Package ‘SNPRelate’

February 2, 2026

Type Package

Title Parallel Computing Toolset for Relatedness and Principal
Component Analysis of SNP Data

Version 1.45.0

Date 2025-09-26

Depends R (>= 2.15), gdsfmt (>= 1.8.3)
LinkingTo gdsfmt

Imports methods, RhpcBLASctl

Suggests parallel, Matrix, RUnit, knitr, markdown, rmarkdown, MASS,
BiocGenerics

Enhances SeqArray (>=1.12.0)

Description Genome-wide association studies (GWAS) are widely used to
investigate the genetic basis of diseases and traits, but they pose many
computational challenges. We developed an R package SNPRelate to provide
a binary format for single-nucleotide polymorphism (SNP) data in GWAS
utilizing CoreArray Genomic Data Structure (GDS) data files. The GDS
format offers the efficient operations specifically designed for
integers with two bits, since a SNP could occupy only two bits.
SNPRelate is also designed to accelerate two key computations on SNP
data using parallel computing for multi-core symmetric multiprocessing
computer architectures: Principal Component Analysis (PCA) and
relatedness analysis using Identity-By-Descent measures. The SNP GDS
format is also used by the GWASTools package with the support of S4
classes and generic functions. The extended GDS format is implemented
in the SeqArray package to support the storage of single nucleotide
variations (SNVs), insertion/deletion polymorphism (indel) and
structural variation calls in whole-genome and whole-exome variant data.

License GPL-3
VignetteBuilder knitr
LazyData true

URL https://github.com/zhengxwen/SNPRelate

1

https://github.com/zhengxwen/SNPRelate

2 Contents

BugReports https://github.com/zhengxwen/SNPRelate/issues

biocViews Infrastructure, Genetics, StatisticalMethod,
Principal Component

git_url https://git.bioconductor.org/packages/SNPRelate
git_branch devel

git_last_commit 3bd5f10

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Xiuwen Zheng [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1390-0708>),
Stephanie Gogarten [ctb],
Cathy Laurie [ctb],
Bruce Weir [ctb, ths] (ORCID: <https://orcid.org/0000-0002-4883-1247>)

Maintainer Xiuwen Zheng <zhengx@u.washington.edu>

Contents
SNPRelate-package 3
hapmap_geno L 6
snpgdsAdmixPlot 6
snpgdsAdmixProp L 8
snpgdsAlleleSwitch L 10
snpgdsApartSelection 11
snpgdsBED2GDS 12
snpgdsClose e e e e 14
snpgdsCombineGenol e 15
snpgdsCreateGeno e e e e e 17
snpgdsCreateGenoSet L e e 18
snpgdsCutTree o . 20
snpgdsDiss . .. oL 23
snpgdsDrawTree L e 24
snpgdsEIGMIX e 26
snpgdsErrMsg L. 29
snpgdsExampleFileName o o 29
SNPGDSFileClass 30
snpgdsEsto 30
snpgdsGDS2BED 32
snpgdsGDS2Eigen 33
snpgdsGDS2PED 35
snpgdsGEN2GDS e 36
sSnpgdsGetGeno 37
snpgdsGRM L 39
snpgdsHCluster e 41

snpgdsHWE o L 43

https://github.com/zhengxwen/SNPRelate/issues
https://orcid.org/0000-0002-1390-0708
https://orcid.org/0000-0002-4883-1247

SNPRelate-package 3

snpgdsIBDKING o e 44
snpgdsIBDMLE e 47
snpgdsIBDMLELogLik 50
snpgdsIBDMOM e 52
snpgdsIBDSelection 55
snpgdsIBS . . .o 56
snpgdsIBSNum 58
snpgdsIndInb 59
snpgdsIndInbCoef L 60
snpgdsindivBeta. L 62
snpgdsLDMat 64
snpgdsLDpair e e e 65
snpgdsLDpruning e 67
snpgdsMergeGRM L 69
snpgdsOpen L 71
sSnpgdsOption e e 72
snpgdsPairlBD L 73
snpgdsPairlBDMLELogLik, 75
snpgdsPairScore 78
snpgdsPCA e 80
snpgdsPCACOIT o o 84
snpgdsPCASampLoading L 86
snpgdsPCASNPLoading e 88
snpgdsPED2GDS e 89
snpgdsSampMissRateo 91
snpgdsSelectSNP 92
snpgdsSlidingWindow L 93
snpgdsSNPLISt e e e 94
snpgdsSNPListClass e 95
snpgdsSNPListIntersect L e 96
snpgdsSNPRateFreq L 97
SNPEASSUMMArY e e e 99
snpgdsTranspose e e e e e e e e e 99
snpgdsVCEF2GDS e 100
snpgdsVCF2GDS_R o L 104
Index 106
SNPRelate-package Parallel Computing Toolset for Genome-Wide Association Studies
Description

Genome-wide association studies are widely used to investigate the genetic basis of diseases and
traits, but they pose many computational challenges. We developed SNPRelate (R package for
multi-core symmetric multiprocessing computer architectures) to accelerate two key computations
on SNP data: principal component analysis (PCA) and relatedness analysis using identity-by-
descent measures. The kernels of our algorithms are written in C/C++ and highly optimized.

4 SNPRelate-package

Details

Package: = SNPRelate

Type: Package

License: GPL version 3
Depends: gdsfmt (>=1.0.4)

The genotypes stored in GDS format can be analyzed by the R functions in SNPRelate, which
utilize the multi-core feature of machine for a single computer.

Webpage: https://github.com/zhengxwen/SNPRelate, http://corearray.sourceforge.net/

Tutorial: http://corearray.sourceforge.net/tutorials/SNPRelate/

Author(s)

Xiuwen Zheng <zhengxwen@gmail . com>

References

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A High-performance Computing
Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics (2012);
doi: 10.1093/bioinformatics/bts610

Examples

S
Convert the PLINK BED file to the GDS file
#

PLINK BED files

bed.fn <- system.file("extdata”, "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata”, "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata”, "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS (bed. fn, fam.fn, bim.fn, "HapMap.gds")

HHHEHHAEEEEE R R R
Principal Component Analysis
#

open
genofile <- snpgdsOpen("HapMap.gds")

RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1",
col=rgb(0,0,150, 50, maxColorValue=255), pch=19)

close the file

https://github.com/zhengxwen/SNPRelate
http://corearray.sourceforge.net/
http://corearray.sourceforge.net/tutorials/SNPRelate/

SNPRelate-package

snpgdsClose(genofile)

B S ST T
Identity-By-Descent (IBD) Analysis
#

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBDMoM(genofile)

flag <- lower.tri(RV$ko)

plot(RV$ko[flag]l, RV$k1[flagl, xlab="ke@", ylab="k1",
col=rgb(0,0,150, 50, maxColorValue=255), pch=19)

abline(1, -1, col="red", 1lty=4)

close the file
snpgdsClose(genofile)

S
Identity-By-State (IBS) Analysis
#

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBS(genofile)

m <- 1 - RV$ibs

colnames(m) <- rownames(m) <- RV$sample.id
GeneticDistance <- as.dist(m[1:45, 1:45])
HC <- hclust(GeneticDistance, "ave")
plot(HC)

close the file
snpgdsClose(genofile)

HHEHHAEEEEE R AR AR
Linkage Disequilibrium (LD) Analysis
#

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[1:200]
L1 <- snpgdsLDMat(genofile, snp.id=snpset, method="composite”, slide=-1)

plot
image(abs(L1$LD), col=terrain.colors(64))

close the file
snpgdsClose(genofile)

snpgdsAdmixPlot

hapmap_geno SNP genotypes of HapMap samples

Description
A list object including the following components:
sample. id — a vector of sample ids;
snp.id — a vector of SNP ids;
snp.position — a vector of SNP positions;
snp.chromosome — a vector of chromosome indices;
snp.allele — a character vector of “reference / non-reference”;

genotype — a “# of SNPs” X “# of samples” genotype matrix.

Usage

hapmap_geno

Value

A list

snpgdsAdmixPlot Plot Ancestry Proportions

Description

Plot the admixture proportions according to their ancestries.

Usage

snpgdsAdmixPlot(propmat, group=NULL, col=NULL, multiplot=TRUE, showgrp=TRUE,

shownum=TRUE, ylim=TRUE, na.rm=TRUE)
snpgdsAdmixTable(propmat, group, sort=FALSE)

Arguments
propmat a sample-by-ancestry matrix of proportion estimates, returned from snpgdsAdmixProp()
group a character vector of a factor according to the rows in propmat
col specify colors; if group is not specified, it is a color for each sample; otherwise
specify colors for the groups
multiplot single plot or multiple plots

showgrp show group names in the plot; applicable when group is used

snpgdsAdmixPlot 7

shownum TRUE: show the number of each group on the X-axis in the figure; applicable
when group is used
ylim TRUE: y-axis is limited to [0, 1]; FALSE: ylim <- range(propmat); a 2-length
numeric vector: ylim used in plot ()
na.rm TRUE: remove the sample(s) according to the missing value(s) in group
sort TRUE: rearranges the rows of proportion matrices into descending order
Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.
Value

snpgdsAdmixPlot(): none.

snpgdsAdmixTable(): alist of data. frame consisting of group, num, mean, sd, min, max

Author(s)

Xiuwen Zheng

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. Theo-
retical Population Biology. 2015 Oct 23. pii: S0040-5809(15)00089-1. doi: 10.1016/j.tpb.2015.09.004.

See Also

snpgdsEIGMIX, snpgdsAdmixProp

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information

or pop_code <- scan("pop.txt", what=character())

if it is stored in a text file "pop.txt"

pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],
YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))1)

8 snpgdsAdmixProp
prop <- snpgdsAdmixProp(RV, groups=groups, bound=TRUE)
draw
snpgdsAdmixPlot (prop, group=pop_code)
use user-defined colors for the groups
snpgdsAdmixPlot (prop, group=pop_code, multiplot=FALSE, col=c(3,2,4))
snpgdsAdmixTable(prop, group=pop_code)
close the genotype file
snpgdsClose(genofile)
snpgdsAdmixProp Estimate ancestral proportions from the eigen-analysis
Description
Estimate ancestral (admixture) proportions based on the eigen-analysis.
Usage
snpgdsAdmixProp(eigobj, groups, bound=FALSE)
Arguments
eigobj an object of snpgdsEigMixClass from snpgdsEIGMIX, or an object of snpgdsPCAClass
from snpgdsPCA
groups a list of sample IDs, such like groups = list(CEU = c("NA@101", "NA1022",
...), YRI = c("NAxxxx", ...), Asia=c("NA1234", ...))
bound if TRUE, the estimates are bounded in [0, 1], and the sum of proportions is one;
bound=FALSE for unbiased estimates
Details
The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.
Value
Return a matrix of ancestral proportions with rows for study individuals (rownames() is sample
ID).
Author(s)

Xiuwen Zheng

snpgdsAdmixProp 9

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. Theo-
retical Population Biology. 2015 Oct 23. pii: S0040-5809(15)00089-1. doi: 10.1016/j.tpb.2015.09.004.
[Epub ahead of print]

See Also

snpgdsEIGMIX, snpgdsPCA, snpgdsAdmixPlot

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information

or pop_code <- scan("pop.txt", what=character())

if it is stored in a text file "pop.txt”

pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),

EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)

draw

plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
xlab="eigenvector 2", ylab="eigenvector 1")
legend("bottomleft”, legend=levels(tab$pop), pch="o0", col=1:4)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],
YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))1)

prop <- snpgdsAdmixProp(RV, groups=groups)
head(prop)

draw
plot(propl, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),
xlab = "Admixture Proportion from YRI",

10 snpgdsAlleleSwitch

ylab = "Admixture Proportion from CEU")
abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", 1lty=2)
abline(a=1, b=-1, col="gray25", lty=2)
legend("topright”, legend=levels(tab$pop), pch="0", col=1:4)

draw
snpgdsAdmixPlot (prop, group=pop_code)

close the genotype file
snpgdsClose(genofile)

snpgdsAlleleSwitch Allele-switching

Description

Switch alleles according to the reference if needed.

Usage
snpgdsAlleleSwitch(gdsobj, A.allele, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
A.allele characters, referring to A allele
verbose if TRUE, show information

Value

A logical vector with TRUE indicating allele-switching and NA when it is unable to determine. NA
occurs when A.allele = NA or A.allele is not in the list of alleles.

Author(s)

Xiuwen Zheng

Examples

the file name of SNP GDS
(fn <- snpgdsExampleFileName())

copy the file
file.copy(fn, "test.gds", overwrite=TRUE)

open the SNP GDS file

snpgdsApartSelection 11

genofile <- snpgdsOpen(”test.gds”, readonly=FALSE)

allelic information
allele <- read.gdsn(index.gdsn(genofile, "snp.allele"))
allele.list <- strsplit(allele, "/")

A.allele <- sapply(allele.list, function(x) { x[1]1 })
B.allele <- sapply(allele.list, function(x) { x[2] })

set.seed(1000)
flag <- rep(FALSE, length(A.allele))
flag[sample.int(length(A.allele), 50, replace=TRUE)] <- TRUE

A.allele[flag] <- B.allele[flag]

A.allele[sample.int(length(A.allele), 10, replace=TRUE)] <- NA
table(A.allele, exclude=NULL)

allele switching
z <- snpgdsAlleleSwitch(genofile, A.allele)
table(z, exclude=NULL)

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds"”, force=TRUE)

snpgdsApartSelection Select SNPs with a basepair distance

Description

Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

Usage

snpgdsApartSelection(chromosome, position, min.dist=100000,
max.n.snp.perchr=-1, verbose=TRUE)

Arguments
chromosome chromosome codes
position SNP positions in base pair

min.dist A numeric value to specify minimum distance required (in basepairs)

12 snpgdsBED2GDS

max.n.snp.perchr

A numeric value specifying the maximum number of SNPs to return per chro-
mosome, "-1" means no number limit

verbose if TRUE, show information

Value

A logical vector indicating which SNPs were selected.

Author(s)

Xiuwen Zheng

See Also

snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile

chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))
pos <- read.gdsn(index.gdsn(genofile, "snp.position”))

set.seed(1000)

flag <- snpgdsApartSelection(chr, pos, min.dist=250000, verbose=TRUE)
table(flag)

close the genotype file
snpgdsClose(genofile)

snpgdsBED2GDS Conversion from PLINK BED to GDS

Description

Convert a PLINK binary ped file to a GDS file.

Usage

snpgdsBED2GDS (bed. fn, fam.fn, bim.fn, out.gdsfn, family=FALSE,
snpfirstdim=NA, compress.annotation="LZMA_RA", compress.geno="",
option=NULL, cvt.chr=c("int", "char"), cvt.snpid=c("auto”, "int"),
verbose=TRUE)

snpgdsBED2GDS

Arguments

bed.fn
fam.fn

bim.fn

out.gdsfn
family

snpfirstdim

13

the file name of binary file, genotype information

the file name of first six columns of ".ped”; if it is missing, ".fam" is added to
bed.fn

the file name of extended MAP file: two extra columns = allele names; if it is
missing, ".bim" is added to bim.fn

the output file name of GDS file
if TRUE, to include family information in the sample annotation

if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc); NA,
the dimension is determined by the BED file

compress.annotation

compress. geno

option

cvt.chr

cvt.snpid

verbose

Details

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add. gdsn

the compression method for "genotype"; optional values are defined in the func-
tion add. gdsn

NULL or an object from snpgdsOption, see details

"int" — chromosome code in the GDS file is integer; "char"” — chromosome
code in the GDS file is character

"int" —to create an integer snp. id starting from 1; "auto” — if SNP IDs in the
PLINK file are not unique, to create an an integer snp. id, otherwise to use SNP
IDs for snp.id

if TRUE, show information

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

BED - the PLINK binary ped format.

The user could use option to specify the range of code for autosomes. For humans there are 22
autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for
humans. The user could call option = snpgdsOption(autosome.end=38) for importing the BED
file of dog. It also allow define new chromosome coding, e.g., option = snpgdsOption(Z=27).

