Package ‘SOMNIBUS’

February 2, 2026

Title Smooth modeling of bisulfite sequencing
Version 1.19.0

Description This package aims to analyse count-based methylation data on predefined genomic re-
gions, such as those obtained by targeted sequencing, and thus to identify differentially methy-
lated regions (DMRs) that are associated with phenotypes or traits. The method is built a rich flex-
ible model that allows for the effects, on the methylation levels, of multiple covari-
ates to vary smoothly along genomic regions. At the same time, this method also allows for se-
quencing errors and can adjust for variability in cell type mixture.

License MIT + file LICENSE
URL https://github.com/kaigiong/SOMNiBUS

BugReports https://github.com/kaiqiong/SOMNiBUS/issues
Depends R (>=4.1.0)

Imports Matrix, mgcv, stats, VGAM, IRanges, GenomelnfoDb,
GenomicRanges, rtracklayer, S4 Vectors, BiocManager, annotatr,
yaml, utils, bsseq, reshape2, data.table, ggplot2, tidyr,

Suggests BiocStyle, covr, devtools, dplyr, knitr, magick, rmarkdown,
testthat, TxDb.Hsapiens.UCSC.hg38.knownGene,
TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db,

VignetteBuilder knitr

biocViews DNAMethylation, Regression, Epigenetics,
DifferentialMethylation, Sequencing, FunctionalPrediction

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/SOMNiBUS
git_branch devel

git_last_commit 62fbl4c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

https://github.com/kaiqiong/SOMNiBUS
https://github.com/kaiqiong/SOMNiBUS/issues

2 binomRegMethModel
Date/Publication 2026-02-01
Author Kaiqgiong Zhao [aut],
Kathleen Klein [cre],
Audrey Lemacon [ctb, ctr],
Simon Laurin-Lemay [ctb, ctr],
My Intelligent Machines Inc. [ctr],
Celia Greenwood [ths, aut]
Maintainer Kathleen Klein <kathleen.klein@mail.mcgill.ca>
Contents
binomRegMethModel L 2
binomRegMethModelPlot 5
binomRegMethModelPred 6
binomRegMethModelSim 7
binomRegMethPredPlot 9
formatFromBismark Lo 11
formatFromBSseq 12
RAdat o e 13
RAdat2 e 14
runSOMNIBUS 0 o e 15
splitDataByBed 18
splitDataByChromatin L 19
splitDataByDensity 21
splitDataByGene 23
splitDataByGRanges e 25
splitDataByRegion 26
Index 28
binomRegMethModel A smoothed-EM algorithm to estimate covariate effects and test re-
gional association in Bisulfite Sequencing-derived methylation data
Description

This function fits a (dispersion-adjusted) binomial regression model to regional methylation data,
and reports the estimated smooth covariate effects and regional p-values for the test of DMRs (dif-
ferentially methylation regions). Over or under dispersion across loci is accounted for in the model
by the combination of a multiplicative dispersion parameter (or scale parameter) and a sample-
specific random effect.

This method can deal with outcomes, i.e. the number of methylated reads in a region, that are
contaminated by known false methylation calling rate (p@) and false non-methylation calling rate
(1-p1).

The covariate effects are assumed to smoothly vary across genomic regions. In order to estimate
them, the algorithm first represents the functional parameters by a linear combination of a set of

binomRegMethModel 3

restricted cubic splines (with dimension n.k), and a smoothness penalization term which depends
on the smoothing parameters lambdas is also added to control smoothness. The estimation is per-
formed by an iterated EM algorithm. Each M step constitutes an outer Newton’s iteration to estimate
smoothing parameters lambdas and an inner P-IRLS iteration to estimate spline coefficients alpha
for the covariate effects. Currently, the computation in the M step depends the implementation of
gam() in package mgcv.

Usage
binomRegMethModel (
data,
n.k,
po = 0.003,
pl = 0.9,
Quasi = TRUE,

epsilon = 10*(-6),
epsilon.lambda = 10~ (-3),
maxStep = 200,

binom.link = "logit”,
method = "REML",

covs = NULL,

RanEff = TRUE,

reml.scale = FALSE,

scale = -2,

verbose = TRUE

Arguments

data a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

n.k a vector of basis dimensions for the intercept and individual covariates. n.k
specifies an upper limit of the degrees of each functional parameters. The length
of n.k should equal to the number of covariates plus 1 (for the intercept)). We
recommend basis dimensions n.k, approximately equal to the number of unique
CpGs in the region divided by 20. This parameter will be computed automati-
cally, when several regions are generated by the partitioning function.

po the probability of observing a methylated read when the underlying true status
is unmethylated. p@ is the rate of false methylation calls, i.e. false positive rate.

p1 the probability of observing a methylated read when the underlying true status
is methylated. 1-p1 is the rate of false non-methylation calls, i.e. false negative
rate.

Quasi whether a Quasi-likelihood estimation approach will be used; in other words,
whether a multiplicative dispersion is added in the model or not.

