
Package ‘SIAMCAT’
February 2, 2026

Type Package

Title Statistical Inference of Associations between Microbial
Communities And host phenoTypes

Version 2.15.0

Description Pipeline for Statistical Inference of Associations between
Microbial Communities And host phenoTypes (SIAMCAT). A primary goal
of analyzing microbiome data is to determine changes in community
composition that are associated with environmental factors. In particular,
linking human microbiome composition to host phenotypes such as diseases
has become an area of intense research. For this, robust statistical
modeling and biomarker extraction toolkits are crucially needed. SIAMCAT
provides a full pipeline supporting data preprocessing, statistical
association testing, statistical modeling (LASSO logistic regression)
including tools for evaluation and interpretation of these models (such as
cross validation, parameter selection, ROC analysis and diagnostic
model plots).

Depends R (>= 4.2.0), mlr3, phyloseq

Imports beanplot, glmnet, graphics, grDevices, grid, gridBase,
gridExtra, LiblineaR, matrixStats, methods, pROC, PRROC,
RColorBrewer, scales, stats, stringr, utils, infotheo,
progress, corrplot, lmerTest, mlr3learners, mlr3tuning,
paradox, lgr

License GPL-3

LazyData true

Encoding UTF-8

RoxygenNote 7.3.1

biocViews ImmunoOncology, Metagenomics, Classification, Microbiome,
Sequencing, Preprocessing, Clustering, FeatureExtraction,
GeneticVariability, MultipleComparison,Regression

Suggests BiocStyle, testthat, knitr, rmarkdown, tidyverse, ggpubr

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SIAMCAT

1

2 Contents

git_branch devel

git_last_commit 19b3733

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Konrad Zych [aut] (ORCID: <https://orcid.org/0000-0001-7426-0516>),
Jakob Wirbel [aut, cre] (ORCID:

<https://orcid.org/0000-0002-4073-3562>),
Georg Zeller [aut] (ORCID: <https://orcid.org/0000-0003-1429-7485>),
Morgan Essex [ctb],
Nicolai Karcher [ctb],
Kersten Breuer [ctb]

Maintainer Jakob Wirbel <jakob.wirbel@embl.de>

Contents
SIAMCAT-package . 3
accessSlot . 4
add.meta.pred . 5
association.plot . 6
associations . 8
associations<- . 8
assoc_param . 9
check.associations . 10
check.confounders . 12
create.data.split . 13
create.label . 14
data_split . 15
data_split<- . 16
evaluate.predictions . 17
eval_data . 18
eval_data<- . 19
feat.crc.zeller . 19
feature_type . 20
feature_weights . 20
filter.features . 21
filter.label . 23
filt_feat . 24
filt_feat<- . 25
filt_params . 25
get.component.classes . 26
get.filt_feat.matrix . 27
get.norm_feat.matrix . 27
get.orig_feat.matrix . 28
label . 29
label<- . 30

https://orcid.org/0000-0001-7426-0516
https://orcid.org/0000-0002-4073-3562
https://orcid.org/0000-0003-1429-7485

SIAMCAT-package 3

LearnerClassifLiblineaR . 30
make.predictions . 31
meta . 32
meta.crc.zeller . 33
meta<- . 34
model.evaluation.plot . 34
model.interpretation.plot . 36
models . 37
model_list . 38
model_list<- . 39
model_type . 39
normalize.features . 40
norm_feat . 42
norm_feat<- . 43
norm_params . 43
orig_feat . 44
orig_feat<- . 45
parse.label.header . 46
physeq . 46
physeq<- . 47
pred_matrix . 48
pred_matrix<- . 48
read.label . 49
read.lefse . 50
select.samples . 51
show,siamcat-method . 52
siamcat . 52
siamcat-class . 54
siamcat.to.lefse . 55
siamcat.to.maaslin . 55
siamcat_example . 56
summarize.features . 56
train.model . 57
validate.data . 59
volcano.plot . 60
weight_matrix . 61

Index 62

SIAMCAT-package SIAMCAT: Statistical Inference of Associations between Microbial
Communities And host phenoTypes

4 accessSlot

Description

Pipeline for Statistical Inference of Associations between Microbial Communities And host phe-
noTypes (SIAMCAT). A primary goal of analyzing microbiome data is to determine changes in
community composition that are associated with environmental factors. In particular, linking hu-
man microbiome composition to host phenotypes such as diseases has become an area of intense
research. For this, robust statistical modeling and biomarker extraction toolkits are crucially needed.
SIAMCAT provides a full pipeline supporting data preprocessing, statistical association testing, sta-
tistical modeling (LASSO logistic regression) including tools for evaluation and interpretation of
these models (such as cross validation, parameter selection, ROC analysis and diagnostic model
plots).

Details

SIAMCAT is a pipeline for Statistical Inference of Associations between Microbial Communities
And host phenoTypes. A primary goal of analyzing microbiome data is to determine changes in
community composition that are associated with environmental factors. In particular, linking hu-
man microbiome composition to host phenotypes such as diseases has become an area of intense
research. For this, robust statistical modeling and biomarker extraction toolkits are crucially needed!

Author(s)

Maintainer: Jakob Wirbel <jakob.wirbel@embl.de> (ORCID)

Authors:

• Konrad Zych <konrad.zych@embl.de> (ORCID)

• Georg Zeller <zeller@embl.de> (ORCID)

Other contributors:

• Morgan Essex <morgan.essex@embl.de> [contributor]

• Nicolai Karcher [contributor]

• Kersten Breuer [contributor]

accessSlot Universal slot accessor function for siamcat-class.

Description

This function is used internally by many accessors.

Usage

accessSlot(siamcat, slot, verbose=1)

https://orcid.org/0000-0002-4073-3562
https://orcid.org/0000-0001-7426-0516
https://orcid.org/0000-0003-1429-7485

add.meta.pred 5

Arguments

siamcat an object of siamcat-class.

slot A character string indicating the slot (not data class) of the component data type
that is desired.

verbose If the slot is empty, should a message be printed? values can be either 0 (no
output) or 1 (print message)

Value

Returns the component object specified by the argument slot. Returns NULL if slot does not exist.

Examples

#
data(siamcat_example)
accessSlot(siamcat_example, "label")
accessSlot(siamcat_example, "model_list")

add.meta.pred Add metadata as predictors

Description

This function adds metadata to the feature matrix to be later used as predictors

Usage

add.meta.pred(siamcat, pred.names, std.meta = TRUE,
feature.type='normalized', verbose = 1)

Arguments

siamcat object of class siamcat-class

pred.names vector of names of the variables within the metadata to be added to the feature
matrix as predictors

std.meta boolean, should added metadata features be standardized?, defaults to TRUE

feature.type string, on which type of features should the function work? Can be either
"original", "filtered", or "normalized". Please only change this paramter
if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

6 association.plot

Details

This functions adds one or several metadata variables to the set of features, so that they can be
included for model training.

Usually, this function should be called before train.model.

Numerical meta-variables are added as z-scores to the feature matrix unless specified otherwise.

Please be aware, that non-numerical metadata variables will be converted to numerical values by us-
ing as.numeric() and could therefore lead to errors. Thus, it makes sense to encode non-numerical
metadata variables to numerically before you start the SIAMCAT workflow.