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

14 snpgdsClose

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsOption, snpgdsPED2GDS, snpgdsGDS2PED

Examples

PLINK BED files

bed.fn <- system.file("extdata”, "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata”, "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata”, "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS (bed. fn, fam.fn, bim.fn, "HapMap.gds")

open
genofile <- snpgdsOpen("HapMap.gds")
genofile

close

snpgdsClose(genofile)

delete the temporary file
unlink("HapMap.gds"”, force=TRUE)

snpgdsClose Close the SNP GDS File

Description

Close the SNP GDS file

Usage

snpgdsClose(gdsobj)
Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file
Details

It is suggested to call snpgdsClose instead of closefn.gds.

snpgdsCombineGeno 15

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsOpen

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

genofile

close the file
snpgdsClose(genofile)

snpgdsCombineGeno Merge SNP datasets

Description

To merge GDS files of SNP genotypes into a single GDS file

Usage
snpgdsCombineGeno(gds.fn, out.fn, method=c("position”, "exact"),
compress.annotation="ZIP_RA.MAX", compress.geno="ZIP_RA",
same.strand=FALSE, snpfirstdim=FALSE, verbose=TRUE)
Arguments
gds.fn a character vector of GDS file names to be merged
out.fn the name of output GDS file
method "exact"”: matching by all snp.id, chromosomes, positions and alleles; "position”:

matching by chromosomes and positions
compress.annotation
the compression method for the variables except genotype

compress.geno the compression method for the variable genotype
same.strand if TRUE, assuming the alleles on the same strand

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

verbose if TRUE, show information

16 snpgdsCombineGeno

Details

This function calls snpgdsSNPListIntersect internally to determine the common SNPs. Allele
definitions are taken from the first GDS file.

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsCreateGeno, snpgdsCreateGenoSet, snpgdsSNPList, snpgdsSNPListIntersect

Examples

get the file name of a gds file
fn <- snpgdsExampleFileName()

f <- snpgdsOpen(fn)

samp_id <- read.gdsn(index.gdsn(f, "sample.id"))

snp_id <- read.gdsn(index.gdsn(f, "snp.id"))

geno <- read.gdsn(index.gdsn(f, "genotype"), start=c(1,1), count=c(-1, 3000))
snpgdsClose(f)

split the GDS file with different samples

snpgdsCreateGenoSet(fn, "t1.gds", sample.id=samp_id[1:10],
snp.id=snp_id[1:3000])

snpgdsCreateGenoSet(fn, "t2.gds", sample.id=samp_id[11:30],
snp.id=snp_id[1:3000])

combine with different samples

snpgdsCombineGeno(c("t1.gds", "t2.gds"), "test.gds", same.strand=TRUE)
f <- snpgdsOpen("test.gds")

g <- read.gdsn(index.gdsn(f, "genotype"))

snpgdsClose(f)

identical(geno[1:30, 1, g) # TRUE

split the GDS file with different SNPs
snpgdsCreateGenoSet(fn, "t1.gds", snp.id=snp_id[1:100])
snpgdsCreateGenoSet(fn, "t2.gds"”, snp.id=snp_id[101:300])

combine with different SNPs
snpgdsCombineGeno(c("t1.gds"”, "t2.gds"), "test.gds")
f <- snpgdsOpen("test.gds")

g <- read.gdsn(index.gdsn(f, "genotype"))
snpgdsClose(f)

snpgdsCreateGeno 17

identical(geno[, 1:300], g) # TRUE

delete the temporary files
unlink(c(”"t1.gds", "t2.gds”, "t3.gds", "t4.gds", "test.gds"), force=TRUE)

snpgdsCreateGeno Create a SNP genotype dataset from a matrix

Description

To create a GDS file of genotypes from a matrix.

Usage

snpgdsCreateGeno(gds.fn, genmat, sample.id=NULL, snp.id=NULL, snp.rs.id=NULL,
snp.chromosome=NULL, snp.position=NULL, snp.allele=NULL, snpfirstdim=TRUE,

compress.annotation="ZIP_RA.max", compress.geno="", other.vars=NULL)
Arguments
gds.fn the file name of gds
genmat a matrix of genotypes
sample.id the sample ids, which should be unique
snp.id the SNP ids, which should be unique
snp.rs.id the rs ids for SNPs, which can be not unique

snp.chromosome the chromosome indices
snp.position the SNP positions in basepair
snp.allele the reference/non-reference alleles

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)
compress.annotation
the compression method for the variables except genotype
compress.geno the compression method for the variable genotype

other.vars a list object storing other variables

Details

There are possible values stored in the variable genmat: 0, 1, 2 and other values. “0” indicates two
B alleles, “1” indicates one A allele and one B allele, “2” indicates two A alleles, and other values
indicate a missing genotype.

If snpfirstdim is TRUE, then genmat should be “# of SNPs X # of samples”; if snpfirstdim is
FALSE, then genmat should be “# of samples X # of SNPs”.

The typical variables specified in other.vars are “sample.annot” and “snp.annot”, which are
data.frame objects.

18 snpgdsCreateGenoSet

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsCreateGenoSet, snpgdsCombineGeno

Examples

load data
data(hapmap_geno)

create a gds file

with(hapmap_geno, snpgdsCreateGeno("test.gds"”, genmat=genotype,
sample.id=sample.id, snp.id=snp.id, snp.chromosome=snp.chromosome,
snp.position=snp.position, snp.allele=snp.allele, snpfirstdim=TRUE))

open the gds file
genofile <- snpgdsOpen("test.gds")

RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1")

close the file
snpgdsClose(genofile)

snpgdsCreateGenoSet Create a SNP genotype dataset from a GDS file

Description

To create a GDS file of genotypes from a specified GDS file.

Usage

snpgdsCreateGenoSet(src.fn, dest.fn, sample.id=NULL, snp.id=NULL,
snpfirstdim=NULL, compress.annotation="ZIP_RA.max", compress.geno="",
verbose=TRUE)

snpgdsCreateGenoSet 19

Arguments
src.fn the file name of a specified GDS file
dest.fn the file name of output GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)
compress.annotation
the compression method for the variables except genotype

compress.geno the compression method for the variable genotype

verbose if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

See Also

snpgdsCreateGeno, snpgdsCombineGeno

Examples

open an example dataset (HapMap)
(genofile <- snpgdsOpen(snpgdsExampleFileName()))
+ [7=
|--+ sample.id { VStr8 279 ZIP(29.9%), 679B }
|--+ snp.id { Int32 9088 ZIP(34.8%), 12.3K }
|--+ snp.rs.id { VStr8 9088 ZIP(40.1%), 36.2K }
|--+ snp.position { Int32 9088 ZIP(94.7%), 33.6K }
|--+ snp.chromosome { UInt8 9088 ZIP(0.94%), 85B } *
|--+ snp.allele { VStr8 9088 ZIP(11.3%), 4.0K }
|--+ genotype { Bit2 279x9088, 619.0K } *
\--+ sample.annot [data.frame] *
|--+ family.id { VStr8 279 ZIP(34.4%), 514B }
|--+ father.id { VStr8 279 ZIP(31.5%), 220B }
|--+ mother.id { VStr8 279 ZIP(30.9%), 214B }
|--+ sex { VStr8 279 ZIP(17.0%), 95B }
\--+ pop.group { VStr8 279 ZIP(6.18%), 69B }

Y E E E E

set.seed(1000)

snpset <- unlist(snpgdsLDpruning(genofile))
length(snpset)

6547

close the file

20 snpgdsCutTree

snpgdsClose(genofile)
snpgdsCreateGenoSet (snpgdsExampleFileName(), "test.gds”, snp.id=snpset)

HHHHHE
check

(gfile <- snpgdsOpen("test.gds"))
+ [] =

|--+ sample.id { Str8 279 ZIP_ra(31.2%), 7158 }

|--+ snp.id { Int32 6547 ZIP_ra(34.9%), 8.9K }

|--+ snp.rs.id { Str8 6547 ZIP_ra(41.5%), 27.1K }

|--+ snp.position { Int32 6547 ZIP_ra(94.9%), 24.3K }
|--+ snp.chromosome { Int32 6547 ZIP_ra(@.45%), 124B }
|--+ snp.allele { Str8 6547 ZIP_ra(11.5%), 3.0K }

\--+ genotype { Bit2 279x6547, 446.0K } *

close the file

snpgdsClose(gfile)

unlink("test.gds", force=TRUE)

snpgdsCutTree Determine clusters of individuals

Description
To determine sub groups of individuals using a specified dendrogram from hierarchical cluster
analysis

Usage

snpgdsCutTree(hc, z.threshold=15, outlier.n=5, n.perm = 5000, samp.group=NULL,
col.outlier="red"”, col.list=NULL, pch.outlier=4, pch.list=NULL,
label .H=FALSE, label.Z=TRUE, verbose=TRUE)

Arguments
hc an object of snpgdsHCluster
z.threshold the threshold of Z score to determine whether split the node or not
outlier.n the cluster with size less than or equal to outlier.n is considered as outliers
n.perm the times for permutation
samp. group if NULL, determine groups by Z score; if a vector of factor, assign each individual
in dendrogram with respect to samp. group
col.outlier the color of outlier

col.list the list of colors for different clusters

snpgdsCutTree

pch.outlier
pch.list
label.H
label.z

verbose

Details

21

plotting *character’ for outliers

plotting *character’ for different clusters

if TRUE, plotting heights in a dendrogram
if TRUE, plotting Z scores in a dendrogram
if TRUE, show information

The details will be described in future.

Value
Return a list:
sample.id
z.threshold
outlier.n
samp.order
samp.group
dmat
dendrogram

merge

clust.count

Author(s)

Xiuwen Zheng

See Also

the sample ids used in the analysis

the threshold of Z score to determine whether split the node or not

the cluster with size less than or equal to outlier.n is considered as outliers
the order of samples in the dendrogram

a vector of factor, indicating the group of each individual

a matrix of pairwise group dissimilarity

the dendrogram of individuals

a data.frame of (z, n1, n2) describing each combination: z, the Z score; n1,
the size of the first cluster; n2, the size of the second cluster

the counts for clusters

snpgdsHCluster, snpgdsDrawTree, snpgdsIBS, snpgdsDiss

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group”)))
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpgdsClose(genofile)

22

S
cluster individuals
#

set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

the distribution of Z scores
snpgdsDrawTree(rv, type="z-score”, main="HapMap Phase II")

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
edgePar=1list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

B S
or cluster individuals by ethnic information
#

rv2 <- snpgdsCutTree(hc, samp.group=pop.group)

cluster individuals by Z score, specifying 'clust.count'

snpgdsDrawTree(rv2, rv$clust.count, main="HapMap Phase II",
edgePar = list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
labels = c("YRI", "CHB/JPT", "CEU"), y.label=0.1)

legend("bottomleft”, legend=levels(pop.group), col=1:nlevels(pop.group),

pch=19, ncol=4, bg="white")

SR
zoom in ...
#

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(1),
main="HapMap Phase II -- YRI",
edgePar=1list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,2),
main="HapMap Phase II -- CEU",
edgePar=1list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsDrawTree(rv2, rv$clust.count, dend.idx = c(2,1),
main="HapMap Phase II -- CHB/JPT",
edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"),
y.label.kinship=TRUE)

snpgdsCutTree

snpgdsDiss 23

snpgdsDiss Individual dissimilarity analysis

Description

Calculate the individual dissimilarities for each pair of individuals.

Usage

snpgdsDiss(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1,
verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate touse the SNPs with "<= missing.rate" only; if NaN, no missing threshold
num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

snpgdsDiss() returns 1 - beta_ij which is formally described in Weir&Goudet (2017).

Value

Return a class "snpgdsDissClass":

sample.id the sample ids used in the analysis

snp.1id the SNP ids used in the analysis

diss a matrix of individual dissimilarity
Author(s)

Xiuwen Zheng

24 snpgdsDrawTree

References

Zheng, Xiuwen. 2013. Statistical Prediction of HLA Alleles and Relatedness Analysis in Genome-
Wide Association Studies. PhD dissertation, the department of Biostatistics, University of Wash-
ington.

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. 2015. Forensic Science International:
Genetics Supplement Series.

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsHCluster

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group”)))
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
diss

hc <- snpgdsHCluster(diss)
names(hc)
plot(hc$dendrogram)

close the genotype file
snpgdsClose(genofile)

split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
edgePar=1list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

snpgdsDrawTree Draw a dendrogram

Description

To draw a dendrogram or the distribution of Z scores

snpgdsDrawTree 25

Usage

snpgdsDrawTree(obj, clust.count=NULL, dend.idx=NULL,
type=c("dendrogram”, "z-score"), yaxis.height=TRUE, yaxis.kinship=TRUE,
y.kinship.baseline=NaN, y.label.kinship=FALSE, outlier.n=NULL,
shadow.col=c(rgh(0.5, 0.5, 0.5, 0.25), rgb(0.5, 0.5, 0.5, 0.05)),
outlier.col=rgh(1, .50, 0.50, 0.5), leaflab="none",

labels=NULL, y.label=0.2, ...)
Arguments
obj an object returned by snpgdsCutTree
clust.count the counts for clusters, drawing shadows
dend.idx the index of sub tree, plot obj$dendrogram[[dend.idx]], or NULL for the whole
tree
type "dendrogram", draw a dendrogram; or "z-score", draw the distribution of Z score

yaxis.height if TRUE, draw the left Y axis: height of tree

yaxis.kinship if TRUE, draw the right Y axis: kinship coefficient

y.kinship.baseline
the baseline value of kinship; if NaN, it is the height of the first split from top in
a dendrogram; only works when yaxis.kinship = TRUE

y.label.kinship
if TRUE, show "PO/FS’ etc on the right axis

outlier.n the cluster with size less than or equal to outlier.n is considered as outliers; if
NULL, let outlier.n =obj$outlier.n

shadow. col two colors for shadow
outlier.col the colors for outliers
leaflab a string specifying how leaves are labeled. The default "perpendicular” write

text vertically (by default). "textlike" writes text horizontally (in a rectangle),
and "none” suppresses leaf labels.

labels the legend for different regions
y.label y positions of labels
Arguments to be passed to the method "plot(, ...)", such as graphical pa-
rameters.
Details

The details will be described in future.

Value

None.

Author(s)

Xiuwen Zheng

26 snpgdsEIGMIX

See Also

snpgdsCutTree

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group”)))
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpgdsClose(genofile)

split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
edgePar=1list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

snpgdsEIGMIX Eigen-analysis on SNP genotype data

Description

Eigen-analysis on IBD matrix based SNP genotypes.

Usage

snpgdsEIGMIX(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,
eigen.cnt=32L, diagadj=TRUE, ibdmat=FALSE, verbose=TRUE)

S3 method for class 'snpgdsEigMixClass'

plot(x, eig=c(1L,2L), ...)
Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpgdsEIGMIX 27

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
eigen.cnt output the number of eigenvectors; if eigen.cnt < @, returns all eigenvectors; if

eigen.cnt==0, no eigen calculation

diagadj TRUE for diagonal adjustment by default
ibdmat if TRUE, returns the IBD matrix
verbose if TRUE, show information

X a snpgdsEigMixClass object

eig indices of eigenvectors, like 1:2 or 1:4

the arguments passed to or from other methods, like pch, col

Value

Return a snpgdsEigMixClass object, and it is a list:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
eigenval eigenvalues
eigenvect eigenvactors, "# of samples" x "eigen.cnt"
afreq allele frequencies
ibd the IBD matrix when ibdmat=TRUE
diagadj the argument diagadj

Author(s)
Xiuwen Zheng

References

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. The-
oretical Population Biology. 2016 Feb;107:65-76. doi: 10.1016/j.tpb.2015.09.004

See Also

snpgdsAdmixProp, snpgdsAdmixPlot, snpgdsPCA, snpgdsPCASNPLoading, snpgdsPCASamplLoading

28 snpgdsEIGMIX

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information

or pop_code <- scan("pop.txt", what=character())

if it is stored in a text file "pop.txt"

pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)
RV

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),

EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[, 2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)

draw

plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
xlab="eigenvector 2", ylab="eigenvector 1")
legend("topleft”, legend=levels(tab$pop), pch="o0", col=1:4)

define groups
groups <- 1list(CEU = samp.id[pop_code == "CEU"],
YRI = samp.id[pop_code == "YRI"],
CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))1)

prop <- snpgdsAdmixProp(RV, groups=groups)

draw
plot(propl, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),
xlab = "Admixture Proportion from YRI",

ylab = "Admixture Proportion from CEU")
abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", lty=2)
abline(a=1, b=-1, col="gray25", 1lty=2)
legend("topright”, legend=levels(tab$pop), pch="0", col=1:4)

close the genotype file
snpgdsClose(genofile)

snpgdsErrMsg 29

snpgdsErrMsg Get the last error information

Description

Return the last error message.

Usage
snpgdsErrMsg ()

Value

Characters

Author(s)

Xiuwen Zheng

Examples

snpgdsErrMsg()

snpgdsExampleFileName Example GDS file

Description

Return the file name of example data

Usage
snpgdsExampleFileName ()

Details

A GDS genotype file was created from a subset of HapMap Phase II dataset consisting of 270
individuals and duplicates.

Value

Characters

Author(s)

Xiuwen Zheng

30 snpgdsFst

Examples

snpgdsExampleFileName ()

SNPGDSFileClass SNPGDSFileClass

Description
A SNPGDSFileClass object provides access to a GDS file containing genome-wide SNP data. It
extends the class gds. class in the gdsfmt package.