4 binomRegMethModel

epsilon numeric; stopping criterion for the closeness of estimates of spline coefficients
from two consecutive iterations.

epsilon.lambda numeric; stopping criterion for the closeness of estimates of smoothing param-
eter lambda from two consecutive iterations.

maxStep the algorithm will step if the iteration steps exceed maxStep.

binom.link the link function used in the binomial regression model; the default is the logit
link.

method the method used to estimate the smoothing parameters. The default is the ' REML’
method which is generally better than prediction based criterion GCV. cp.

covs a vector of covariate names. The covariates with names in covs will be included
in the model and their covariate effects will be estimated. The default is to fit all
covariates in dat

RanEff whether sample-level random effects are added or not

reml.scale whether a REML-based scale (dispersion) estimator is used. The default is
Fletcher-based estimator.

scale negative values mean scale parameter should be estimated; if a positive value is
provided, a fixed scale will be used.

verbose logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

Value

This function return a 1ist including objects:

est: estimates of the spline basis coefficients alpha

lambda: estimates of the smoothing parameters for each functional parameters
est.pi: predicted methylation levels for each row in the input data
ite.points: estimates of est, lambda at each EM iteration

cov1: estimated variance-covariance matrix of the basis coefficients alphas

reg.out: regional testing output obtained using Fletcher-based dispersion estimate; an addi-
tional "ID’ row would appear if RanEff is TRUE

reg.out.reml.scale:regional testing output obtained using REML-based dispersion esti-
mate;

reg.out.gam:regional testing output obtained using (Fletcher-based) dispersion estimate from
mgcv package;

phi_fletcher: Fletcher-based estimate of the (multiplicative) dispersion parameter;
phi_reml: REML-based estimate of the (multiplicative) dispersion parameter;

phi_gam: Estimated dispersion parameter reported by mgcv;

SE.out: a matrix of the estimated pointwise Standard Errors (SE); number of rows are the
number of unique CpG sites in the input data and the number of columns equal to the total
number of covariates fitted in the model (the first one is the intercept);

SE.out.REML.scale: a matrix of the estimated pointwise Standard Errors (SE); the SE cal-
culated from the REML-based dispersion estimates

binomRegMethModelPlot 5

e uni.pos: the genomic postions for each row of CpG sites in the matrix SE.out;

* Beta.out: a matrix of the estimated covariate effects beta(t), where t denotes the genomic
positions;

* ncovs: number of functional paramters in the model (including the intercept);

e sigma00@: estimated variance for the random effect if RanEff is TRUE; NA if RanEff is
FALSE.
Author(s)

Kaiqiong Zhao

See Also

gam

Examples

data(RAdat)
RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != @,])
out <- binomRegMethModel(
data=RAdat.f, n.k=rep(5,3), p0=0.003307034, p1=0.9,
epsilon=10*(-6), epsilon.lambda=10*(-3), maxStep=200
)

binomRegMethModelPlot Plot the smooth covariate effect

Description

This function accepts an output object from function binomRegMethModel and print out a plot of
the estimated effect across the region for each test covariate.

Usage
binomRegMethModelPlot(
BEM.obj,
mfrow = NULL,
same.range = FALSE,
title = "Smooth covariate effects”,
covs = NULL,
save = NULL,

verbose = TRUE

Arguments

BEM.obj

mfrow

same.range
title

covs

save

verbose

Value

binomRegMethModelPred

an output object from function binomRegMethModel

A vector of the form c(nr, nc). Subsequent figures will be drawn in an nr-by-nc
array on the device.

specify whether the plots should be in the same vertical scale
the text for the title

a vector of covariate names. The covariates with names in covs will be included
in the plot. When the value is set to NULL all the covariates and the Intercept
will be represented. The default value is NULL.

file name to create on disk. When the value is set to NULL, the plot is not saved.
The default value is NULL.

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

This function prints out a plot of smooth covariate effects and its pointwise confidence intervals

Author(s)

Kaiqiong Zhao, Audrey Lemacon

Examples

data(RAdat)
head(RAdat)

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)
out <- binomRegMethModel(
data=RAdat.f, n.k=rep(5, 3), p0=0.003307034, p1=0.9,
epsilon=10*(-6), epsilon.lambda=10*(-3), maxStep=200,
Quasi = FALSE, RanEff = FALSE

)

binomRegMethModelPlot(out, same.range=FALSE)

binomRegMethModelPred A smoothed-EM algorithm to estimate covariate effects and test re-

gional association in Bisulfite Sequencing-derived methylation data

Description

This function returns the predicted methylation levels

binomRegMethModelSim 7

Usage

binomRegMethModelPred(
BEM.obj,
newdata = NULL,
type = "proportion”,
verbose = TRUE

)
Arguments
BEM.obj an output from the function binomRegMethModel
newdata the data set whose predictions are calculated; with columns ’Position’, covariate
names matching the BEM.obj
type return the predicted methylation proportion or the predicted response (in logit
or other binom.link scale)
verbose logical indicates if the algorithm should provide progress report information.
The default value is TRUE.
Value

This function returns the predicted methylation levels

Author(s)

Kaiqiong Zhao
Examples

data(RAdat)

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)

out <- binomRegMethModel(
data=RAdat.f, n.k=rep(5, 3), p0=0.003307034, p1=0.9,
epsilon=10*(-6), epsilon.lambda=10*(-3), maxStep=200,
Quasi = FALSE, RanEff = FALSE

)
binomRegMethModelPred(out)

binomRegMethModelSim Simulate Bisulfite sequencing data from specified smooth covariate ef-
fects

Description

Simulate Bisulfite sequencing data from a Generalized Additive Model with functional parameters
varying with the genomic position. Both the true methylated counts and observed methylated counts
are generated, given the error/conversion rate parameters p@ and p1. In addition, the true methy-
lated counts can be simulated from a binomial or a dispersed binomial distribution (Beta-binomial
distribution).

