
Package ‘SRAdb’
February 2, 2026

Type Package

Title A compilation of metadata from NCBI SRA and tools

Version 1.73.0

Date 2024-12-03

Depends RSQLite, graph, RCurl

Imports R.utils

Suggests Rgraphviz

Author Jack Zhu and Sean Davis

Maintainer Jack Zhu <zhujack@mail.nih.gov>

Description The Sequence Read Archive (SRA) is the largest public
repository of sequencing data from the next generation of
sequencing platforms including Roche 454 GS System, Illumina
Genome Analyzer, Applied Biosystems SOLiD System, Helicos
Heliscope, and others. However, finding data of interest can be
challenging using current tools. SRAdb is an attempt to make
access to the metadata associated with submission, study,
sample, experiment and run much more feasible. This is
accomplished by parsing all the NCBI SRA metadata into a SQLite
database that can be stored and queried locally. Fulltext
search in the package make querying metadata very flexible and
powerful. fastq and sra files can be downloaded for doing
alignment locally. Beside ftp protocol, the SRAdb has funcitons
supporting fastp protocol (ascp from Aspera Connect) for faster
downloading large data files over long distance. The SQLite
database is updated regularly as new data is added to SRA and
can be downloaded at will for the most up-to-date metadata.

License Artistic-2.0

LazyLoad yes

BugReports https://github.com/zhujack/SRAdb/issues/new

biocViews Infrastructure, Sequencing, DataImport

git_url https://git.bioconductor.org/packages/SRAdb

1

https://github.com/zhujack/SRAdb/issues/new

2 SRAdb-package

git_branch devel

git_last_commit 0d39542

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
SRAdb-package . 2
ascpR . 5
ascpSRA . 6
colDescriptions . 8
entityGraph . 9
getFASTQfile . 10
getFASTQinfo . 11
getSRA . 12
getSRAdbFile . 14
getSRAfile . 15
getSRAinfo . 16
IGVclear . 18
IGVcollapse . 19
IGVgenome . 19
IGVgoto . 20
IGVload . 21
IGVsession . 22
IGVsnapshot . 23
IGVsocket . 24
IGVsort . 25
listSRAfile . 26
sraConvert . 27
sraGraph . 28
startIGV . 29

Index 31

SRAdb-package Query NCBI SRA metadata within R or from a local SQLite database

Description

The Sequence Read Archive (SRA) represents largest public repository of sequencing data from the
next generation of sequencing platforms including Roche 454 GS System, Illumina Genome Ana-
lyzer, Applied Biosystems SOLiD System, Helicos Heliscope, and others. However, finding data
of interest can be challenging using current tools. SRAdb is an attempt to make access to the meta-
data associated with submission, study, sample, experiment and run much more feasible. This is
accomplished by parsing all the NCBI SRA metadata into a SQLite database that can be stored and

SRAdb-package 3

queried locally. SRAdb is simply a thin wrapper around the SQLite database along with associated
tools and documentation. Fulltext search in the package make querying metadata very flexible and
powerful. SRA data files (sra or sra-lite) can be downloaded for doing alignment locally. Available
BAM files in local or in the Meltzerlab sraDB can be loaded into IGV for visualization easily. The
SQLite database is updated regularly as new data is added to SRA and can be downloaded at will
for the most up-to-date metadata.

Details

Package: SRAdb
Type: Package
Date of creation: 2012-02-13
License: What license is it under?
LazyLoad: yes

Author(s)

Jack Zhu and Sean Davis

Maintainer: Jack Zhu <zhujack@mail.nih.gov>

References

https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')

sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Get column descriptions
a <- colDescriptions(sra_con=sra_con)[1:5,]

Convert SRA experiment accessions to other types
b <- sraConvert(in_acc=c(" SRR000137", "SRR000138 "), out_type=c('sample'), sra_con=sra_con)

Fulltext search SRA meta data using SQLite fts3 module
rs <- getSRA (search_terms ='breas* NEAR/2 can*', out_types=c('run','study'), sra_con=sra_con)
rs <- getSRA (search_terms ='breast', out_types=c('run','study'), sra_con=sra_con)
rs <- getSRA (search_terms ='"breas* can*"', out_types=c('study'), sra_con=sra_con)
rs <- getSRA (search_terms ='MCF7 OR "MCF-7"', out_types=c('sample'), sra_con=sra_con)
rs <- getSRA (search_terms ='study_title: brea* can*', out_types=c('run','study'), sra_con=sra_con)
rs <- getSRA (search_terms ='study_title: brea* can*', out_types=c('run','study'), sra_con=sra_con, acc_only=TRUE)

List fastq file ftp or fasp addresses associated with "SRX000122"

4 SRAdb-package

listSRAfile (in_acc = c("SRX000122"), sra_con = sra_con, fileType = 'sra')
listSRAfile (in_acc = c("SRX000122"), sra_con = sra_con, fileType = 'sra', srcType='fasp')