Author(s)

Xiuwen Zheng

See Also

snpgdsOpen, snpgdsClose

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile

class(genofile)
"SNPGDSFileClass” "gds.class”

close the file
snpgdsClose(genofile)

snpgdsFst F-statistics (fixation indices)

Description

Calculate relatedness measures F-statistics (also known as fixation indices) for given populations

Usage

snpgdsFst(gdsobj, population, method=c("W&C84", "W&H@2"), sample.id=NULL,
snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN,
missing.rate=0.01, with.id=FALSE, verbose=TRUE)

snpgdsFst

Arguments

gdsobj
population

method

sample.id
snp.id

autosome.only

remove.monosnp
maf
missing.rate
with.id

verbose

Details

31

an object of class SNPGDSFileClass, a SNP GDS file
a factor, indicating population information for each individual

"W&C84" — Fst estimator in Weir & Cockerham 1984 (by default), "W&H@2" —
relative beta estimator in Weir & Hill 2002, see details

a vector of sample id specifying selected samples; if NULL, all samples are used
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

if TRUE, remove monomorphic SNPs

to use the SNPs with ">= maf" only; if NaN, no MAF threshold

to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
if TRUE, the returned value with sample.id and snp.id

if TRUE, show information

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

The "W&H02" option implements the calculation in Buckleton et. al. 2016.

Value

Return a list:
sample.id
snp.id

Fst
MeanFst
FstSNP
Beta

Author(s)

Xiuwen Zheng

References

the sample ids used in the analysis

the SNP ids used in the analysis
weighted Fst estimate

the average of Fst estimates across SNPs
a vector of Fst for each SNP

Beta matrix

Weir, BS. & Cockerham, CC. Estimating F-statistics for the analysis of population structure. (1984).
Weir, BS. & Hill, WG. Estimating F-statistics. Annual review of genetics 36, 721-50 (2002).

Population-specific FST values for forensic STR markers: A worldwide survey. Buckleton J, Cur-
ran J, Goudet J, Taylor D, Thiery A, Weir BS. Forensic Sci Int Genet. 2016 Jul;23:91-100. doi:
10.1016/j.fsigen.2016.03.004.

32 snpgdsGDS2BED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group”)))

Fst estimation

v <- snpgdsFst(genofile, population=group, method="W&C84")
v$Fst

v$MeanFst

summary (v$FstSNP)

or

v <- snpgdsFst(genofile, population=group, method="W&H02")
v$Fst

v$MeanFst

v$Beta

summary (vV$FstSNP)

close the genotype file
snpgdsClose(genofile)

snpgdsGDS2BED Conversion from GDS to PLINK BED

Description

Convert a GDS file to a PLINK binary ped (BED) file.

Usage

snpgdsGDS2BED (gdsobj, bed.fn, sample.id=NULL, snp.id=NULL, snpfirstdim=NULL,
verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file; or characters, the file
name of GDS
bed. fn the file name of output, without the filename extension ".bed"
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc); if
NULL, determine automatically

verbose if TRUE, show information

snpgdsGDS2Eigen 33

Details

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

BED - the PLINK binary ped format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

See Also

snpgdsBED2GDS, snpgdsGDS2PED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpgdsGDS2BED (genofile, bed.fn="test”, snp.id=snpset)

close the genotype file

snpgdsClose(genofile)

delete the temporary files
unlink(c("test.bed”, "test.bim”, "test.fam"), force=TRUE)

snpgdsGDS2Eigen Conversion from GDS to Eigen (EIGENSTRAT)

Description

Convert a GDS file to an EIGENSTRAT file.

http://corearray.sourceforge.net/

34 snpgdsGDS2Eigen

Usage

snpgdsGDS2Eigen(gdsobj, eigen.fn, sample.id=NULL, snp.id=NULL, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
eigen.fn the file name of EIGENSTRAT
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
verbose if TRUE, show information

Details

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

Eigen — the text format used in EIGENSTRAT.

Value

None.

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:¢190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal com-

ponents analysis corrects for stratification in genome-wide association studies. Nat Genet. 38,
904-909.

http://corearray.sourceforge.net/

See Also
snpgdsGDS2PED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpgdsGDS2Eigen(genofile, eigen.fn="tmpeigen"”, snp.id=snpset)

close the genotype file
snpgdsClose(genofile)

http://corearray.sourceforge.net/

snpgdsGDS2PED 35

delete the temporary files

unlink(c("tmpeigen.eigenstratgeno”, "tmpeigen.ind”, "tmpeigen.snp"), force=TRUE)
snpgdsGDS2PED Conversion from GDS to PED
Description

Convert a GDS file to a PLINK text ped file.

Usage

snpgdsGDS2PED (gdsobj, ped.fn, sample.id=NULL, snp.id=NULL, use.snp.rsid=TRUE,
format=c("A/G/C/T", "A/B", "1/2"), verbose=TRUE)

Arguments
gdsobj a GDS file object (gds.class)
ped.fn the file name of output
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
use.snp.rsid if TRUE, use "snp.rs.id" instead of "snp.id" if available
format specify the coding: "A/G/C/T" — allelic codes stored in "snp.allele" of the GDS
file; "A/B" — A and B codes; "1/2" — 1 and 2 codes
verbose if TRUE, show information
Details

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

PED - the PLINK text ped format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

http://corearray.sourceforge.net/

36

See Also
snpgdsGDS2BED

Examples

snpgdsGEN2GDS

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

GDS ==> PED

snpgdsGDS2PED(genofile, ped.fn="tmp")

close the GDS file
snpgdsClose(genofile)

snpgdsGEN2GDS

Conversion from Oxford GEN format to GDS

Description

Convert an Oxford GEN file (text format) to a GDS file.

Usage

snpgdsGEN2GDS (gen.fn, sample.fn, out.fn, chr.code=NULL,
call.threshold=0.9, version=c(">=2.0", "<=1.1.5"),
snpfirstdim=FALSE, compress.annotation="ZIP_RA.max", compress.geno="",
verbose=TRUE)

Arguments

gen.fn

sample.fn
out.fn

chr.code

call.threshold
version

snpfirstdim

nn

the file name of Oxford GEN text file(s), it could be a vector indicate merging
all files

the file name of sample annotation
the output GDS file

a vector of chromosome code according to gen. fn, indicating chromosomes. It
could be either numeric or character-type

the threshold to determine missing genotypes
either ">=2.0" or "<=1.1.5", see details

if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

compress.annotation

compress. geno

verbose

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add. gdsn

the compression method for "genotype"; optional values are defined in the func-
tion add. gdsn

if TRUE, show information

snpgdsGetGeno 37

Details

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

NOTE : the sample file format (sample. fn) has changed with the release of SNPTEST v2. Specif-
ically, the way in which covariates and phenotypes are coded on the second line of the header file
has changed. version has to be specified, and the function uses ">=2.0" by default.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

https://code.enkre.net/bgen

See Also

snpgdsBED2GDS, snpgdsVCF2GDS

Examples

cat("running snpgdsGEN2GDS ...\n")
Not run:
snpgdsGEN2GDS("test.gen"”, "test.sample”, "output.gds”, chr.code=1)

End(Not run)

snpgdsGetGeno To get a genotype matrix

Description

To get a genotype matrix from a specified GDS file

Usage

snpgdsGetGeno(gdsobj, sample.id=NULL, snp.id=NULL, snpfirstdim=NA,
.snpread=NA, with.id=FALSE, verbose=TRUE)

https://code.enkre.net/bgen

38 snpgdsGetGeno

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file; or characters to specify
the file name of SNP GDS
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for
the first individual, and then list all SNPs for the second individual, etc); FALSE
for snp-major mode; if NA, determine automatically
.snpread internal use
with.id if TRUE, return sample.id and snp.id
verbose if TRUE, show information
Value

The function returns an integer matrix with values 0, 1, 2 or NA representing the number of refer-
ence allele when with.id=FALSE;or list(genotype, sample.id, snp.id) whenwith.id=TRUE.
The orders of sample and SNP IDs in the genotype matrix are actually consistent with sample.id
and snp. id in the GDS file, which may not be as the same as the arguments sampel.id and snp.id
specified by users.

Author(s)

Xiuwen Zheng

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

set.seed(1000)
snpset <- sample(read.gdsn(index.gdsn(genofile, "snp.id")), 1000)

matl <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=TRUE)
dim(mat1)

1000 279

table(c(mat1), exclude=NULL)

mat2 <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=FALSE)
dim(mat2)

279 1000

table(c(mat2), exclude=NULL)

identical(t(mat1), mat2)
TRUE

close the file
snpgdsClose(genofile)

snpgdsGRM

39

snpgdsGRM

Genetic Relationship Matrix (GRM) for SNP genotype data

Description

Calculate Genetic Relationship Matrix (GRM) using SNP genotype data.

Usage

snpgdsGRM(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
method=c("GCTA", "Eigenstrat”, "EIGMIX", "Weighted”, "Corr", "IndivBeta"),
num. thread=1L, useMatrix=FALSE, out.fn=NULL, out.prec=c("double”, "single"),
out.compress="LZMA_RA", with.id=TRUE, verbose=TRUE)

Arguments

gdsobj
sample.id
snp.id

autosome.only

remove.monosnp
maf
missing.rate

method

num. thread

useMatrix

out.fn
out.prec
out.compress
with.id

verbose

an object of class SNPGDSFileClass, a SNP GDS file
a vector of sample id specifying selected samples; if NULL, all samples are used
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

if TRUE, remove monomorphic SNPs
to use the SNPs with ">= maf" only; if NaN, no MAF threshold
to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

"GCTA" — genetic relationship matrix defined in CGTA; "Eigenstrat" — genetic
covariance matrix in EIGENSTRAT; "EIGMIX" — two times coancestry ma-
trix defined in Zheng&Weir (2016), "Weighted" — weighted GCTA, as the same
as "EIGMIX", "Corr" — Scaled GCTA GRM (dividing each i,j element by the
product of the square root of the i,i and j,j elements), "IndivBeta" — two times
individual beta estimate relative to the minimum of beta; see details

the number of (CPU) cores used; if NA, detect the number of cores automatically

if TRUE, use Matrix: :dspMatrix to store the output square matrix to save mem-
ory

NULL for no GDS output, or a file name

double or single precision for storage

the compression method for storing the GRM matrix in the GDS file
if TRUE, the returned value with sample.id and sample.id

if TRUE, show information

40 snpgdsGRM

Details

"GCTA": the genetic relationship matrix in GCTA is defined as $G_ij = avg_1 [(g_il - 2*p_I*(g_jl -
2%p_1) / 2*p_1*(1 - p_1)]$ for individuals i,j and locus 1;

"Eigenstrat": the genetic covariance matrix in EIGENSTRAT $G_ij = avg_1 [(g_il - 2*p_l)*(g_jl
- 2%p_1) / 2*p_1*(1 - p_1)]$ for individuals i,j and locus 1; the missing genotype is imputed by the
dosage mean of that locus.

"EIGMIX" / "Weighted": it is the same as 2 * snpgdsEIGMIX(, ibdmat=TRUE, diagadj=FALSE)$ibd‘:
$G_ij = [sum_I (g_il - 2*p_D)*(g_jl - 2*p_1)]/ [sum_1 2*p_I*(1 - p_1)]$ for individuals i,j and locus
I;

"IndivBeta": ‘beta = snpgdsIndivBeta(, inbreeding=TRUE)‘ (Weir&Goudet, 2017), and beta-based
GRM is $grm_ij = 2 * (beta_ij - beta_min) / (1 - beta_min)$ for $i!=j$, $grm_ij = 1 + (beta_i -
beta_min) / (1 - beta_min)$ for $i=j$. It is relative to the minimum value of beta estimates.

Value

Return a list if with.id = TRUE:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

method characters, the method used

grm the genetic relationship matrix; different methods might have different meanings

and interpretation for estimates

If with.id = FALSE, this function returns the genetic relationship matrix (GRM) without sample
and SNP IDs.

Author(s)

Xiuwen Zheng

References

Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2,
€190 (2006).

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
trait analysis. American journal of human genetics 88, 76-82 (2011).

Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. The-
oretical Population Biology. 2016 Feb;107:65-76. doi: 10.1016/j.tpb.2015.09.004

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. Forensic Science International: Genetics
Supplement Series. 2015. doi:10.1016/].fsigss.2015.09.106

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsPCA, snpgdsEIGMIX, snpgdsIndivBeta, snpgdsIndInb, snpgdsFst, snpgdsMergeGRM

snpgdsHCluster 41

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

rv <- snpgdsGRM(genofile, method="GCTA")
eig <- eigen(rv$grm) # Eigen-decomposition

output to a GDS file
snpgdsGRM(genofile, method="GCTA", out.fn="test.gds")

pop <- factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”)))
plot(eig$vectors[,1], eig$vectors[,2], col=pop)
legend("topleft”, legend=levels(pop), pch=19, col=1:4)

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsHCluster Hierarchical cluster analysis

Description

Perform hierarchical cluster analysis on the dissimilarity matrix.

Usage

snpgdsHCluster(dist, sample.id=NULL, need.mat=TRUE, hang=0.25)

Arguments
dist an object of "snpgdsDissClass" from snpgdsDiss, an object of "snpgdsIBSClass"
from snpgdsIBS, or a square matrix for dissimilarity
sample.id to specify sample id, only work if dist is a matrix
need.mat if TRUE, store the dissimilarity matrix in the result
hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from O.
Details

Call the function hclust to perform hierarchical cluster analysis, using method="average".

42 snpgdsHCluster

Value

Return a list (class "snpgdsHCClass"):

sample.id the sample ids used in the analysis
hclust an object returned from hclust
dendrogram

dist the dissimilarity matrix, if need.mat = TRUE

Author(s)

Xiuwen Zheng

See Also

snpgdsIBS, snpgdsDiss, snpgdsCutTree

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))
pop.group <- as.factor(pop.group)
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)
rv <- snpgdsCutTree(hc)

rv

call 'plot' to draw a dendrogram
plot(rv$dendrogram, leaflab="none”, main="HapMap Phase II")

the distribution of Z scores
snpgdsDrawTree(rv, type="z-score”, main="HapMap Phase II")

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
edgePar=1ist(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

close the file
snpgdsClose(genofile)

snpgdsHWE 43

snpgdsHWE Statistical test of Hardy-Weinberg Equilibrium

Description

Calculate the p-values for the exact SNP test of Hardy-Weinberg Equilibrium.

Usage
snpgdsHWE (gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used
with.id if TRUE, the returned value with sample and SNP IDs
Value

If with.id=FALSE, return a vector of numeric values (p-value); otherwise, return a list with three

components "pvalue”, "sample.id" and "snp.id".

Author(s)

Xiuwen Zheng, Janis E. Wigginton

References

Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy-Weinberg equilib-
rium. Am. J. Hum. Genet. 76, 887-93 (2005).

See Also

snpgdsSNPRateFreq

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

Japanese samples

sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))
(samp.sel <- sample.id[pop=="JPT"])

samp.sel <- samp.sel[nchar(samp.sel) == 7]

44 snpgdsIBDKING

chromosome 1
snp.id <- snpgdsSelectSNP(genofile, sample.id=samp.sel, autosome.only=1L)

HWE test
p <- snpgdsHWE(genofile, sample.id=samp.sel, snp.id=snp.id)
summary (p)

QQ plot

plot(-log1@((1:1length(p))/length(p)), -logl@(pLorder(p)]),
xlab="-1log10(expected P)", ylab="-logl@(observed P)", main="QQ plot")
abline(a=0, b=1, col="blue")

close the genotype file
snpgdsClose(genofile)

snpgdsIBDKING KING method of moment for the identity-by-descent (IBD) analysis

Description

Calculate IBD coefficients by KING method of moment.

Usage

snpgdsIBDKING(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
type=c("KING-robust”, "KING-homo"), family.id=NULL, num.thread=1L,
useMatrix=FALSE, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

type "KING-robust"” — relationship inference in the presence of population stratifi-
cation (by default); "KING-homo" — relationship inference in a homogeneous
population

family.id if NULL, all individuals are treated as singletons; if family id is given, within-

and between-family relationship are estimated differently. If sample.id=NULL,
family.id should have the same length as "sample.id" in the GDS file, other-
wise family. id should have the same length and order as the argument sample. id

snpgdsIBDKING 45

num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
useMatrix if TRUE, use Matrix: :dspMatrix to store the output square matrix to save mem-
ory
verbose if TRUE, show information
Details

KING IBD estimator is a moment estimator, and it is computationally efficient relative to MLE
method. The approaches include "KING-robust” — robust relationship inference within or across
families in the presence of population substructure, and "KING-homo" — relationship inference in a
homogeneous population.