Value

an object of class siamcat-class with metadata added to the features

Examples

data(siamcat_example)

Add the Age of the patients as potential predictor
siamcat_age_added <- add.meta.pred(siamcat_example, pred.names=c('Age'))

Add Age and BMI as potential predictors
Additionally, prevent standardization of the added features
siamcat_meta_added <- add.meta.pred(siamcat_example,

pred.names=c('Age', 'BMI'), std.meta=FALSE)

association.plot Visualize associations between features and classes

Description

This function visualizes different measures of association between features and the label, computed
previously with the check.associations function

Usage

association.plot(siamcat, fn.plot=NULL, color.scheme = "RdYlBu",
sort.by = "fc", max.show = 50, plot.type = "quantile.box",
panels = c("fc", "auroc"), prompt=TRUE, verbose = 1)

Arguments

siamcat object of class siamcat-class

fn.plot string, filename for the pdf-plot. If fn.plot is NULL, the plot will be produced
in the active graphics device.

color.scheme valid R color scheme or vector of valid R colors (must be of the same length as
the number of classes), defaults to 'RdYlBu'

association.plot 7

sort.by string, sort features by p-value ("p.val"), by fold change ("fc") or by preva-
lence shift ("pr.shift"), defaults to "fc"

max.show integer, how many associated features should be shown, defaults to 50

plot.type string, specify how the abundance should be plotted, must be one of these:
c("bean", "box", "quantile.box", "quantile.rect"), defaults to "quantile.box"

panels vector, name of the panels to be plotted next to the abundances, possible entries
are c("fc", "auroc", "prevalence"), defaults to c("fc", "auroc")

prompt boolean, turn on/off prompting user input when not plotting into a pdf-file, de-
faults to TRUE

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function visualizes the results of the computations carried out in the check.associations func-
tion. It produces a plot of the top max.show associated features at a user-specified significance level
alpha.

For binary classification problems, the plot will show the distribution of the log10-transformed
abundances for both classes, a P-value from the significance test, and user-selected panels for the
effect size (AU-ROC, prevalence shift, or generalized fold change). For regression problems, the
plot will show the Spearman correlation, the significance, and the linear model effect size.

Value

Does not return anything, but instead produces association plot

Examples

Example data
data(siamcat_example)

Simple example
association.plot(siamcat_example, fn.plot = "./assoc_plot.pdf")

Plot associations as box plot
association.plot(siamcat_example,

fn.plot = "./assoc_plot_box.pdf",
plot.type = "box")

Additionally, sort by p-value instead of by fold change
association.plot(siamcat_example,

fn.plot = "./assoc_plot_fc.pdf",
plot.type = "box", sort.by = "p.val")

Custom colors
association.plot(siamcat_example,

fn.plot = "./assoc_plot_blue_yellow.pdf",
plot.type = "box", color.scheme = c("cornflowerblue", "#ffc125"))

8 associations<-

associations Retrieve the results of association testing from a SIAMCAT object

Description

Function to retrieve the results of association testing

Usage

associations(siamcat, verbose=1)

S4 method for signature 'siamcat'
associations(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class containing the results of association
testing

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function returns the results of the association testing procedure as dataframe. See check.associations
for more details.

Value

A data.frame of association testing results or NULL

Examples

data(siamcat_example)
temp <- associations(siamcat_example)
head(temp)

associations<- Assign a new assocications object to x

Description

Assign a new assocications object to x

assoc_param 9

Usage

associations(x) <- value

S4 replacement method for signature 'siamcat,list'
associations(x) <- value

Arguments

x an object of class siamcat-class

value an associations object

Value

none

Examples

data(siamcat_example)
associations(siamcat_example) <- list(

'assoc.results'=associations(siamcat_example),
'assoc.param'=assoc_param(siamcat_example))

assoc_param Retrieve the list of parameters for association testing from a SIAMCAT
object

Description

Function to retrieve the list of parameters for association testing

Usage

assoc_param(siamcat, verbose=1)

S4 method for signature 'siamcat'
assoc_param(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class containing the results from association
testing

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function returns the list of parameters used in association testing. See check.associations for
more details.

10 check.associations

Value

A list of parameters for association testing or NULL

Examples

data(siamcat_example)
temp <- assoc_param(siamcat_example)
names(temp)

check.associations Calculate associations between features and labels

Description

This function computes different measures of association between features and the label and stores
the results in the association slot of the SIAMCAT object

Usage

check.associations(siamcat, formula="feat~label", test='wilcoxon',
alpha=0.05, mult.corr="fdr", log.n0=1e-06, pr.cutoff=1e-06,
probs.fc=seq(.1, .9, .05), paired=NULL, feature.type='filtered',
verbose = 1)

Arguments

siamcat object of class siamcat-class

formula string, formula used for testing, see Details for more information, defaults to
"feat~label"

test string, statistical test used for the association testing, can be either 'wilcoxon'
or 'lm', see Details for more information, defaults to 'wilcoxon'

alpha float, significance level, defaults to 0.05

mult.corr string, multiple hypothesis correction method, see p.adjust, defaults to "fdr"

log.n0 float, pseudo-count to be added before log-transformation of the data, defaults
to 1e-06. Will be ignored if feature.type is "normalized".

pr.cutoff float, cutoff for the prevalence computation, defaults to 1e-06

probs.fc numeric vector, quantiles used to calculate the generalized fold change between
groups, see Details for more information, defaults to seq(.1, .9, .05)

paired character, column name of the meta-variable containing information for a paired
test, defaults to NULL

feature.type string, on which type of features should the function work? Can be either
c("original", "filtered", or "normalized"). Please only change this pa-
rameter if you know what you are doing!
If feature.type is "normalized", the normalized abundances will not be log10-
transformed.

check.associations 11

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Value

object of class siamcat-class with the slot associations filled

Statistical testing

The function uses the Wilcoxon test as default statistical test for binary classification problems.
Alternatively, a simple linear model (as implemented in lm) can be used as well. For regression
problems, the function defaults to the linear model.

Effect sizes

The function calculates several measures for the effect size of the assocations between microbial
features and the label. For binary classification problems, these associations are:

• AUROC (area under the Receiver Operating Characteristics curve) as a non-parametric mea-
sure of enrichment,

• the generalized fold change (gFC), a pseudo-fold change which is calculated as geometric
mean of the differences between quantiles across both groups,

• prevalence shift (difference in prevalence between the two groups).

For regression problems, the effect sizes are:

• Spearman correlation between the feature and the label.

Confounder-corrected testing

To correct for possible confounders while testing for association, the function uses linear mixed
effect models as implemented in the lmerTest package. To do so, the test formula needs to be
adjusted to include the confounder. For example, when correcting for the metadata information
Sex, the formula would be: 'feat~label+(1|Sex)' (see also the example below).

Please note that modifying the formula parameter in this function might lead to unexpected results!

Paired testing

For paired testing, e.g. when the same patient has been sampled before and after an intervention,
the ‘paired‘ parameter can be supplied to the function. This indicated a column in the metadata
table that holds the information about pairing.