Get file size and date from NCBI ftp site for available fastq files associated with "SRS012041","SRS000290"
Not run:
getSRAinfo (in_acc=c("SRS012041","SRS000290"), sra_con=sra_con, sraType='sra')

End(Not run)

Download sra files from NCBI SRA using ftp protocol:
Not run:

getSRAfile(in_acc = c("SRR000648","SRR000657"), sra_con = sra_con, destDir = getwd(), fileType = 'sra')
Download fastq files from EBI using ftp protocol:

getSRAfile(in_acc, sra_con, destDir = getwd(), fileType = 'fastq', srcType = 'ftp', makeDirectory = FALSE, method = 'curl', ascpCMD = NULL)

End(Not run)

Download fastq files from EBI ftp siteusing fasp protocol:
Not run:
ascpCMD <- 'ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
getSRAfile(in_acc, sra_con, fileType = 'fastq', srcType = 'fasp', ascpCMD = ascpCMD)

End(Not run)

Start IGV from R if no IGV running
Not run: startIGV(memory='mm')

load BAM files to IGV
Not run:

exampleBams = file.path(system.file('extdata',package='SRAdb'), dir(system.file('extdata',package='SRAdb'),pattern='bam$'))
sock <- IGVsocket()
IGVload(sock,exampleBams)

End(Not run)
Change the IGV genome
Not run:
IGVgenome(sock,genome='hg18')

End(Not run)
Go to a specified region in IGV
Not run:
IGVgoto(sock,'chr1:1-10000')
IGVgoto(sock,'TP53')

End(Not run)

Make a snapshot of the current IGV window
Not run:
IGVsnapshot(sock)
dir()

End(Not run)

create a graphNEL object from SRA accessions, which are full text search results of terms 'primary thyroid cell line'

ascpR 5

g <- sraGraph('MCF7 OR "MCF-7"', sra_con)

Not run:
library(Rgraphviz)
attrs <- getDefaultAttrs(list(node=list(fillcolor='lightblue', shape='ellipse')))
plot(g, attrs=attrs)

End(Not run)
dbDisconnect(sra_con)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

ascpR Fasp file downloading using the ascp command line program

Description

This function downloads files by fasp protocol using Aspera’s ascp command line program, which
is include in Aspera Connect software (http://www.asperasoft.com/).

Usage

ascpR(ascpCMD, ascpSource, destDir = getwd())

Arguments

ascpCMD ascp main commands, which should be constructed by a user according to the ac-
tual installation of Aspera Connect in the system, with proper options to be used.
Example commands: "ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty"
(Linux) or "’/Applications/Aspera Connect.app/Contents/Resources/ascp’ -QT -
l 300m -i ’/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty’"
(Mac OS X). More about ascp please see the help (’ascp -h’ in a shell).

ascpSource character vector of fasp file sources for the ascp command, e.g. era-fasp@fasp.sra.ebi.ac.uk:vol1/fastq/SRR000/SRR000648/SRR000648.fastq.gz
(EBI), anonftp@ftp-trace.ncbi.nlm.nih.gov:/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000657/SRR000657.sra
(NCBI).

destDir destination directory to save downloaded files.

Details

The function takes advatage of Aspera’s fasp transport technology (http://www.asperasoft.com/),
which provides high-speed transfering large files over the Internet. Due to complexity with options
with ascp and installation difference between different systems, this funciton asks users to supply
main ascp comands. Users who are not familiar with ascp command line program should have IT
support personnel to install the software and constrct main ascp comands.

Value

A data.frame containing all matched SRA accessions and ftp or fasp addresses.

6 ascpSRA

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

References

http://www.asperasoft.com/

See Also

ascpSRA, getSRAfile, getFASTQinfo, getSRAinfo

Examples

Using the SRAmetadb demo database
Not run:
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)
rs <- getFASTQinfo (in_acc=c("SRR000648","SRR000657"), sra_con, srcType='fasp')

ascpSource <- rs$fasp
ascpCMD <- 'ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
common ascpCMD in Mac OS X:
#ascpCMD = "'/Applications/Aspera Connect.app/Contents/Resources/ascp' -QT -l 300m -i '/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"

ascpR(ascpCMD, ascpSource, destDir = getwd())
dbDisconnect(sra_con)

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

ascpSRA Fasp SRA data file downloading using the ascp command line program

Description

This function downloads SRA data files (fastq, sra) by fasp protocol using Aspera’s ascp command
line program, which is included in Aspera Connect software (http://www.asperasoft.com/).