With "KING-robust”, the function would return the proportion of SNPs with zero IBS (IBS@) and
kinship coefficient (kinship). With "KING-homo" it would return the probability of sharing one
IBD (k1) and the probability of sharing zero IBD (k).

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

Value

Return a list:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
ko a matrix for IBD coefficients, the probability of sharing zero IBD, if type="KING-homo"
k1 a matrix for IBD coefficients, the probability of sharing one IBD, if type="KING-homo"
1BS@ a matrix for the proportions of SNPs with zero IBS, if type="KING-robust"
kinship a matrix for the estimated kinship coefficients, if type="KING-robust”
Author(s)
Xiuwen Zheng
References

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship infer-
ence in genome-wide association studies. Bioinformatics. 2010 Nov 15;26(22):2867-73.
See Also

snpgdsIBDMLE, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

CEU population
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

46

snpgdsIBDKING

CEU.id <- samp.id[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="CEU"]

KING-robust:
relationship inference in the presence of population stratification
#iHH robust relationship inference across family

ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id)
names (ibd. robust)
[1] "sample.id” "snp.id" "afreq” "IBSQ" "kinship"

select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust, 1/32)
head(dat)

plot(dat$IBS@, dat$kinship, xlab="Proportion of Zero IBS”,
ylab="Estimated Kinship Coefficient (KING-robust)")

using Matrix

ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id, useMatrix=TRUE)
is(ibd.robust$IBS0) # dspMatrix

is(ibd.robust$kinship) # dspMatrix

KING-robust:
relationship inference in the presence of population stratification
I within- and between-family relationship inference

incorporate with pedigree information
family.id <- read.gdsn(index.gdsn(genofile, "sample.annot/family.id"))
family.id <- family.id[match(CEU.id, samp.id)]

ibd.robust2 <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=family.id)
names(ibd.robust2)

select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust2, 1/32)
head(dat)

plot(dat$IBS@, dat$kinship, xlab="Proportion of Zero IBS”,
ylab="Estimated Kinship Coefficient (KING-robust)")

KING-homo: relationship inference in a homogeneous population

ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo")
names (ibd.homo)
"sample.id” "snp.id" "afreq” "ko" "k1"

snpgdsIBDMLE 47

select a subset of pairs of individuals
dat <- snpgdsIBDSelection(ibd.homo, 1/32)
head(dat)

plot(datke, datkinship, xlab="Pr(IBD=0)",
ylab="Estimated Kinship Coefficient (KING-homo)")

using Matrix

ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo",
useMatrix=TRUE)

is(ibd.homo$k@) # dspMatrix

is(ibd.homo$k1) # dspMatrix

close the genotype file
snpgdsClose(genofile)

snpgdsIBDMLE Maximum likelihood estimation (MLE) for the Identity-By-Descent
(IBD) Analysis

Description

Calculate the three IBD coefficients (kO, k1, k2) for non-inbred individual pairs by Maximum Like-
lihood Estimation.

Usage

snpgdsIBDMLE (gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, kinship=FALSE,
kinship.constraint=FALSE, allele.freq=NULL,
method=c("EM", "downhill.simplex"”, "Jacquard”), max.niter=1000L,
reltol=sqrt(.Machine$double.eps), coeff.correct=TRUE,
out.num.iter=TRUE, num.thread=1, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no any MAF threshold

missing.rate touse the SNPs with "<= missing.rate" only; if NaN, no any missing threshold

48 snpgdsIBDMLE

kinship if TRUE, output the estimated kinship coefficients
kinship.constraint

if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the geneloical region
($2k_0k_1 >=k_272$)

allele.freq to specify the allele frequencies; if NULL, determine the allele frequencies from
gdsobj using the specified samples; if snp. id is specified, allele. freq should
have the same order as snp.id

method "EM", "downhill.simplex", "Jacquard", see details
max.niter the maximum number of iterations
reltol relative convergence tolerance; the algorithm stops if it is unable to reduce the

value of log likelihood by a factor of $reltol * (abs(log likelihood with the initial
parameters) + reltol)$ at a step.

coeff.correct TRUE by default, see details

out.num.iter if TRUE, output the numbers of iterations

num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

The PLINK moment estimates are used as the initial values in the algorithm of searching maxi-
mum value of log likelihood function. Two numeric approaches can be used: one is Expectation-
Maximization (EM) algorithm, and the other is Nelder-Mead method or downhill simplex method.
Generally, EM algorithm is more robust than downhill simplex method. "Jacquard” refers to the
estimation of nine Jacquard’s coefficients.

If coeff.correct is TRUE, the final point that is found by searching algorithm (EM or downbhill
simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any
numeric approach might not reach the maximum position after a finit number of steps. If any of
these six points has a higher value of log likelihood, the final point will be replaced by the best one.

Although MLE estimates are more reliable than MoM, MLE is much more computationally inten-
sive than MoM, and might not be feasible to estimate pairwise relatedness for a large dataset.

Value

Return a snpgdsIBDClass object, which is a list:

sample.id the sample ids used in the analysis

snp.id the SNP ids used in the analysis

afreq the allele frequencies used in the analysis

ko IBD coefficient, the probability of sharing ZERO IBD, if method="EM" or "downhill.simplex”
k1 IBD coefficient, the probability of sharing ONE IBD, if method="EM" or "downhill.simplex”
D1,...,D8 Jacquard’s coefficients, if method="Jacquard”, D9 =1-DI1 - ... - D8

kinship the estimated kinship coefficients, if the parameter kinship=TRUE

snpgdsIBDMLE 49

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

Jacquard, A. Structures Genetiques des Populations (Masson & Cie, Paris, 1970); English trans-
lation available in Charlesworth, D. & Chalesworth, B. Genetics of Human Populations (Springer,
New York, 1974).

See Also
snpgdsIBDMLELoglL ik, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]
YRI.id <- YRI.id[1:30]

SNP pruning

set.seed(10)

snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,
missing.rate=0.05)

snpset <- sample(unlist(snpset), 250)

mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)

mibd

select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)

log likelihood

loglik <- snpgdsIBDMLELoglLik(genofile, mibd)
loglik@® <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated”)

likelihood ratio test
p.value <- pchisq(loglik - loglik@, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$ke)

50

snpgdsIBDMLEL ogLik

plot(NaN, x1lim=c(@,1), ylim=c(@,1), xlab="ke@", ylab="k1")
lines(c(@,1), c(1,0), col="red"”, 1lty=3)
points(mibd$ko[flag], mibd$k1[flagl)

specify the allele frequencies

afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,
snp.id=snpset)$AlleleFreq

subibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,
allele.freg=afreq)

summary (c(subibd$k@ - mibd$ke[1:25, 1:25]))

ZERO

summary (c(subibd$k1 - mibd$k1[1:25, 1:251))

ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsIBDMLELogLik Log likelihood for MLE method in the Identity-By-Descent (IBD) Anal-
ySis

Description

Calculate the log likelihood values from maximum likelihood estimation.

Usage
snpgdsIBDMLELoglL ik (gdsobj, ibdobj, k@ = NaN, k1 = NaN,
relatedness=c("", "self"”, "fullsib"”, "offspring”,
"halfsib", "cousin"”, "unrelated"))
Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
ibdobj the snpgdsIBDClass object returned from snpgdsIBDMLE
ko specified IBD coefficient
k1 specified IBD coefficient
relatedness specify a relatedness, otherwise use the values of kO and k1

Details

If (relatedness == "") and (kO == NaN or k1 == NaN), then return the log likelihood values for
each (kO, k1) stored in ibdobj. \ If (relatedness =="") and (kO != NaN) and (k1 != NaN), then
return the log likelihood values for a specific IBD coefficient (kO, k1). \ If relatedness is: "self",
then kO = 0, k1 = 0; "fullsib", then kO = 0.25, k1 = 0.5; "offspring”, then kO = 0, k1 = 1; "halfsib",
then kO = 0.5, k1 =0.5; "cousin", then kO = 0.75, k1 = 0.25; "unrelated", then kO =1, k1 = 0.

snpgdsIBDMLELogLik 51

Value

Return a n-by-n matrix of log likelihood values, where n is the number of samples.

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

See Also

snpgdsIBDMLE, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]
YRI.id <- YRI.id[1:30]

SNP pruning

set.seed(10)

snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,
missing.rate=0.05)

snpset <- sample(unlist(snpset), 250)

mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)

names (mibd)

select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)

log likelihood

loglik <- snpgdsIBDMLELoglLik(genofile, mibd)
loglik@® <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated”)

likelihood ratio test
p.value <- pchisq(loglik - loglik@, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$ke)

52 snpgdsIBDMoM

plot(NaN, x1lim=c(@,1), ylim=c(@,1), xlab="ke@", ylab="k1")

lines(c(@,1), c(1,0), col="red"”, 1lty=3)

points(mibd$ko[flag], mibd$k1[flagl)

specify the allele frequencies

afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,
snp.id=snpset)$AlleleFreq

subibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,
allele.freg=afreq)

summary (c(subibd$k@ - mibd$ke[1:25, 1:25]))

ZERO

summary (c(subibd$k1 - mibd$k1[1:25, 1:251))

ZERO

close the genotype file

snpgdsClose(genofile)

snpgdsIBDMoM PLINK method of moment (MoM) for the Identity-By-Descent (IBD)

Analysis

Description

Calculate three IBD coefficients for non-inbred individual pairs by PLINK method of moment
(MoM).

Usage

snpgdsIBDMoM(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, allele.freqg=NULL,
kinship=FALSE, kinship.constraint=FALSE, num.thread=1L, useMatrix=FALSE,
verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate touse the SNPs with "<= missing.rate" only; if NaN, no missing threshold

allele.freq to specify the allele frequencies; if NULL, determine the allele frequencies from
gdsobj using the specified samples; if snp. id is specified, allele. freq should
have the same order as snp.id

snpgdsIBDMoM 53

kinship if TRUE, output the estimated kinship coefficients

kinship.constraint
if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the geneloical region
($2k_0k_1 >=k_2729%)

num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
useMatrix if TRUE, use Matrix: :dspMatrix to store the output square matrix to save mem-
ory
verbose if TRUE, show information
Details

PLINK IBD estimator is a moment estimator, and it is computationally efficient relative to MLE
method. In the PLINK method of moment, a correction factor based on allele counts is used to
adjust for sampling. However, if allele frequencies are specified, no correction factor is conducted
since the specified allele frequencies are assumed to be known without sampling.

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

Value

Return a list:

sample.id the sample ids used in the analysis

snp.1id the SNP ids used in the analysis

ko IBD coefficient, the probability of sharing ZERO IBD

k1 IBD coefficient, the probability of sharing ONE IBD

kinship the estimated kinship coefficients, if the parameter kinship=TRUE
Author(s)

Xiuwen Zheng
References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgdsIBDMLE, snpgdsIBDMLELoglLik

54 snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

HHHHHHHHHHEE AR R
CEU population

CEU.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="CEU"]

pibd <- snpgdsIBDMoM(genofile, sample.id=CEU.id)

names (pibd)

flag <- lower.tri(pibd$ko)

plot(NaN, xlim=c(@,1), ylim=c(@,1), xlab="k@", ylab="k1")
lines(c(@,1), c(1,0), col="red", 1lty=3)
points(pibd$ko[flag], pibd$ki1[flag])

select a set of pairs of individuals
d <- snpgdsIBDSelection(pibd, kinship.cutoff=1/8)
head(d)

S
YRI population

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]

pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)

flag <- lower.tri(pibd$ke)

plot(NaN, x1im=c(@,1), ylim=c(@,1), xlab="k@", ylab="k1")

lines(c(0,1), c(1,0), col="red", 1lty=3)

points(pibd$ke[flag], pibd$k1[flagl)

specify the allele frequencies

afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id)$AlleleFreq
aibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id, allele.freg=afreq)
flag <- lower.tri(aibd$ke)

plot(NaN, x1lim=c(@,1), ylim=c(@,1), xlab="k@", ylab="k1")
lines(c(0,1), c(1,0), col="red"”, 1lty=3)

points(aibd$ke[flag]l, aibd$k1[flagl)

analysis on a subset

subibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:25], allele.freqg=afreq)
summary (c(subibd$k@ - aibd$ko[1:25, 1:251))

ZERO

summary (c(subibd$k1 - aibd$k1[1:25, 1:25]))

ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsIBDSelection 55

snpgdsIBDSelection Get a table of IBD coefficients

Description

Return a data frame with IBD coefficients.

Usage

snpgdsIBDSelection(ibdobj, kinship.cutoff=NaN, samp.sel=NULL)

Arguments

ibdobj an object of snpgdsIBDClass returned by snpgdsIBDMLE or snpgdsIBDMoM

kinship.cutoff select the individual pairs with kinship coefficients >= kinship.cutoff; no filter if
kinship.cutoff =NaN

samp.sel a logical vector or integer vector to specify selection of samples

Value

Return a data.frame:

ID1 the id of the first individual
D2 the id of the second individual
ko the probability of sharing ZERO alleles
k1 the probability of sharing ONE alleles
kinship kinship coefficient

Author(s)
Xiuwen Zheng

See Also

snpgdsIBDMLE, snpgdsIBDMoM, snpgdsIBDKING

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI population

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]

pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)

flag <- lower.tri(pibd$ko)

plot(NaN, xlim=c(0@,1), ylim=c(@,1), xlab="ke", ylab="k1")

56

snpgdsIBS

lines(c(0,1), c(1,0), col="red"”, 1lty=3)
points(pibd$ko[flag], pibd$ki1[flag])

close the genotype file
snpgdsClose(genofile)

IBD coefficients
dat <- snpgdsIBDSelection(pibd, 1/32)

head(dat)

ID1 ID2 ko k1 kinship
1 NAT9152 NA19154 0.010749154 0.9892508 0.24731271
2 NA19152 NA19093 0.848207777 0.1517922 0.03794806
3 NA19139 NA19138 0.010788047 0.9770181 0.25035144
4 NAT9139 NA19137 0.012900661 0.9870993 0.24677483
5 NA18912 NA18914 0.008633077 0.9913669 0.24784173
6 NA19160 NA191671 0.008635754 0.9847777 0.24948770

snpgdsIBS Identity-By-State (IBS) proportion
Description

Calculate the fraction of identity by state for each pair of samples

Usage

snpgdsIBS(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,

remove.

monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,

useMatrix=FALSE, verbose=TRUE)

Arguments

gdsobj

sample.id

snp

.1id

an object of class SNPGDSFileClass, a SNP GDS file
a vector of sample id specifying selected samples; if NULL, all samples are used

a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf

to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num

.thread

useMatrix

verbose

the number of (CPU) cores used; if NA, detect the number of cores automatically

if TRUE, use Matrix: :dspMatrix to store the output square matrix to save mem-
ory
if TRUE, show information

snpgdsIBS 57

Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample.id.

The values of the IBS matrix range from ZERO to ONE, and it is defined as the average of 1 - |
g_{1,i}-g_{2,1i} | / 2 across the genome for the first and second individuals and SNP i.

Value

Return a list (class "snpgdsIBSClass"):

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis

ibs a matrix of IBS proportion, "# of samples" x "# of samples"

Author(s)

Xiuwen Zheng

See Also

snpgdsIBSNum

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

perform identity-by-state calculations
ibs <- snpgdsIBS(genofile)

perform multidimensional scaling analysis on

the genome-wide IBS pairwise distances:

loc <- cmdscale(1 - ibs$ibs, k = 2)

x <= loc[, 11; y <- loc[, 2]

race <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”)))
plot(x, y, col=race, xlab = "", ylab = "", main = "cmdscale(IBS Distance)")
legend("topleft”, legend=levels(race), text.col=1:nlevels(race))

close the file
snpgdsClose(genofile)

58 snpgdsIBSNum

snpgdsIBSNum Identity-By-State (IBS)

Description

Calculate the number of SNPs for identity by state for each pair of samples.

