can be explicitly passed to simplifyToSCE, typically with warn.level=3 to throw an appropriate
error if simplification is not possible.

colLabels 7

Author(s)

Aaron Lun

See Also

simplifyToSCE, which is used when SIMPLIFY=TRUE.

altExps, to manually extract the alternative Experiments for operations.

Examples

ncells <- 10
u <- matrix(rpois(200, 5), ncol=ncells)
sce <- SingleCellExperiment(assays=list(counts=u))
altExp(sce, "BLAH") <- SingleCellExperiment(assays=list(counts=u*10))
altExp(sce, "WHEE") <- SingleCellExperiment(assays=list(counts=u/10))

Here, using a very simple function that just
computes the mean of the input for each cell.
FUN <- function(y, multiplier=1) {

colMeans(assay(y)) * multiplier
}

Applying over all of the specified parts of 'sce'.
applySCE(sce, FUN=FUN)

Adding general arguments.
applySCE(sce, FUN=FUN, multiplier=5)

Adding custom arguments.
applySCE(sce, FUN=FUN, MAIN.ARGS=list(multiplier=5))
applySCE(sce, FUN=FUN, ALT.ARGS=list(BLAH=list(multiplier=5)))

Skipping Experiments.
applySCE(sce, FUN=FUN, MAIN.ARGS=NULL) # skipping the main
applySCE(sce, FUN=FUN, WHICH=NULL) # skipping the alternatives

colLabels Get or set column labels

Description

Get or set column labels in an instance of a SingleCellExperiment class. Labels are expected to
represent information about the the biological state of each cell.

8 colLabels

Usage

S4 method for signature 'SingleCellExperiment'
colLabels(x, onAbsence = "none")

S4 replacement method for signature 'SingleCellExperiment'
colLabels(x, ...) <- value

Arguments

x A SingleCellExperiment object.

onAbsence String indicating an additional action to take when labels are absent: nothing
("none"), a warning ("warn") or an error ("error").

... Additional arguments, currently ignored.

value Any vector-like object of length equal to ncol(object), containing labels for all
cells. Alternatively NULL, in which case existing label information is removed.

Details

A frequent task in single-cell data analyses is to label cells with some annotation, e.g., cluster
identities, predicted cell type classifications and so on. In a SummarizedExperiment, the colData
represents the ideal place for such annotations, which can be easily set and retrieved with standard
methods, e.g., x$label <- my.labels.

That said, it is desirable to have some informal standardization of the name of the column used to
store these annotations as this makes it easier to programmatically set sensible defaults for retrieval
of the labels in downstream functions. To this end, the colLabels function will get or set labels
from the "label" field of the colData. This considers the use case where there is a “primary” set
of labels that represents the default grouping of cells in downstream analyses.

To illustrate, let’s say we have a downstream function that accepts a SingleCellExperiment object
and requires labels. When defining our function, we can set colLabels(x) as the default value for
our label argument. This pattern is useful as it accommodates on-the-fly changes to a secondary set
of labels in x without requiring the user to run colLabels(x) <- second.labels, while facilitating
convenient use of the primary labels by default.

For developers, onAbsence is provided to make it easier to mandate that x actually has labels. This
avoids silent NULL values that flow to the rest of the function and make debugging difficult.

Value

For colLabels, a vector or equivalent is returned containing label assignments for all cells. If no
labels are available, a NULL is returned (and/or a warning or error, depending on onAbsence).

For colLabels<-, a modified x is returned with labels in its colData.

Author(s)

Aaron Lun

colPairs 9

See Also

SingleCellExperiment, for the underlying class definition.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
colLabels(sce) <- sample(LETTERS, ncol(sce), replace=TRUE)
colLabels(sce)

colPairs Column pair methods

Description

Methods to get or set column pairings in a SingleCellExperiment object. These are typically used
to store and retrieve relationships between cells, e.g., in nearest-neighbor graphs or for inferred
cell-cell interactions.

Getters

In the following examples, x is a SingleCellExperiment object.

colPair(x, type, asSparse=FALSE): Retrieves a SelfHits object where each entry represents a
pair of columns of x and has number of nodes equal to ncol(x). type is either a string
specifying the name of the column pairing in x to retrieve, or a numeric scalar specifying the
index of the desired result.
If asSparse=TRUE, a sparse matrix is returned instead, see below for details.

colPairNames(x): Returns a character vector containing the names of all column pairings in x.
This is guaranteed to be of the same length as the number of results, though the names may
not be unique.

colPairs(x, asSparse=FALSE): Returns a named List of matrices containing one or more col-
umn pairings as SelfHits objects. If asSparse=FALSE, each entry is instead a sparse matrix.

When asSparse=TRUE, the return value will be a triplet-form sparse matrix where each row/column
corresponds to a column of x. The values in the matrix will be taken from the first metadata field
of the underlying SelfHits object, with an error being raised if the first metadata field is not of an
acceptable type. If there are duplicate pairs, only the value from the last pair is used. If no metadata
is available, the matrix values are set to TRUE for all pairs.

Single setter

colPair(x, type) <- value will add or replace a column pairing in a SingleCellExperiment object
x. The value of type determines how the pairing is added or replaced:

• If type is missing, value is assigned to the first pairing. If the pairing already exists, its name
is preserved; otherwise it is given a default name "unnamed1".

10 colPairs

• If type is a numeric scalar, it must be within the range of existing pairings, and value will be
assigned to the pairing at that index.

• If type is a string and a pairing exists with this name, value is assigned to to that pairing.
Otherwise a new pairing with this name is append to the existing list of pairings.

value is expected to be a SelfHits with number of nodes equal to ncol(x). Any number of addi-
tional fields can be placed in mcols(value). Duplicate column pairs are supported and will not be
collapsed into a single entry.

value may also be a sparse matrix with number of rows and columns equal to ncol(x). This is
converted into a SelfHits object with values stored in the metadata as the "x" field.

Alternatively, if value is NULL, the pairings corresponding to type are removed from x.

Other setters

In the following examples, x is a SingleCellExperiment object.

colPairs(x) <- value: Replaces all column pairings in x with those in value. The latter should
be a list-like object containing any number of SelfHits or sparse matrices, each of which is
subject to the constraints described for the single setter.
If value is named, those names will be used to name the column pairings in x. Otherwise,
unnamed pairings are assigned default names prefixed with "unnamed".
If value is NULL, all column pairings in x are removed.

colPairNames(x) <- value: Replaces all names for column pairings in x with a character vector
value. This should be of length equal to the number of pairings currently in x.

Interaction with SingleCellExperiment operations

When column-subset replacement is performed on a SingleCellExperiment object (i.e., x[,i] <- y),
a pair of columns in colPair(x) is only replaced if both columns are present in i. This replacement
not only affects the value of the pair but also whether it even exists in y. For example, if a pair
exists between two columns in x[,i] but not in the corresponding columns of y, it is removed upon
subset replacement.

Importantly, pairs in x with only one column in i are preserved by replacement. This ensures that
x[,i] <- x[,i] is a no-op. However, if the replacement is fundamentally altering the identity of
the features in x[,i], it is unlikely that the pairings involving the old identities are applicable to
the replacement features in y. In such cases, additional pruning may be required to remove all pairs
involving i prior to replacement.

Another interesting note is that, for some i <- 1:n where n is in [1, ncol(x)), cbind(x[,i],
x[,-i]) will not return a SingleCellExperiment equal to x with respect to colPairs. This operation
will remove any pairs involving one column in i and another column outside of i, simply because
each individual subset operation will remove pairs involving columns outside of the subset.

Author(s)

Aaron Lun

See Also

rowPairs, for the row equivalent.

Combining LEMs 11

Examples

example(SingleCellExperiment, echo=FALSE)

Making up some regulatory pairings:
hits <- SelfHits(

sample(ncol(sce), 10),
sample(ncol(sce), 10),
nnode=ncol(sce)

)
mcols(hits)$value <- runif(10)

colPair(sce, "regulators") <- hits
colPair(sce, "regulators")

as.mat <- colPair(sce, "regulators", asSparse=TRUE)
class(as.mat)

colPair(sce, "coexpression") <- hits
colPairs(sce)

colPair(sce, "regulators") <- NULL
colPairs(sce)

colPairs(sce) <- SimpleList()
colPairs(sce)

Combining LEMs LEM combining methods

Description

Methods to combine LinearEmbeddingMatrix objects.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
rbind(..., deparse.level=1)

S4 method for signature 'LinearEmbeddingMatrix'
cbind(..., deparse.level=1)

Arguments

... One or more LinearEmbeddingMatrix objects.

deparse.level An integer scalar; see ?base::cbind for a description of this argument.

