

Package ‘SanityR’

February 2, 2026

Type Package

Title R/Bioconductor interface to the Sanity model gene expression analysis

Version 1.1.0

Description a Bayesian normalization procedure derived from first principles. Sanity estimates expression values and associated error bars directly from raw unique molecular identifier (UMI) counts without any tunable parameters.

License GPL (>= 3)

Encoding UTF-8

LazyData true

biocViews Software, GeneExpression, SingleCell, Normalization, Bayesian

BiocType Software

URL <https://github.com/TeoSakel/SanityR>

BugReports <https://github.com/TeoSakel/SanityR/issues>

Imports Rcpp, BiocGenerics, BiocParallel, MatrixGenerics, methods, S4Vectors, scuttle, SingleCellExperiment, SummarizedExperiment

LinkingTo Rcpp

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), scater, Rtsne

Config/testthat.edition 3

VignetteBuilder knitr

git_url <https://git.bioconductor.org/packages/SanityR>

git_branch devel

git_last_commit 65e0964

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Teo Sakel [aut, cre] (ORCID: <<https://orcid.org/0000-0001-9946-9498>>),
MCIU/AEI [fnd] (ROR: <<https://ror.org/05r0vyz12>>, DOI:
10.13039/501100011033)

Maintainer Teo Sakel <teo@intelligentbiodata.com>

Contents

SanityR-package	2
calculateSanityDistance	3
Sanity	5
simulate_sce	7

Index	10
-------	----

SanityR-package	<i>SanityR: R/Bioconductor interface to the Sanity model gene expression analysis</i>
-----------------	---

Description

a Bayesian normalization procedure derived from first principles. Sanity estimates expression values and associated error bars directly from raw unique molecular identifier (UMI) counts without any tunable parameters.

Author(s)

Maintainer: Teo Sakel <teo@intelligentbiodata.com> (ORCID)

Other contributors:

- MCIU/AEI (ROR, DOI) [funder]

See Also

Useful links:

- <https://github.com/TeoSakel/SanityR>
- Report bugs at <https://github.com/TeoSakel/SanityR/issues>

calculateSanityDistance

Calculate the Sanity distance between samples

Description

Calculates the expected squared Euclidean distance between two cells using a hierarchical model that shrinks noisy gene differences toward zero.

Usage

```
calculateSanityDistance(  
  x,  
  assay = "logcounts",  
  assay.sd = "logcounts_sd",  
  gene_sd = "sanity_activity_sd",  
  gene_mu = "sanity_log_activity_mean",  
  mu_sd = "sanity_log_activity_mean_sd",  
  snr_cutoff = 1,  
  nbin = 400L,  
  subset.row = NULL,  
  BPPARAM = bpparam()  
)
```

Arguments

<code>x</code>	A SingleCellExperiment or SummarizedExperiment object which stores the results of the Sanity analysis.
<code>assay</code>	The name of the assay containing the log normalized counts matrix.
<code>assay.sd</code>	The name of the assay containing the standard deviation of the log-normalized counts
<code>gene_sd</code>	The name of the column in the <code>rowData(x)</code> that contains the standard deviation of the gene log-fold change.
<code>gene_mu</code>	The name of the column in the <code>rowData(x)</code> that contains the mean log activity of the genes.
<code>mu_sd</code>	The name of the column in the <code>rowData(x)</code> that contains the standard deviation of the mean log activity of the genes.
<code>snr_cutoff</code>	A numeric value indicating the minimum signal-to-noise ratio (SNR) to consider a gene.
<code>nbin</code>	Number of bins to use when calculating prior variance of the true distance.
<code>subset.row</code>	A vector of row indices or logical vector indicating which rows to use.
<code>BPPARAM</code>	A BiocParallelParam object specifying the parallelization strategy.

Details

Distance Calculation:

The method calculates the expected squared Euclidean distance between two cells, adjusting for uncertainty in gene expression estimates. For each gene g , the contribution to the squared distance between cells c and c' is:

$$\langle \Delta_g^2 \rangle = x_g^2 f_g^2(\alpha) + \eta_g^2 f_g(\alpha)$$

where:

- $x_g = \delta_{gc} - \delta_{gc'}$ (observed difference in Sanity's estimates)
- $\eta_g^2 = \epsilon_{gc}^2 + \epsilon_{gc'}^2$ (combined error variance)
- $f_g(\alpha) = \alpha v_g / (\alpha v_g + \eta_g^2)$ (shrinkage factor)

The shrinkage factor balances the observed gene expression differences x_g against their measurement uncertainty η_g . For genes with high-confidence estimates ($\eta_g \rightarrow 0$), it preserves the observed differences while for noisy genes ($\eta_g \gg 0$), it shrinks the result towards the common expected biological variation inferred from the data (αv_g).