Usage

snpgdsIBSNum(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, num.thread=1L,
verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate touse the SNPs with "<= missing.rate" only; if NaN, no missing threshold

num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

Value

Return a list (n is the number of samples):

sample.id the sample ids used in the analysis

snp.1id the SNP ids used in the analysis

ibso a n-by-n matrix, the number of SNPs sharing 0 IBS

ibs1 a n-by-n matrix, the number of SNPs sharing 1 IBS

ibs2 a n-by-n matrix, the number of SNPs sharing 2 IBS
Author(s)

Xiuwen Zheng

snpgdsIndInb 59

See Also

snpgdsIBS

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsIBSNum(genofile)

pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))
L <- order(pop)

image(RV$ibs@[L, L]/length(RV$snp.id))

close the genotype file
snpgdsClose(genofile)

snpgdsIndInb Individual Inbreeding Coefficients

Description

To calculate individual inbreeding coefficients using SNP genotype data

Usage

snpgdsIndInb(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
method=c("mom.weir"”, "mom.visscher”, "mle", "gctal”, "gcta2", "gcta3"),
allele.freg=NULL, out.num.iter=TRUE, reltol=.Machine$double.eps*0.75,
verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
method see details

allele.freq to specify the allele frequencies; if NULL, the allele frequencies are estimated
from the given samples

out.num.iter output the numbers of iterations

60 snpgdsIndInbCoef

reltol relative convergence tolerance used in MLE; the algorithm stops if it is unable
to reduce the value of log likelihood by a factor of $reltol * (abs(log likelihood
with the initial parameters) + reltol)$ at a step.

verbose if TRUE, show information

Details

The method can be: "mom.weir": a modified Visscher’s estimator, proposed by Bruce Weir; "mom.visscher":
Visscher’s estimator described in Yang et al. (2010); "mle": the maximum likelihood estimation;
"gctal": Fl in GCTA, avg [(g_i - 2p_1)"2 / 2*p_i*(1-p_i)) - 1]; "gcta2": FAII in GCTA, avg [1 -

g i*(2-g i)/ 2*p_i*(1-p_i))]; "gcta3": FAII in GCTA, the same as "mom.visscher", avg [g_i2 -

(1 +2p_i)*g_i+ 2*p_ir2] / (2*p_i*(1-p_i)).

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 42(7):565-9. Epub 2010 Jun 20.

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
trait analysis. American journal of human genetics 88, 76-82 (2011).

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

rv <- snpgdsIndInb(genofile, method="mom.visscher")
head(rv$inbreeding)
summary (rv$inbreeding)

close the genotype file
snpgdsClose(genofile)

snpgdsIndInbCoef Individual Inbreeding Coefficient

Description

To calculate an individual inbreeding coefficient using SNP genotype data

snpgdsIndInbCoef 61

Usage
snpgdsIndInbCoef(x, p, method = c("mom.weir”, "mom.visscher"”, "mle"),
reltol=.Machine$double.eps”0.75)
Arguments
X SNP genotypes
p allele frequencies
method see details
reltol relative convergence tolerance used in MLE; the algorithm stops if it is unable
to reduce the value of log likelihood by a factor of $reltol * (abs(log likelihood
with the initial parameters) + reltol)$ at a step.
Details

The method can be: "mom.weir”: a modified Visscher’s estimator, proposed by Bruce Weir;
"mom.visscher"”: Visscher’s estimator described in Yang et al. (2010); "mle”: the maximum
likelihood estimation.

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large
proportion of the heritability for human height. Nat Genet. 42(7):565-9. Epub 2010 Jun 20.

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

chr1 <- read.gdsn(index.gdsn(genofile, "snp.id"))[
read.gdsn(index.gdsn(genofile, "snp.chromosome"))==1]
chrilidx <- match(chri1, read.gdsn(index.gdsn(genofile, "snp.id")))

AF <- snpgdsSNPRateFreq(genofile)
g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(-1,1))

snpgdsIndInbCoef (glchriidx], AF$AlleleFreqlchriidx], method="mom.weir")
snpgdsIndInbCoef(glchr1idx], AF$AlleleFreqlchrilidx], method="mom.visscher")
snpgdsIndInbCoef (glchriidx], AF$AlleleFreqlchriidx], method="mle")

close the genotype file

62

snpgdsIndivBeta

snpgdsClose(genofile)

snpgdsIndivBeta

Individual inbreeding and relatedness estimation (beta estimator)

Description

Calculate individual inbreeding and relatedness estimation (beta estimator) using SNP genotype

data.

Usage

snpgdsIndivBeta(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=0.01, method=c("weighted”),
inbreeding=TRUE, num.thread=1L, with.id=TRUE, useMatrix=FALSE, verbose=TRUE)
snpgdsIndivBetaRel(beta, beta_rel, verbose=TRUE)

Arguments
gdsobj
sample.id
snp.id

autosome.only

remove.monosnp
maf
missing.rate
method

inbreeding

num. thread
with.id

useMatrix

beta
beta_rel

verbose

an object of class SNPGDSFileClass, a SNP GDS file
a vector of sample id specifying selected samples; if NULL, all samples are used
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

if TRUE, remove monomorphic SNPs

to use the SNPs with ">= maf" only; if NaN, no MAF threshold

to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
"weighted" estimator

TRUE, the diagonal is a vector of inbreeding coefficients; otherwise, individual
variance estimates

the number of (CPU) cores used; if NA, detect the number of cores automatically
if TRUE, the returned value with sample.id and sample.id

if TRUE, use Matrix: :dspMatrix to store the output square matrix to save mem-
ory
the object returned from snpgdsIndivBeta()

the beta-based matrix is generated relative to beta_rel

if TRUE, show information

snpgdsIndivBeta 63

Value

Return a list if with.id = TRUE:

sample. id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
inbreeding a logical value; TRUE, the diagonal is a vector of inbreeding coefficients; other-

wise, individual variance estimates
beta beta estimates

avg_val the average of M_B among all loci, it could be used to calculate each M_ij

If with.id = FALSE, this function returns the genetic relationship matrix without sample and SNP
IDs.

Author(s)

Xiuwen Zheng

References

Weir BS, Zheng X. SNPs and SNVs in Forensic Science. Forensic Science International: Genetics
Supplement Series. 2015. doi:10.1016/j.fsigss.2015.09.106

Weir BS, Goudet J. A Unified Characterization of Population Structure and Relatedness. Genetics.
2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424.

See Also

snpgdsGRM, snpgdsIndInb, snpgdsFst

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

b <- snpgdsIndivBeta(genofile, inbreeding=FALSE)
b$betal1:10, 1:10]

z <- snpgdsIndivBetaRel(b, min(b$beta))

close the file
snpgdsClose(genofile)

64 snpgdsLDMat

snpgdsLDMat Linkage Disequilibrium (LD) analysis

Description

Return a LD matrix for SNP pairs.

Usage

snpgdsLDMat (gdsobj, sample.id=NULL, snp.id=NULL, slide=250L,

method=c("composite”, "r", "dprime", "corr", "cov"), mat.trim=FALSE,
num.thread=1L, with.id=TRUE, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
slide # of SNPs, the size of sliding window; if slide < 9, return a full LD matrix; see
details
method "composite", "r", "dprime", "corr", "cov", see details
mat.trim if TRUE, trim the matrix when slide > @: the function returns a "num_slide x
(n_snp - slide)" matrix
num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
with.id if TRUE, the returned value with sample. id and sample.id
verbose if TRUE, show information
Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite”, when
SNP genotypes are coded as: 0 —BB, 1 — AB, 2 — AA.

If slide <= 0, the function returns a n-by-n LD matrix where the value of i row and j column is LD
of i and j SNPs. If slide > 0, it returns a m-by-n LD matrix where n is the number of SNPs, m is
the size of sliding window, and the value of i row and j column is LD of j and j+i SNPs.

Value

Return a list:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
LD a matrix of LD values

slide the size of sliding window

snpgdsLDpair 65

Author(s)

Xiuwen Zheng

References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.
Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also

snpgdsLDpair, snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

missing proportion and MAF
ff <- snpgdsSNPRateFreq(genofile)

chromosome 15

snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[
ff$MissingRate==0 & ff$MinorFreg>0 &
read.gdsn(index.gdsn(genofile, "snp.chromosome"))==15]

length(snpset)

LD matrix without sliding window

ld.noslide <- snpgdsLDMat(genofile, snp.id=snpset, slide=-1, method="composite")
plot

image(t(1ld.noslide$LD"2), col=terrain.colors(16))

LD matrix with a sliding window

ld.slide <- snpgdsLDMat(genofile, snp.id=snpset, method="composite")
plot

image(t(1ld.slide$LD*2), col=terrain.colors(16))

close the genotype file
snpgdsClose(genofile)

snpgdsLDpair Linkage Disequilibrium (LD)

Description

Return a LD value between snpl and snp2.

66 snpgdsLDpair

Usage

snpgdsLDpair(snp1, snp2, method = c("composite”, "r", "dprime”, "corr"))
Arguments

snp1 a vector of SNP genotypes (0 — BB, 1 — AB, 2 - AA)

snp2 a vector of SNP genotypes (0 — BB, 1 — AB, 2 - AA)

method "composite", "r", "dprime", "corr", see details
Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D’, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite”, when
SNP genotypes are coded as: 0 — BB, 1 — AB, 2 — AA.

Value

Return a numeric vector:
1d a measure of linkage disequilibrium

if method = "r" or "dprime”,

PA_A haplotype frequency of AA, the first locus is A and the second locus is A
pA_B haplotype frequency of AB, the first locus is A and the second locus is B
pB_A haplotype frequency of BA, the first locus is B and the second locus is A
pB_B haplotype frequency of BB, the first locus is B and the second locus is B
Author(s)
Xiuwen Zheng
References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.
Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also

snpgdsLDMat, snpgdsLDpruning

snpgdsLDpruning 67
Examples
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
snpl <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(1,-1))
snp2 <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(2,1), count=c(1,-1))
snpgdsLDpair(snpl, snp2, method = "composite")
snpgdsLDpair(snp1, snp2, method = "r")
snpgdsLDpair(snpl, snp2, method = "dprime")
snpgdsLDpair(snp1, snp2, method = "corr")
close the genotype file
snpgdsClose(genofile)
snpgdsLDpruning Linkage Disequilibrium (LD) based SNP pruning
Description
Recursively removes SNPs within a sliding window
Usage
snpgdsLDpruning(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=0.005, missing.rate=0.01,
method=c("composite”, "r", "dprime"”, "corr"), slide.max.bp=500000L,
slide.max.n=NA, 1d.threshold=0.2,
start.pos=c("random.f500", "random”, "first”, "last"),
num. thread=1L, autosave=NULL, verbose=TRUE)
Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep

SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold

missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

non

method "composite", "r", "dprime", "corr", see details
slide.max.bp the maximum basepairs in the sliding window
slide.max.n the maximum number of SNPs in the sliding window
1d. threshold the LD threshold

68

snpgdsLDpruning

start.pos "random.f500", a starting postion randomly selected from the first 500 markers
(by default); "random": a random starting position; "first": start from the first
position; "last": start from the last position. "random.f500" is applicable for >=

v1.37.2
num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
autosave NULL or a file name for autosaving a single R object (saving via saveRDS)
verbose if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite
measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime"
for D’, and "corr" for correlation coefficient. The method "corr" is equivalent to "composite”, when
SNP genotypes are coded as: 0 — BB, 1 — AB, 2 — AA. The argument 1d. threshold is the absolute
value of measurement.

It is useful to generate a pruned subset of SNPs that are in approximate linkage equilibrium with
each other. The function snpgdsLDpruning recursively removes SNPs within a sliding window
based on the pairwise genotypic correlation. SNP pruning is conducted chromosome by chromo-
some, since SNPs in a chromosome can be considered to be independent with the other chromo-
somes.

The pruning algorithm on a chromosome is described as follows (n is the total number of SNPs on
that chromosome):

1) Randomly select a starting position i (start.pos="random"), i=1 if start.pos="first", or
i=last if start.pos="1last"; and let the current SNP set S={ i };

2) For each right position j from i+1 to n: if any LD between j and k is greater than 1d. threshold,
where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be
S+{jh

3) For each left position j from i-1 to 1: if any LD between j and k is greater than 1d. threshold,
where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be
S+{j}

4) Output S, the final selection of SNPs.

Value

Return a list of SNP IDs stratified by chromosomes.

Author(s)

Xiuwen Zheng

References

Weir B: Inferences about linkage disequilibrium. Biometrics 1979; 35: 235-254.
Weir B: Genetic Data Analysis II. Sunderland, MA: Sinauer Associates, 1996.

snpgdsMergeGRM 69

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW
(ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

See Also
snpgdsLDMat, snpgdsLDpair

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

set.seed(1000)

snpset <- snpgdsLDpruning(genofile)

str(snpset)

names(snpset)

[1]1 "chr1” "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8" "chr9”
[10] "chr1@" "chr11"” "chri12" "chr13” "chr14" "chr15" "chr16" "chr17" "chri18”

get SNP ids
snp.id <- unlist(unname(snpset))

close the genotype file
snpgdsClose(genofile)

snpgdsMergeGRM Merge Multiple Genetic Relationship Matrices (GRM)

Description

Combine multiple genetic relationship matrices with weighted averaging.

Usage

snpgdsMergeGRM(filelist, out.fn=NULL, out.prec=c("double”, "single"),
out.compress="LZMA_RA", weight=NULL, verbose=TRUE)

Arguments
filelist a character vector, list of GDS file names
out.fn NULL, return a GRM object; or characters, the output GDS file name
out.prec double or single precision for storage

out.compress the compression method for storing the GRM matrix in the GDS file

weight NULL, weights proportional to the numbers of SNPs; a numeric vector, or a log-
ical vector (FALSE for excluding some GRMs with a negative weight, weights
proportional to the numbers of SNPs)

verbose if TRUE, show information

70 snpgdsMergeGRM

Details

The final GRM is the weighted averaged matrix combining multiple GRMs. The merged GRM may
not be identical to the GRM calculated using full SNPs, due to missing genotypes or the internal
weighting strategy of the specified GRM calculation.

Value

None or a GRM object if out. fn=NULL.

Author(s)

Xiuwen Zheng

See Also
snpgdsGRM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpid <- read.gdsn(index.gdsn(genofile, "snp.id"))
snpid <- snpid[snpgdsSNPRateFreq(genofile)$MissingRate == 0]

there is no missing genotype
grm <- snpgdsGRM(genofile, snp.id=snpid, method="GCTA")

save two GRMs

setl <- grm$snp.id[1:(length(grm$snp.id)/2)]

set2 <- setdiff(grm$snp.id, set1)

snpgdsGRM(genofile, method="GCTA", snp.id=set1, out.fn="tmpl.gds")
snpgdsGRM(genofile, method="GCTA", snp.id=set2, out.fn="tmp2.gds")

merge GRMs and export to a new GDS file
snpgdsMergeGRM(c("tmp1.gds"”, "tmp2.gds"), "tmp.gds")

return the GRM
grm2 <- snpgdsMergeGRM(c("tmp1.gds"”, "tmp2.gds"))

check

f <- openfn.gds("tmp.gds")

m <- read.gdsn(index.gdsn(f, "grm"))
closefn.gds(f)

summary(c(m - grm$grm)) # ~zero
summary(c(m - grm2$grm)) # zero

close the file

snpgdsOpen 71

snpgdsClose(genofile)

delete the temporary file
unlink(c("tmpl.gds"”, "tmp2.gds", "tmp.gds"), force=TRUE)

snpgdsOpen Open a SNP GDS File

Description

Open a SNP GDS file

Usage

snpgdsOpen(filename, readonly=TRUE, allow.duplicate=FALSE, allow.fork=TRUE)

Arguments
filename the file name
readonly whether read-only or not

allow.duplicate
if TRUE, it is allowed to open a GDS file with read-only mode when it has been
opened in the same R session, see openfn.gds

allow. fork TRUE for parallel environment using forking, see openfn.gds

Details

It is strongly suggested to call snpgdsOpen instead of openfn.gds, since snpgdsOpen will perform
internal checking for data integrality.

Value

Return an object of class SNPGDSFileClass.

Author(s)

Xiuwen Zheng

See Also

snpgdsClose

72 snpgdsOption

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

genofile

close the file
snpgdsClose(genofile)

snpgdsOption Option settings: chromosome coding, etc

Description

Return an option list used by the SNPRelate package or a GDS file

Usage

snpgdsOption(gdsobj=NULL, autosome.start=1L, autosome.end=22L, ...)
Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

autosome.start the starting index of autosome
autosome.end the ending index of autosome

optional arguments for new chromosome coding

Value

A list

Author(s)

Xiuwen Zheng

Examples

define the new chromosomes 'Z' and 'W'
snpgdsOption(Z=27L, W=28L)

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
snpgdsOption(genofile)

close the genotype file
snpgdsClose(genofile)

snpgdsPairlBD 73

snpgdsPairIBD Calculate Identity-By-Descent (IBD) Coefficients

Description

Calculate the three IBD coefficients (kO, k1, k2) for non-inbred individual pairs by Maximum Like-
lihood Estimation (MLE) or PLINK Method of Moment (MoM).