12 defunct

Details

For rbind, LinearEmbeddingMatrix objects are combined row-wise, i.e., rows in successive objects
are appended to the first object. This corresponds to adding more samples to the first object. Note
that featureLoadings and factorData will only be taken from the first element in the list; no
checks are performed to determine whether they are consistent or not across objects.

For cbind, LinearEmbeddingMatrix objects are combined columns-wise, i.e., columns in succes-
sive objects are appended to the first object. This corresponds to adding more factors to the first
object. featureLoadings will also be combined column-wise across objects, provided that the
number of features is the same across objects. Similarly, factorData will be combined row-wise
across objects.

Combining objects with and without row names will result in the removal of all row names; simi-
larly for column names. Duplicate row names are currently supported by duplicate column names
are not, and will be de-duplicated appropriately.

Value

A LinearEmbeddingMatrix object containing all rows/columns of the supplied objects.

Author(s)

Aaron Lun

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # using the class example
rbind(lem, lem)
cbind(lem, lem)

defunct Defunct methods

Description

Defunct methods in the SingleCellExperiment package.

Named size factors

The class now only supports one set of size factors, accessible via sizeFactors. This represents a
simplification of the class and removes a difficult part of the API (that had to deal with both NULL
and strings to specify the size factor set of interest).

Spike-ins

It is recommended to handle spike-ins and other “alternative” features via altExps.

Author(s)

Aaron Lun

Getter/setter methods 13

Getter/setter methods LinearEmbeddingMatrix getters/setters

Description

Getter/setter methods for the LinearEmbeddingMatrix class.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
sampleFactors(x, withDimnames=TRUE)

S4 replacement method for signature 'LinearEmbeddingMatrix'
sampleFactors(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
featureLoadings(x, withDimnames=TRUE)

S4 replacement method for signature 'LinearEmbeddingMatrix'
featureLoadings(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
factorData(x)

S4 replacement method for signature 'LinearEmbeddingMatrix'
factorData(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
as.matrix(x, ...)

S4 method for signature 'LinearEmbeddingMatrix'
dim(x)

S4 method for signature 'LinearEmbeddingMatrix'
dimnames(x)

S4 replacement method for signature 'LinearEmbeddingMatrix'
dimnames(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
x$name

S4 replacement method for signature 'LinearEmbeddingMatrix'
x$name <- value

Arguments

x A LinearEmbeddingMatrix object.

14 Getter/setter methods

value An appropriate value to assign to the relevant slot.

withDimnames A logical scalar indicating whether dimension names should be attached to the
returned object.

name A string specifying a field of the factorData slot.

... Further arguments, ignored.

Details

Any value to assign to sampleFactors and featureLoadings should be matrix-like objects, while
factorData should be a DataFrame - ee LinearEmbeddingMatrix for details.

The as.matrix method will return the matrix of sample factors, consistent with the fact that the Lin-
earEmbeddingMatrix mimics a sample-factor matrix. However, unlike the sampleFactors method,
this is always guaranteed to return an ordinary R matrix, even if an alternative representation was
stored in the slot. This ensures consistency with as.matrix methods for other matrix-like S4
classes.

For assignment to dimnames, a list of length 2 should be used containing vectors of row and column
names.

Value

For the getter methods sampleFactors, featureLoadings and factorData, the value of the slot
with the same name is returned. For the corresponding setter methods, a LinearEmbeddingMatrix
is returned with modifications to the named slot.

For dim, the dimensions of the sampleFactors slot are returned in an integer vector of length 2.
For dimnames, a list of length 2 containing the row and column names is returned. For as.matrix,
an ordinary matrix derived from sampleFactors is returned.

For $, the value of the named field of the factorData slot is returned. For $<-, a LinearEmbed-
dingMatrix is returned with the modified field in factorData.

Author(s)

Keegan Korthauer, Davide Risso and Aaron Lun

See Also

LinearEmbeddingMatrix

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # Using the class example

sampleFactors(lem)
sampleFactors(lem) <- sampleFactors(lem) * -1

featureLoadings(lem)
featureLoadings(lem) <- featureLoadings(lem) * -1

factorData(lem)

LinearEmbeddingMatrix 15

factorData(lem)$whee <- 1

nrow(lem)
ncol(lem)
colnames(lem) <- LETTERS[seq_len(ncol(lem))]
as.matrix(lem)

LinearEmbeddingMatrix LinearEmbeddingMatrix class

Description

A description of the LinearEmbeddingMatrix class for storing low-dimensional embeddings from
linear dimensionality reduction methods.

Usage

LinearEmbeddingMatrix(sampleFactors = matrix(nrow = 0, ncol = 0),
featureLoadings = matrix(nrow = 0, ncol = 0), factorData = NULL,
metadata = list())

Arguments

sampleFactors A matrix-like object of sample embeddings, where rows are samples and columns
are factors.

featureLoadings

A matrix-like object of feature loadings, where rows are features and columns
are factors.

factorData A DataFrame containing factor-level information, with one row per factor.
metadata An optional list of arbitrary content describing the overall experiment.

Details

The LinearEmbeddingMatrix class is a matrix-like object that supports dim, dimnames and as.matrix.
It is designed for the storage of results from linear dimensionality reduction methods like principal
components analysis (PCA), factor analysis and non-negative matrix factorization.

The sampleFactors slot is intended to store The low-dimensional representation of the samples,
such as the principal coordinates from PCA. The feature loadings contributing to each factor are
stored in featureLoadings, and should have the same number of columns as sampleFactors. The
factorData stores additional factor-level information, such as the percentage of variance explained
by each factor, and should have the same number of rows as sampleFactors.

The intended use of this class is to allow PCA and other results to be stored in the reducedDims
slot of a SingleCellExperiment object. This means that feature loadings remain attached to the
embedding, allowing it to be used in downstream analyses.

Value

A LinearEmbeddingMatrix object is returned from the constructor.

16 Miscellaneous LEM

Author(s)

Aaron Lun, Davide Risso and Keegan Korthauer

Examples

lem <- LinearEmbeddingMatrix(matrix(rnorm(1000), ncol=5),
matrix(runif(20000), ncol=5))

lem

Miscellaneous LEM Miscellaneous LEM methods

Description

Various methods for the LinearEmbeddingMatrix class.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
show(object)

Arguments

object A LinearEmbeddingMatrix object.

Details

The show method will print out information about the data contained in object. This includes
the number of samples, the number of factors, the number of genes and the fields available in
factorData.

Value

A message is printed to screen describing the data stored in object.

Author(s)

Davide Risso

See Also

LinearEmbeddingMatrix

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # Using the class example
show(lem)

reduced.dim.matrix 17

reduced.dim.matrix The reduced.dim.matrix class

Description

A matrix class that retains its attributes upon being subsetted or combined. This is useful for storing
metadata about a dimensionality reduction result alongside the matrix, and for ensuring that the
metadata persists when the matrix is stored inside reducedDims.

Constructor

reduced.dim.matrix(x, ...) will return a reduced.dim.matrix object, given a matrix input x.
Arguments in ... should be named and are stored as custom attributes in the output. Any arguments
named dim or dimnames are ignored.

Subsetting

x[i, j, ..., drop=FALSE] will subset a reduced.dim.matrix x in the same manner as a base matrix.
The only difference is that a reduced.dim.matrix will be returned, retaining any custom attributes in
x. Note that no custom attributes are retained if the return value is a vector with drop=TRUE.

Combining

rbind(...) will combine multiple reduced.dim.matrix inputs in ... by row, while cbind(...)
will combine those inputs by column.

If the custom attributes are the same across all objects ..., a reduced.dim.matrix is returned con-
taining all combined rows/columns as well as the custom attributes.

If the custom attributes are different, a warning is issued. A matrix is returned containing all com-
bined rows/columns; no custom attributes are retained.

Author(s)

Aaron Lun

See Also

reducedDims, to store these objects in a SingleCellExperiment.

Examples

Typical PC result, with metadata stored in the attributes:
pc <- matrix(runif(500), ncol=5)
attr(pc, "sdev") <- 1:100
attr(pc, "rotation") <- matrix(rnorm(20), ncol=5)

Disappears upon subsetting and combining!
attributes(pc[1:10,])
attributes(rbind(pc, pc))

18 reducedDims

Transformed into a reduced.dim.matrix:
rd.pc <- reduced.dim.matrix(pc)

attributes(rd.pc[1:10,])
attributes(rbind(rd.pc, rd.pc))

reducedDims Reduced dimensions methods

Description

Methods to get or set dimensionality reduction results in a SingleCellExperiment object. These are
typically used to store and retrieve low-dimensional representations of single-cell datasets. Each
row of a reduced dimension result is expected to correspond to a column of the SingleCellExperi-
ment object.