Usage

ascpSRA (in_acc, sra_con, ascpCMD, fileType = 'sra', destDir = getwd())

ascpSRA 7

Arguments

in_acc character vector of SRA accessions, which should be in same SRA data type,
either submission, study, sample, experiment or run.

sra_con connection to the SRAmetadb SQLite database.

ascpCMD ascp main commands, which should be constructed by a user according to the ac-
tual installation of Aspera Connect in the system, with proper options to be used.
Example commands: "ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty"
(Linux) or "’/Applications/Aspera Connect.app/Contents/Resources/ascp’ -QT -
l 300m -i ’/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty’"
(Mac OS X). More about ascp please see the help (’ascp -h’ in a shell).

fileType type of SRA data files, which should be "sra", or "fastq" (’litesra’ has phased
out).

destDir destination directory to save downloaded files.

Details

This function will get fasp file sources first using funciton listSRAfile and then download data
files using function ascpR.

Value

A data.frame of all matched SRA accessions and ftp or fasp file addresses.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

References

http://www.asperasoft.com/

See Also

ascpR, listSRAfile, getSRAfile, getFASTQinfo, getSRAinfo

Examples

Using the SRAmetadb demo database
Not run:
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')

sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)
in_acc <- c("SRR000648","SRR000657")
ascpCMD <- 'ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
common ascpCMD for a system with Mac OS X:
#ascpCMD <- "'/Applications/Aspera Connect.app/Contents/Resources/ascp' -QT -l 300m -i '/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"

sraFiles <- ascpSRA(in_acc, sra_con, ascpCMD, fileType = 'sra', destDir=getwd())

8 colDescriptions

dbDisconnect(sra_con)

End(Not run)
The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

colDescriptions Get column descriptions of SRAmetadb.sqlite

Description

Get column descriptions of SRAmetadb.sqlite, including table, field, field data type, description and
default values

Usage

colDescriptions(sra_con)

Arguments

sra_con Connection of the SRAmetadb SQLite database

Value

A seven-column data.frame including table_name, field_name, type, description, value_list.

Author(s)

Jack Zhu<zhujack@mail.nih.gov> and Sean Davis <sdavis2@mail.nih.gov>

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')

sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Get column descriptions
a <- colDescriptions(sra_con=sra_con)[1:5,]

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

entityGraph 9

entityGraph Create a new graphNEL object from an input entity matrix or
data.frame

Description

This function will create a new graphNEL object from an input entity matrix or data.frame

Usage

entityGraph(df)

Arguments

df A matrix or data.frame

Details

A graphNEL object with edgemode=’directed’ is created from input data.frame and the plot func-
tion will draw a graph

Value

A graphNEL object with edgemode=’directed’

Author(s)

Jack Zhu <zhujack@mail.nih.gov> and Sean Davis <sdavis2@mail.nih.gov>

See Also

getSRA, sraConvert, sraGraph

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

create a graphNEL object from SRA accessions, which are full text search results of terms 'primary thyroid cell line'
acc <- getSRA (search_terms ='MCF7 OR "MCF-7"', out_types=c('sra'), sra_con=sra_con, acc_only=TRUE)
g <- entityGraph(acc)
Not run:
library(Rgraphviz)
attrs <- getDefaultAttrs(list(node=list(fillcolor='lightblue', shape='ellipse')))
plot(g, attrs= attrs)

10 getFASTQfile

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getFASTQfile Download SRA fastq files from EBI ENA through ftp or fasp

Description

This function downloads SRA fastq data files through ftp or fasp from EBI ENA site for a given list
of SRA accessions.

Usage

getFASTQfile(in_acc, sra_con, destDir = getwd(), srcType = 'ftp', makeDirectory = FALSE, method = 'curl', ascpCMD = NULL)

Arguments

in_acc character vector of SRA accessions that could be be in one or more SRA sata
types: study, sample, experiment and/or run.

sra_con connection to the SRAmetadb SQLite database

destDir destination directory to save downloaded fastq files

srcType type of transfer protocol, which should be "ftp" or "fasp".

makeDirectory logical, TRUE or FALSE. If TRUE and baseDir does not exists, storedir will be
created to save downloaded files, otherwise downloaded fastq files will be saved
to current directory.

method character vector of length 1, passed to the identically named argument of download.file.

ascpCMD ascp main commands, which should be constructed by a user according to the ac-
tual installation of Aspera Connect in the system, with proper options to be used.
Example commands: "ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty"
(Linux) or "’/Applications/Aspera Connect.app/Contents/Resources/ascp’ -QT -
l 300m -i ’/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty’"
(Mac OS X). More about ascp please see the help (’ascp -h’ in a shell).

Details

The function first gets ftp/fasp addresses of SRA fastq files using funcitn getFASTQinfo for a given
list of input SRA accessions; then downloads the fastq files through ftp or fasp.