Usage

snpgdsPairIBD(genol, geno2, allele.freq,
method=c("EM"”, "downhill.simplex", "MoM", "Jacquard”),
kinship.constraint=FALSE, max.niter=1000L, reltol=sqrt(.Machine$double.eps),
coeff.correct=TRUE, out.num.iter=TRUE, verbose=TRUE)

Arguments
genol the SNP genotypes for the first individual, 0 — BB, 1 — AB, 2 — AA, other values
— missing
geno?2 the SNP genotypes for the second individual, O — BB, 1 — AB, 2 — AA, other
values — missing
allele.freq the allele frequencies
method "EM", "downhill.simplex", "MoM" or "Jacquard", see details

kinship.constraint
if TRUE, constrict IBD coefficients (k_0,k_1,k_2) in the genealogical region
($2 k_0k_1 >=k_2"2%)

max.niter the maximum number of iterations

reltol relative convergence tolerance; the algorithm stops if it is unable to reduce the
value of log likelihood by a factor of $reltol * (abs(log likelihood with the initial
parameters) + reltol)$ at a step.

coeff.correct TRUE by default, see details

out.num.iter if TRUE, output the numbers of iterations

verbose if TRUE, show information

Details

If method = "MoM"”, then PLINK Method of Moment without a allele-count-based correction fac-
tor is conducted. Otherwise, two numeric approaches for maximum likelihood estimation can be
used: one is Expectation-Maximization (EM) algorithm, and the other is Nelder-Mead method or
downhill simplex method. Generally, EM algorithm is more robust than downhill simplex method.
"Jacquard” refers to the estimation of nine Jacquard’s coefficients.

If coeff.correct is TRUE, the final point that is found by searching algorithm (EM or downbhill
simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any
numeric approach might not reach the maximum position after a finit number of steps. If any of
these six points has a higher value of log likelihood, the final point will be replaced by the best one.

74 snpgdsPairlBD

Value

Return a data. frame:

ko IBD coefficient, the probability of sharing ZERO IBD
k1 IBD coefficient, the probability of sharing ONE IBD
loglik the value of log likelihood
niter the number of iterations

Author(s)
Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also
snpgdsPairIBDMLELogl ik, snpgdsIBDMLE, snpgdsIBDMLELogLik, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]

SNP pruning

set.seed(10)

snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,
missing.rate=0.05)

snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25

specify allele frequencies

RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset,
with.id=TRUE)

summary (RF$AlleleFreq)

snpgdsPairlBDMLELogLik 75

SUbMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subJac <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq, method="Jacquard")

I

genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,
snpfirstdim=TRUE)

rv <- NULL
for (i in 2:n)
{

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM"))
print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,
relatedness="unrelated”, verbose=TRUE))

}

rv

summary (rv$k@ - subMLE$ke[1, 2:nl)

summary (rv$k1l - subMLE$k1[1, 2:n])

ZERO

rv <- NULL
for (i in 2:n)
rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
rv
summary (rv$k@ - subMoM$ko[1, 2:n])
summary (rv$k1l - subMoM$k1[1, 2:n])
ZERO

rv <- NULL
for (i in 2:n)
rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "Jacquard"))
rv
summary (rv$D1 - subJac$D1[1, 2:n])
summary (rv$D2 - subJac$D2[1, 2:n])
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsPairIBDMLELogLik

Log likelihood for MLE method in the Identity-By-Descent (IBD) Anal-
ysis

76 snpgdsPairBDMLELogLik

Description

Calculate the log likelihood values from maximum likelihood estimation.

Usage
snpgdsPairIBDMLELogLik (genol, geno2, allele.freq, k@=NaN, k1=NaN,
relatedness=c("", "self"”, "fullsib”, "offspring”, "halfsib",
"cousin”, "unrelated"), verbose=TRUE)
Arguments
genol the SNP genotypes for the first individual, 0 — BB, 1 — AB, 2 — AA, other values
— missing
geno?2 the SNP genotypes for the second individual, 0 — BB, 1 — AB, 2 — AA, other
values — missing
allele.freq the allele frequencies
ko specified IBD coefficient
k1 specified IBD coefficient
relatedness specify a relatedness, otherwise use the values of kO and k1
verbose if TRUE, show information
Details
If (relatedness == "") and (kO == NaN or k1 == NaN), then return the log likelihood values for

each (kO, k1) stored in ibdob.

If (relatedness =="") and (kO != NaN) and (k1 != NaN), then return the log likelihood values for
a specific IBD coefficient (kO, k1).

If relatedness is: "self", then kO = 0, k1 = 0; "fullsib", then kO = 0.25, k1 = 0.5; "offspring", then
kO =0, k1 = 1; "halfsib", then kO = 0.5, k1 = 0.5; "cousin", then kO = 0.75, k1 = 0.25; "unrelated",
thenkO=1,kl =0.

Value

The value of log likelihood.

Author(s)

Xiuwen Zheng

References

Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.

Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new
challenges. Nat Rev Genet. 7(10):771-80.

Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown
relationships. Genet Epidemiol 33(8):668-78.

snpgdsPairlBDMLELogLik

See Also

snpgdsPairIBD, snpgdsIBDMLE, snpgdsIBDMLELogL ik, snpgdsIBDMoM

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))=="YRI"]

SNP pruning

set.seed(10)

snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05,
missing.rate=0.05)

snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25

specify allele frequencies

RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset,
with.id=TRUE)

summary (RF$AlleleFreq)

SUbMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,
snpfirstdim=TRUE)

HHHHAHHHAHEAE AR

rv <- NULL
for (i in 2:n)
{

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM"))
print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,
relatedness="unrelated”, verbose=TRUE))

3

rv

summary (rv$k@ - subMLE$ke[1, 2:n])

summary (rv$k1l - subMLE$k1[1, 2:n])

ZERO

rv <- NULL
for (i in 2:n)

77

78 snpgdsPairScore

rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
rv
summary (rv$k@ - subMoM$ko[1, 2:n])
summary (rv$k1l - subMoM$k1[1, 2:n])
ZERO

close the genotype file
snpgdsClose(genofile)

snpgdsPairScore Genotype Score for Fairs of Individuals

Description

Calculate the genotype score for pairs of individuals based on identity-by-state (IBS) measure

Usage

snpgdsPairScore(gdsobj, samplel.id, sample2.id, snp.id=NULL,
method=c("IBS"”, "GVH", "HVG", "GVH.major", "GVH.minor", "GVH.major.only",
"GVH.minor.only"), type=c("per.pair”, "per.snp”, "matrix", "gds.file"),
dosage=TRUE, with.id=TRUE, output=NULL, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
samplel.id a vector of sample id specifying selected samples; if NULL, all samples are used
sample2.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
method "IBS" — identity-by-state score, "GVH" or "HVG", see Details
type "per.pair”, "per.snp” or "matrix”, see Value
dosage TRUE, uses dosages 0, 1, 2; FALSE, uses 0, 1 (changing a return value of 1 or
2tobe 1)
with.id if TRUE, returns "sample.id" and "snp.id"; see Value
output if type="gds.file", the file name
verbose if TRUE, show information
Details

samplel.id sample2.id

Patient Donor IBS GVH HVG GVH.major GVH.minor GVH.major.only GVH.minor.only
AA /2 AA/2 2 0 0 0 0 0 0
AA /2 AB/1 1 0 1 0 0 0 0

AA /2 BB/0 0 2 2 1 0 1 NA

snpgdsPairScore 79

AB/1 AA /2 1 1 0 0 1 NA 1

AB/1 AB/1 2 0 0 0 0 0

AB/1 BB/0 1 1 0 1 0 1 NA

BB/0 AA /2 0 2 2 0 1 NA 1

BB/0 AB/1 1 0 1 0 0 0 0

BB/0 BB/0 2 0 0 0 0 0 0
Value

Return a list:

sample.id the sample ids used in the analysis, if with.id=TRUE

snp.id the SNP ids used in the analysis, if with.id=TRUE

score a matrix of genotype score: if type="per.pair”, a data.frame with the first

column for average scores, the second column for standard deviation and the
third column for the valid number of SNPs; the additional columns for pairs
of samples. if type="per.snp”, a 3-by-# of SNPs matrix with the first row for
average scores, the second row for standard deviation and the third row for the
valid number of individual pairs; if type="matrix", a# of pairs-by-# of SNPs
matrix with rows for pairs of individuals

Author(s)

Xiuwen Zheng

References

Warren, E. H., Zhang, X. C., Li, S., Fan, W., Storer, B. E., Chien, J. W., Boeckh, M. J., et al. (2012).
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT.
Blood, 120(14), 2796-806. doi:10.1182/blood-2012-04-347286

See Also

snpgdsIBS

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

autosomal SNPs
selsnp <- snpgdsSelectSNP(genofile, autosome.only=TRUE, remove.monosnp=FALSE)

sample ID
sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
father.id <- read.gdsn(index.gdsn(genofile, "sample.annot/father.id"))

80 snpgdsPCA

offspring.id <- sample.id[father.id != ""]
father.id <- father.id[father.id != ""]

calculate average genotype scores

z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
method="IBS", type="per.pair")

str(zl)

head(z1$score)

calculate average genotype scores

z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
method="IBS", type="per.pair"”, dosage=FALSE)

str(zl)

head(z1$score)

calculate average genotype scores

z2 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
method="IBS", type="per.snp")

str(z2)

z2$score[, 1:4]

mean(z2$score["Avg",]1)

mean(z2$score["SD", 1)

plot(z2$score["Avg"”,], pch=20, cex=0.75, xlab="SNP Index"”, ylab="IBS score")

calculate a matrix of genotype scores over samples and SNPs

z3 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
method="IBS", type="matrix")

str(z3)

output the score matrix to a GDS file

snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
method="IBS", type="gds.file", output="tmp.gds")

(f <- snpgdsOpen("tmp.gds"))

snpgdsClose(f)

close the file
snpgdsClose(genofile)

unlink("tmp.gds", force=TRUE)

snpgdsPCA Principal Component Analysis (PCA) on SNP genotype data

Description

To calculate the eigenvectors and eigenvalues for principal component analysis in GWAS.

snpgdsPCA 81

Usage

snpgdsPCA(gdsobj, sample.id=NULL, snp.id=NULL,
autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=0.01,
algorithm=c("exact"”, "randomized"),
eigen.cnt=ifelse(identical(algorithm, "randomized"), 16L, 32L),
num. thread=1L, bayesian=FALSE, need.genmat=FALSE,
genmat.only=FALSE, eigen.method=c("DSPEVX", "DSPEV"),
aux.dim=eigen.cnt*2L, iter.num=10L, verbose=TRUE)

S3 method for class 'snpgdsPCAClass'

autosome.only

remove.monosnp

maf
missing.rate
eigen.cnt

algorithm

num. thread
bayesian
need.genmat

genmat.only

eigen.method

aux.dim
iter.num
verbose
X

eig

Details

plot(x, eig=c(1L,2L), ...)
Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

if TRUE, remove monomorphic SNPs

to use the SNPs with ">= maf" only; if NaN, no MAF threshold

to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
output the number of eigenvectors; if eigen.cnt <= 0, then return all eigenvectors

"exact", traditional exact calculation; "randomized", fast PCA with randomized
algorithm introduced in Galinsky et al. 2016

the number of (CPU) cores used; if NA, detect the number of cores automatically
if TRUE, use bayesian normalization
if TRUE, return the genetic covariance matrix

return the genetic covariance matrix only, do not compute the eigenvalues and
eigenvectors

"DSPEVX" — compute the top eigen.cnt eigenvalues and eigenvectors using
LAPACK::DSPEVX; "DSPEV" — to be compatible with SNPRelate_1.1.6 or
earlier, using LAPACK::DSPEV; "DSPEVX" is significantly faster than "DSPEV"
if only top principal components are of interest

auxiliary dimension used in fast randomized algorithm
iteration number used in fast randomized algorithm

if TRUE, show information

a snpgdsPCAClass object

indices of eigenvectors, like 1:2 or 1:4

the arguments passed to or from other methods, like pch, col

The minor allele frequency and missing rate for each SNP passed in snp. id are calculated over all
the samples in sample. id.

82 snpgdsPCA

Value

Return a snpgdsPCAClass object, and it is a list:

sample.id the sample ids used in the analysis
snp.1id the SNP ids used in the analysis
eigenval eigenvalues
eigenvect eigenvactors, "# of samples" x "eigen.cnt"
varprop variance proportion for each principal component
TraceXTX the trace of the genetic covariance matrix
Bayesian whether use bayerisan normalization
genmat the genetic covariance matrix

Author(s)
Xiuwen Zheng

References

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006
Dec;2(12):¢190.

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

See Also

snpgdsPCACorr, snpgdsPCASNPLoading, snpgdsPCASampLoading, snpgdsAdmixProp, snpgdsEIGMIX

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

run PCA
RV <- snpgdsPCA(genofile)
RV

eigenvalues
head(RV$eigenval)

variance proportion (%)
head(round(RV$varprop*100, 2))
[1] 12.23 5.84 1.01 0.95 0.84 0.74

draw
plot(RV)
plot(RV, 1:4)

snpgdsPCA 83

there is no population information

make a data.frame
tab <- data.frame(sample.id = RV$sample.id,
EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)
head(tab)
sample.id EV1 EV2
NA19152 -0.08411287 -0.01226860
NA19139 -0.08360644 -0.01085849
NA18912 -0.08110808 -0.01184524
NA19160 -0.08680864 -0.01447106
NAQ7034 ©.03109761 ©.07709255

#
#
#
#
#
#
NAQ7055 ©.03228450 ©0.08155730

o U A W N =

draw
plot(tab$EV2, tab$EV1, xlab="eigenvector 2", ylab="eigenvector 1")

there are population information

get population information

or pop_code <- scan("pop.txt", what=character())

if it is stored in a text file "pop.txt”

pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group”))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

assume the order of sample IDs is as the same as population codes
cbind(samp.id, pop_code)

samp.id pop_code
[1,]1 "NA19152" "YRIL"

[2,] "NA19139" "YRI"

[3,] "NA18912" "YRI"

[4,]1 "NA19160" "YRIL"

[5,]1 "NA@7034" "CEU"

.

make a data.frame
tab <- data.frame(sample.id = RV$sample.id,
pop = factor(pop_code)[match(RV$sample.id, samp.id)],

EV1 = RV$eigenvect[,1], # the first eigenvector
EV2 = RV$eigenvect[,2], # the second eigenvector
stringsAsFactors = FALSE)

head(tab)

sample.id pop EV1 EV2

1 NA19152 YRI -0.08411287 -0.01226860
2 NA19139 YRI -0.08360644 -0.01085849
3 NA18912 YRI -0.08110808 -0.01184524

84 snpgdsPCACorr

4 NA19160 YRI -0.08680864 -0.01447106
5 NA07034 CEU 0.03109761 0.07709255
6 NAQ7055 CEU 0.03228450 0.08155730

draw

plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
xlab="eigenvector 2", ylab="eigenvector 1")

legend("bottomright”, legend=levels(tab$pop), pch="0", col=1:4)

close the file
snpgdsClose(genofile)

snpgdsPCACorr PC-correlated SNPs in principal component analysis

Description

To calculate the SNP correlations between eigenvactors and SNP genotypes

Usage

snpgdsPCACorr (pcaobj, gdsobj, snp.id=NULL, eig.which=NULL, num.thread=1L,
with.id=TRUE, outgds=NULL, verbose=TRUE)

Arguments
pcaobj a snpgdsPCAClass object returned from the function snpgdsPCA, a snpgdsEigMixClass
from snpgdsEIGMIX, or an eigenvector matrix with row names (sample id)
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
eig.which a vector of integers, to specify which eigenvectors to be used
num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
with.id if TRUE, the returned value with sample.id and sample.id
outgds NULL or a character of file name for exporting correlations to a GDS file, see
details
verbose if TRUE, show information
Details

If an output file name is specified via outgds, "sample.id", "snp.id" and "correlation" will be stored
in the GDS file. The GDS node "correlation" is a matrix of correlation coefficients, and it is stored
with the format of packed real number ("packedreall6" preserving 4 digits, 0.0001 is the smallest
number greater zero, see add.gdsn).

snpgdsPCACorr 85

Value

Return a list if outgds=NULL,

sample.id the sample ids used in the analysis

snp.1id the SNP ids used in the analysis

snpcorr a matrix of correlation coefficients, "# of eigenvectors" x "# of SNPs"
Author(s)

Xiuwen Zheng
References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

See Also

snpgdsPCA, snpgdsPCASampLoading, snpgdsPCASNPLoading

Examples

open an example dataset (HapMap)

genofile <- snpgdsOpen(snpgdsExampleFileName())

get chromosome index

chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome”))

pca <- snpgdsPCA(genofile)
cr <- snpgdsPCACorr(pca, genofile, eig.which=1:4)
plot(abs(cr$snpcorr[3,]), xlab="SNP Index"”, ylab="PC 3", col=chr)

output to a gds file if limited memory
snpgdsPCACorr(pca, genofile, eig.which=1:4, outgds="test.gds")

(f <- openfn.gds("test.gds"))
m <- read.gdsn(index.gdsn(f, "correlation”))
closefn.gds(f)

check
summary(c(m - cr$snpcorr)) # should < le-4
close the file

snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

86

snpgdsPCASampLoading

snpgdsPCASampLoading Project individuals onto existing principal component axes

Description

To calculate the sample eigenvectors using the specified SNP loadings

Usage

snpgdsPCASampLoading(loadobj, gdsobj, sample.id=NULL, num.thread=1L,
verbose=TRUE)

Arguments

loadobj

gdsobj
sample.id
num. thread

verbose

Details

a snpgdsPCASNPLoadingClass or snpgdsEigMixSNPLoadingClass object re-
turned from snpgdsPCASNPLoading

an object of class SNPGDSFileClass, a SNP GDS file
a vector of sample id specifying selected samples; if NULL, all samples are used
the number of CPU cores used

if TRUE, show information

The sample.id are usually different from the samples used in the calculation of SNP loadings.