Getters

In the following examples, x is a SingleCellExperiment object.

reducedDim(x, type, withDimnames=TRUE): Retrieves a matrix (or matrix-like object) contain-
ing reduced dimension coordinates for cells (rows) and dimensions (columns). type is either a
string specifying the name of the dimensionality reduction result in x to retrieve, or a numeric
scalar specifying the index of the desired result, defaulting to the first entry if missing.
If withDimnames=TRUE, row names of the output matrix are replaced with the column names
of x.

reducedDimNames(x): Returns a character vector containing the names of all dimensionality re-
duction results in x. This is guaranteed to be of the same length as the number of results,
though the names may not be unique.

reducedDims(x, withDimnames=TRUE): Returns a named List of matrices containing one or more
dimensionality reduction results. Each result is a matrix (or matrix-like object) with the same
number of rows as ncol(x).
If withDimnames=TRUE, row names of each matrix are replaced with the column names of x.

Single-result setter

reducedDim(x, type, withDimnames=TRUE) <- value will add or replace a dimensionality reduc-
tion result in a SingleCellExperiment object x. The value of type determines how the result is added
or replaced:

• If type is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed1".

• If type is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

reducedDims 19

• If type is a string and a result exists with this name, value is assigned to to that result.
Otherwise a new result with this name is append to the existing list of results.

value is expected to be a matrix or matrix-like object with number of rows equal to ncol(x).
Alternatively, if value is NULL, the result corresponding to type is removed from the object.

If withDimnames=TRUE, any non-NULL rownames(value) is checked against colnames(x) and a
warning is emitted if they are not the same. Otherwise, any differences in the row names are ignored.
This is inspired by the argument of the same name in assay<- but is more relaxed for practicality’s
sake - it raises a warning rather than an error and allows NULL rownames to pass through without
complaints.

Other setters

In the following examples, x is a SingleCellExperiment object.

reducedDims(x, withDimnames=TRUE) <- value: Replaces all dimensionality reduction results
in x with those in value. The latter should be a list-like object containing any number of
matrices or matrix-like objects with number of rows equal to ncol(x).
If value is named, those names will be used to name the dimensionality reduction results in
x. Otherwise, unnamed results are assigned default names prefixed with "unnamed".
If value is NULL, all dimensionality reduction results in x are removed.
If value is a Annotated object, any metadata will be retained in reducedDims(x). If value
is a Vector object, any mcols will also be retained.
If withDimnames=TRUE, any non-NULL row names in each entry of value is checked against
colnames(x) and a warning is emitted if they are not the same. Otherwise, any differences in
the row names are ignored.

reducedDimNames(x) <- value: Replaces all names for dimensionality reduction results in x with
a character vector value. This should be of length equal to the number of results currently in
x.

Storing dimensionality reduction metadata

When performing dimensionality reduction, we frequently generate metadata associated with a par-
ticular method. The typical example is the percentage of variance explained and the rotation matrix
from PCA; model-based methods may also report some model information that can be used later to
project points onto the embedding. Ideally, we would want to store this information alongside the
coordinates themselves.

Our recommended approach is to store this metadata as attributes of the coordinate matrix. This
is simple to do, easy to extract, and avoids problems with synchronization (when the coordinates
are separated from the metadata). The biggest problem with this approach is that attributes are
not retained when the matrix is subsetted or combined. To persist these attributes, we suggest
wrapping the coordinates and metadata in a reduced.dim.matrix. More complex matrix-like objects
like the LinearEmbeddingMatrix can also be used but may not be immediately compatible with
downstream functions that expect an ordinary matrix.

The path less taken is to store the metadata in the mcols of the reducedDims List. This approach
avoids the subsetting problem with the attributes but is less ideal as it separates the metadata from
the coordinates. Such separation makes the metadata harder to find and remember to keep in sync
with the coordinates when the latter changes. The structure of mcols is best suited to situations

20 rowPairs

where there are some commonalities in the metadata across entries, but this rarely occurs for differ-
ent dimensionality reduction strategies.

Author(s)

Aaron Lun and Kevin Rue-Albrecht

Examples

example(SingleCellExperiment, echo=FALSE)
reducedDim(sce, "PCA")
reducedDim(sce, "tSNE")
reducedDims(sce)

reducedDim(sce, "PCA") <- NULL
reducedDims(sce)

reducedDims(sce) <- SimpleList()
reducedDims(sce)

rowPairs Row pair methods

Description

Methods to get or set row pairings in a SingleCellExperiment object. These are typically used to
store and retrieve relationships between features, e.g., in gene regulatory or co-expression networks.

Getters

In the following examples, x is a SingleCellExperiment object.

rowPair(x, type, asSparse=FALSE): Retrieves a SelfHits object where each entry represents a
pair of rows of x and has number of nodes equal to nrow(x). type is either a string specifying
the name of the row pairing in x to retrieve, or a numeric scalar specifying the index of the
desired pairing.
If asSparse=TRUE, a sparse matrix is returned instead, see below for details.

rowPairNames(x): Returns a character vector containing the names of all row pairings in x. This
is guaranteed to be of the same length as the number of pairings, though the names may not
be unique.

rowPairs(x, asSparse=FALSE): Returns a named List of matrices containing one or more row
pairings as SelfHits objects. If asSparse=FALSE, each entry is instead a sparse matrix.

When asSparse=TRUE, the return value will be a triplet-form sparse matrix where each row/column
corresponds to a row of x. The values in the matrix will be taken from the first metadata field of
the underlying SelfHits object, with an error being raised if the first metadata field is not of an
acceptable type. If there are duplicate pairs, only the value from the last pair is used. If no metadata
is available, the matrix values are set to TRUE for all pairs.

rowPairs 21

Single setter

rowPair(x, type) <- value will add or replace a row pairing in a SingleCellExperiment object x.
The value of type determines how the pairing is added or replaced:

• If type is missing, value is assigned to the first pairing. If the pairing already exists, its name
is preserved; otherwise it is given a default name "unnamed1".

• If type is a numeric scalar, it must be within the range of existing pairings, and value will be
assigned to the pairing at that index.

• If type is a string and a pairing exists with this name, value is assigned to to that pairing.
Otherwise a new pairing with this name is append to the existing list of pairings.

value is expected to be a SelfHits with number of nodes equal to nrow(x). Any number of ad-
ditional fields can be placed in mcols(value). Duplicate row pairs are supported and will not be
collapsed into a single entry.

value may also be a sparse matrix with number of rows and columns equal to nrow(x). This is
converted into a SelfHits object with values stored in the metadata as the "x" field.

Alternatively, if value is NULL, the pairings corresponding to type are removed from x.

Other setters

In the following examples, x is a SingleCellExperiment object.

rowPairs(x) <- value: Replaces all row pairings in x with those in value. The latter should be a
list-like object containing any number of SelfHits or sparse matrices, each of which is subject
to the constraints described for the single setter.
If value is named, those names will be used to name the row pairings in x. Otherwise,
unnamed pairings are assigned default names prefixed with "unnamed".
If value is NULL, all row pairings in x are removed.

rowPairNames(x) <- value: Replaces all names for row pairings in x with a character vector
value. This should be of length equal to the number of pairings currently in x.

Interaction with SingleCellExperiment operations

When row-subset replacement is performed on a SingleCellExperiment object (i.e., x[i,] <- y),
a pair of rows in rowPair(x) is only replaced if both rows are present in i. This replacement
not only affects the value of the pair but also whether it even exists in y. For example, if a pair
exists between two rows in x[i,] but not in the corresponding rows of y, it is removed upon subset
replacement.

Importantly, pairs in x with only one row in i are preserved by replacement. This ensures that
x[i,] <- x[i,] is a no-op. However, if the replacement is fundamentally altering the identity of
the features in x[i,], it is unlikely that the pairings involving the old identities are applicable to
the replacement features in y. In such cases, additional pruning may be required to remove all pairs
involving i prior to replacement.

Another interesting note is that, for some i <- 1:n where n is in [1, nrow(x)), rbind(x[i,],
x[-i,]) will not return a SingleCellExperiment equal to x with respect to rowPairs. This operation
will remove any pairs involving one row in i and another row outside of i, simply because each
individual subset operation will remove pairs involving rows outside of the subset.

22 rowSubset

Author(s)

Aaron Lun

See Also

colPairs, for the column equivalent.

Examples

example(SingleCellExperiment, echo=FALSE)

Making up some regulatory pairings:
hits <- SelfHits(

sample(nrow(sce), 10),
sample(nrow(sce), 10),
nnode=nrow(sce)

)
mcols(hits)$value <- runif(10)

rowPair(sce, "regulators") <- hits
rowPair(sce, "regulators")

as.mat <- rowPair(sce, "regulators", asSparse=TRUE)
class(as.mat)

rowPair(sce, "coexpression") <- hits
rowPairs(sce)

rowPair(sce, "regulators") <- NULL
rowPairs(sce)

rowPairs(sce) <- SimpleList()
rowPairs(sce)

rowSubset Get or set the row subset

Description

Get or set the row subset in an instance of a SingleCellExperiment class. This is assumed to specify
some interesting subset of genes to be favored in downstream analyses.