Examples

Example data
data(siamcat_example)

Simple example
siamcat_example <- check.associations(siamcat_example)

12 check.confounders

Confounder-corrected testing (corrected for Sex)
#
this is not run during checks
siamcat_example <- check.associations(siamcat_example,
formula='feat~label+(1|Sex)', test='lm')

Paired testing
#
this is not run during checks
siamcat_paired <- check.associations(siamcat_paired,
paired='Individual_ID')

check.confounders Check for potential confounders in the metadata

Description

Checks potential confounders in the metadata and visualize the results

Usage

check.confounders(siamcat, fn.plot, meta.in = NULL,
feature.type='filtered', verbose = 1)

Arguments

siamcat an object of class siamcat-class
fn.plot string, filename for the pdf-plot
meta.in vector, specific metadata variable names to analyze, defaults to NULL (all meta-

data variables will be analyzed)
feature.type string, on which type of features should the function work? Can be either

c()"original", "filtered", or "normalized"). Please only change this
paramter if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function checks for associations between class labels and potential confounders (e.g. Age,
Sex, or BMI) that are present in the metadata. Statistical testing is performed with Fisher’s exact
test or Wilcoxon test, while associations are visualized either as barplot or Q-Q plot, depending on
the type of metadata.
Additionally, it evaluates associations among metadata variables using conditional entropy and as-
sociations with the label using generalized linear models, producing a correlation heatmap and
appropriate quantitative barplots, respectively.
Please note that the confounder check is currently only available for binary classification problems!

create.data.split 13

Value

Does not return anything, but outputs plots to specified pdf file

Examples

Example data
data(siamcat_example)

Simple working example
check.confounders(siamcat_example, './conf_plot.pdf')

create.data.split Split a dataset into training and a test sets.

Description

This function prepares the cross-validation by splitting the data into num.folds training and test
folds for num.resample times.

Usage

create.data.split(siamcat, num.folds = 2, num.resample = 1,
stratify = TRUE, inseparable = NULL, verbose = 1)

Arguments

siamcat object of class siamcat-class

num.folds integer number of cross-validation folds (needs to be >=2), defaults to 2

num.resample integer, resampling rounds (values <= 1 deactivate resampling), defaults to 1

stratify boolean, should the splits be stratified so that an equal proportion of classes are
present in each fold?, will be ignored for regression tasks, defaults to TRUE

inseparable string, name of metadata variable to be inseparable, defaults to NULL, see Details
below

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function splits the labels within a siamcat-class object and prepares the internal cross-validation
for the model training (see train.model).

The function saves the training and test instances for the different cross-validation folds within a
list in the data_split-slot of the siamcat-class object, which is a list with four entries:

• num.folds - the number of cross-validation folds

• num.resample - the number of repetitions for the cross-validation

14 create.label

• training.folds - a list containing the indices for the training instances

• test.folds - a list containing the indices for the test instances

If provided, the data split will take into account a metadata variable for the data split (by provid-
ing the inseparable argument). For example, if the data contains several samples for the same
individual, it makes sense to keep data from the same individual within the same fold.

If inseparable is given, the stratify argument will be ignored.

Value

object of class siamcat-class with the data_split-slot filled

Examples

data(siamcat_example)

simple working example
siamcat_split <- create.data.split(siamcat_example, num.folds=10,
num.resample=5, stratify=TRUE)

create.label Create a label list

Description

This function creates a label object from metadata or an atomic vector

Usage

create.label(label, case, meta=NULL, control=NULL,
p.lab = NULL, n.lab = NULL, remove.meta.column=FALSE, verbose=1)

Arguments

label named vector to create the label or the name of the metadata column that will be
used to create the label

case name of the group that will be used as a positive label. If the variable is binary,
the other label will be used as a negative one. If the variable has multiple values,
all the other values will be used a negative label (testing one vs rest).

meta metadata dataframe object or an object of class sample_data-class

control name of a label or vector with names that will be used as a negative label. All
values that are nor equal to case and control will be dropped. Default to NULL
in which case: If the variable is binary, the value not equal to case will be used
as negative. If the variable has multiple values, all the values not equal to cases
will be used a negative label (testing one vs rest).

p.lab name of the positive group (useful mostly for visualizations). Default to NULL
in which case the value of the positive group will be used.

data_split 15

n.lab name of the negative group (useful mostly for visualizations). Default to NULL
in which case the value of the negative group will be used for binary variables
and "rest" will be used for variables with multiple values.

remove.meta.column

boolean indicating if the label column in the metadata should be retained. Please
note that if this is set to TRUE, the function will return a list as result. Defaults to
FALSE

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

The function creates a list to be used as label in a SIAMCAT object. Mainly for interal use, but it
can be used to customize your label (p.lab and n.lab will be used as labels during plotting, for
example).

The input for the function can be either a named vector encoding the label or the name of a column
in the metadata (needs to be provided as well) which contains the label information.

Value

return either

• a list to be used in a SIMCAT object OR

• a list with entries meta and label, if remove.meta.column is set to TRUE

Examples

data('meta_crc_zeller')

label <- create.label(label='Group', case='CRC', meta=meta.crc.zeller)

data_split Retrieve the data split from a SIAMCAT object

Description

Function to retrieve the data split stored in the data_split slot within a SIAMCAT object

Usage

data_split(siamcat, verbose=1)

S4 method for signature 'siamcat'
data_split(siamcat, verbose = 1)

16 data_split<-

Arguments

siamcat (Required). An instance of siamcat-class containing a data split
verbose integer, if the slot is empty, should a message be printed? values can be either 0

(no output) or 1 (print message)

Details

The function returns a list containing information about the data split. See create.data.split for more
details.

Value

A list containing the data split information or NULL

Examples

data(siamcat_example)
temp <- data_split(siamcat_example)
names(temp)

data_split<- Assign a new list containing a cross-validation split to a SIAMCAT
object

Description

Assign a new list containing a cross-validation split to a SIAMCAT object

Usage

data_split(x) <- value

S4 replacement method for signature 'siamcat,list'
data_split(x) <- value

Arguments

x an object of class siamcat-class
value list containing a cross-validation split

Value

none

Examples

data(siamcat_example)
data_split(siamcat_example) <- data_split(siamcat_example)

evaluate.predictions 17

evaluate.predictions Evaluate prediction results

Description

This function compares the predictions (from [make.predictions]) and true labels for all samples
and evaluates the results.

Usage

evaluate.predictions(siamcat, verbose = 1)

Arguments

siamcat object of class siamcat-class

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Value

object of class siamcat-class with the slot eval_data filled

Binary classification problems

This function calculates several metrics for the predictions in the pred_matrix-slot of the siamcat-
class-object. The Area Under the Receiver Operating Characteristic (ROC) Curve (AU-ROC) and
the Precision-Recall Curve will be evaluated and the results will be saved in the eval_data-slot of
the supplied siamcat-class- object. The eval_data-slot contains a list with several entries:

• $roc - average ROC-curve across repeats or a single ROC-curve on complete dataset (see roc);

• $auroc - AUC value for the average ROC-curve;

• $prc - list containing the positive predictive value (precision) and true positive rate (recall)
values used to plot the mean PR curve;

• $auprc - AUC value for the mean PR curve;

• $ev - list containing for different decision thresholds the number of false positives, false neg-
atives, true negatives, and true positives.

For the case of repeated cross-validation, the function will additionally return

• $roc.all - list of roc objects (see roc) for every repeat;

• $auroc.all - vector of AUC values for the ROC curves for every repeat;

• $prc.all - list of PR curves for every repeat;

• $auprc.all - vector of AUC values for the PR curves for every repeat;

• $ev.all - list of ev lists (see above) for every repeat.