Usage

binomRegMethModelSim

binomRegMethModelSim(

n,
posit,
theta.o,
beta,
phi,

random.eff = FALSE,

mu.e = 0,

sigma.ee

po = 0.003,
pl = 0.9,

X,
Z,

binom.link = "logit",
verbose = TRUE

Arguments

n

posit

theta.o

beta

phi

random.eff

mu.e

sigma.ee

po

pl

Z
binom.link

verbose

sample size

a numeric vector of size p (the number of CpG sites in the considered region)
containing the genomic positions;

numeric vector of size p which is a functional parameter for the intercept of the
GAMM model.

numeric vector of size p which is a functional parameter for the slope of cell
type composition.

a vector of length p determining the multiplicative dispersion parameter for
each loci in a region. The dispersed-Binomial counts are simulated from beta-
binomial distribution, so each element of phi has to be greater than 1.

indicates whether adding the subject-specific random effect term e.
number, the mean of the random effect.
positive number, variance of the random effect

the probability of observing a methylated read when the underlying true status
is unmethylated. p@ is the rate of false methylation calls, i.e. false positive rate.

the probability of observing a methylated read when the underlying true status
is methylated. 1-p1 is the rate of false non-methylation calls, i.e. false negative
rate.

the matrix of the read coverage for each CpG in each sample; a matrix of n rows
and p columns.

numeric matrix with p columns and n rows storing the covariate information.
the link function used for simulation

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

binomRegMethPredPlot 9

Value

The function returns a list of following objects

* S a numeric matrix of n rows and p columns containing the true methylation counts;
* Y a numeric matrix of n rows and p columns containing the observed methylation counts;

* theta a numeric matrix of n rows and p columns containing the methylation parameter (after
the logit transformation);

* pianumeric matrix of n rows and p columns containing the true methylation proportions used
to simulate the data.

Author(s)

Kaiqgiong Zhao

Examples

data(RAdat)
RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != @, 1)
out <- binomRegMethModel(

data=RAdat.f, n.k=rep(5, 3), p0=0, pl=1,

epsilon=10*(-6), epsilon.lambda=10*(-3), maxStep=200, RanEff = FALSE
)
Z = as.matrix(RAdat.f[match(unique(RAdat.f$ID), RAdat.f$ID),
c('T_cell', 'RA")D)
set.seed(123)
X = matrix(sample(80, nrow(Z)*length(out$uni.pos), replace = TRUE),
nrow = nrow(Z), ncol = length(out$uni.pos))+10
simdat = binomRegMethModelSim(n=nrow(Z), posit= out$uni.pos,
theta.@=out$Beta.out[,1], beta= out$Beta.out[,-1], random.eff=FALSE,
mu.e=0,sigma.ee=1, p0=0.003, p1=0.9,X=X , Z=Z, binom.link='logit",
phi = rep(1, length(out$uni.pos)))

binomRegMethPredPlot Plot the predicted methylation levels

Description

This function accepts the data. frame used as an input for the function binomRegMethModelPred
with additional columns containing the predictions generated by the function binomRegMethModelPred
and columns containing the name of each experimental group and returns a plot representing the
predicted methylation levels according to each experimental group.

10 binomRegMethPredPlot

Usage

binomRegMethPredPlot (
pred,
pred.type = "proportion”,
pred.col = "pred”,
group.col = NULL,
title = "Predicted methylation levels”,
style = NULL,
save = NULL,
verbose = TRUE

Arguments

pred data.frame used as an input for the function binomRegMethModelPred (with
columns ’Position’, covariate names matching the original output from the func-
tion binomRegMethModel) with additional columns containing the predictions
generated by the function binomRegMethModelPred and columns containing
the name of each experimental group. Rows without a valid group name (empty
character "" or NA) are ignored

pred. type type of prediction returned by the function binomRegMethModelPred: proportion
or link.scale. The default value is "proportion".

pred.col character defines the name of the column containing the prediction values. The
default value is "pred".

group.col character defines the name of the column containing the experimental groups. If
the group.col is set to NULL, the resulting plot will be a simple scatter plot rep-
resenting all predicted values disregarding any experimental design. The default
value is NULL.

title the text for the title

style named list containing the wanted style (color and line type) for each experimen-

tal groups. The first level list is named according each experimental group and
for each experimental group there is a list containing the color and the type of
the line. The line types should be among the following types:

¢ twodash,

e solid,

e longdash,

e dotted,

¢ dotdash,

e dashed,

* blank.
The function accepts color name and its hexadecimal code. The default value is
NULL meaning that the colors will be chosen randomly and the line style will
be set to solid.

save file name to create on disk. When the value is set to NULL, the plot is not saved.
The default value is NULL.

formatFromBismark

verbose

Value

11

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

This function prints out a plot of the predicted methylation levels according to preset experimental

groups.