Warning

Downloading SRA fastq files through ftp over long distance could take long time and should con-
sider using using ’fasp’.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

getFASTQinfo 11

See Also

getFASTQinfo, getSRAfile, ascpR

Examples

Using the SRAmetadb demo database

Not run:
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Download fastq files from EBI ENA through ftp
getFASTQfile(in_acc = c("SRR000648","SRR000657"), sra_con, destDir = getwd(), srcType = 'ftp', ascpCMD = NULL)

Download fastq files from EBI ENA through fasp
ascpCMD <- 'ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
common ascpCMD for a system with Mac OS X:
#ascpCMD <- "'/Applications/Aspera Connect.app/Contents/Resources/ascp' -QT -l 300m -i '/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"
getFASTQfile(in_acc = c("SRR000648","SRR000657"), sra_con, srcType='fasp', ascpCMD=ascpCMD)

dbDisconnect(sra_con)

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getFASTQinfo Get SRA fastq file information and associated meta data from EBI ENA

Description

This function gets SRA fastq file information and essential associated meta data from EBI ENA
web site (http://www.ebi.ac.uk/ena/data/view/reports/sra/fastq_files/) for SRA accessions given.

Usage

getFASTQinfo(in_acc, sra_con, srcType = 'ftp')

Arguments

in_acc character vector of SRA accessions that could be be in one or more SRA sata
types: study, sample, experiment and/or run.

sra_con Connection to the SRAmetadb SQLite database

srcType option for listing either ’ftp’ or ’fasp’ addresses. The default is ’ftp’.

12 getSRA

Details

EBI ENA web site (http://www.ebi.ac.uk/ena/data/view/reports/sra/fastq_files/) is the souce for
parsing infromation from, which is updated and verified daily. Ftp or fasp addresses got from this
funciton can be used in either getFASTQfile or getSRAfile to download the files.

Value

A data.frame of ftp/fasp inftomation (addresses, file size, read number, etc) and associated meta
data (study, sample, experiment, run, organism, instrument.platform, instrument.model, library.name,
library.layout, library.source, library.selection, run.read.count, run.base.count, etc.).

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

See Also

getFASTQfile, listSRAfile, getSRAfile

Examples

Using the SRAmetadb demo database
Not run:
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)
getFASTQinfo(in_acc = c("SRR000648","SRR000657"), sra_con, srcType = 'ftp')
getFASTQinfo(in_acc = c("SRR000648","SRR000657"), sra_con, srcType = 'fasp')

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getSRA Fulltext search SRA meta data using SQLite fts3 module

Description

This function does Fulltext search on any SRA fields in any SRA data types with Fulltext capacity
in the SQLite and returns SRA records

Usage

getSRA(search_terms, out_types=c('sra','submission','study','experiment','sample','run'), sra_con, acc_only=FALSE)

getSRA 13

Arguments

search_terms Free text search terms constructed according to SQLite query syntax defined
here: http://www.sqlite.org/fts3.html#section_1_3

out_types Character vector of the following SRA data types: ’sra’,’submission’,’study’,’sample’,’experiment’,’run’.
Note: if ’sra’ is within out_types, the out_types will be set to c(’submission’,’study’,’sample’,’experiment’).

sra_con Connection to the SRAmetadb SQLite database

acc_only logical, if TRUE, the function will return SRA accession for each out_types

Details

Queries performed by this function could be Phrase queries, e.g. ’"lin* app*"’, or NEAR queries,
e.g. ’"ACID compliant" NEAR/2 sqlite’, or with the Enhanced Query Syntax. Check Full Text
Search section on the SQLite site for details. if ’acc_only=TRUE’, a data.frame containing only
SRA accessions will be returned, which can be used as input for sraGraph.

Value

A data.frame containing all returned SRA records with fields defined by out_types.

If acc_only=FALSE, a data.frame of matched accessions of out_types will be returned.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

References

http://www.sqlite.org/

See Also

sraConvert

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Fulltext search SRA meta data using SQLite fts3 module:
find all records with words of 'breast' and 'cancer' in a filed and there could be one to many words between 'breast' and 'cancer':
rs <- getSRA (search_terms ='breast cancer', out_types=c('run','study'), sra_con=sra_con)

find all records with exact phrase of 'breast cancer' in a filed:
rs <- getSRA (search_terms ='"breast cancer"', out_types=c('run','study'), sra_con=sra_con)

find records with words beginning with 'braes' and 'can', and the distance between them is equal or less than two words:
rs <- getSRA (search_terms ='breas* NEAR/2 can*', out_types=c('run','study'), sra_con=sra_con)

14 getSRAdbFile

the same as above except that only one space between the two words
rs <- getSRA (search_terms ='"breas* can*"', out_types=c('study'), sra_con=sra_con)

find records with 'MCF7' or 'MCF-7' - adding double quote to avoid the SQLite to break down 'MCF-7' to 'MCF' and '7':
rs <- getSRA (search_terms ='MCF7 OR "MCF-7"', out_types=c('sample'), sra_con=sra_con)

the same as above, but only search the field of 'study_title':
rs <- getSRA (search_terms ='study_title: brea* can*', out_types=c('run','study'), sra_con=sra_con)

the same as above, but only search the field of 'study_title' and return only accessions:
rs <- getSRA (search_terms ='study_title: brea* can*', out_types=c('run','study'), sra_con=sra_con, acc_only=TRUE)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getSRAdbFile Download and unzip last version of SRAmetadb.sqlite.gz from the
server

Description

This function is the standard method for downloading and unzipping the most recent SRAmetadb
SQLite file from the server.