18 eval_data

Regression problems

This function calculates several metrics for the evaluation of predictions and will store the results
in the eval_data-slot of the supplied siamcat-class objects. The eval_data-slot will contain:

• r2 - the mean R squared value across repeats or a single R-squared value on the complete
dataset;

• mae - them mean absolute error of the predictions;

• mse - the mean squared error of the predictions.

For the case of repeated cross-validation, the function will additionally compute all three of these
measures for the individual cross-validation repeats and will store the results in the eval_data slot
as r2.all, mae.all, and mse.all.

Examples

data(siamcat_example)

siamcat_evaluated <- evaluate.predictions(siamcat_example)

eval_data Retrieve the evaluation metrics from a SIAMCAT object

Description

Function to retrieve the evaluation metrics from a SIAMCAT object

Usage

eval_data(siamcat, verbose=1)

S4 method for signature 'siamcat'
eval_data(siamcat, verbose = 1)

Arguments

siamcat (Required). A siamcat-class object that contains evaluation data

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The functions returns a list containing the evaluation metrics from a SIAMCAT object. See evalu-
ate.predictions for more information on evaluation data.

Value

The list of evaluation data or NULL

eval_data<- 19

Examples

data(siamcat_example)
temp <- eval_data(siamcat_example)
names(temp)
temp$auroc

eval_data<- Assign a new list with evaluation data to a SIAMCAT object

Description

Assign a new list with evaluation data to a SIAMCAT object

Usage

eval_data(x) <- value

S4 replacement method for signature 'siamcat,list'
eval_data(x) <- value

Arguments

x an object of class siamcat-class

value a list of evaluation data

Value

none

Examples

data(siamcat_example)
eval_data(siamcat_example) <- eval_data(siamcat_example)

feat.crc.zeller Example feature matrix

Description

Feature matrix (as data.frame) of the CRC dataset from Zeller et al. MSB 2014 (see http://
msb.embopress.org/content/10/11/766), containing 141 samples and 1754 bacterial species
(features).

Source

http://msb.embopress.org/content/10/11/766

http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766

20 feature_weights

feature_type Retrieve the feature type used for model training from a SIAMCAT
object

Description

Function to retrieve information on which type of features the models were trained

Usage

feature_type(siamcat, verbose=1)

S4 method for signature 'siamcat'
feature_type(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains trained models

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function extracts the information on which type of features the models were trained.

Value

The string describing type of feature used for the model training or NULL

Examples

data(siamcat_example)
feature_type(siamcat_example)

feature_weights Retrieve the matrix of feature weights from a SIAMCAT object

Description

Function to extract the feature weights from a SIAMCAT object

Usage

feature_weights(siamcat, verbose=1)

S4 method for signature 'siamcat'
feature_weights(siamcat, verbose = 1)

filter.features 21

Arguments

siamcat (Required). A siamcat-class object that contains trained models

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function extracts the weight matrix from all trained models (see weight_matrix) and computes
several metrics on the feature weights:

• mean.weight - mean weight across trained models

• median.weight - median weight across trained models

• sd.weight - standard deviation of the weight across trained models

• mean.rel.weight - mean relative weight across trained models (each model is normalized
by the absolute of all weights)

• median.rel.weight - median relative weight across trained models

• sd.rel.weight - standard deviation of the relative weight across trained models

• percentage - percentage of models in which this feature was selected (i.e. non-zero)

Value

A dataframe containing mean/median feature weight and additional info or NULL

Examples

data(siamcat_example)
temp <- feature_weights(siamcat_example)
head(temp)

filter.features Perform unsupervised feature filtering.

Description

This function performs unsupervised feature filtering.

Usage

filter.features(siamcat, filter.method = "abundance",
cutoff = 0.001, rm.unmapped = TRUE, feature.type='original', verbose = 1)

22 filter.features

Arguments

siamcat an object of class siamcat-class

filter.method string, method used for filtering the features, can be one of these: c('abundance',
'cum.abundance', 'prevalence','variance', 'pass'), defaults to 'abundance'

cutoff float, abundace, prevalence, or variance cutoff, defaults to 0.001 (see Details
below)

rm.unmapped boolean, should unmapped reads be discarded?, defaults to TRUE

feature.type string, on which type of features should the function work? Can be either
"original", "filtered", or "normalized". Please only change this paramter
if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function filters the features in a siamcat-class object in a unsupervised manner.

The different filter methods work in the following way:

• 'abundace' - remove features whose maximum abundance is never above the threshold value
in any of the samples

• 'cum.abundance' - remove features with very low abundance in all samples, i.e. those that
are never among the most abundant entities that collectively make up (1-cutoff) of the reads
in any sample

• 'prevalence' - remove features with low prevalence across samples, i.e. those that are un-
detected (relative abundance of 0) in more than 1 - cutoff percent of samples.

• 'variance' - remove features with low variance across samples, i.e. those that have a variance
lower than cutoff

• 'pass' - pass-through filtering will not change the features

Features can also be filtered repeatedly with different methods, e.g. first using the maximum abun-
dance filtering and then using prevalence filtering. However, if a filtering method has already been
applied to the dataset, SIAMCAT will default back on the original features for filtering.

Value

siamcat an object of class siamcat-class

Examples

Example dataset
data(siamcat_example)

Simple examples
siamcat_filtered <- filter.features(siamcat_example,

filter.method='abundance',
cutoff=1e-03)

filter.label 23

5% prevalence filtering
siamcat_filtered <- filter.features(siamcat_example,

filter.method='prevalence',
cutoff=0.05)

filter first for abundance and then for prevalence
siamcat_filt <- filter.features(siamcat_example,

filter.method='abundance', cutoff=1e-03)
siamcat_filt <- filter.features(siamcat_filt, filter.method='prevalence',

cutoff=0.05, feature.type='filtered')

filter.label Filter the label of a SIMACAT object

Description

This functions filters the label in a SIAMCAT object

Usage

filter.label(siamcat, ids, verbose = 1)

Arguments

siamcat an object of class siamcat-class

ids vector, can contain either names or indices of samples to be retained

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function filters the label contained in a SIAMCAT object, based on the provided ids. The IDs
can be either sample names or indices to be retained.

Predominantly for internal use...

Please note: It makes sense to run validate.data after filtering the label.

Value

siamcat an object of class siamcat-class

Examples

data(siamcat_example)

simple working example
siamcat_filtered <- filter.label(siamcat_example, ids=c(1:20))

24 filt_feat

filt_feat Retrieve the information stored in the filt_feat slot within a SIAM-
CAT object

Description

Function to retrieve the information stored in the filt_feat slot within a SIAMCAT object

Usage

filt_feat(siamcat, verbose=1)

S4 method for signature 'siamcat'
filt_feat(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains filtered features

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function will return a list containing the information stored in the filt_feat slot of a SIAM-
CAT object. This list contains:

• filt.feat - filtered features as matrix, see get.filt_feat.matrix

• filt.param - parameters used for feature filtering, see get.filt_feat.matrix

Value

The list stored in the filt_feat slot of the SIAMCAT object or NULL

Examples

data(siamcat_example)
temp <- filt_feat(siamcat_example)
names(temp)

filt_feat<- 25

filt_feat<- Assign a new filt_feat object to x

Description

Assign a new filt_feat object to x

Usage

filt_feat(x) <- value

S4 replacement method for signature 'siamcat,list'
filt_feat(x) <- value

Arguments

x an object of class siamcat-class

value an filt_feat object

Value

none

Examples

data(siamcat_example)
filt_feat(siamcat_example) <- list(

filt.feat=filt_feat(siamcat_example),
filt.param=filt_params(siamcat_example))

filt_params Retrieve the list of parameters for feature filtering from a SIAMCAT
object

Description

Function to retrieve the list of parameters for feature filtering

Usage

filt_params(siamcat, verbose=1)

S4 method for signature 'siamcat'
filt_params(siamcat, verbose = 1)

26 get.component.classes

Arguments

siamcat (Required). An instance of siamcat-class containing filtered features

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function returns the list of feature filtering parameters. See filter.features for more details.