Author(s)

Audrey Lemagon

Examples

data(RAdat)

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != @,])
BEM.obj <- binomRegMethModel(
data=RAdat.f, n.k=rep(5, 3), p0=0.003307034, p1=0.9,
epsilon=10*(-6), epsilon.lambda=10*(-3), maxStep=200,
Quasi = FALSE, RantEff = FALSE, verbose = FALSE

)

pos <- BEM.obj$uni.pos

newdata <- expand.grid(pos, c(@, 1), c(@, 1))

colnames(newdata) <- c("Position”, "T_cell”, "RA")

my.pred <- binomRegMethModelPred(BEM.obj, newdata, type = "link.scale”,

verbose = FALSE)
newdata$group <-

nn

newdatal (newdata$RA == @ & newdata$T_cell == @),]$group <- "CTRL MONO"
newdatal (newdata$RA == @ & newdata$T_cell == 1),]1$group <- "CTRL TCELL"
newdatal (newdata$RA == 1 & newdata$T_cell == 0),]$group <- "RA MONO"
newdatal (newdata$RA == 1 & newdata$T_cell == 1),]1$group <- "RA TCELL"
pred <- cbind(newdata, Pred = my.pred)

style <- 1list("CTRL MONO" = list(color = "blue", type = "dashed"),
"CTRL TCELL" = list(color = "green"”, type = "dashed"),

"RA MONO" = list(color = "blue"”, type = "solid"),

"RA TCELL" = list(color = "green”, type = "solid"))

g <- binomRegMethPredPlot(pred, pred.col = "Pred”, group.col = "group”,
style = style, save = NULL, verbose = FALSE)

formatFromBismark

Parsing output from the Bismark alignment suite

Description

This function reads and converts Bismark’s 'genome wide cytosine report’ and ’coverage’ into
a list of data.frames (one per chromosome) to a format compatible with SOMNiIBUS’ main
functions runSOMNiBUS and binomRegMethModel.

https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-genome-wide-cytosine-report-optional-is-tab-delimited-in-the-following-format-1-based-coords
https://github.com/FelixKrueger/Bismark/tree/master/Docs#the-coverage-output-looks-like-this-tab-delimited-1-based-genomic-coords

12 formatFromBSseq

Usage
formatFromBismark(..., verbose = TRUE)
Arguments
parameters from bsseq: : read.bismark() function
verbose logical indicates the level of information provided by the algorithm during the
process. The default value is TRUE.
Value

This function returns a 1ist of data.frames (one per chromosome). Each data.frame contains
rows as individual CpGs appearing in all the samples. The first 4 columns contain the information
of Meth_Counts (methylated counts), Total_Counts (read depths), Position (Genomic position
for the CpG site) and ID (sample ID). The additional information (such as disease status, sex, age)
extracted from the BSseq object are listed in column 5 and onwards and will be considered as
covariate information by SOMNiBUS algorithms.

Author(s)

Audrey Lemagon

See Also

read.bismark for parsing output from the Bismark alignment suite.

Other Parsing functions: formatFromBSseq()

Examples

infile <- system.file("extdata/test_data.fastq_bismark.bismark.cov.gz",
package = "bsseq")
dat <- formatFromBismark(infile, verbose = FALSE)

formatFromBSseq Parsing output from the BSseq package

Description

This function reads and converts a BSseq object into a 1ist of data. frames (one per chromosome)
to a format compatible with SOMNiBUS’ main functions runSOMNiBUS and binomRegMethModel.

Usage

formatFromBSseq(bsseq_dat, verbose = TRUE)

RAdat 13

Arguments
bsseq_dat an object of class BSseq.
verbose logical indicates the level of information provided by the algorithm during the
process. The default value is TRUE.
Value

This function returns a 1ist of data.frames (one per chromosome). Each data.frame contains
rows as individual CpGs appearing in all the samples. The first 4 columns contain the information
of Meth_Counts (methylated counts), Total_Counts (read depths), Position (Genomic position
for the CpG site) and ID (sample ID). The additional information (such as disease status, sex, age)
extracted from the BSseq object are listed in column 5 and onwards and will be considered as
covariate information by SOMNiBUS algorithms.

Author(s)

Audrey Lemacon

See Also

BSseq for the BSseq class.

Other Parsing functions: formatFromBismark()

Examples

M <- matrix(1:9, 3,3)

colnames(M) <- c("A1", "A2", "A3")

BStest <- bsseq::BSseq(pos = 1:3, chr = c("chr1”, "chr2", "chr1"),
M=M, Cov =M+ 2)

dat <- formatFromBSseq(BStest, verbose = FALSE)

RAdat A simulated methylation dataset based on a real data.

Description

A dataset containing methylation levels on one targeted region on chromosome 4 near gene BANK1
from cases with rheumatoid arthritis (RA) and controls.