Usage

S4 method for signature 'SingleCellExperiment'
rowSubset(x, field = "subset", onAbsence = "none")

S4 replacement method for signature 'SingleCellExperiment'
rowSubset(x, field = "subset", ...) <- value

rowSubset 23

Arguments

x A SingleCellExperiment object.
field String containing the name of the field in the rowData to get or set subsetting

data.
onAbsence String indicating an additional action to take when labels are absent: nothing

("none"), a warning ("warn") or an error ("error").
... Additional arguments, currently ignored.
value Any character, logical or numeric vector specifying rows of x to include in the

subset. Alternatively NULL, in which case existing subsetting information is re-
moved.

Details

A frequent task in single-cell data analyses is to focus on a subset of genes of interest, e.g., highly
variable genes, derived marker genes for clusters, known markers for cell types. A related task is to
filter out uninteresting genes such as ribosomal protein genes or mitochondrial transcripts, in which
case we want to subset to exclude those genes.

These functions store a set of genes of interest inside a SingleCellExperiment for later retrieval and
use in downstream functions. Character and numeric value are converted to logical vectors that
are parallel to the rows of x, allowing them to be added to the rowData for synchronized row-level
operations.

For developers, onAbsence is provided to make it easier to mandate that x actually has labels. This
avoids silent NULL values that flow to the rest of the function and make debugging difficult.

Value

For rowSubset, a logical vector is returned specifying the rows to retain in the subset of interest. If
no subset is available, a NULL is returned (and/or a warning or error, depending on onAbsence).

For rowSubset<-, a modified x is returned a subsetting vector in its rowData.

Author(s)

Aaron Lun

See Also

SingleCellExperiment, for the underlying class definition.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example

rowSubset(sce, "hvgs") <- 1:10
rowSubset(sce, "hvgs")

rowSubset(sce) <- rbinom(nrow(sce), 1, 0.5)==1
rowSubset(sce)

24 SCE-assays

SCE-assays Named assay getters and setters

Description

These are methods for getting or setting assay(sce, i=X, ...) where sce is a SingleCellExper-
iment object and X is the name of the method. For example, counts will get or set X="counts".
This provides some convenience for users as well as encouraging standardization of assay names
across packages.

Available methods

In the following code snippets, x is a SingleCellExperiment object, value is a matrix-like object
with the same dimensions as x, and ... are further arguments passed to assay (for the getter) or
assay<- (for the setter).

counts(x, ...), counts(x, ...) <- value: Get or set a matrix of raw count data, e.g., number
of reads or transcripts.

normcounts(x, ...), normcounts(x, ...) <- value: Get or set a matrix of normalized values
on the same scale as the original counts. For example, counts divided by cell-specific size
factors that are centred at unity.

logcounts(x, ...), logcounts(x, ...) <- value: Get or set a matrix of log-transformed counts
or count-like values. In most cases, this will be defined as log-transformed normcounts, e.g.,
using log base 2 and a pseudo-count of 1.

cpm(x, ...), cpm(x, ...) <- value: Get or set a matrix of counts-per-million values. This is the
read count for each gene in each cell, divided by the library size of each cell in millions.

tpm(x, ...), tpm(x, ...) <- value: Get or set a matrix of transcripts-per-million values. This is
the number of transcripts for each gene in each cell, divided by the total number of transcripts
in that cell (in millions).

weights(x, ...), weights(x, ...) <- value: Get or set a matrix of weights, e.g., observational
weights to be used in differential expression analysis.

Author(s)

Aaron Lun

See Also

assay and assay<-, for the wrapped methods.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
counts(sce) <- matrix(rnorm(nrow(sce)*ncol(sce)), ncol=ncol(sce))
dim(counts(sce))

SCE-combine 25

One possible way of computing normalized "counts"
sf <- 2^rnorm(ncol(sce))
sf <- sf/mean(sf)
normcounts(sce) <- t(t(counts(sce))/sf)
dim(normcounts(sce))

One possible way of computing log-counts
logcounts(sce) <- log2(normcounts(sce)+1)
dim(normcounts(sce))

SCE-combine Combining or subsetting SingleCellExperiment objects

Description

An overview of methods to combine multiple SingleCellExperiment objects by row or column, or
to subset a SingleCellExperiment by row or column. These methods are useful for ensuring that all
data fields remain synchronized when cells or genes are added or removed.

Combining

In the following code snippets, ... contains one or more SingleCellExperiment objects.

rbind(..., deparse.level=1): Returns a SingleCellExperiment where all objects in ... are
combined row-wise, i.e., rows in successive objects are appended to the first object.
Refer to ?"rbind,SummarizedExperiment-method" for details on how metadata is com-
bined in the output object. Refer to ?rbind for the interpretation of deparse.level.
Note that all objects in ... must have the exact same values for reducedDims and altExps.
Any sizeFactors should either be NULL or contain the same values across objects.

cbind(..., deparse.level=1): Returns a SingleCellExperiment where all objects in ... are
combined column-wise, i.e., columns in successive objects are appended to the first object.
Each object x in ... must have the same values of reducedDimNames(x) (though they can
be unordered). Dimensionality reduction results with the same name across objects will be
combined row-wise to create the corresponding entry in the output object.
Each object x in ... must have the same values of altExpNames(x) (though they can be
unordered). Alternative Experiments with the same name across objects will be combined
column-wise to create the corresponding entry in the output object.
sizeFactors should be either set to NULL in all objects, or set to a numeric vector in all
objects.
Refer to ?"cbind,SummarizedExperiment-method" for details on how metadata is com-
bined in the output object. Refer to ?cbind for the interpretation of deparse.level.

In the following code snippets, x is a SingleCellExperiment and ... contains multiple SingleCell-
Experiment objects.

26 SCE-combine

combineCols(x, ..., delayed=TRUE, fill=NA, use.names=TRUE): Returns a SingleCellExper-
iment where all objects are flexibly combined by column. The assays and colData are com-
bined as described in ?"combineCols,SummarizedExperiment-method", where assays or
DataFrame columns missing in any given object are filled in with missing values before com-
bining.
Entries of the reducedDims with the same name across objects are combined by row. If
a dimensionality reduction result is not present for a particular SingleCellExperiment, it is
represented by a matrix of NA values instead. If corresponding reducedDim entries cannot be
combined, e.g., due to inconsistent dimensions, they are omitted from the reducedDims of the
output object with a warning.
Entries of the altExps with the same name across objects are combined by column using the
relevant combineCols method. If a named entry is not present for a particular SingleCell-
Experiment, it is represented by a SummarizedExperiment with a single assay full of fill
values. If entries cannot be combined, e.g., due to inconsistent dimensions, they are omitted
from the altExps of the output object with a warning.
Entries of the colPairs with the same name across objects are concatenated together after
adjusting the indices for each column’s new position in the combined object. If a named entry
is not present for a particular SingleCellExperiments, it is assumed to contribute no column
pairings and is ignored.
Entries of the rowPairs with the same name should be identical across objects if use.names=FALSE.
If use.names=TRUE, we attempt to merge together entries with the same name by taking the
union of all column pairings. However, if the same cell has a different set of pairings across
objects, a warning is raised and we fall back to the rowPair entry from the first object.

Subsetting

In the following code snippets, x is a SingleCellExperiment object.

x[i, j, ..., drop=TRUE]: Returns a SingleCellExperiment containing the specified rows i and
columns j.
i and j can be a logical, integer or character vector of subscripts, indicating the rows and
columns respectively to retain. Either can be missing, in which case subsetting is only per-
formed in the specified dimension. If both are missing, no subsetting is performed.
Arguments in ... and drop are passed to to [,SummarizedExperiment-method.

x[i, j, ...] <- value: Replaces all data for rows i and columns j with the corresponding fields
in a SingleCellExperiment value.
i and j can be a logical, integer or character vector of subscripts, indicating the rows and
columns respectively to replace. Either can be missing, in which case replacement is only
performed in the specified dimension. If both are missing, x is replaced entirely with value.
If j is specified, value is expected to have the same name and order of reducedDimNames and
altExpNames as x. If sizeFactors is set for x, it should also be set for value.
Arguments in ... are passed to the corresponding SummarizedExperiment method.