Value

A list of feature filtering parameters or NULL

Examples

data(siamcat_example)
temp <- filt_params(siamcat_example)
names(temp)

get.component.classes Show the component objects classes and slot names.

Description

Show the component objects classes and slot names.

Usage

get.component.classes(class)

Value

list of component classes

get.filt_feat.matrix 27

get.filt_feat.matrix Retrieve the filtered features from a SIAMCAT object

Description

Function to retrieve the filtered features from a SIAMCAT object

Usage

get.filt_feat.matrix(siamcat)

Arguments

siamcat (Required). An instance of siamcat-class containing filtered features

Details

The function returns the filtered features as matrix. See filter.features for more details.

Value

A matrix containing the filtered features

Examples

data(siamcat_example)
feat.filt <- get.filt_feat.matrix(siamcat_example)
feat.filt[1:3, 1:3]

get.norm_feat.matrix Retrieve the normalized features from a SIAMCAT object

Description

Function to retrieve the normalized features from a SIAMCAT object

Usage

get.norm_feat.matrix(siamcat)

Arguments

siamcat (Required). An instance of siamcat-class containing normalized features

Details

The function returns the normalized features as matrix. See normalize.features for more details.

28 get.orig_feat.matrix

Value

A matrix containing the normalized features

Examples

data(siamcat_example)
feat.norm <- get.norm_feat.matrix(siamcat_example)
feat.norm[1:3, 1:3]

get.orig_feat.matrix Retrieve the original features from a SIAMCAT object

Description

Function to retrieve the original features from a SIAMCAT object

Usage

get.orig_feat.matrix(siamcat)

Arguments

siamcat (Required). An instance of siamcat-class

Details

The function returns the original features as matrix.

Value

A matrix containing the original features

Examples

data(siamcat_example)
feat.original <- get.orig_feat.matrix(siamcat_example)
feat.original[1:3, 1:3]

label 29

label Retrieve the label from a SIAMCAT object

Description

Retrieve the label from a SIAMCAT object

Usage

label(siamcat, verbose=1)

S4 method for signature 'siamcat'
label(siamcat, verbose = 1)

Arguments

siamcat (Required). A siamcat-class object

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

This function will retrieve the label information from a SIAMCAT object. The label will contain
three entries:

• label: The label as named vector, in which the classes are encoded numerically

• info: Information about the different classes

• type: What kind of label is it?

Value

The label or NULL.

Examples

data(siamcat_example)
temp <- label(siamcat_example)
head(temp$label)
temp$info
temp$type

30 LearnerClassifLiblineaR

label<- Assign a new label object to a SIAMCAT object

Description

Assign a new label object to a SIAMCAT object

Usage

label(x) <- value

S4 replacement method for signature 'siamcat,list'
label(x) <- value

Arguments

x an object of class siamcat-class

value an list (in label format)

Value

none

Examples

data(siamcat_example)
label(siamcat_example) <- label(siamcat_example)

LearnerClassifLiblineaR

LiblineaR Classification Learner

Description

LiblineaR Classification Learner

LiblineaR Classification Learner

Details

Type of SVC depends on type argument:

• 0 L2-regularized logistic regression (primal)

• 1 L2-regularized L2-loss support vector classification (dual)

• 3 L2-regularized L1-loss support vector classification (dual)

• 2 L2-regularized L2-loss support vector classification (primal)

make.predictions 31

• 4 Support vector classification by Crammer and Singer

• 5 L1-regularized L2-loss support vector classification

• 6 L1-regularized logistic regression

• 7 L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon
value depends on the type parameter, see [LiblineaR::LiblineaR].

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Public methods:

• LearnerClassifLiblineaR$new()

• LearnerClassifLiblineaR$clone()

Method new(): #’ Creates a new instance of this [R6][R6::R6Class] class.

Usage:
LearnerClassifLiblineaR$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerClassifLiblineaR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

make.predictions Make predictions on a test set

Description

This function takes a siamcat-class-object containing a model trained by train.model and performs
predictions on a given test-set.

Usage

make.predictions(siamcat, siamcat.holdout = NULL,
normalize.holdout = TRUE, verbose = 1)

32 meta

Arguments

siamcat object of class siamcat-class

siamcat.holdout

optional, object of class siamcat-class on which to make predictions, defaults to
NULL

normalize.holdout

boolean, should the holdout features be normalized with a frozen normaliza-
tion (see normalize.features) using the normalization parameters in siamcat?,
defaults to TRUE

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This functions uses the model in the model_list-slot of the siamcat object to make predictions on
a given test set. The test set can either consist of the test instances in the cross-validation, saved in
the data_split-slot of the same siamcat object, or a completely external feature set, given in the
form of another siamcat object (siamcat.holdout).

Value

object of class siamcat-class with the slot pred_matrix filled

Examples

data(siamcat_example)

Simple example
siamcat_example <- train.model(siamcat_example, method='lasso')
siamcat.pred <- make.predictions(siamcat_example)

Predictions on a holdout-set (not run)
pred.mat <- make.predictions(siamcat.trained, siamcat.holdout,
normalize.holdout=TRUE)

meta Retrieve the metadata from a SIAMCAT object

Description

Retrieve the metadata from a SIAMCAT object

meta.crc.zeller 33

Usage

meta(siamcat)

S4 method for signature 'siamcat'
meta(siamcat)

S4 method for signature 'sample_data'
meta(siamcat)

Arguments

siamcat (Required). A siamcat-class object

Details

This function will retrieve the metadata from a SIAMCAT object. The metadata is a object of the
sample_data-class.

Value

The metadata as sample_data-class object

Examples

data(siamcat_example)
temp <- meta(siamcat_example)
head(temp)

meta.crc.zeller Example metadata matrix

Description

Metadata (as data.frame) of the CRC dataset from Zeller et al. MSB 2014 (see http://msb.
embopress.org/content/10/11/766), containing 6 metadata variables variables (e.g. Age or
BMI) for 141 samples.

Source

http://msb.embopress.org/content/10/11/766

http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766

34 model.evaluation.plot

meta<- Assign a new sam_data object to x

Description

Assign a new sam_data object to x

Usage

meta(x) <- value

S4 replacement method for signature 'siamcat,sample_data'
meta(x) <- value

Arguments

x an object of class siamcat-class

value an object of class sample_data-class

Value

none

Examples

data(siamcat_example)
meta(siamcat_example) <- meta(siamcat_example)

model.evaluation.plot Model Evaluation Plot

Description

Produces plots for model evaluation.