Usage

RAdat

14 RAdat2

Format

A data frame of 5289 rows and 6 columns. Each row represents a CpG site for a sample. Columns
include in order:

Meth_Counts Number of methylated reads

Total_Counts Total number of reads; read-depth

Position Genomic position (in bp) for the CpG site

ID indicates which sample the CpG site belongs to

T_cell whether a sample is from T cell or monocyte

RA whether a sample is an RA patient or control

Details

This example data include methylation levels of cell type separated blood samples of 22 rheumatoid
arthritis (RA) patients and 21 healthy individuals. In the data set, 123 CpG sites are measured and
there are 25 samples from circulating T cells and 18 samples from monocytes.

It should be noted that this data example is only for illustration purposes. The forward and reverse
reads were not merged in this dataset. Try not to overinterpret the results of this simple example.

Source

simulation is based a real data set provided by Dr. Marie Hudson (McGill University).

RAdat2 A simulated methylation dataset based on a real data.

Description

This example data include methylation levels on a region with 208 CpGs for 116 blood samples.

Usage

RAdat2

Format

A data frame of 6064 rows and 13 columns. Each row represents a CpG site for a sample. Columns
include in order:

Meth_Counts Number of methylated reads

Total_Counts Total number of reads; read-depth

Position Genomic position (in bp) for the CpG site

ID indicates which sample the CpG site belongs to

ACPA4 binary indicator for a biomarker anti-citrullinated protein antibody

runSOMNIBUS

Age Age

Sex 2-female; 1-male

Smoking 1-current or ex-smoker; 0-non-smoker

Smoking NA 1-Smoking info is NA; 0-Smoking info is available
PC1 PCl1 for the cell type proportions

PC2 PC2 for the cell type proportions

PC3 PC3 for the cell type proportions

PC4 PC4 for the cell type proportions

Source

simulation is based a real data set provided by PI Dr. Sasha Bernatsky (McGill University)

15

runSOMNiBUS Wrapper function running the smoothed-EM algorithm to estimate co-
variate effects and test regional association in Bisulfite Sequencing-
derived methylation data

Description

This function splits the methylation data into regions (according to different approaches) and, for
each region, fits a (dispersion-adjusted) binomial regression model to regional methylation data, and
reports the estimated smooth covariate effects and regional p-values for the test of DMRs (differen-
tially methylation regions). Over or under dispersion across loci is accounted for in the model by
the combination of a multiplicative dispersion parameter (or scale parameter) and a sample-specific

random effect.

This method can deal with outcomes, i.e. the number of methylated reads in a region, that are
contaminated by known false methylation calling rate (p@) and false non-methylation calling rate

(1-p1).

The covariate effects are assumed to smoothly vary across genomic regions. In order to estimate

them, the algorithm first represents the functional parameters by a linear combination of a set

of

restricted cubic splines (with dimension n.k), and a smoothness penalization term which depends
on the smoothing parameters lambdas is also added to control smoothness. The estimation is per-
formed by an iterated EM algorithm. Each M step constitutes an outer Newton’s iteration to estimate
smoothing parameters lambdas and an inner P-IRLS iteration to estimate spline coefficients alpha

for the covariate effects. Currently, the computation in the M step depends the implementation
gam() in package mgcv.

Usage

runSOMNiBUS(
dat,
split = list(approach = "region”),
min.cpgs = 50,

of

16 runSOMNIiBUS

max.cpgs = 2000,

n.k,

po = 0.003,
pl = 0.9,
Quasi = TRUE,

epsilon = 10*(-6),
epsilon.lambda = 10*(-3),
maxStep = 200,

binom.link = "logit",
method = "REML",

covs = NULL,

RanEff = TRUE,

reml.scale = FALSE,

scale = -2,

verbose = TRUE

Arguments

dat a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

split this 1ist must contain at least the element approach which corresponds to the
partitioning approach used to split the data into independent regions. The parti-
tioning methods available are:
* "region” (partitioning based on the spacing of CpGs),
e "density"” (partitioning based on CpG density),
* "chromatin” (partitioning based on chromatin states),
* "gene" (partitioning based on gene regions),
* "granges” (partitioning based on user-specific annotations provided as a
GenomicRanges object),
* "bed" (partitioning based on user-specific annotations provided in a BED
file).
This list should also contain additional parameters specific to each partitioning
approach (see the documentation of each approach for details).

min.cpgs positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

max.cpgs positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

n.k a vector of basis dimensions for the intercept and individual covariates. n.k
specifies an upper limit of the degrees of each functional parameters. The length
of n.k should equal to the number of covariates plus 1 (for the intercept)). We
recommend basis dimensions n.k, approximately equal to the number of unique
CpGs in the region divided by 20. This parameter will be computed automati-
cally, when several regions are generated by the partitioning function.

runSOMNiIBUS 17

po the probability of observing a methylated read when the underlying true status
is unmethylated. p@ is the rate of false methylation calls, i.e. false positive rate.

pl the probability of observing a methylated read when the underlying true status
is methylated. 1-p1 is the rate of false non-methylation calls, i.e. false negative
rate.