Usage

getSRAdbFile(destdir = getwd(), destfile = "SRAmetadb.sqlite.gz",
method)

Arguments

destdir The destination directory of the downloaded file

destfile The filename of the downloaded file. This filename should end in ".gz" as the
unzipping assumes that is the case

method Character vector of length 1, passed to the identically named argument of download.file.

Value

Prints some diagnostic information to the screen.

Returns the local filename for use later.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>, Sean Davis <sdavis2@mail.nih.gov>

getSRAfile 15

Examples

the SRAmetadb demo database can be used to test
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')

Not run: geometadbfile <- getSRAdbFile()
Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getSRAfile Download SRA data file through ftp or fasp

Description

This function downloads sra data files associated with input SRA accessions from NCBI SRA or
downloads fastq files from EBI ENA through ftp or fasp protocol.

Usage

getSRAfile(in_acc, sra_con, destDir = getwd(), fileType = 'sra', srcType = 'ftp', makeDirectory = FALSE, method = 'curl', ascpCMD = NULL)

Arguments

in_acc character vector of SRA accessions, which should be in same SRA data type,
either submission, study, sample, experiment or run.

sra_con Connection to the SRAmetadb SQLite database

destDir destination directory to save downloaded files.

fileType type of SRA data files, which should be "sra", or "fastq" (’litesra’ has phased
out).

srcType type of transfer protocol, which should be "ftp" or "fasp".

makeDirectory logical, TRUE or FALSE. If TRUE and baseDir does not exists, storedir will be
created to save downloaded files, otherwise downloaded fastq files will be saved
to current directory.

method Character vector of length 1, passed to the identically named argument of download.file.

ascpCMD ascp main commands, which should be constructed by a user according to the ac-
tual installation of Aspera Connect in the system, with proper options to be used.
Example commands: "ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty"
(Linux) or "’/Applications/Aspera Connect.app/Contents/Resources/ascp’ -QT -
l 300m -i ’/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty’"
(Mac OS X). More about ascp please see the help (’ascp -h’ in a shell).

Details

The function first gets ftp/fasp addresses of SRA data files with funcitn getSRAinfo for a given list
of input SRA accessions; then downloads the SRA data files through ftp or fasp. The sra or sra-lite
data files are downloaded from NCBI SRA and the fastq files are downloaded from EBI ENA.

16 getSRAinfo

Warning

Downloading SRA data files through ftp over long distance could take long time and should consider
using using ’fasp’.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

See Also

listSRAfile, getSRAinfo, getFASTQinfo, getFASTQfile

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Not run:
Download sra files from NCBI SRA using ftp protocol:
in_acc = c("SRR000648","SRR000657")
getSRAfile(in_acc, sra_con = sra_con, destDir = getwd(), fileType = 'sra', srcType = 'ftp')

Convert NCBI SRA format (.sra) data to fastq:
Download SRA Toolkit: http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software
Run fastq-dump to
system ("fastq-dump SRR000648.sra")

Download fastq files from EBI using ftp protocol:
getSRAfile(in_acc, sra_con, destDir = getwd(), fileType = 'fastq', srcType = 'ftp', makeDirectory = FALSE, method = 'curl', ascpCMD = NULL)

Download fastq files from EBI ftp siteusing fasp protocol:
ascpCMD <- 'ascp -QT -l 300m -i /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
getSRAfile(in_acc, sra_con, fileType = 'fastq', srcType = 'fasp', ascpCMD = ascpCMD)
dbDisconnect(sra_con)

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

getSRAinfo Get SRA data file information from NCBI SRA

Description

This function gets SRA .sra file information from NCBI SRA ftp site for a given list SRA accessions.

getSRAinfo 17

Usage

getSRAinfo(in_acc, sra_con, sraType = 'sra')

Arguments

in_acc character vector of SRA accessions, which should be in same SRA data type,
either submission, study, sample, experiment or run.

sra_con connection to the SRAmetadb SQLite database

sraType type of SRA data files, which should be ’sra’ (’litesra’ has phased out).

Details

The function first gets ftp addressed of sra or sra-lite data files with function listSRAfile and then
get file size and date from NCBI SRA ftp sites.