Author(s)

Aaron Lun

SCE-internals 27

Examples

example(SingleCellExperiment, echo=FALSE) # using the class example

Combining:
rbind(sce, sce)
cbind(sce, sce)

Subsetting:
sce[1:10,]
sce[,1:5]

sce2 <- sce
sce2[1:10,] <- sce[11:20,]

Can also use subset()
sce$WHEE <- sample(LETTERS, ncol(sce), replace=TRUE)
subset(sce, , WHEE=="A")

Can also use split()
split(sce, sample(LETTERS, nrow(sce), replace=TRUE))

SCE-internals Internal SingleCellExperiment functions

Description

Methods to get or set internal fields from the SingleCellExperiment class. Thse functions are in-
tended for package developers who want to add protected fields to a SingleCellExperiment. They
should not be used by ordinary users of the SingleCellExperiment package.

Getters

In the following code snippets, x is a SingleCellExperiment.

int_elementMetadata(x): Returns a DataFrame of internal row metadata, with number of rows
equal to nrow(x). This is analogous to the user-visible rowData.

int_colData(x): Returns a DataFrame of internal column metadata, with number of rows equal
to ncol(x). This is analogous to the user-visible colData.

int_metadata(x): Returns a list of internal metadata, analogous to the user-visible metadata.

It may occasionally be useful to return both the visible and the internal colData in a single DataFrame.
This is facilitated by the following methods:

rowData(x, ..., internal=FALSE): Returns a DataFrame of the user-visible row metadata. If
internal=TRUE, the internal row metadata is added column-wise to the user-visible metadata.
A warning is emitted if the user-visible metadata column names overlap with the internal
fields. Any arguments in ... are passed to rowData,SummarizedExperiment-method.

28 SCE-internals

colData(x, ..., internal=FALSE): Returns a DataFrame of the user-visible column metadata.
If internal=TRUE, the internal column metadata is added column-wise to the user-visible
metadata. A warning is emitted if the user-visible metadata column names overlap with the in-
ternal fields. Any arguments in ... are passed to colData,SummarizedExperiment-method.

Setters

In the following code snippets, x is a SingleCellExperiment.

int_elementMetadata(x) <- value: Replaces the internal row metadata with value, a DataFrame
with number of rows equal to nrow(x). This is analogous to the user-visible rowData<-.

int_colData(x) <- value: Replaces the internal column metadata with value, a DataFrame with
number of rows equal to ncol(x). This is analogous to the user-visible colData<-.

int_metadata(x) <- value: Replaces the internal metadata with value, analogous to the user-
visible metadata<-.

Comments

The internal metadata fields allow easy and extensible storage of additional elements that are parallel
to the rows or columns of a SingleCellExperiment class. This avoids the need to specify new
slots and adjust the subsetting/combining code for a new data element. For example, altExps and
reducedDims are implemented as fields in the internal column metadata.

That these elements are internal is important as this ensures that the implementation details are
abstracted away. Any user interaction with these internal fields should be done via the designated
getter and setter methods, e.g., reducedDim and friends for retrieving or modifying reduced dimen-
sions. This provides developers with more freedom to change the internal representation without
breaking user code.

Package developers intending to use these methods to store their own content should read the de-
velopment vignette for guidance.

Author(s)

Aaron Lun

See Also

colData, rowData and metadata for the user-visible equivalents.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
int_metadata(sce)$whee <- 1

SCE-miscellaneous 29

SCE-miscellaneous Miscellaneous SingleCellExperiment methods

Description

Miscellaneous methods for the SingleCellExperiment class that do not fit in any other documenta-
tion category.

Available methods

In the following code snippets, x and object are SingleCellExperiment objects.

show(object): Print a message to screen describing the contents of object.

objectVersion(x): Return the version of the package with which x was constructed.

sizeFactors(object): Return a numeric vector of size factors of length equal to ncol(object).
If no size factors are available in object, return NULL instead.

sizeFactors(object) <- value: Replace the size factors with value, usually expected to be a
numeric vector or vector-like object. Alternatively, value can be NULL in which case any size
factors in object are removed.

Author(s)

Aaron Lun

See Also

updateObject, where objectVersion is used.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example

show(sce)

objectVersion(sce)

Setting/getting size factors.
sizeFactors(sce) <- runif(ncol(sce))
sizeFactors(sce)

sizeFactors(sce) <- NULL
sizeFactors(sce)

30 simplifyToSCE

simplifyToSCE Simplify a list to a single SingleCellExperiment

Description

Simplify a list of SingleCellExperiment, usually generated by applySCE on main and alternative
Experiments, into a single SingleCellExperiment containing some of the results in its altExps.

Usage

simplifyToSCE(results, which.main, warn.level = 2)

Arguments

results A named list of SummarizedExperiment or SingleCellExperiment objects.

which.main Integer scalar specifying which entry of results contains the output generated
from the main Experiment. If NULL or a vector of length zero, this indicates that
no entry was generated from the main Experiment. Defaults to the unnamed
entry of results.

warn.level Integer scalar specifying the type of warnings that can be emitted.

Details

Each entry of results should be a SummarizedExperiment with the same number and names of
the columns. There should not be any duplicate entries in names(results), as the names are used
to represent the names of the alternative Experiments in the output. If which.main is a scalar, the
corresponding entry of results should be a SingleCellExperiment. Failure to meet these conditions
may result in a warning or error depending on warn.level.

The type of warnings that are emitted can be controlled with warn.level. If warn.level=0,
no warnings are emitted. If warn.level=1, all warnings are emitted except for those related to
results not being of the appropriate class. If warn.level=2, all warnings are emitted, and if
warn.level=3, warnings are promoted to errors.

Value

A SingleCellExperiment corresponding to the entry of results generated from the main Experi-
ment. All results generated from the alternative Experiments of x are stored in the altExps of the
output.

If no main Experiment was used to generate results, an empty SingleCellExperiment is used as a
container for the various altExps.

If simplification could not be performed, NULL is returned with a warning (depending on warn.level.

Author(s)

Aaron Lun

SingleCellExperiment-class 31

See Also

applySCE, where this function is used when SIMPLIFY=TRUE.

Examples

ncells <- 100
u <- matrix(rpois(20000, 5), ncol=ncells)
sce <- SingleCellExperiment(assays=list(counts=u))
altExp(sce, "BLAH") <- SingleCellExperiment(assays=list(counts=u*10))
altExp(sce, "WHEE") <- SingleCellExperiment(assays=list(counts=u*2))

Setting FUN=identity just extracts each piece:
results <- applySCE(sce, FUN=identity, SIMPLIFY=FALSE)
results

Simplifying to an output that mirrors the structure of 'sce'.
simplifyToSCE(results)

SingleCellExperiment-class

The SingleCellExperiment class

Description

The SingleCellExperiment class is designed to represent single-cell sequencing data. It inherits
from the RangedSummarizedExperiment class and is used in the same manner. In addition, the
class supports storage of dimensionality reduction results (e.g., PCA, t-SNE) via reducedDims, and
storage of alternative feature types (e.g., spike-ins) via altExps.

Usage

SingleCellExperiment(
...,
reducedDims = list(),
altExps = list(),
rowPairs = list(),
colPairs = list(),
mainExpName = NULL

)

Arguments

... Arguments passed to the SummarizedExperiment constructor to fill the slots of
the base class.

reducedDims A list of any number of matrix-like objects containing dimensionality reduc-
tion results, each of which should have the same number of rows as the output
SingleCellExperiment object.

32 SingleCellExperiment-class

altExps A list of any number of SummarizedExperiment objects containing alternative
Experiments, each of which should have the same number of columns as the
output SingleCellExperiment object.

rowPairs A list of any number of SelfHits objects describing relationships between pairs
of rows. Each entry should have number of nodes equal to the number of rows
of the output SingleCellExperiment object. Alternatively, entries may be square
sparse matrices of order equal to the number of rows of the output object.

colPairs A list of any number of SelfHits objects describing relationships between pairs
of columns. Each entry should have number of nodes equal to the number of
columns of the output SingleCellExperiment object. Alternatively, entries may
be square sparse matrices of order equal to the number of columns of the output
object.

mainExpName String containing the name of the main Experiment. This is comparable to the
names assigned to each of the altExps.

Details

In this class, rows should represent genomic features (e.g., genes) while columns represent samples
generated from single cells. As with any SummarizedExperiment derivative, different quantifica-
tions (e.g., counts, CPMs, log-expression) can be stored simultaneously in the assays slot, and row
and column metadata can be attached using rowData and colData, respectively.

The extra arguments in the constructor (e.g., reducedDims altExps) represent the main extensions
implemented in the SingleCellExperiment class. This enables a consistent, formalized representa-
tion of data structures that are commonly encountered during single-cell data analysis. Readers are
referred to the specific documentation pages for more details.

A SingleCellExperiment can also be created by coercing from a SummarizedExperiment or Ranged-
SummarizedExperiment instance.