Value

Returns a snpgdsPCAClass object, and it is a list:

sample.id
snp.id
eigenval
eigenvect
TraceXTX

Bayesian

the sample ids used in the analysis

the SNP ids used in the analysis
eigenvalues

eigenvactors, “# of samples” x “eigen.cnt”
the trace of the genetic covariance matrix

whether use bayerisan normalization

Or returns a snpgdsEigMixClass object, and it is a list:

sample.id
snp.id
eigenval
eigenvect

afreq

the sample ids used in the analysis

the SNP ids used in the analysis
eigenvalues

eigenvactors, “# of samples” x “eigen.cnt”

allele frequencies

snpgdsPCASampLoading 87

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

Zhu, X., Li, S., Cooper, R. S., and Elston, R. C. (2008). A unified association analysis approach for
family and unrelated samples correcting for stratification. Am J Hum Genet, 82(2), 352-365.

See Also

snpgdsPCA, snpgdsPCACorr, snpgdsPCASNPLoading

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

first PCA
pca <- snpgdsPCA(genofile, eigen.cnt=8)
snp_load <- snpgdsPCASNPLoading(pca, genofile)

calculate sample eigenvectors from SNP loadings
samp_load <- snpgdsPCASampLoading(snp_load, genofile, sample.id=sample.id[1:1001])

diff <- pca$eigenvect[1:100,] - samp_load$eigenvect
summary (c(diff))
~ ZERO

combine eigenvectors

allpca <- list(
sample.id = c(pca$sample.id, samp_load$sample.id),
snp.id = pca$snp.id,
eigenval = c(pcas$eigenval, samp_load$eigenval),
eigenvect = rbind(pca$eigenvect, samp_load$eigenvect),
varprop = c(pca$varprop, samp_load$varprop),
TraceXTX = pca$TraceXTX

)

class(allpca) <- "snpgdsPCAClass”

allpca

close the genotype file
snpgdsClose(genofile)

88 snpgdsPCASNPLoading

snpgdsPCASNPLoading SNP loadings in principal component analysis

Description

To calculate the SNP loadings in Principal Component Analysis

Usage

snpgdsPCASNPLoading(pcaobj, gdsobj, num.thread=1L, verbose=TRUE)

Arguments
pcaobj a snpgdsPCAClass object returned from the function snpgdsPCA or a snpgdsEigMixClass
from snpgdsEIGMIX
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
num. thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
Details

Calculate the SNP loadings (or SNP eigenvectors) from the principal component analysis conducted
in snpgdsPCA.

Value

Returns a snpgdsPCASNPLoading object if pcaobj is snpgdsPCAClass, which is a list:

sample.id the sample ids used in the analysis

snp.1id the SNP ids used in the analysis

eigenval eigenvalues

snploading SNP loadings, or SNP eigenvectors

TraceXTX the trace of the genetic covariance matrix
Bayesian whether use bayerisan normalization
avgfreq two times allele frequency used in snpgdsPCA
scale internal parameter

Or returns a snpgdsEigMixSNPLoadingClass object if pcaobj is snpgdsEigMixClass, which is a

list:

sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
eigenval eigenvalues

snploading SNP loadings, or SNP eigenvectors

afreq allele frequency

snpgdsPED2GDS 89

Author(s)

Xiuwen Zheng

References

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics
2:e190.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal com-
ponents analysis corrects for stratification in genome-wide association studies. Nat Genet. 38,
904-909.

Zhu, X., Li, S., Cooper, R. S., and Elston, R. C. (2008). A unified association analysis approach for
family and unrelated samples correcting for stratification. Am J Hum Genet, 82(2), 352-365.
See Also

snpgdsPCA, snpgdsEIGMIX, snpgdsPCASampLoading, snpgdsPCACorr

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

PCARV <- snpgdsPCA(genofile, eigen.cnt=8)
SnpLoad <- snpgdsPCASNPLoading(PCARV, genofile)

names (SnpLoad)

[1] "sample.id” "snp.id" "eigenval” "snploading” "TraceXTX"
[6] "Bayesian” "avgfreq” "scale”

dim(SnpLoad$snploading)

[1] 8 8722

plot(SnpLoad$snploading[1,], type="h", ylab="PC 1")

close the genotype file
snpgdsClose(genofile)

snpgdsPED2GDS Conversion from PLINK PED to GDS

Description

Convert a PLINK PED text file to a GDS file.

Usage

snpgdsPED2GDS (ped. fn, map.fn, out.gdsfn, family=TRUE, snpfirstdim=FALSE,
compress.annotation="ZIP_RA.max", compress.geno="", verbose=TRUE)

90 snpgdsPED2GDS

Arguments
ped.fn the file name of PED file, genotype information
map.fn the file name of MAP file
out.gdsfn the output GDS file
family if TRUE, to include family information in the sample annotation

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)
compress.annotation
the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add. gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add. gdsn

verbose if TRUE, show information

Details

GDS - Genomic Data Structures, the extended file name used for storing genetic data, and the file
format is used in the gdsfmt package.

PED - PLINK PED format.

Value

None.

Author(s)
Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de
Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics, 81.

See Also
snpgdsGDS2PED, snpgdsBED2GDS, snpgdsGDS2BED

Examples

open
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpgdsGDS2PED(genofile, "tmp")

close
snpgdsClose(genofile)

snpgdsSampMissRate 91

PED ==> GDS
snpgdsPED2GDS ("tmp.ped”, "tmp.map”, "test.gds")

delete the temporary file
unlink(c("tmp.ped”, "tmp.map”, "test.gds"), force=TRUE)

snpgdsSampMissRate Missing Rate of Samples

Description

Return the missing fraction for each sample

Usage

snpgdsSampMissRate(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used
snp.1id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used
with.id if TRUE, the returned value with sample id
Value

A vector of numeric values.

Author(s)
Xiuwen Zheng

See Also

snpgdsSNPRateFreq

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsSampMissRate(genofile)
summary (RV)

close the genotype file
snpgdsClose(genofile)

92 snpgdsSelectSNP

snpgdsSelectSNP SNP selection

Description

Create a list of candidate SNPs based on specified criteria

Usage

snpgdsSelectSNP(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples will be
used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used

autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

remove.monosnp if TRUE, remove monomorphic SNPs

maf to use the SNPs with ">= maf" only; if NaN, no any MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no any missing threshold
verbose if TRUE, show information

Value

Return a list of snp ids.

Author(s)
Xiuwen Zheng

See Also

snpgdsSampMissRate, snpgdsSNPRateFreq, snpgdsLDpruning

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpset <- snpgdsSelectSNP(genofile, maf=0.05, missing.rate=0.95)
length(snpset)
7502

close the genotype file
snpgdsClose(genofile)

snpgdsSlidingWindow

93

snpgdsSlidingWindow Sliding window

Description

Apply a user-defined function with a sliding window.

Usage

snpgdsSlidingWindow(gdsobj, sample.id=NULL, snp.id=NULL,
FUN=NULL, winsize=100000L, shift=10000L, unit=c("basepair”, "locus"),
winstart=NULL, autosome.only=FALSE, remove.monosnp=TRUE, maf=NaN,
missing.rate=NaN, as.is=c("list"”, "numeric", "array"),
with.id=c("snp.id"”, "snp.id.in.window”, "none"), num.thread=1,
verbose=TRUE, ...)

Arguments
gdsobj
sample.id
snp.id
FUN
winsize
shift

unit

winstart

autosome.only

remove.monosnp
maf
missing.rate

as.is

with.id
num. thread

verbose

an object of class SNPGDSFileClass, a SNP GDS file

a vector of sample id specifying selected samples; if NULL, all samples are used
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

a character or a user-defined function, see details

the size of sliding window

the amount of shifting the sliding window

"basepair” —winsize and shift are applied with SNP coordinate of basepair;
"locus” — winsize and shift are applied according to the SNP order in the
GDS file

NULL — no specific starting position; an integer — a starting position for all chro-
mosomes; or a vector of integer — the starting positions for each chromosome

if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome

if TRUE, remove monomorphic SNPs
to use the SNPs with ">= maf" only; if NaN, no MAF threshold
to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold

noon

save the value returned from FUN as "list" or "numeric"; "array" is equivalent to
"numeric" except some cases, see details

"snp.id", "snp.id.in.window" or "none"
the number of (CPU) cores used; if NA, detect the number of cores automatically
if TRUE, show information

optional arguments to FUN

94 snpgdsSNPList

Details

If FUN="snpgdsFst", two additional arguments "population” and "method” should be specified.
"population” and "method” are defined in snpgdsFst. "as.is” could be "list" (returns a list
of the values from snpgdsFst), "numeric" (population-average Fst, returns a vector) or "array"
(population-average and -specific Fst, returns a ‘# of pop + 1’-by-‘# of windows’ matrix, and the
first row is population-average Fst).

Value

Return a list

Author(s)

Xiuwen Zheng

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

sliding windows
rv <- snpgdsSlidingWindow(genofile, winsize=500000, shift=100000,
FUN=function(...) NULL)

plot
plot(rv$chril.num, ylab="# of SNPs in the sliding window")

close the genotype file
snpgdsClose(genofile)

snpgdsSNPList Create a SNP list object

Description

A list object of SNP information including rs, chr, pos, allele and allele frequency.

Usage

snpgdsSNPList(gdsobj, sample.id=NULL)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file

sample.id a vector of sample id specifying selected samples; if NULL, all samples are used

snpgdsSNPListClass

Value

Return an object of snpgdsSNPListClass including the following components:

snp.id SNP id
chromosome SNP chromosome index
position SNP physical position in basepair
allele reference / non-ref alleles
afreq allele frequency

Author(s)
Xiuwen Zheng

See Also

snpgdsSNPListIntersect

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

to get a snp list object
snplist <- snpgdsSNPList(genofile)
head(snplist)

close the file
snpgdsClose(genofile)

95

snpgdsSNPListClass the class of a SNP list

Description

the class of a SNP list, and its instance is returned from snpgdsSNPList.

Value

Return an object of “snpgdsSNPListClass” including the following components:

snp.id SNP id

chromosome SNP chromosome index
position SNP physical position in basepair
allele reference / non-ref alleles

afreq allele frequency

96 snpgdsSNPListIntersect

Author(s)

Xiuwen Zheng

See Also

snpgdsSNPList, snpgdsSNPListIntersect

snpgdsSNPListIntersect
Get a common SNP list between/among SNP list objects

Description
Get a common SNP list by comparing their snp id, chromosome, positions and allele frequency if
needed.

Usage

snpgdsSNPListIntersect(snplistl, snplist2, ..., method=c("position”, "exact”),
na.rm=TRUE, same.strand=FALSE, verbose=TRUE)

Arguments
snplisti the SNP list object snpgdsSNPListClass
snplist2 the SNP list object snpgdsSNPListClass
the other SNP list objects
method "exact": matching by all snp.id, chromosomes, positions and alleles; "position”:
matching by chromosomes and positions
na.rm if TRUE, remove mismatched alleles
same.strand if TRUE, assuming the alleles on the same strand
verbose if TRUE, show information
Value

Return a list of snpgdsSNPListClass including the following components:

idx1 the indices of common SNPs in the first GDS file

idx2 the indices of common SNPs in the second GDS file

idx. ..

idxn the indices of common SNPs in the n-th GDS file

flag2 an integer vector, flip flag for each common SNP for the second GDS file (as-

suming a value v): bitwAnd(v, 1): 0 —no flip of allele names, 1 — flip of allele
names; bitwAnd(v, 2): 0 — on the same strand, 2 — on the different strands,
comparing with the first GDS file; bitwAnd(v, 4): 0 — no strand ambiguity, 4
— ambiguous allele names, determined by allele frequencies; NA — mismatched
allele names (there is no NA if na. rm=TRUE)

snpgdsSNPRateFreq

flag. ..
flagn flip flag for each common SNP for the n-th GDS file

Author(s)

Xiuwen Zheng

See Also

snpgdsSNPList

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

to get a snp list object
snplist1 <- snpgdsSNPList(genofile)
snplist2 <- snpgdsSNPList(genofile)

a common snp list, exactly matching

v <- snpgdsSNPListIntersect(snplistl, snplist2)
names(v)

"idx1" "idx2"

a common snp list, matching by position

v <- snpgdsSNPListIntersect(snplist1, snplist2, method="pos")
names(v)

"idx1" "idx2" "flag2"

table(v$flag2, exclude=NULL)

close the file
snpgdsClose(genofile)

97

snpgdsSNPRateFreq Allele Frequency, Minor Allele Frequency, Missing Rate of SNPs

Description

Calculate the allele frequency, minor allele frequency and missing rate per SNP.

Usage

snpgdsSNPRateFreq(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE,
with.sample.id=FALSE, with.snp.id=FALSE)

98

Arguments

gdsobj

sample.id

snp.id
with.id
with.sample.id

with.snp.id

Value

Return a list:

snpgdsSNPRateFreq

an object of class SNPGDSFileClass, a SNP GDS file

a vector of sample id specifying selected samples; if NULL, all samples will be
used

a vector of snp id specifying selected SNPs; if NULL, all SNPs will be used
if TRUE, return both sample and SNP IDs

if TRUE, return sample IDs

if TRUE, return SNP IDs

AlleleFreq allele frequencies
MinorFreq minor allele frequencies
MissingRate missing rates
sample.id sample id, if with.id=TRUE or with.sample.id=TRUE
snp.id SNP id, if with.id=TRUE or with.snp.id=TRUE
Author(s)
Xiuwen Zheng
See Also
snpgdsSampMissRate
Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

RV <- snpgdsSNPRateFreq(genofile, with.snp.id=TRUE)
head(data.frame(RV))

hist(RV$AlleleFreq, breaks=128)
summary (RV$MissingRate)

close the file

snpgdsClose(genofile)

snpgdsSummary

99

snpgdsSummary Summary of GDS genotype file

Description

Print the information stored in the gds object

Usage

snpgdsSummary (gds, show=TRUE)

Arguments
gds a GDS file name, or an object of class SNPGDSFileClass
show if TRUE, show information

Value

Return a list:

sample.id the IDs of valid samples
snp.id the IDs of valid SNPs
Author(s)
Xiuwen Zheng
Examples

snpgdsSummary (snpgdsExampleFileName())

snpgdsTranspose Transpose genotypic matrix

Description

Transpose the genotypic matrix if needed.

Usage

snpgdsTranspose(gds.fn, snpfirstdim=FALSE, compress=NULL, optimize=TRUE,

verbose=TRUE)

100

Arguments

gds.fn

snpfirstdim

compress

optimize

verbose

Value

None.

Author(s)

Xiuwen Zheng

Examples

snpgdsVCF2GDS

the file name of SNP GDS format

if TRUE, genotypes are stored in snp-by-sample; if FALSE, sample-by-snp mode;
if NA, force to transpose the SNP matrix

the compression mode for SNP genotypes, optional values are defined in the
function of add. gdsn; if NULL, to use the compression mode

if TRUE, call cleanup.gds after transposing
if TRUE, show information

the file name of SNP GDS
(fn <- snpgdsExampleFileName())

copy the file

file.copy(fn, "test.gds", overwrite=TRUE)

summary

snpgdsSummary ("”test.gds")

transpose the SNP matrix
snpgdsTranspose(”test.gds"”, snpfirstdim=TRUE)

summary

snpgdsSummary ("test.gds")

delete the temporary file
unlink("test.gds"”, force=TRUE)

snpgdsVCF2GDS

Reformat VCF file(s)

Description

Reformat Variant Call Format (VCF) file(s)

snpgdsVCF2GDS 101

Usage

snpgdsVCF2GDS (vef.fn, out.fn, method=c("biallelic.only”, "copy.num.of.ref"),

snpfirstdim=FALSE, compress.annotation="LZMA_RA", compress.geno="",
ref.allele=NULL, ignore.chr.prefix="chr", verbose=TRUE)

Arguments
vef.fn the file name of VCF format, vcf. fn can be a vector, see details
out.fn the file name of output GDS
method either "biallelic.only" by default or "copy.num.of.ref", see details

snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)
compress.annotation
the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add. gdsn

compress.geno the compression method for "genotype"; optional values are defined in the func-
tion add. gdsn

ref.allele NULL or a character vector indicating reference allele (like "A", "G", "T", NA,
.. .) for each site where NA to use the original reference allele in the VCF file(s).
The length of character vector should be the total number of variants in the VCF
file(s).

ignore.chr.prefix
a vector of character, indicating the prefix of chromosome which should be ig-
nored, like "chr"; it is not case-sensitive

verbose if TRUE, show information

Details

GDS - Genomic Data Structures used for storing genetic array-oriented data, and the file format
used in the gdsfmt package.