Value

A data.frame of ftp addresses of SRA data files, and file size and date along with input SRA acces-
sions.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

See Also

listSRAfile, getSRAfile

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Get file size and date from NCBI ftp site for available fastq files associated with "SRS012041","SRS000290"
getSRAinfo (in_acc=c("SRS012041","SRS000290"), sra_con=sra_con, sraType='sra')

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

18 IGVclear

IGVclear Clear IGV tracks loaded.

Description

Clear IGV tracks loaded in the current IGV.

Usage

IGVclear(sock)

Arguments

sock A socket connection to IGV.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV, IGVload, IGVgoto

Examples

Not run:
Create a file list from example bam files in the package
exampleBams = file.path(system.file('extdata',package='SRAdb'),

dir(system.file('extdata',package='SRAdb'),pattern='bam$'))

##Create a socket connection to IGV
sock <- IGVsocket()
Load the bam files into IGV
IGVload(sock, exampleBams)

Clear loaded tracks in the current IGV
IGVclear(sock)

End(Not run)

IGVcollapse 19

IGVcollapse Collapse tracks in the IGV

Description

Using the remote command port of IGV, this function collapses tracks in the IGV.

Usage

IGVcollapse(sock)

Arguments

sock A socket connection to IGV.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV, IGVload

Examples

Not run:
sock <- IGVsocket()
IGVcollapse(sock)

End(Not run)

IGVgenome Set the IGV genome.

Description

Set the IGV genome via the remote command port.

Usage

IGVgenome(sock, genome="hg18")

20 IGVgoto

Arguments

sock A socket connection to IGV.

genome String representing a genome that IGV knows about.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV

Examples

Not run:
sock <- IGVsocket()
IGVgenome(sock, genome='hg18')

End(Not run)

IGVgoto Go to a specified region in IGV.

Description

Using the remote command port of IGV, go to a specified region.

Usage

IGVgoto(sock, region)

Arguments

sock A socket connection to IGV.

region Scrolls to a locus. Use any text that is valid in the IGV search box.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

IGVload 21

See Also

startIGV, IGVload

Examples

Not run:
sock <- IGVsocket()
IGVgoto(sock, 'chr1:1-10000')
IGVgoto(sock, 'TP53')

End(Not run)

IGVload Load data into IGV via remote port call.

Description

Loads data via a remote call to IGV.

Usage

IGVload(sock, files)

Arguments

sock A socket connection to IGV.

files Character vector of one or more filenames with full path or urls to load. Among
supported file types are BAM and IGV session file, for other file types please
check IGV web site: http://www.broadinstitute.org/igv/ControlIGV.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV, IGVgoto

22 IGVsession

Examples

Not run:
Create a file list from example bam files in the package
exampleBams = file.path(system.file('extdata',package='SRAdb'),

dir(system.file('extdata',package='SRAdb'),pattern='bam$'))

Create a socket connection to IGV
sock <- IGVsocket()
Load the bam files into IGV
IGVload(sock, exampleBams)

End(Not run)

IGVsession Create an IGV session file

Description

This function will create an IGV session file

Usage

IGVsession(files, sessionFile, genome='hg18', VisibleAttribute='', destdir=getwd())

Arguments

files Character vector of one or more filenames or urls to load - required.

sessionFile String representing session file name - required

genome String representing a genome that IGV knows about.
VisibleAttribute

Character vector of one or more IGV Visible Attributes to annotate data tracks
to be loaded - optional.

destdir Path where to save the IGV session file.

Details

While the current state of an IGV session can be saved to a named session file that can be opened to
restore the IGV session later on, a IGV session file can be manually or programmatically created to
achieve more efficient data loading and better control of IGV. IGVsession function was developed to
create such IGV session files. For details please check IGV web site: http://www.broadinstitute.org/igv/ControlIGV

Value

An IGV session file with full file path.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

IGVsnapshot 23

See Also

IGVload, IGVgenome, IGVgoto

Examples

library(SRAdb)
exampleBams = file.path(system.file('extdata',package='SRAdb'),

dir(system.file('extdata',package='SRAdb'),pattern='bam$'))
exampleSessionFile <- IGVsession(exampleBams, 'exampleBams.xml');

Not run:
Start IGV within R. You only need one IGV instance with listen port 60151 open.
startIGV()

Create a socket connection to IGV
sock <- IGVsocket()
Wait until IGV fully launched and make sure the listen port for IGV is open (If not configured in IGV, follow these steops: IGV --> Perferences --> Advanced --> Check the checkbox 'Enable port' 60151.)

IGVload(sock, exampleSessionFile)

End(Not run)

IGVsnapshot Make a file snapshot of the current IGV screen.

Description

From the IGV documentation: "Saves a snapshot of the IGV window to an image file. If filename
is omitted, writes a .png file with a filename generated based on the locus. If filename is specified,
the filename extension determines the image file format, which must be .png or .eps."