Value

A SingleCellExperiment object.

Author(s)

Aaron Lun and Davide Risso

See Also

reducedDims, for representation of dimensionality reduction results.

altExps, for representation of data for alternative feature sets.

colPairs and rowPairs, to hold pairing information for rows and columns.

sizeFactors, to store size factors for normalization.

colLabels, to store cell-level labels.

rowSubset, to store a subset of rows.

?"SCE-combine", to combine or subset a SingleCellExperiment object.

?"SCE-internals", for developer use.

sizeFactors 33

Examples

ncells <- 100
u <- matrix(rpois(20000, 5), ncol=ncells)
v <- log2(u + 1)

pca <- matrix(runif(ncells*5), ncells)
tsne <- matrix(rnorm(ncells*2), ncells)

sce <- SingleCellExperiment(assays=list(counts=u, logcounts=v),
reducedDims=SimpleList(PCA=pca, tSNE=tsne))

sce

coercion from SummarizedExperiment
se <- SummarizedExperiment(assays=list(counts=u, logcounts=v))
as(se, "SingleCellExperiment")

coercion from RangedSummarizedExperiment
rse <- as(se, "RangedSummarizedExperiment")
as(rse, "SingleCellExperiment")

coercion to a RangedSummarizedExperiment
as(sce, "RangedSummarizedExperiment")

coercion to a SummarizedExperiment is slightly buggy right now
and requires a little workaround:
as(as(sce, "RangedSummarizedExperiment"), "SummarizedExperiment")

sizeFactors Size factor methods

Description

Gets or sets the size factors for all cells in a SingleCellExperiment object.

Usage

S4 method for signature 'SingleCellExperiment'
sizeFactors(object, onAbsence = "none")

S4 replacement method for signature 'SingleCellExperiment'
sizeFactors(object, ...) <- value

Arguments

object A SingleCellExperiment object.

onAbsence String indicating an additional action to take when size factors are absent: noth-
ing ("none"), a warning ("warn") or an error ("error").

34 sizeFactors

... Additional arguments, currently ignored.

value A numeric vector of length equal to ncol(object), containing size factors for
all cells.

Details

A size factor is a scaling factor used to divide the raw counts of a particular cell to obtain normalized
expression values, thus allowing downstream comparisons between cells that are not affected by
differences in library size or total RNA content. The sizeFactors methods can be used to get or
set size factors for all cells in a SingleCellExperiment object.

When setting size factors, the values are stored in the colData as the sizeFactors field. This name
is chosen for general consistency with other packages (e.g., DESeq2) and to allow the size factors
to be easily extracted from the colData for use as covariates.

For developers, onAbsence is provided to make it easier to mandate that object has size factors.
This avoids silent NULL values that flow to the rest of the function and make debugging difficult.

Value

For sizeFactors, a numeric vector is returned containing size factors for all cells. If no size factors
are available, a NULL is returned (and/or a warning or error, depending on onAbsence).

For sizeFactors<-, a modified object is returned with size factors in its colData.

Author(s)

Aaron Lun

See Also

SingleCellExperiment, for the underlying class definition.

librarySizeFactors from the scater package or computeSumFactors from the scran package,
as examples of functions that compute the size factors.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
sizeFactors(sce) <- runif(ncol(sce))
sizeFactors(sce)

splitAltExps 35

splitAltExps Split off alternative features

Description

Split a SingleCellExperiment based on the feature type, creating alternative Experiments to hold
features that are not in the majority set.

Usage

splitAltExps(x, f, ref = NULL)

Arguments

x A SingleCellExperiment object.

f A character vector or factor of length equal to nrow(x), specifying the feature
type of each row.

ref String indicating which level of f should be treated as the main set.

Details

This function provides a convenient way to create a SingleCellExperiment with alternative Ex-
periments. For example, a SingleCellExperiment with rows corresponding to all features can be
quickly split into endogenous genes (main) and other alternative features like spike-in transcripts
and antibody tags.

By default, the most frequent level of f is treated as the ref if the latter is not specified.

Value

A SingleCellExperiment where each row corresponds to a feature in the main set. Each other feature
type is stored as an alternative Experiment, accessible by altExp. ref is used as the mainExpName.

Author(s)

Aaron Lun

See Also

altExp, to access and manipulate the alternative Experiment fields.

unsplitAltExps, to reverse the splitting.

36 Subsetting LEMs

Examples

example(SingleCellExperiment, echo=FALSE)
feat.type <- sample(c("endog", "ERCC", "CITE"), nrow(sce),

replace=TRUE, p=c(0.8, 0.1, 0.1))

sce2 <- splitAltExps(sce, feat.type)
sce2

Subsetting LEMs LEM subsetting methods

Description

Methods to subset LinearEmbeddingMatrix objects.

Usage

S4 method for signature 'LinearEmbeddingMatrix,ANY,ANY'
x[i, j, ..., drop=TRUE]

S4 replacement method for signature
'LinearEmbeddingMatrix,ANY,ANY,LinearEmbeddingMatrix'
x[i, j] <- value

Arguments

x A LinearEmbeddingMatrix object.
i, j A vector of logical or integer subscripts, indicating the rows and columns to be

subsetted for i and j, respectively.
... Extra arguments that are ignored.
drop A logical scalar indicating whether the result should be coerced to the lowest

possible dimension.
value A LinearEmbeddingMatrix object with number of rows equal to length of i (or

that of x, if i is not specified). The number of columns must be equal to the
length of j (or number of columns in x, if j is not specified).

Details

Subsetting yields a LinearEmbeddingMatrix object containing the specified rows (samples) and
columns (factors). If column subsetting is performed, values of featureLoadings and factorData
will be modified to retain only the selected factors.

If drop=TRUE and the subsetting would produce dimensions of length 1, those dimensions are
dropped and a vector is returned directly from sampleFactors. This mimics the expected behaviour
from a matrix-like object. Users should set drop=FALSE to ensure that a LinearEmbeddingMatrix
is returned.

For subset replacement, if neither i or j are set, x will be effectively replaced by value. However,
row and column names will not change, consistent with replacement in ordinary matrices.

swapAltExp 37

Value

For [, a subsetted LinearEmbeddingMatrix object is returned.

For [<-, a modified LinearEmbeddingMatrix object is returned.

Author(s)

Aaron Lun

See Also

LinearEmbeddingMatrix-class

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # using the class example

lem[1:10,]
lem[,1:5]

lem2 <- lem
lem2[1:10,] <- lem[11:20,]

swapAltExp Swap main and alternative Experiments

Description

Swap the main Experiment for an alternative Experiment in a SingleCellExperiment object.

Usage

swapAltExp(x, name, saved = mainExpName(x), withColData = TRUE)

Arguments

x A SingleCellExperiment object.

name String or integer scalar specifying the alternative Experiment to use to replace
the main Experiment.

saved String specifying the name to use to save the original x as an alternative experi-
ment in the output. If NULL, the original is not saved.

withColData Logical scalar specifying whether the column metadata of x should be preserved
in the output.

38 swapAltExp

Details

During the course of an analysis, we may need to perform operations on each of the alternative
Experiments in turn. This would require us to repeatedly call altExp(x, name) prior to running
downstream functions on those Experiments. In such cases, it may be more convenient to switch
the main Experiment with the desired alternative Experiments, allowing a particular section of the
analysis to be performed on the latter by default.

For example, the initial phases of the analysis might use the entire set of features. At some point,
we might want to focus only on a subset of features of interest, but we do not want to discard the
rest of the features. This can be achieved by storing the subset as an alternative Experiment and
swapping it with the main Experiment, as shown in the Examples below.

If withColData=TRUE, the column metadata of the output object is set to colData(x). As a side-
effect, any column data previously altExp(x, name) is stored in the saved alternative Experiment
of the output. This is necessary to preserve the column metadata while achieving reversibility (see
below). Setting withColData=FALSE will omit the colData exchange.

swapAltExp is almost perfectly reversible, i.e., swapAltExp(swapAltExp(x, name, saved), saved,
name) should return something very similar to x. The only exceptions are that the order of altExpNames
is changed, and that any non-NULL mainExpName in altExp(x, name) will be lost.

Value

A SingleCellExperiment derived from altExp(x, name). This contains all alternative Experiments
in altExps(x), excluding the one that was promoted to the main Experiment. An additional alter-
native Experiment containing x may be included if saved is specified.

Author(s)

Aaron Lun

See Also

altExps, for a description of the alternative Experiment concept.