VCF — The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism
data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file names in vcf. fn, snpgdsVCF2GDS will merge all dataset together if
they all contain the same samples. It is useful to combine genetic/genomic data together if VCF
data are divided by chromosomes.

method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data (excluding monomor-
phic variants); method = "copy.num.of . ref": to extract and store dosage (0, 1, 2) of the reference
allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural vari-
ants.

Haploid and triploid calls are allowed in the transfer, the variable snp. id stores the original the row
index of variants, and the variable snp.rs. id stores the rs id.

When snp.chromosome in the GDS file is character, SNPRelate treats a chromosome as auto-
some only if it can be converted to a numeric value (like "1", "22"). It uses "X" and "Y" for
non-autosomes instead of numeric codes. However, some software format chromosomes in VCF

102 snpgdsVCF2GDS

files with a prefix "chr". Users should remove that prefix when importing VCF files by setting
ignore.chr.prefix ="chr".

The extended GDS format is implemented in the SeqArray package to support the storage of single
nucleotide variation (SNV), insertion/deletion polymorphism (indel) and structural variation calls.
Itis strongly suggested to use SeqArray for large-scale whole-exome and whole-genome sequencing
variant data instead of SNPRelate.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

http://corearray.sourceforge.net/

See Also
snpgdsBED2GDS

Examples

the VCF file
vef.fn <- system.file("extdata”, "sequence.vcf”, package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")

snpgdsVCF2GDS(vef.fn, "testl.gds"”, method="biallelic.only")
snpgdsSummary ("test1.gds")

snpgdsVCF2GDS(vef.fn, "test2.gds"”, method="biallelic.only"”, snpfirstdim=TRUE)
snpgdsSummary ("test2.gds")

snpgdsVCF2GDS (vef.fn, "test3.gds"”, method="copy.num.of.ref"”, snpfirstdim=TRUE)
snpgdsSummary ("test3.gds")

snpgdsVCF2GDS(vef.fn, "test4.gds"”, method="copy.num.of.ref")
snpgdsSummary ("test4.gds")

snpgdsVCF2GDS (vef.fn, "test5.gds"”, method="copy.num.of.ref"”,

ref,allele:C(I,A”’ HT”, IITH’ IITH, IIAII))
snpgdsSummary ("test5.gds")

open "testl.gds”

http://corearray.sourceforge.net/

snpgdsVCF2GDS 103

(genofile <- snpgdsOpen("test1.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test2.gds"
(genofile <- snpgdsOpen("test2.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test3.gds"
(genofile <- snpgdsOpen("test3.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test4.gds”
(genofile <- snpgdsOpen("test4.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file
snpgdsClose(genofile)

open "test5.gds”
(genofile <- snpgdsOpen("”test5.gds"))

read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

close the file

104

snpgdsVCF2GDS_R

snpgdsClose(genofile)

delete the temporary files
unlink(paste("test”, 1:5, ".gds", sep=""), force=TRUE)

snpgdsVCF2GDS_R

Reformat a VCF file (R implementation)

Description

Reformat a Variant Call Format (VCF) file

Usage

snpgdsVCF2GDS_R(vcf.fn, out.fn, nblock=1024,
method = c("biallelic.only”, "copy.num.of.ref"),
compress.annotation="LZMA_RA", snpfirstdim=FALSE, option = NULL,
verbose=TRUE)

Arguments

vef.fn
out.fn
nblock
method

the file name of VCF format, vcf. fn can be a vector, see details
the output gds file
the buffer lines

either "biallelic.only" by default or "copy.num.of.ref", see details

compress.annotation

snpfirstdim

option

verbose

Details

the compression method for the GDS variables, except "genotype"; optional
values are defined in the function add. gdsn

if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs
for the first individual, and then list all SNPs for the second individual, etc)

NULL or an object from snpgdsOption, see details
if TRUE, show information

GDS - Genomic Data Structures used for storing genetic array-oriented data, and the file format
used in the gdsfmt package.

VCF — The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism
data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file name in vcf . fn, snpgdsVCF2GDS will merge all dataset together once
they all contain the same samples. It is useful to combine genetic data if VCF data are divided by

chromosomes.

method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data (excluding monomor-
phic variants); method = "biallelic.only": to exact bi-allelic and polymorhpic SNP data; method

snpgdsVCF2GDS_R 105

= "copy.num.of.ref": to extract and store dosage (0, 1, 2) of the reference allele for all variant
sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.

Haploid and triploid calls are allowed in the transfer, the variable snp. id stores the original the row
index of variants, and the variable snp.rs. id stores the rs id.

The user could use option to specify the range of code for autosomes. For humans there are 22
autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for
humans. The user could call option = snpgdsOption(autosome.end=38) for importing the VCF
file of dog. It also allows defining new chromosome coding, e.g., option = snpgdsOption(Z=27),
then "Z" will be replaced by the number 27.

Value

None.

Author(s)

Xiuwen Zheng

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

See Also
snpgdsVCF2GDS_R, snpgdsOption, snpgdsBED2GDS

Examples

The VCF file
vef.fn <- system.file("extdata”, "sequence.vcf”, package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")

snpgdsVCF2GDS_R(vcf.fn, "testl.gds”, method="biallelic.only")
snpgdsSummary ("test1.gds")

snpgdsVCF2GDS_R(vcf.fn, "test2.gds”", method="biallelic.only")
snpgdsSummary ("test2.gds")

snpgdsVCF2GDS_R(vcf.fn, "test3.gds”, method="copy.num.of.ref")
snpgdsSummary ("test3.gds")

snpgdsVCF2GDS_R(vcf.fn, "test4.gds”, method="copy.num.of.ref")
snpgdsSummary ("test4.gds")

Index

* GDS

snpgdsAdmixPlot, 6
snpgdsAdmixProp, 8
snpgdsAlleleSwitch, 10
snpgdsApartSelection, 11
snpgdsBED2GDS, 12
snpgdsClose, 14
snpgdsCombineGeno, 15
snpgdsCreateGeno, 17
snpgdsCreateGenoSet, 18
snpgdsCutTree, 20
snpgdsDiss, 23
snpgdsDrawTree, 24
snpgdsEIGMIX, 26
snpgdsErrMsg, 29
snpgdsExampleFileName, 29
SNPGDSFileClass, 30
snpgdsFst, 30
snpgdsGDS2BED, 32
snpgdsGDS2Eigen, 33
snpgdsGDS2PED, 35
snpgdsGEN2GDS, 36
snpgdsGetGeno, 37
snpgdsGRM, 39
snpgdsHCluster, 41
snpgdsHWE, 43
snpgdsIBDKING, 44
snpgdsIBDMLE, 47
snpgdsIBDMLELogLik, 50
snpgdsIBDMoM, 52
snpgdsIBDSelection, 55
snpgdsIBS, 56
snpgdsIBSNum, 58
snpgdsIndInb, 59
snpgdsIndInbCoef, 60
snpgdsIndivBeta, 62
snpgdsLDMat, 64
snpgdsLDpair, 65
snpgdsLDpruning, 67

106

snpgdsMergeGRM, 69
snpgdsOpen, 71
snpgdsOption, 72
snpgdsPairlIBD, 73
snpgdsPairIBDMLELogLik, 75
snpgdsPairScore, 78
snpgdsPCA, 80
snpgdsPCACorr, 84
snpgdsPCASampLoading, 86
snpgdsPCASNPLoading, 88
snpgdsPED2GDS, 89
snpgdsSampMissRate, 91
snpgdsSelectSNP, 92
snpgdsSlidingWindow, 93
snpgdsSNPList, 94
snpgdsSNPListClass, 95
snpgdsSNPListIntersect, 96
snpgdsSNPRateFreq, 97
snpgdsSummary, 99
snpgdsTranspose, 99
snpgdsVCF2GDS, 100
SNPRelate-package, 3

* GWAS

snpgdsAdmixPlot, 6
snpgdsAdmixProp, 8
snpgdsAlleleSwitch, 10
snpgdsApartSelection, 11
snpgdsBED2GDS, 12
snpgdsClose, 14
snpgdsCombineGeno, 15
snpgdsCreateGeno, 17
snpgdsCreateGenoSet, 18
snpgdsCutTree, 20
snpgdsDiss, 23
snpgdsDrawTree, 24
snpgdsEIGMIX, 26
snpgdsErrMsg, 29
snpgdsExampleFileName, 29
SNPGDSFileClass, 30

INDEX

snpgdsFst, 30
snpgdsGDS2BED, 32
snpgdsGDS2Eigen, 33
snpgdsGDS2PED, 35
snpgdsGEN2GDS, 36
snpgdsGetGeno, 37
snpgdsGRM, 39
snpgdsHCluster, 41
snpgdsHWE, 43
snpgdsIBDKING, 44
snpgdsIBDMLE, 47
snpgdsIBDMLELogl ik, 50
snpgdsIBDMoM, 52
snpgdsIBDSelection, 55
snpgdsIBS, 56
snpgdsIBSNum, 58
snpgdsIndInb, 59
snpgdsIndInbCoef, 60
snpgdsIndivBeta, 62
snpgdsLDMat, 64
snpgdsLDpair, 65
snpgdsLDpruning, 67
snpgdsMergeGRM, 69
snpgdsOpen, 71
snpgdsOption, 72
snpgdsPairlBD, 73

snpgdsPairIBDMLELoglL ik, 75

snpgdsPairScore, 78
snpgdsPCA, 80
snpgdsPCACorr, 84

snpgdsPCASampLoading, 86

snpgdsPCASNPLoading, 88
snpgdsPED2GDS, 89
snpgdsSampMissRate, 91
snpgdsSelectSNP, 92
snpgdsSlidingWindow, 93
snpgdsSNPList, 94
snpgdsSNPListClass, 95

snpgdsSNPListIntersect, 96

snpgdsSNPRateFreq, 97
snpgdsSummary, 99
snpgdsTranspose, 99
snpgdsVCF2GDS, 100
snpgdsVCF2GDS_R, 104
SNPRelate-package, 3

* PCA

snpgdsPCA, 80
snpgdsPCACorr, 84

107

snpgdsPCASampLoading, 86
snpgdsPCASNPLoading, 88
+ datasets
hapmap_geno, 6
* gds
snpgdsVCF2GDS_R, 104

add.gdsn, 84

cleanup.gds, 100
closefn.gds, 14

gds.class, 30, 35
gdsfmt, 13, 33-35, 37,90, 101, 104

hapmap_geno, 6
hclust, 41, 42

openfn.gds, 71

plot.snpgdsEigMixClass (snpgdsEIGMIX),
26
plot.snpgdsPCAClass (snpgdsPCA), 80

saveRDS, 68
snpgdsAdmixPlot, 6, 9, 27
snpgdsAdmixProp, 6, 7, 8, 27, 82
snpgdsAdmixTable (snpgdsAdmixPlot), 6
snpgdsAlleleSwitch, 10
snpgdsApartSelection, 11
snpgdsBED2GDS, 12, 33, 37, 90, 102, 105
snpgdsClose, 14, 30, 71
snpgdsCombineGeno, 15, 18, 19
snpgdsCreateGeno, 16, 17, 19
snpgdsCreateGenoSet, 16, 18, 18
snpgdsCutTree, 20, 25, 26, 42
snpgdsDiss, 21, 23,41, 42
snpgdsDrawTree, 21, 24
snpgdsEIGMIX, 7-9, 26, 40, 82, 84, 88, 89
snpgdsErrMsg, 29
snpgdsExampleFileName, 29
SNPGDSFileClass, 10, 14, 23, 26, 30, 31, 32,
34, 38, 39,43, 44,47, 50, 52, 56, 58
59,62,64,67,71, 72,78, 81, 84, 86,
88, 91-94, 98, 99
SNPGDSFileClass-class
(SNPGDSFileClass), 30
snpgdsFst, 30, 40, 63, 94
snpgdsGDS2BED, 32, 36, 90
snpgdsGDS2Eigen, 33

108

snpgdsGDS2PED, 14, 33, 34, 35, 90
snpgdsGEN2GDS, 36

snpgdsGetGeno, 37
snpgdsGRM, 39, 63, 70
snpgdsHCluster, 20, 21, 24, 41
snpgdsHWE, 43

snpgdsIBDKING, 44, 55
snpgdsIBDMLE, 45, 47, 50, 51, 53, 55,74, 77
snpgdsIBDMLELoglL ik, 49, 50, 53, 74, 77
snpgdsIBDMoM, 45, 49, 51,52, 55,74, 77
snpgdsIBDSelection, 55
snpgdsIBS, 21,41, 42, 56, 59, 79
snpgdsIBSNum, 57, 58
snpgdsIndInb, 40, 59, 63
snpgdsIndInbCoef, 60
snpgdsIndivBeta, 40, 62
snpgdsIndivBetaRel (snpgdsIndivBeta), 62
snpgdsLDMat, 64, 66, 69
snpgdsLDpair, 65, 65, 69
snpgdsLDpruning, 12, 65, 66, 67, 92
snpgdsMergeGRM, 40, 69
snpgdsOpen, 15, 30, 71
snpgdsOption, 13, 14,72, 104, 105
snpgdsPairlBD, 73, 77
snpgdsPairIBDMLELoglL ik, 74, 75
snpgdsPairScore, 78
snpgdsPCA, 8, 9, 27, 40, 80, 84, 85, 87-89
snpgdsPCACorr, 82, 84, 87, 89
snpgdsPCASampLoading, 27, 82, 85, 86, 89
snpgdsPCASNPLoading, 27, 82, 85-87, 88
snpgdsPED2GDS, 14, 89
snpgdsSampMissRate, 91, 92, 98
snpgdsSelectSNP, 92
snpgdsSlidingWindow, 93
snpgdsSNPList, 16, 94, 95-97
snpgdsSNPListClass, 95, 96
snpgdsSNPListIntersect, 16, 95, 96, 96
snpgdsSNPRateFreq, 43, 91, 92, 97
snpgdsSummary, 99
snpgdsTranspose, 99
snpgdsVCF2GDS, 37, 100
snpgdsVCF2GDS_R, 104, 105

SNPRelate (SNPRelate-package), 3
SNPRelate-package, 3

INDEX

	SNPRelate-package
	hapmap_geno
	snpgdsAdmixPlot
	snpgdsAdmixProp
	snpgdsAlleleSwitch
	snpgdsApartSelection
	snpgdsBED2GDS
	snpgdsClose
	snpgdsCombineGeno
	snpgdsCreateGeno
	snpgdsCreateGenoSet
	snpgdsCutTree
	snpgdsDiss
	snpgdsDrawTree
	snpgdsEIGMIX
	snpgdsErrMsg
	snpgdsExampleFileName
	SNPGDSFileClass
	snpgdsFst
	snpgdsGDS2BED
	snpgdsGDS2Eigen
	snpgdsGDS2PED
	snpgdsGEN2GDS
	snpgdsGetGeno
	snpgdsGRM
	snpgdsHCluster
	snpgdsHWE
	snpgdsIBDKING
	snpgdsIBDMLE
	snpgdsIBDMLELogLik
	snpgdsIBDMoM
	snpgdsIBDSelection
	snpgdsIBS
	snpgdsIBSNum
	snpgdsIndInb
	snpgdsIndInbCoef
	snpgdsIndivBeta
	snpgdsLDMat
	snpgdsLDpair
	snpgdsLDpruning
	snpgdsMergeGRM
	snpgdsOpen
	snpgdsOption
	snpgdsPairIBD
	snpgdsPairIBDMLELogLik
	snpgdsPairScore
	snpgdsPCA
	snpgdsPCACorr
	snpgdsPCASampLoading
	snpgdsPCASNPLoading
	snpgdsPED2GDS
	snpgdsSampMissRate
	snpgdsSelectSNP
	snpgdsSlidingWindow
	snpgdsSNPList
	snpgdsSNPListClass
	snpgdsSNPListIntersect
	snpgdsSNPRateFreq
	snpgdsSummary
	snpgdsTranspose
	snpgdsVCF2GDS
	snpgdsVCF2GDS_R
	Index