Usage

IGVsnapshot(sock, fname = "", dirname=getwd())

Arguments

sock A socket connection to IGV.

fname The filename to save. Alternatively, if not specified, IGV will create a filename
based on the locus being viewed.

dirname The directory name as a string for where to save the snapshot file.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

24 IGVsocket

See Also

startIGV

Examples

Not run:
Create a snapshot of the current IGV window, which is usually the first launched IGV with listen port 60151 open
sock <- IGVsocket()
IGVsnapshot(sock)
dir()

End(Not run)

IGVsocket Create a Socket Connection to IGV.

Description

Create a Socket Connection to IGV by a specified port and host.

Usage

IGVsocket(host='localhost', port=60151)

Arguments

host The name of remote host where IGV is running.

port The port to connect to/listen on.

Author(s)

Sean Davis <sdavis2@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV, IGVgoto

Examples

Not run:
Create a socket connection to IGV
sock <- IGVsocket()

End(Not run)

IGVsort 25

IGVsort Sort an alignment track by the specified option.

Description

Using the remote command port of IGV, Sorts an alignment track by the specified option. Recog-
nized values for the option parameter are: base, position, strand, quality, sample, and readGroup.

Usage

IGVsort(sock, option)

Arguments

sock A socket connection to IGV.

option Recognized values for the option parameter are: base, position, strand, quality,
sample, and readGroup.

Author(s)

Jack Zhu<zhujack@mail.nih.gov>

References

http://www.broadinstitute.org/igv/PortCommands

See Also

startIGV, IGVload

Examples

Not run:
sock <- IGVsocket()
IGVsort(sock, 'position')
IGVsort(sock, 'base')
IGVsort(sock, 'sample')

End(Not run)

26 listSRAfile

listSRAfile List sra, sra-lite or fastq data file names associated with input SRA
accessions

Description

This function lists all sra, sra-lite or fastq data files associated with input SRA accessions

Usage

listSRAfile(in_acc, sra_con, fileType = 'sra', srcType = 'ftp')

Arguments

in_acc character vector of SRA accessions, which should be in same SRA data type,
either submission, study, sample, experiment or run.

sra_con connection to the SRAmetadb SQLite database

fileType types of SRA data files, which should be ’sra’ or ’fastq’. (’litesra’ has phased
out).

srcType type of transfer protocol, which should be "ftp" or "fasp".

Details

SRA fastq files are hosted at EBI ftp site (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/) and .sra files are hosted
at NCBI ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/). ’litesra’ has phased out.

Value

A data frame of matched SRA accessions and data file names with ftp or fasp addresses.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

See Also

getSRAfile

Examples

Using the SRAmetadb demo database
Not run:
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

List ftp or fasp addresses of sra files associated with "SRX000122"
listSRAfile (in_acc = c("SRX000122"), sra_con = sra_con, fileType = 'sra')

sraConvert 27

listSRAfile (in_acc = c("SRX000122"), sra_con = sra_con, fileType = 'sra', srcType='fasp')

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

sraConvert Cross-reference between GEO data types

Description

A common task is to find all the SRA entities of one type associated with another SRA entity (eg.,
find all SRA samples associated with SRA study ’SRP001990’). This function provides a very fast
mapping between entity types to facilitate queries of this type.

Usage

sraConvert(in_acc, out_type = c("sra", "submission", "study", "sample", "experiment", "run"), sra_con)

Arguments

in_acc Character vector of SRA accessions and should be of same SRA data type, either
one of SRA submission, SRA study, SRA sample, SRA experiment and SRA
run’

out_type Character vector of the following SRA data types: ’sra’, ’submission’,’study’,’sample’,’experiment’,’run’;
if ’sra’ is in out_type, out_type will be c("submission", "study", "sample", "ex-
periment", "run")

sra_con Connection to the SRAmetadb SQLite database

Value

A data.frame containing all matched SRA accessions.

Author(s)

Jack Zhu <zhujack@mail.nih.gov>

See Also

getSRA, listSRAfile, getSRAinfo

28 sraGraph

Examples

Using the SRAmetadb demo database

library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

Convert SRA experiment accessions to other types
a <- sraConvert(in_acc=c(" SRR000137", "SRR000138 "), out_type=c('sample'), sra_con=sra_con)
b <- sraConvert (in_acc=c("SRX000122"), sra_con=sra_con)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

sraGraph Create a new graphNEL object of SRA accessios from SRA full text
search

Description

This function will create a new graphNEL object from SRA accessions using function of entityGraph
and SRA accessions are returned from SRA full text search using function of getSRA

Usage

sraGraph(search_terms, sra_con)