The function returns the square root of the expected squared distance

$$\langle d \rangle = \sqrt{\sum_g \langle \Delta_g^2 \rangle}$$

Hyperparameter α :

The key hyperparameter α controls the prior distribution of Δ_g :

$$\Delta_g \sim N(0, \alpha v_g)$$

Thus:

- $\alpha = 0$: the 2 cells have identical expression states.
- $\alpha = 2$: the 2 cells have independent expression states.

The function implements numerical integration over α using a grid of `nbin` values to compute the expected value of the squared distance across all possible α .

Single to Noise Ratio (SNR):

Signal-to-Noise Ratio (SNR) is defined as the ratio of the variance of log-normalized counts across cells versus the mean variance (i.e. error bars) for each genes.

Value

A `dist` object containing the expected pairwise distances between cells.

Examples

```
sce <- simulate_branched_random_walk(N_gene = 500, N_path = 10, length_path = 10)
sce <- Sanity(sce) # necessary step before computing distances
d <- calculateSanityDistance(sce)

# Downstream analysis and visualization
hc <- hclust(d, method = "ward.D2")
plot(hc)
```

Sanity*Estimate gene-level expression using the Sanity model*

Description

This function provides a user-friendly interface to the Sanity model for gene expression analysis.

Usage

```
Sanity(x, ...)

## S4 method for signature 'ANY'
Sanity(
  x,
  size.factors = NULL,
  vmin = 0.001,
  vmax = 50,
  nbin = 160L,
  a = 1,
  b = 0,
  BPPARAM = bpparam()
)

## S4 method for signature 'SummarizedExperiment'
Sanity(x, ..., assay.type = "counts", name = "logcounts", subset.row = NULL)

## S4 method for signature 'SingleCellExperiment'
Sanity(x, size.factors = sizeFactors(x), ...)
```

Arguments

<code>x</code>	A numeric matrix of counts where features are rows and columns are cells. Alternatively, a SummarizedExperiment or a SingleCellExperiment containing such counts.
<code>...</code>	For the generic, further arguments to pass to each method. For the <code>SummarizedExperiment</code> method, further arguments to pass to the <code>ANY</code> method. For the <code>SingleCellExperiment</code> method, further arguments to pass to the <code>SummarizedExperiment</code> method.
<code>size.factors</code>	A numeric vector of cell-specific size factors. Alternatively <code>NULL</code> , in which case the size factors are computed from <code>x</code> .
<code>vmin</code>	The minimum value for the gene-level variance (must be > 0).
<code>vmax</code>	The maximum value for the gene-level variance.
<code>nbin</code>	Number of variance bins to use.
<code>a, b</code>	Gamma prior parameter (see Details).

BPPARAM	A BiocParallelParam object specifying whether the calculations should be parallelized.
assay.type	A string specifying the assay of x containing the count matrix.
name	String containing an assay name for storing the output normalized values.
subset.row	A vector specifying the subset of rows of x to process.

Details

The method models gene activity using a Bayesian framework, assuming a Gamma prior on expression and integrating over cell-level variability. It returns posterior estimates for mean expression (`mu`), cell-specific deviations (`delta`), and their variances, as well as expression variance (`var`). *Expected* log-normalized counts are computed by combining mean expression and cell-specific log-fold changes. The *standard deviation* of log-counts is computed by summing the variances of the components.

If no `size.factors` are provided, they are assumed all equal so that all cells have the same library size `mean(colSums(x))`.

Gamma Prior::

The model adopts a Bayesian framework by placing a Gamma prior $\text{Gamma}(a, b)$ over the gene activity, where a is the shape and b the rate parameter, respectively. This allows for flexible regularization and uncertainty modeling. The posterior likelihood is estimated by integrating over possible values of the variance in expression.

Intuitively:

- a acts as a pseudo-count added to the total count of the gene.
- b acts as a pseudo-count penalizing deviations from the average. expression — i.e., it regularizes the total number of UMIs that differ from the expected value.

Setting $a = 1$ and $b = 0$ corresponds to an uninformative (uniform) prior, which was used in the original Sanity model publication.

Value

For matrix-like object it returns a named list with the following elements (symbols as defined in the Supplementary Text of the publication):

- mu** Posterior mean of log expression across cells μ_g .
- var_mu** Posterior variance of the mean expression $(\delta\mu_g)^2$.
- var** Posterior variance of expression across cells $\langle v_g \rangle$.
- delta** Vector of log fold-changes for each cell relative to δ_{gc} .
- var_delta** Posterior variance of the cell-level fold-changes ϵ_{gc}^2 .
- lik** Normalized likelihood across the evaluated variance grid $P(v_g \mid n_g)$ for diagnostics.