Usage

model.evaluation.plot(..., fn.plot = NULL,
colours=NULL, show.all=FALSE, verbose = 1)

model.evaluation.plot 35

Arguments

... one or more object of class siamcat-class, can be named

fn.plot string, filename for the pdf-plot

colours colour specification for the different siamcat-class- objects, defaults to NULL
which will cause the colours to be picked from the 'Set1' palette

show.all boolean, Should the results from repeated cross-validation models be plotted?
Defaults to FALSE, leading to a single line for the mean across cross-valdiation
repeats

verbose control output: 0 for no output at all, 1 for only information about progress
and success, 2 for normal level of information and 3 for full debug information,
defaults to 1

Value

Does not return anything, but produces the model evaluation plot.

Binary classification problems

The first plot shows the Receiver Operating Characteristic (ROC)-curve, the other plot the Precision-
recall (PR)-curve for the model. If show.all == FALSE (which is the default), a single line repre-
senting the mean across cross-validation repeats will be plotted, otherwise the individual cross-
validation repeats will be included as lightly shaded lines.

Regression problems

For regression problems, this function will produce a scatter plot between the real and predicted
values. If several siamcat-class-objects are supplied, a single plot for each object will be produced.

Examples

data(siamcat_example)

simple working example
model.evaluation.plot(siamcat_example, fn.plot='./eval.pdf')

plot several named SIAMCAT object
although we use only one example object here
model.evaluation.plot('Example_1'=siamcat_example,

'Example_2'=siamcat_example, colours=c('red', 'blue'),
fn.plot='./eval.pdf')

show indiviudal cross-validation repeats
model.evaluation.plot(siamcat_example, fn.plot='./eval.pdf', show.all=TRUE)

36 model.interpretation.plot

model.interpretation.plot

Model Interpretation Plot

Description

This function produces a plot for model interpretation

Usage

model.interpretation.plot(siamcat, fn.plot = NULL,
color.scheme = "BrBG", consens.thres = 0.5, heatmap.type = "zscore",
limits = c(-3, 3), log.n0 = 1e-06, max.show = 50, prompt=TRUE,
verbose = 1)

Arguments

siamcat object of class siamcat-class
fn.plot string, filename for the pdf-plot
color.scheme color scheme for the heatmap, defaults to 'BrBG'

consens.thres float, minimal ratio of models incorporating a feature in order to include it into
the heatmap, defaults to 0.5 Note that for ’randomForest’ models, this cutoff
specifies the minimum median Gini coefficient for a feature to be included
and should therefore be much lower, e.g. 0.01

heatmap.type string, type of the heatmap, can be either 'fc' or 'zscore', defaults to 'zscore'

limits vector, cutoff for extreme values in the heatmap, defaults to c(-3, 3)

log.n0 float, pseudocount to be added before log-transformation of features, defaults to
1e-06

max.show integer, maximum number of features to be shown in the model interpretation
plot, defaults to 50

prompt boolean, turn on/off prompting user input when not plotting into a pdf-file, de-
faults to TRUE

verbose control output: 0 for no output at all, 1 for only information about progress
and success, 2 for normal level of information and 3 for full debug information,
defaults to 1

Details

Produces a plot consisting of

• a barplot showing the feature weights and their robustness (i.e. in what proportion of models
have they been incorporated)

• a heatmap showing the z-scores of the metagenomic features across samples
• another heatmap displaying the metadata categories (if applicable)
• a boxplot displaying the poportion of weight per model that is actually shown for the features

that are incorporated into more than consens.thres percent of the models.

models 37

Value

Does not return anything, but produces the model interpretation plot.

Examples

data(siamcat_example)

simple working example
siamcat_example <- train.model(siamcat_example, method='lasso')
model.interpretation.plot(siamcat_example, fn.plot='./interpretion.pdf',

heatmap.type='zscore')

models Retrieve list of trained models from a SIAMCAT object

Description

Function to retrieve the list of trained models

Usage

models(siamcat, verbose=1)

S4 method for signature 'siamcat'
models(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains trained models

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function extracts the list of trained models.

Value

The list of models or NULL

Examples

data(siamcat_example)
temp <- models(siamcat_example)
temp[[1]]

38 model_list

model_list Retrieve the information stored in the model_list slot within a SIAM-
CAT object

Description

Function to retrieve the information stored in the model_list slot within a SIAMCAT object

Usage

model_list(siamcat, verbose=1)

S4 method for signature 'siamcat'
model_list(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains trained models

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function will return a list containing the information stored in the model_list slot of a SIAM-
CAT object. This list contains:

• models - list of trained models

• model_type - machine learning method used for training

• feature_type - string describing on which type of features the models were trained

Value

The list stored in the model_list slot of the SIAMCAT object or NULL

Examples

data(siamcat_example)
temp <- model_list(siamcat_example)
names(temp)

model_list<- 39

model_list<- Assign a new list containing trained models to a SIAMCAT object

Description

Assign a new list containing trained models to a SIAMCAT object

Usage

model_list(x) <- value

S4 replacement method for signature 'siamcat,list'
model_list(x) <- value

Arguments

x an object of class siamcat-class

value list containing trained models, type of models and of features

Value

none

Examples

data(siamcat_example)
siamcat_example <- train.model(siamcat_example, method='lasso')
model_list(siamcat_example) <- model_list(siamcat_example)

model_type Retrieve the machine learning method from a SIAMCAT object

Description

Function to retrieve information on which type of machine learning method was used for model
training

Usage

model_type(siamcat, verbose=1)

S4 method for signature 'siamcat'
model_type(siamcat, verbose = 1)

40 normalize.features

Arguments

siamcat (Required). An instance of siamcat-class that contains trained models

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function extracts the information on which type of machine learning method was used for
model training.

Value

The string describing the machine learning method or NULL

Examples

data(siamcat_example)
model_type(siamcat_example)

normalize.features Perform feature normalization

Description

This function performs feature normalization according to user-specified parameters.

Usage

normalize.features(siamcat, norm.method = c("rank.unit", "rank.std",
"log.std", "log.unit", "log.clr", "std", "pass"),
norm.param = list(log.n0 = 1e-06, sd.min.q = 0.1, n.p = 2, norm.margin = 1),
feature.type='filtered', verbose = 1)

Arguments

siamcat an object of class siamcat-class

norm.method string, normalization method, can be one of these: c('rank.unit', 'rank.std',
'log.std', 'log.unit', 'log.clr','std','pass')

norm.param list, specifying the parameters of the different normalization methods, see De-
tails for more information

feature.type string, on which type of features should the function work? Can be either
"original", "filtered", or "normalized". Please only change this paramter
if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

normalize.features 41

Value

an object of class siamcat-class with normalized features

Implemented methods

There are seven different normalization methods available, which might need additional parameters,
which are passed via the norm.param list:

• 'rank.unit' - converts features to ranks and normalizes each column (=sample) by the square
root of the sum of ranks This method does not require additional parameters.

• 'rank.std' - converts features to ranks and applies z-score standardization. This method
requires sd.min.q (minimum quantile of the standard deviation to be added to all features in
order to avoid underestimation of standard deviation) as additional parameter.

• 'log.clr' - centered log-ratio transformation. This methods requires a pseudocount (log.n0)
before log-transformation.