Examples

example(SingleCellExperiment, echo=FALSE) # using the class example

Let's say we defined a subset of genes of interest.
We can save the feature set as its own altExp.
hvgs <- 1:10
altExp(sce, "subset") <- sce[hvgs,]

At some point, we want to do our analysis on the HVGs only,
but we want to hold onto the other features for later reference.
sce <- swapAltExp(sce, name="subset", saved="all")
sce

Once we're done, it is straightforward to switch back.
swapAltExp(sce, "all")

unsplitAltExps 39

unsplitAltExps Unsplit the alternative experiments

Description

Combine the main and alternative experiments back into one SingleCellExperiment object. This is
effectively the reverse operation to splitAltExps.

Usage

unsplitAltExps(sce, prefix.rows = TRUE, prefix.cols = TRUE, delayed = TRUE)

Arguments

sce A SingleCellExperiment containing alternative experiments in the altExps slot.

prefix.rows Logical scalar indicating whether the (non-NULL) row names should be prefixed
with the name of the alternative experiment.

prefix.cols Logical scalar indicating whether the names of column-related fields should be
prefixed with the name of the alternative experiment. If NA, any colData of the
altExps are ignored.

delayed Logical scalar indicating whether the combining of the assays should be delayed.

Details

This function is intended for downstream applications that accept a SingleCellExperiment but are
not aware of the altExps concept. By consolidating all data together, applications like iSEE can
use the same machinery to visualize any feature of interest across all modalities. However, for
quantitative analyses, it is usually preferable to keep different modalities separate.

Assays with the same name are rbinded together in the output object. If a particular name is not
present for any experiment, its values are filled in with the appropriately typed NA instead. By
default, this is done efficiently via ConstantMatrix abstractions to avoid actually creating a dense
matrix of NAs. If delayed=FALSE, the combining of matrices is done without any DelayedArray
wrappers, yielding a simpler matrix representation at the cost of increasing memory usage.

Any colData or reducedDims in the alternative experiments are added to those of the main exper-
iment. The names of these migrated fields are prefixed by the name of the alternative experiment if
prefix.cols=TRUE.

Setting prefix.rows=FALSE, prefix.cols=NA and delayed=FALSE will reverse the effects of
splitAltExps.

Value

A SingleCellExperiment where all features in the alternative experiments of sce are now features
in the main experiment. The output object has no alternative experiments of its own.

40 updateObject

Author(s)

Aaron Lun

See Also

splitAltExps, which does the reverse operation of this function.

Examples

counts <- matrix(rpois(10000, 5), ncol=100)
sce <- SingleCellExperiment(assays=list(counts=counts))
feat.type <- sample(c("endog", "ERCC", "adt"), nrow(sce),

replace=TRUE, p=c(0.8, 0.1, 0.1))
sce <- splitAltExps(sce, feat.type)

Making life a little more complicated.
logcounts(sce) <- log2(counts(sce) + 1)
sce$cluster <- sample(5, ncol(sce), replace=TRUE)
reducedDim(sce, "PCA") <- matrix(rnorm(ncol(sce)*2), ncol=2)

Now, putting Humpty Dumpty back together again.
restored <- unsplitAltExps(sce)
restored

updateObject Update a SingleCellExperiment object

Description

Update SingleCellExperiment objects to the latest version of the class structure. This is usually
called by methods in the SingleCellExperiment package rather than by users or downstream pack-
ages.

Usage

S4 method for signature 'SingleCellExperiment'
updateObject(object, ..., verbose = FALSE)

Arguments

object A old SingleCellExperiment object.

... Additional arguments that are ignored.

verbose Logical scalar indicating whether a message should be emitted as the object is
updated.

updateObject 41

Details

This function updates the SingleCellExperiment to match changes in the internal class representa-
tion. Changes are as follows:

• Objects created before 1.7.1 are modified to include altExps and reducedDims fields in their
internal column metadata. Reduced dimension results previously in the reducedDims slot are
transferred to the reducedDims field.

• Objects created before 1.9.1 are modified so that the size factors are stored by sizeFactors<-
in colData rather than int_colData.

Value

An updated version of object.

Author(s)

Aaron Lun

See Also

objectVersion, which is used to determine if the object is up-to-date.

Index

[,DualSubset,ANY,ANY,ANY-method
(rowPairs), 20

[,LinearEmbeddingMatrix,ANY,ANY,ANY-method
(Subsetting LEMs), 36

[,LinearEmbeddingMatrix,ANY,ANY-method
(Subsetting LEMs), 36

[,LinearEmbeddingMatrix,ANY-method
(Subsetting LEMs), 36

[,SingleCellExperiment,ANY,ANY,ANY-method
(SCE-combine), 25

[,SingleCellExperiment,ANY,ANY-method
(SCE-combine), 25

[,SingleCellExperiment,ANY-method
(SCE-combine), 25

[,SummarizedExperimentByColumn,ANY,ANY,ANY-method
(altExps), 2

[.reduced.dim.matrix
(reduced.dim.matrix), 17

[<-,DualSubset,ANY,ANY,ANY-method
(rowPairs), 20

[<-,LinearEmbeddingMatrix,ANY,ANY,LinearEmbeddingMatrix-method
(Subsetting LEMs), 36

[<-,SingleCellExperiment,ANY,ANY,SingleCellExperiment-method
(SCE-combine), 25

[<-,SummarizedExperimentByColumn,ANY,ANY,ANY-method
(altExps), 2

$,LinearEmbeddingMatrix-method
(Getter/setter methods), 13

$<-,LinearEmbeddingMatrix-method
(Getter/setter methods), 13

% (altExps), 2

altExp, 35
altExp (altExps), 2
altExp,SingleCellExperiment,character-method

(altExps), 2
altExp,SingleCellExperiment,missing-method

(altExps), 2
altExp,SingleCellExperiment,numeric-method

(altExps), 2

altExp<- (altExps), 2
altExp<-,SingleCellExperiment,character-method

(altExps), 2
altExp<-,SingleCellExperiment,missing-method

(altExps), 2
altExp<-,SingleCellExperiment,numeric-method

(altExps), 2
altExpNames, 25, 26, 38
altExpNames (altExps), 2
altExpNames,SingleCellExperiment-method

(altExps), 2
altExpNames<- (altExps), 2
altExpNames<-,SingleCellExperiment,character-method

(altExps), 2
altExps, 2, 6, 7, 12, 25, 26, 28, 30–32, 38, 39,

41
altExps,SingleCellExperiment-method

(altExps), 2
altExps<- (altExps), 2
altExps<-,SingleCellExperiment-method

(altExps), 2
Annotated, 4, 19
applySCE, 5, 30, 31
as.matrix,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
assay, 24
assays, 32

c,DualSubset-method (rowPairs), 20
c,SummarizedExperimentByColumn-method

(altExps), 2
cbind, 11, 25
cbind,LinearEmbeddingMatrix-method

(Combining LEMs), 11
cbind,SingleCellExperiment-method

(SCE-combine), 25
cbind.reduced.dim.matrix

(reduced.dim.matrix), 17
check (altExps), 2
clearSizeFactors (defunct), 12

42

INDEX 43

clearSpikes (defunct), 12
coerce,RangedSummarizedExperiment,SingleCellExperiment-method

(SingleCellExperiment-class),
31

coerce,SummarizedExperiment,SingleCellExperiment-method
(SingleCellExperiment-class),
31

colData, 3, 8, 26–28, 32, 34, 39, 41
colData,SingleCellExperiment-method

(SCE-internals), 27
colLabels, 7, 32
colLabels,SingleCellExperiment-method

(colLabels), 7
colLabels<- (colLabels), 7
colLabels<-,SingleCellExperiment-method

(colLabels), 7
colPair (colPairs), 9
colPair,SingleCellExperiment,character-method

(colPairs), 9
colPair,SingleCellExperiment,missing-method

(colPairs), 9
colPair,SingleCellExperiment,numeric-method

(colPairs), 9
colPair<- (colPairs), 9
colPair<-,SingleCellExperiment,character-method

(colPairs), 9
colPair<-,SingleCellExperiment,missing-method

(colPairs), 9
colPair<-,SingleCellExperiment,numeric-method

(colPairs), 9
colPairNames (colPairs), 9
colPairNames,SingleCellExperiment-method

(colPairs), 9
colPairNames<- (colPairs), 9
colPairNames<-,SingleCellExperiment,character-method

(colPairs), 9
colPairs, 9, 10, 22, 26, 32
colPairs,SingleCellExperiment-method

(colPairs), 9
colPairs<- (colPairs), 9
colPairs<-,SingleCellExperiment-method

(colPairs), 9
combineCols, 26
combineCols,SingleCellExperiment-method

(SCE-combine), 25
Combining LEMs, 11
complain. (altExps), 2
ConstantMatrix, 39

counts (SCE-assays), 24
counts,SingleCellExperiment-method

(SCE-assays), 24
counts<- (SCE-assays), 24
counts<-,SingleCellExperiment-method

(SCE-assays), 24
cpm (SCE-assays), 24
cpm,SingleCellExperiment-method

(SCE-assays), 24
cpm<- (SCE-assays), 24
cpm<-,SingleCellExperiment-method

(SCE-assays), 24

DataFrame, 27, 28
defunct, 12
DelayedArray, 39
dim,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
dimnames,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
dimnames<-,LinearEmbeddingMatrix,ANY-method