Quasi whether a Quasi-likelihood estimation approach will be used; in other words,

whether a multiplicative dispersion is added in the model or not.

epsilon numeric; stopping criterion for the closeness of estimates of spline coefficients
from two consecutive iterations.

epsilon.lambda numeric; stopping criterion for the closeness of estimates of smoothing param-
eter Llambda from two consecutive iterations.

maxStep the algorithm will step if the iteration steps exceed maxStep.

binom.link the link function used in the binomial regression model; the default is the logit
link.

method the method used to estimate the smoothing parameters. The default is the ’'REML’

method which is generally better than prediction based criterion GCV. cp.

covs a vector of covariate names. The covariates with names in covs will be included
in the model and their covariate effects will be estimated. The default is to fit all
covariates in dat

RanEff whether sample-level random effects are added or not

reml.scale whether a REML-based scale (dispersion) estimator is used. The default is
Fletcher-based estimator.

scale negative values mean scale parameter should be estimated; if a positive value is
provided, a fixed scale will be used.

verbose logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

Value
This function returns a 1ist of models (one by independent region) including objects:

* est: estimates of the spline basis coefficients alpha

* lambda: estimates of the smoothing parameters for each functional parameters
* est.pi: predicted methylation levels for each row in the input data

e ite.points: estimates of est, 1ambda at each EM iteration

* covl: estimated variance-covariance matrix of the basis coefficients alphas

* reg.out: regional testing output obtained using Fletcher-based dispersion estimate; an addi-
tional "ID’ row would appear if RanEff is TRUE

* reg.out.reml.scale: regional testing output obtained using REML-based dispersion esti-
mate;

* reg.out.gam: regional testing output obtained using (Fletcher-based) dispersion estimate
from mgcv package;

* phi_fletcher: Fletcher-based estimate of the (multiplicative) dispersion parameter;

18 splitDataByBed
phi_reml: REML-based estimate of the (multiplicative) dispersion parameter;
phi_gam: Estimated dispersion parameter reported by mgcv;
SE.out: a matrix of the estimated pointwise Standard Errors (SE); number of rows are the
number of unique CpG sites in the input data and the number of columns equal to the total
number of covariates fitted in the model (the first one is the intercept);
SE.out.REML.scale: a matrix of the estimated pointwise Standard Errors (SE); the SE cal-
culated from the REML-based dispersion estimates
uni.pos: the genomic postions for each row of CpG sites in the matrix SE.out;
Beta.out: a matrix of the estimated covariate effects beta(t), where t denotes the genomic
positions;
ncovs: number of functional paramters in the model (including the intercept);
sigma@o: estimated variance for the random effect if RanEff is TRUE; NA if RanEff is
FALSE.
Author(s)
Audrey Lemacon
Examples
B oo #
data(RAdat)
RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)
outs <- runSOMNiBUS(
dat=RAdat.f, split = list(approach = "region”, gap = 1e6), min.cpgs = 5,
n.k = rep(5,3), po = 0.003, pl = 0.9
)
splitDataByBed Split methylation data into regions based on the genomic annotations
Description
This function splits the methylation data into regions based on the genomic annotation provided
under the form of a 1-based BED file
Usage
splitDataByBed(
dat,
chr,
bed,
gap = -1,

min.cpgs = 50,
max.cpgs = 2000,
verbose = TRUE

splitDataByChromatin

Arguments

dat

chr

bed

gap

min.cpgs

max.cpgs

verbose

Value

19

a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

character vector containing the chromosome information. Its length should be
equal to the number of rows in dat.

character, path to the 1-based BED file containing the annotations

integer defining the maximum gap that is allowed between two regions to be
considered as overlapping. According to the GenomicRanges: : findOverlaps
function, the gap between 2 ranges is the number of positions that separate them.
The gap between 2 adjacent ranges is 0. By convention when one range has
its start or end strictly inside the other (i.e. non-disjoint ranges), the gap is
considered to be -1. Decimal values will be rounded to the nearest integer. The
default value is -1 (meaning strict overlapping).

positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

A named list of data.frame containing the data of each independent region.

Author(s)

Audrey Lemacon

splitDataByChromatin Split methylation data into regions based on the chromatin states

Description

This function splits the methylation data into regions based on the chromatin states predicted by
ChromHMM software (Ernst and Kellis (2012)). The annotations come from the Bioconductor
package annnotatr. Chromatin states determined by chromHMM are available in hg19 for nine
cell lines (Gm12878, Hlhesc, Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, and Nhlf).