• 'log.std' - log-transforms features and applies z-score standardization. This method re-
quires both a pseudocount (log.n0) and sd.min.q

• 'log.unit' - log-transforms features and normalizes by features or samples with different
norms. This method requires a pseudocount (log.n0) and then additionally the parameters
norm.maring (margin over which to normalize, similarly to the apply-syntax: Allowed values
are 1 for normalization over features, 2 over samples, and 3 for normalization by the global
maximum) and the parameter n.p (vector norm to be used, can be either 1 for x/sum(x) or 2
for x/sqrt(sum(x^2))).

• 'std' - z-score standardization without any other transformation This method only requires
the sd.min.q parameter

• 'pass' - pass-through normalization will not change the features

Frozen normalization

The function additionally allows to perform a frozen normalization on a different dataset. After
normalizing the first dataset, the norm_feat slot in the SIAMCAT object contains all parameters of
the normalization, which you can access via the norm_params accessor.

In order to perform a frozen normalization of a new dataset, you can run the function supplying the
normalization parameters as argument to norm.param: norm.param=norm_params(siamcat_reference).
See also the example below.

Examples

Example data
data(siamcat_example)

Simple example
siamcat_norm <- normalize.features(siamcat_example,

norm.method='rank.unit')

log.unit example
siamcat_norm <- normalize.features(siamcat_example,

norm.method='log.unit',

42 norm_feat

norm.param=list(log.n0=1e-05, n.p=1, norm.margin=1))

log.std example
siamcat_norm <- normalize.features(siamcat_example,

norm.method='log.std',
norm.param=list(log.n0=1e-05, sd.min.q=.1))

Frozen normalization
normalize the object siamcat with the same parameters as used in
siamcat_reference
#
this is not run
siamcat_norm <- normalize.features(siamcat,
norm.param=norm_params(siamcat_reference))

norm_feat Retrieve the information stored in the norm_feat slot within a SIAM-
CAT object

Description

Function to retrieve the information stored in the norm_feat slot within a SIAMCAT object

Usage

norm_feat(siamcat, verbose=1)

S4 method for signature 'siamcat'
norm_feat(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains normalized features

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function will return a list containing the information stored in the norm_feat slot of a SIAM-
CAT object. This list contains:

• norm.feat - normalized features as matrix, see get.norm_feat.matrix

• norm.param - parameters used for normalization, see normalize.features

Value

The list stored in the norm_feat slot of the SIAMCAT object or NULL

norm_feat<- 43

Examples

data(siamcat_example)
temp <- norm_feat(siamcat_example)
names(temp)

norm_feat<- Assign a new list containing normalziation parameters and normal-
ized features to a SIAMCAT object

Description

Assign a new list containing normalziation parameters and normalized features to a SIAMCAT
object

Usage

norm_feat(x) <- value

S4 replacement method for signature 'siamcat,list'
norm_feat(x) <- value

Arguments

x an object of class siamcat-class

value a list containing normaliation parameters and features

Value

none

Examples

data(siamcat_example)
norm_feat(siamcat_example) <- norm_feat(siamcat_example)

norm_params Retrieve the list of parameters for feature normalization from a SIAM-
CAT object

Description

Function to retrieve the list of parameters for feature normalization

44 orig_feat

Usage

norm_params(siamcat, verbose=1)

S4 method for signature 'siamcat'
norm_params(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class containing normalized features

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The function returns the list of normalization parameters used in the feature normalization proce-
dure. See normalize.features for more details.

Value

A list of normalization parameters or NULL

Examples

data(siamcat_example)
temp <- norm_params(siamcat_example)
names(temp)

orig_feat Retrieve a otu_table-class object from otu_table slot in the phyloseq
slot in a siamcat object

Description

Retrieve a otu_table-class object from otu_table slot in the phyloseq slot in a siamcat object

Usage

orig_feat(siamcat)

S4 method for signature 'siamcat'
orig_feat(siamcat)

S4 method for signature 'otu_table'
orig_feat(siamcat)

orig_feat<- 45

Arguments

siamcat (Required). An instance of siamcat-class that contains a label or instance of
otu_table-class.

Value

The otu_table-class object or NULL.

Examples

data(siamcat_example)
temp <- orig_feat(siamcat_example)

orig_feat<- Assign a new otu_table object to x orig_feat slot

Description

Assign a new otu_table object to x orig_feat slot

Usage

orig_feat(x) <- value

S4 replacement method for signature 'siamcat,otu_table'
orig_feat(x) <- value

Arguments

x an object of class siamcat-class

value an object of class otu_table-class

Value

none

Examples

data(siamcat_example)
orig_feat(siamcat_example) <- orig_feat(siamcat_example)

46 physeq

parse.label.header Parse label header

Description

This function parses the header of a label file

Usage

parse.label.header(label.header)

Arguments

label.header - string in the format: #<TYPE>:<L1>=<class1>; <L2>=<class2>[;<L3>=<class3>]
where <TYPE> is a string specifying the type of label variable such as BINARY
(for binary classification), CATEGORICAL (for multi-class classification), or
CONTINUOUS (for regression) <L1> is a short numeric label for the first class
with description <class1> (similarly for the other classes)

Value

a list with tow items

• $type type of the label: BINARY CONTINUOUS or CATEGORICAL

• $class.descr lables and information on what do they mean

physeq Retrieve a phyloseq-class object from object.

Description

Retrieve a phyloseq-class object from object.

Usage

physeq(siamcat, verbose=1)

S4 method for signature 'ANY'
physeq(siamcat, verbose = 1)

S4 method for signature 'phyloseq'
physeq(siamcat)

physeq<- 47

Arguments

siamcat (Required). An instance of siamcat-class that contains a label or instance of
phyloseq-class.

verbose If the slot is empty, should a message be printed? values can be either 0 (no
output) or 1 (print message)

Value

The phyloseq-class object or NULL.

Examples

data(siamcat_example)
physeq(siamcat_example)

physeq<- Assign a new phyloseq object to x

Description

Assign a new phyloseq object to x

Usage

physeq(x) <- value

S4 replacement method for signature 'siamcat,phyloseq'
physeq(x) <- value

Arguments

x an object of class siamcat-class

value an object of class phyloseq-class

Value

none

Examples

data(siamcat_example)
physeq(siamcat_example) <- physeq(siamcat_example)

48 pred_matrix<-

pred_matrix Retrieve the prediction matrix from a SIAMCAT object

Description

Function to retrieve the prediction matrix from a SIAMCAT object

Usage

pred_matrix(siamcat, verbose=1)

S4 method for signature 'siamcat'
pred_matrix(siamcat, verbose = 1)

Arguments

siamcat (Required). A siamcat-class object that contains a prediction matrix

verbose integer, if the slot is empty, should a message be printed? values can be either 0
(no output) or 1 (print message)

Details

The functions returns a matrix containing the predictions for all samples across the different cross-
validation repeats. See make.predictions for more information.

Value

A matrix containing predictions or NULL

Examples

data(siamcat_example)
temp <- pred_matrix(siamcat_example)
head(temp)

pred_matrix<- Assign a new matrix with predictions to a SIAMCAT object

Description

Assign a new matrix with predictions to a SIAMCAT object

read.label 49

Usage

pred_matrix(x) <- value

S4 replacement method for signature 'siamcat,matrix'
pred_matrix(x) <- value

Arguments

x an object of class siamcat-class

value a matrix containing predictions

Value

none

Examples

data(siamcat_example)
pred_matrix(siamcat_example) <- pred_matrix(siamcat_example)

read.label Read label file

Description

Read label information from a file

Usage

read.label(fn.in.label)

Arguments

fn.in.label name of the tsv file containing labels

Details

This function reads in a tsv file with labels and converts it into a label.