(Getter/setter methods), 13
dimnames<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
doesn’t (altExps), 2
Dumping (altExps), 2

factorData (Getter/setter methods), 13
factorData,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
factorData<- (Getter/setter methods), 13
factorData<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
featureLoadings (Getter/setter

methods), 13
featureLoadings,LinearEmbeddingMatrix-method

(Getter/setter methods), 13
featureLoadings<- (Getter/setter

methods), 13
featureLoadings<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 13

Getter/setter methods, 13

here, (altExps), 2

int_colData, 41
int_colData (SCE-internals), 27
int_colData,SingleCellExperiment-method

(SCE-internals), 27

44 INDEX

int_colData<- (SCE-internals), 27
int_colData<-,SingleCellExperiment-method

(SCE-internals), 27
int_elementMetadata (SCE-internals), 27
int_elementMetadata,SingleCellExperiment-method

(SCE-internals), 27
int_elementMetadata<- (SCE-internals),

27
int_elementMetadata<-,SingleCellExperiment-method

(SCE-internals), 27
int_metadata (SCE-internals), 27
int_metadata,SingleCellExperiment-method

(SCE-internals), 27
int_metadata<- (SCE-internals), 27
int_metadata<-,SingleCellExperiment-method

(SCE-internals), 27
isSpike (defunct), 12
isSpike<- (defunct), 12

lapply, 6
length,DualSubset-method (rowPairs), 20
length,SummarizedExperimentByColumn-method

(altExps), 2
LinearEmbeddingMatrix, 14, 15, 16, 19
LinearEmbeddingMatrix-class

(LinearEmbeddingMatrix), 15
List, 3, 9, 18, 20
logcounts (SCE-assays), 24
logcounts,SingleCellExperiment-method

(SCE-assays), 24
logcounts<- (SCE-assays), 24
logcounts<-,SingleCellExperiment-method

(SCE-assays), 24

mainExpName, 35, 38
mainExpName (altExps), 2
mainExpName,SingleCellExperiment-method

(altExps), 2
mainExpName<- (altExps), 2
mainExpName<-,SingleCellExperiment,character_OR_NULL-method

(altExps), 2
mcols, 4, 10, 19, 21
metadata, 4, 19, 27, 28
methods (altExps), 2
Miscellaneous LEM, 16

names,SummarizedExperimentByColumn-method
(altExps), 2

names<-,SummarizedExperimentByColumn-method
(altExps), 2

normcounts (SCE-assays), 24
normcounts,SingleCellExperiment-method

(SCE-assays), 24
normcounts<- (SCE-assays), 24
normcounts<-,SingleCellExperiment-method

(SCE-assays), 24

objectVersion, 41
objectVersion (SCE-miscellaneous), 29
objectVersion,SingleCellExperiment-method

(SCE-miscellaneous), 29

parallel_slot_names,SingleCellExperiment-method
(SCE-internals), 27

RangedSummarizedExperiment, 31, 32
rbind, 25, 39
rbind,LinearEmbeddingMatrix-method

(Combining LEMs), 11
rbind,SingleCellExperiment-method

(SCE-combine), 25
rbind.reduced.dim.matrix

(reduced.dim.matrix), 17
reduced.dim.matrix, 17, 19
reduced.dim.matrix-class

(reduced.dim.matrix), 17
reducedDim, 26, 28
reducedDim (reducedDims), 18
reducedDim,SingleCellExperiment,character-method

(reducedDims), 18
reducedDim,SingleCellExperiment,missing-method

(reducedDims), 18
reducedDim,SingleCellExperiment,numeric-method

(reducedDims), 18
reducedDim<- (reducedDims), 18
reducedDim<-,SingleCellExperiment,character-method

(reducedDims), 18
reducedDim<-,SingleCellExperiment,missing-method

(reducedDims), 18
reducedDim<-,SingleCellExperiment,numeric-method

(reducedDims), 18
reducedDimNames, 25, 26
reducedDimNames (reducedDims), 18
reducedDimNames,SingleCellExperiment-method

(reducedDims), 18
reducedDimNames<- (reducedDims), 18

INDEX 45

reducedDimNames<-,SingleCellExperiment,character-method
(reducedDims), 18

reducedDims, 15, 17, 18, 19, 25, 26, 28, 31,
32, 39, 41

reducedDims,SingleCellExperiment-method
(reducedDims), 18

reducedDims<- (reducedDims), 18
reducedDims<-,SingleCellExperiment-method

(reducedDims), 18
removeAltExps (altExps), 2
rowData, 23, 27, 28, 32
rowData,SingleCellExperiment-method

(SCE-internals), 27
rowPair, 26
rowPair (rowPairs), 20
rowPair,SingleCellExperiment,character-method

(rowPairs), 20
rowPair,SingleCellExperiment,missing-method

(rowPairs), 20
rowPair,SingleCellExperiment,numeric-method

(rowPairs), 20
rowPair<- (rowPairs), 20
rowPair<-,SingleCellExperiment,character-method

(rowPairs), 20
rowPair<-,SingleCellExperiment,missing-method

(rowPairs), 20
rowPair<-,SingleCellExperiment,numeric-method

(rowPairs), 20
rowPairNames (rowPairs), 20
rowPairNames,SingleCellExperiment-method

(rowPairs), 20
rowPairNames<- (rowPairs), 20
rowPairNames<-,SingleCellExperiment,character-method

(rowPairs), 20
rowPairs, 10, 20, 21, 26, 32
rowPairs,SingleCellExperiment-method

(rowPairs), 20
rowPairs<- (rowPairs), 20
rowPairs<-,SingleCellExperiment-method

(rowPairs), 20
rowSubset, 22, 32
rowSubset,SingleCellExperiment-method

(rowSubset), 22
rowSubset<- (rowSubset), 22
rowSubset<-,SingleCellExperiment-method

(rowSubset), 22

sampleFactors (Getter/setter methods),
13

sampleFactors,LinearEmbeddingMatrix-method
(Getter/setter methods), 13

sampleFactors<- (Getter/setter
methods), 13

sampleFactors<-,LinearEmbeddingMatrix-method
(Getter/setter methods), 13

SCE-assays, 24
SCE-combine, 25
SCE-internals, 27
SCE-miscellaneous, 29
SEBC (altExps), 2
SelfHits, 9, 10, 20, 21, 32
show,LinearEmbeddingMatrix-method

(Miscellaneous LEM), 16
show,SingleCellExperiment-method

(SCE-miscellaneous), 29
simplifyToSCE, 6, 7, 30
SingleCellExperiment, 2–10, 17–30, 33–35,

37, 39, 40
SingleCellExperiment

(SingleCellExperiment-class),
31

SingleCellExperiment-class, 31
sizeFactorNames (defunct), 12
sizeFactors, 12, 25, 32, 33, 34
sizeFactors,SingleCellExperiment-method

(sizeFactors), 33
sizeFactors<-,SingleCellExperiment-method

(sizeFactors), 33
so (altExps), 2
spikeNames (defunct), 12
splitAltExps, 4, 35, 39, 40
Subsetting LEMs, 36
SummarizedExperiment, 2, 3, 8, 26, 30–32
swapAltExp, 4, 37

that (altExps), 2
the (altExps), 2
tpm (SCE-assays), 24
tpm,SingleCellExperiment-method

(SCE-assays), 24
tpm<- (SCE-assays), 24
tpm<-,SingleCellExperiment-method

(SCE-assays), 24

unsplitAltExps, 35, 39
updateObject, 29, 40
updateObject,SingleCellExperiment-method

(updateObject), 40

46 INDEX

Vector, 4, 19

weights (SCE-assays), 24
weights,SingleCellExperiment-method

(SCE-assays), 24
weights<- (SCE-assays), 24
weights<-,SingleCellExperiment-method

(SCE-assays), 24

	altExps
	applySCE
	colLabels
	colPairs
	Combining LEMs
	defunct
	Getter/setter methods
	LinearEmbeddingMatrix
	Miscellaneous LEM
	reduced.dim.matrix
	reducedDims
	rowPairs
	rowSubset
	SCE-assays
	SCE-combine
	SCE-internals
	SCE-miscellaneous
	simplifyToSCE
	SingleCellExperiment-class
	sizeFactors
	splitAltExps
	Subsetting LEMs
	swapAltExp
	unsplitAltExps
	updateObject
	Index