Usage

splitDataByChromatin

splitDataByChromatin(

dat,

chr,

cell.line,
states,

gap = -1,
min.cpgs = 50,
max.cpgs 2000,
verbose = TRUE

Arguments

dat a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID(sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

chr character vector containing the chromosome information. Its length should be
equal to the number of rows in dat.

cell.line character defining the cell line of interest. Nine cell lines are available:

"gm12878": Lymphoblastoid cells GM 12878,
"h1hesc": Embryonic cells HI hESC,
"hepg2": Liver carcinoma HepG2,

"hmec"”, Mammary epithelial cells HMEC,
"hsmm"”, Skeletal muscle myoblasts HSMM,
"huvec": Umbilical vein endothelial HUVEC,
"k562": Myelogenous leukemia K562,
"nhek": Keratinocytes NHEK,

"nhlf": Normal human lung fibroblasts NHLF.

states character vector defining the chromatin states of interest among the following
available options:

"ActivePromoter”: Active Promoter
"WeakPromoter"”: Weak Promoter
"PoisedPromoter”: Poised Promoter
"StrongEnhancer”: Strong Enhancer
"WeakEnhancer": Weak/poised Enhancer
"Insulator”: Insulator

"TxnTransition”: Transcriptional Transition
"TxnElongation”: Transcriptional Elongation
"WeakTxn": Weak Transcribed

"Repressed”: Polycomb-Repressed
"Heterochrom”: Heterochromatin; low signal

splitDataByDensity

gap

min.cpgs

max.cpgs

verbose

Value

21

e "RepetitiveCNV": Repetitive/Copy Number Variation Use state="all"
to select all the states simultaneously.

this integer defines the maximum gap that is allowed between two regions to be
considered as overlapping. According to the GenomicRanges: : findOverlaps
function, the gap between 2 ranges is the number of positions that separate them.
The gap between 2 adjacent ranges is 0. By convention when one range has
its start or end strictly inside the other (i.e. non-disjoint ranges), the gap is
considered to be -1. Decimal values will be rounded to the nearest integer. The
default value is -1.

positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

A list of data. frame containing the data of each independent region.

Author(s)
Audrey Lemacon

Examples
e #
data(RAdat)
RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)
results <- splitDataByChromatin(dat = RAdat.f,
cell.line = "huvec”, chr = rep(x = "chr4”, times = nrow(RAdat.f)),

states = "Insulator”, verbose = FALSE)

splitDataByDensity Split methylation data into regions based on the density of CpGs

Description

This function splits the methylation data into regions based on the density of CpGs.

22 splitDataByDensity
Usage
splitDataByDensity(

dat,

window.size = 100,

by =1,

min.density = 5,

gap = 10,

min.cpgs = 50,
max.cpgs = 2000,
verbose = TRUE

Arguments

dat

window.size

by

min.density

gap

min.cpgs

max.cpgs

verbose

Value

a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

this positive integer defines the size of the sliding window in bp. Decimal values
will be rounded to the nearest integer. The value should be greater than 10. The
default value is 100 (100 bp)

positive integer defines by how many base pairs the window moves at each in-
crement. Decimal values will be rounded to the nearest integer. The default
value is 1 (1 bp).

positive integer defines the minimum density threshold for each window. Dec-
imal values will be rounded to the nearest integer. The default value is 5 (5
CpGs/window.size).

positive integer defining the gap width beyond which we consider that two re-
gions are independent. Decimal values will be rounded to the nearest integer.
The default value is 10 (10bp).

positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

A named list of data.frame containing the data of each independent region.

Author(s)

Audrey Lemagon

splitDataByGene

Examples

data(RAdat)

23

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != @, 1)
results <- splitDataByDensity(dat = RAdat.f, window.size = 100, by = 1,
min.density = 5, gap = 10, min.cpgs = 50, verbose = FALSE)

splitDataByGene

Split methylation data into regions based on the genes annotations

Description

This function splits the methylation data into regions based on the genes. The annotations are
coming from the Bioconductor package annnotatr.

Usage

splitDataByGene(
dat,
chr,
organism = "human”,
build = "hg38",
types = "promoter”,
gap = -1,
min.cpgs = 50,

max.cpgs = 2000,
verbose = TRUE

Arguments

dat

chr

organism

build

a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID(sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

character vector containing the chromosome information. Its length should be
equal to the number of rows in dat.

character defining the organism of interest Only Homo sapiens ("human”) is
available. Additional packages are required for Mus musculus ("mouse”), Rat-
tus norvegicus ("rat") and Drosophila melanogaster ("fly"). The matching is
case-insensitive. The default value is "human”.

character defining the version of the genome build on which the methylation
data have been mapped. By default, the build is set to "hg38"”, however the
build "hg19" is also available for Homo sapiens: Once the additional packages
are installed, the following organisms and builds are available:

24 splitDataByGene

e "mm9” and "mm10" for Mus musculus;
* "rn4", "rn5" and "rn6" for Rattus norvegicus;
e "dm3" and "dm6" for Drosophila melanogaster;
types character vector defining the type of genic annotations to use among the follow-
ing options:
* "upstream” for the annotations included 1-5Kb upstream of the TSS;
* "promoter” for the annotations included < 1Kb upstream of the TSS;
e "threeprime"” for the annotations included in 3° UTR;
e "fiveprime" for the annotations included in the 5° UTR;
* "exon" for the annotations included in the exons;
e "intron” for the annotations included in the introns;
e "all" for all the annotations aforementioned. The default value is "promoter”.
gap this integer defines the maximum gap allowed between two regions to be consid-
ered as overlapping. According to the GenomicRanges: : findOverlaps func-
tion, the gap between 2 ranges is the number of positions that separate them.
The gap between 2 adjacent ranges is 0. By convention when one range has its
start or end strictly inside the other (i.e. non-disjoint ranges), the gap is consid-

ered to be -1. Decimal values will be rounded to the nearest integer. The default
value is -1.

min.cpgs positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

max.cpgs positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

verbose logical indicates if the algorithm should provide progress report information.
The default value is TRUE.
Value

A named list of data.frame containing the data of each independent region.