If called on a [SingleCellExperiment](#) or [SummarizedExperiment](#) it appends the following columns to the `rowData` slot:

```
sanity_log_activity_mean mu
sanity_log_activity_mean_sd sqrt(var_mu)
```

```
sanity_activity_sd sqrt(var)
```

and appends the following assays (assuming name = "logcounts"):

```
assay(x, "logcounts") mu + delta
assay(x, "logcounts_sd") sqrt(var_mu + var_delta)
```

References

Breda, J., Zavolan, M., & van Nimwegen, E. (2021). Bayesian inference of gene expression states from single-cell RNA-seq data. *Nature Biotechnology*, 39, 1008–1016. <https://doi.org/10.1038/s41587-021-00875-x>

Examples

```
library(SingleCellExperiment)

sce <- simulate_independent_cells(N_cell = 500, N_gene = 100)

# Standard Sanity normalization
sce_norm <- Sanity(sce)
logcounts(sce_norm)[1:5,1:5]

# Using size factors
sf <- colSums(counts(sce))
sizeFactors(sce) <- sf / mean(sf)
sce_norm2 <- Sanity(sce)
logcounts(sce_norm2)[1:5,1:5]
```

simulate_sce

Simulate SingleCellExperiment Datasets with Independent or Branched Gene Expression Patterns

Description

These functions generate synthetic single-cell RNA-seq datasets based the methods described in original Sanity publication for benchmarking.

Usage

```
simulate_independent_cells(
  cell_size = NULL,
  gene_size = NULL,
  N_cell = NULL,
  N_gene = NULL,
  ltq_var_rate = 0.5
)
```

```

simulate_branched_random_walk(
  cell_size = NULL,
  gene_size = NULL,
  N_gene = NULL,
  ltq_var_rate = 0.5,
  N_path = 149L,
  length_path = 13L
)

```

Arguments

cell_size	Optional vector of real or simulated total UMI counts per cell. If NULL, defaults to values from the <i>Baron et al.</i> study.
gene_size	Optional vector of real or simulated total UMI counts per gene. If NULL, defaults to values from the <i>Baron et al.</i> study.
N_cell	Integer. Number of cells to simulate. (For <code>simulate_branched_random_walk</code> is equal to <code>N_path * length_path</code>). If NULL inferred from <code>cell_size</code> .
N_gene	Integer. Number of genes to simulate. If NULL, inferred from <code>gene_size</code> .
ltq_var_rate	Rate parameter for the exponential distribution used to simulate per-gene variance (default: 0.5).
N_path	(Only for <code>simulate_branched_random_walk</code>) Number of branching paths (default: 149).
length_path	(Only for <code>simulate_branched_random_walk</code>) Number of steps (cells) per path (default: 13).

Details

- `simulate_independent_cells`: gene expression values are generated independently for each cell. This results in uncorrelated expression patterns across the dataset.
- `simulate_branched_random_walk`: cells follow a **branched random walk** through gene expression space, producing correlated gene expression patterns that reflect pseudo-temporal differentiation trajectories.

Value

A `SingleCellExperiment` object containing:

- `assays$counts`: Simulated UMI count matrix.
- `assays$logFC`: Simulated log fold-changes for each gene-cell pair.
- `rowData`: Gene-level metadata including `ltq_mean` and `ltq_var`.
- `colData`: Cell-level metadata including predecessor for `simulate_branched_random_walk`.

References

A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure Baron, Maayan et al. *Cell Systems*, Volume 3, Issue 4, 346 - 360.e4
<https://doi.org/10.1016/j.cels.2016.08.011>

Examples

```
# Simulate dataset with independent gene expression
sce_indep <- simulate_independent_cells(N_cell = 100, N_gene = 50)

# Simulate dataset with a branched random walk trajectory
sce_branch <- simulate_branched_random_walk(N_path = 20, length_path = 5, N_gene = 50)
```

Index

* **internal**
SanityR-package, 2

BiocParallelParam, 6

calculateSanityDistance, 3

dist, 4

Sanity, 5

Sanity, ANY-method (Sanity), 5

Sanity, SingleCellExperiment-method
(Sanity), 5

Sanity, SummarizedExperiment-method
(Sanity), 5

SanityR (SanityR-package), 2

SanityR-package, 2

simulate_branched_random_walk
(simulate_sce), 7

simulate_independent_cells
(simulate_sce), 7

simulate_sce, 7

SingleCellExperiment, 3, 5, 6

SummarizedExperiment, 3, 5, 6