Arguments

search_terms Free text search terms constructed according to SQLite query syntax defined
here: http://www.sqlite.org/fts3.html#section_1_3

sra_con Connection to the SRAmetadb SQLite database

Details

This function is a wrapper of two functions: acc <- getSRA(search_terms, out_types=’sra’, sra_con,
acc_only=TRUE) and g <- entityGraph(acc). A graphNEL object with edgemode=’directed’ is
created from input data.frame of SRA accessions and the plot function will draw a graph

Value

A graphNEL object with edgemode=’directed’

Author(s)

Jack Zhu <zhujack@mail.nih.gov> and Sean Davis <sdavis2@mail.nih.gov>

startIGV 29

See Also

getSRA, sraConvert, entityGraph

Examples

Using the SRAmetadb demo database

library(SRAdb)
library(Rgraphviz)

sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)

create a graphNEL object from SRA accessions, which are full text search results of terms 'primary thyroid cell line'
g <- sraGraph('MCF7 OR "MCF-7"', sra_con)
attrs <- getDefaultAttrs(list(node=list(fillcolor='lightblue', shape='ellipse')))
plot(g, attrs=attrs)

similiar search as the above, returned much larger data.frame and graph is too clouded
g <- sraGraph('MCF', sra_con)
Not run:
plot(g)

End(Not run)

The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz

startIGV Start IGV from R with different amount maximum memory support

Description

This function is to start the Integrative Genomics Viewer (IGV) within R, which is a high-performance
visualization tool for interactive exploration of large, integrated datasets. It supports a wide variety
of data types including sequence alignments, microarrays, and genomic annotations. In the SRAdb,
functions of load2IGV and load2newIGV can be used to load BAM format of sequencing data into
IGV conveniently.

Usage

startIGV(memory = "mm", devel=FALSE)

Arguments

memory Maximum usable memory support for the IGV to be launched, which is defined
as the following: ’mm’ - 1.2 GB , ’lm’ - 2 GB, ’hm’ - 10 GB, ” - 750 MB

devel Start development version of IGV.

30 startIGV

Details

IGV with 1.2 GB maximum usable memory (’mm’) is usually for 32-bit Windows; IGV with 2 GB
maximum usable memory (’lm’) is usually for 32-bit MacOS; IGV with 10 GB maximum usable
memory is for large memory 64-bit java machines; IGV with 750 MB (”) is sufficient for most appli-
cations. The IGV will be launched through Java Web Start. For details about how IGV is launched
or have problems to launch it, please refer to this site: http://www.broadinstitute.org/igv/StartIGV
. Note: if IGVload will be used to load BAM files to the new launched IGV, a connection port
needs to be enabled in the IGV. This is how to enable connection port in the IGV: in IGV, go
View->Preferences->Advanced->Enable port and check the checkbox.

Author(s)

Jack Zhu

References

http://www.broadinstitute.org/igv/

See Also

IGVload, IGVgoto, IGVgenome

Examples

launch IGV with 1.2 GB maximum usable memory support
Not run: startIGV("lm"))

Index

∗ IO
IGVclear, 18
IGVcollapse, 19
IGVgenome, 19
IGVgoto, 20
IGVload, 21
IGVsnapshot, 23
IGVsocket, 24
IGVsort, 25

∗ NCBI
colDescriptions, 8

∗ SRA
colDescriptions, 8
sraConvert, 27

∗ database
colDescriptions, 8
sraConvert, 27

∗ package
SRAdb-package, 2

ascpR, 5, 7, 11
ascpSRA, 6, 6

colDescriptions, 8

download.file, 10, 14, 15

entityGraph, 9, 28, 29

getFASTQfile, 10, 12, 16
getFASTQinfo, 6, 7, 10, 11, 11, 16
getSRA, 9, 12, 27–29
getSRAdbFile, 14
getSRAfile, 6, 7, 11, 12, 15, 17, 26
getSRAinfo, 6, 7, 15, 16, 16, 27

IGVclear, 18
IGVcollapse, 19
IGVgenome, 19, 23, 30
IGVgoto, 18, 20, 21, 23, 24, 30
IGVload, 18, 19, 21, 21, 23, 25, 30

IGVsession, 22
IGVsnapshot, 23
IGVsocket, 24
IGVsort, 25

listSRAfile, 7, 12, 16, 17, 26, 27

plot, 9, 28

sraConvert, 9, 13, 27, 29
SRAdb (SRAdb-package), 2
SRAdb-package, 2
sraGraph, 9, 13, 28
startIGV, 18–21, 24, 25, 29

31

	SRAdb-package
	ascpR
	ascpSRA
	colDescriptions
	entityGraph
	getFASTQfile
	getFASTQinfo
	getSRA
	getSRAdbFile
	getSRAfile
	getSRAinfo
	IGVclear
	IGVcollapse
	IGVgenome
	IGVgoto
	IGVload
	IGVsession
	IGVsnapshot
	IGVsocket
	IGVsort
	listSRAfile
	sraConvert
	sraGraph
	startIGV
	Index