Author(s)

Audrey Lemagon

Examples

data(RAdat)

Add a column containing the chromosome information
RAdat$Chr <- "chr4”

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != @,])

results <- splitDataByGene(dat = RAdat.f,

chr = rep(x = "chr1”, times = nrow(RAdat.f)), verbose = FALSE)

splitDataByGRanges 25

splitDataByGRanges Split methylation data into regions based on the genomic annotations

Description

This function splits the methylation data into regions based on the genomic annotations provided
under the form of a GenomicRanges object.

Usage

splitDataByGRanges(
dat,
chr,
annots,
gap = -1,
min.cpgs = 50,
max.cpgs = 2000,
verbose = TRUE

)
Arguments

dat a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

chr character vector containing the chromosome information. Its length should be
equal to the number of rows in dat.

annots GenomicRanges object containing the annotations

gap integer defining the maximum gap that is allowed between two regions to be
considered as overlapping. According to the GenomicRanges: : findOverlaps
function, the gap between 2 ranges is the number of positions that separate them.
The gap between 2 adjacent ranges is 0. By convention when one range has
its start or end strictly inside the other (i.e. non-disjoint ranges), the gap is
considered to be -1. Decimal values will be rounded to the nearest integer. The
default value is -1 (meaning strict overlaping).

min.cpgs positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

max.cpgs positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

verbose logical indicates if the algorithm should provide progress report information.

The default value is TRUE.

26 splitDataByRegion

Value

A named list of data. frame containing the data of each independent region.

Author(s)

Audrey Lemagon

Examples

data(RAdat)

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)

annot <- GenomicRanges: :GRanges(seqnames = "chr1”, IRanges::IRanges(
start = c(102711720,102711844,102712006,102712503,102712702),

end = ¢(102711757,102711909,102712195,102712637,102712712)

)

results <- splitDataByGRanges(dat = RAdat.f,

chr = rep(x = "chr1”, times = nrow(RAdat.f)),

annots = annot, gap = -1, min.cpgs = 5)
splitDataByRegion Split methylation data into regions based on the spacing of CpGs
Description

This function splits the methylation data into regions based on the spacing of CpGs.

Usage
splitDataByRegion(
dat,
gap = 1e+06,

min.cpgs = 50,
max.cpgs = 2000,
verbose = TRUE

)
Arguments

dat a data frame with rows as individual CpGs appearing in all the samples. The first
4 columns should contain the information of Meth_Counts (methylated counts),
Total_Counts (read depths), Position (Genomic position for the CpG site)
and ID (sample ID). The covariate information, such as disease status or cell
type composition, are listed in column 5 and onwards.

gap positive integer defining the gap width beyond which we consider that two re-

gions are independent. Odd and decimal values will be rounded to the next even
numbers (e.g. 8.2 and 8.7 become gaps of 8 and 10 respectively). The default
value is 1e+6 (1Mb).

splitDataByRegion 27

min.cpgs positive integer defining the minimum number of CpGs within a region for the
algorithm to perform optimally. The default value is 50.

max.cpgs positive integer defining the maximum number of CpGs within a region for the
algorithm to perform optimally. The default value is 2000.

verbose logical indicates if the algorithm should provide progress report information.
The default value is TRUE.

Value

A named list of data. frame containing the data of each independent region.

Author(s)

Audrey Lemacon

Examples

data(RAdat)

RAdat.f <- na.omit(RAdat[RAdat$Total_Counts != 0, 1)

results <- splitDataByRegion(dat=RAdat.f, gap = 1e6, min.cpgs = 5,
verbose = FALSE)

Index

* Parsing functions
formatFromBismark, 11
formatFromBSseq, 12

x datasets
RAdat, 13
RAdat2, 14

binomRegMethModel, 2
binomRegMethModelPlot, 5
binomRegMethModelPred, 6
binomRegMethModelSim, 7
binomRegMethPredPlot, 9
BSseq, 13

formatFromBismark, 11, 13
formatFromBSseq, 12, 12

gam, 5

RAdat, 13
RAdat2, 14
read.bismark, 12
runSOMNiBUS, 15

splitDataByBed, 18
splitDataByChromatin, 19
splitDataByDensity, 21
splitDataByGene, 23
splitDataByGRanges, 25
splitDataByRegion, 26

28

	binomRegMethModel
	binomRegMethModelPlot
	binomRegMethModelPred
	binomRegMethModelSim
	binomRegMethPredPlot
	formatFromBismark
	formatFromBSseq
	RAdat
	RAdat2
	runSOMNiBUS
	splitDataByBed
	splitDataByChromatin
	splitDataByDensity
	splitDataByGene
	splitDataByGRanges
	splitDataByRegion
	Index