First row is expected to be

#BINARY:1=[label for cases]; -1=[label for controls].

Second row should contain the sample identifiers as tab-separated list (consistent with feature and
metadata).

Third row is expected to contain the actual class labels (tab-separated): 1 for each case and -1 for
each control.

Note: Labels can take other numeric values (but not characters or strings); importantly, the label for
cases has to be greater than the one for controls

50 read.lefse

Value

label object containing several entries:

• $label named vector containing the numerical labels from the file;

• $info information about the classes in the label;

• $type information about the label type (e.g. BINARY);

Examples

run with example data
fn.label <- system.file('extdata',

'label_crc_zeller_msb_mocat_specI.tsv',
package = 'SIAMCAT')

crc.zeller.label <- read.label(fn.label)

read.lefse read an input file in a LEfSe input format

Description

This reads an input file in a LEfSe input format

Usage

read.lefse(filename = "data.txt", rows.meta = 1, row.samples = 2)

Arguments

filename name of the input file in a LEfSe input format

rows.meta specifies in which rows medata variables are stored

row.samples specifies in which row sample names are stored

Value

a list with two elements:

• feat a features matrix

• meta a metadate matrix

select.samples 51

Examples

fn.in.lefse<- system.file("extdata",
"LEfSe_crc_zeller_msb_mocat_specI.tsv",package = "SIAMCAT")
meta.and.features <- read.lefse(fn.in.lefse, rows.meta = 1:6,
row.samples = 7)
meta <- meta.and.features$meta
feat <- meta.and.features$feat
label <- create.label(meta=meta, label="label", case = "cancer")
siamcat <- siamcat(feat=feat, label=label, meta=meta)

select.samples Select samples based on metadata

Description

This function select samples based on information given in the metadata

Usage

select.samples(siamcat, filter, allowed.set = NULL,
allowed.range = NULL, verbose = 1)

Arguments

siamcat an object of class siamcat-class

filter string, name of the meta variable on which the selection should be done

allowed.set a vector of allowed values

allowed.range a range of allowed values

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This functions selects labels and metadata based on a specific column in the metadata. Provided
with a column-name in the metadata and a range or a set of allowed values, the function will filter
the siamcat-class object accordingly.

Value

an object of class siamcat-class with labels and metadata filtered in order to contain only allowed
values

52 siamcat

Examples

data(siamcat_example)

Select all samples that fall into an Age-range between 25 and 80 years
siamcat_selected <- select.samples(siamcat_example,

filter='Age',
allowed.range=c(25, 80))

Select only female samples
siamcat_female <- select.samples(siamcat_example,

filter='Gender',
allowed.set=c('F'))

show,siamcat-method Show method for siamcat class object

Description

Show method for siamcat class object

Usage

S4 method for signature 'siamcat'
show(object)

Value

none

siamcat SIAMCAT constructor function

Description

Function to construct an object of class siamcat-class

Usage

siamcat(..., feat=NULL, label=NULL, meta=NULL,
phyloseq=NULL, validate=TRUE, verbose=3)

siamcat 53

Arguments

... additional arguments

feat feature information for SIAMCAT (see details)

label label information for SIAMCAT (see details)

meta (optional) metadata information for SIAMCAT (see details)

phyloseq (optional) a phyloseq object for the creation of an SIAMCAT object (see details)

validate boolean, should the newly constructed SIAMCAT object be validated? defaults
to TRUE (we strongly recommend against setting this parameter to FALSE)

verbose control output: 0 for no output at all, 1 for only information about progress
and success, 2 for normal level of information and 3 for full debug information,
defaults to 1

Details

Build siamcat-class objects from their components.

This functions creates a SIAMCAT object (see siamcat-class). In order to do so, the function needs

• feat the feature information for SIAMCAT, should be either a matrix, a data.frame, or a
otu_table-class. The columns should correspond to the different samples (e.g. patients) and
the rows the different features (e.g. taxa). Columns and rows should be named.

• meta metadata information for the different samples in the feature matrix. Metadata is optional
for the SIAMCAT workflow. Should be either a data.frame (with the rownames corresponding
to the sample names of the feature matrix) or an object of class sample_data-class

• phyloseq Alternatively to supplying both feat and meta, SIAMCAT can also work with a
phyloseq object containing an otu_table and other optional slots (like sample_data for meta-
variables).

Notice: do supply either the feature information as matrix/data.frame/otu_table (and optionally
metadata) or a phyloseq object, but not both.

The label information for SIAMCAT can take several forms:

• metadata column: if there is metadata (either via meta or as sample_data in the phyloseq
object), the label object can be created by taking the information in a specific metadata column.
In order to do so, label should be the name of the column, and case should indicate which
group(s) should be the positive group(s). A typical example could look like that:
siamcat <- siamcat(feat=feat.matrix, meta=metadata, label='DiseaseState', case='CRC')

for the construction of a label to predict CRC status (which is encoded in the column "DiseaseState"
of the metadata). For more control (e.g. specific labels for plotting or specific control state),
the label can also be created outside of the siamcat function using the create.label function.

• named vector: the label can also be supplied as named vector which encodes the label either as
characters (e.g. "Healthy" and "Diseased"), as factor, or numerically (e.g. -1 and 1). The vec-
tor must be named with the names of samples (corresponding to the samples in features). Also
here, the information about the positive group(s) is needed via the case parameter. Internally,
the vector is given to the create.label function.

• label object: A label object can be created with the create.label function or by reading a
dedicated label file with read.label.

54 siamcat-class

Value

A new siamcat-class object

Examples

example with package data
data("feat_crc_zeller", package="SIAMCAT")
data("meta_crc_zeller", package="SIAMCAT")

siamcat <- siamcat(feat=feat.crc.zeller,
meta=meta.crc.zeller,
label='Group',
case='CRC')

siamcat-class The S4 SIAMCAT class

Description

The SIAMCAT class

Details

The S4 SIAMCAT class stores the results from the SIAMCAT workflow in different slots. The
different slots will be filled by different functions (referenced in the description below).

In order to contruct a SIAMCAT class object, please refer to the documentation of the construction
function siamcat.

The SIAMCAT class is based on the phyloseq-class. Therefore, you can easily import a phyloseq
object into SIAMCAT.

Slots

phyloseq object of class phyloseq-class

label list containing the label information for the samples and some metadata about the label,
created by create.label or when creating the siamcat-class object by calling siamcat

filt_feat list containing the filtered features as matrix and the list of filtering parameters, created
by calling the filter.features function

associations list containing the parameters for association testing and the results of association
testing with these parameters in a dataframe, created by calling the check.associations function

norm_feat list containing the normalized features as matrix and the list of normalziation parame-
ters (for frozen normalization), created by calling the normalize.features function

data_split list containing cross-validation instances, created by calling the create.data.split func-
tion

model_list list containing the trained models, the type of model that was trained, and on which
kind of features it was trained, created by calling the train.model function

siamcat.to.lefse 55

pred_matrix matrix of predictions, created by calling the make.predictions function

eval_data list containing different evaluation metrics, created by calling the evaluate.predictions
function

siamcat.to.lefse create a LEfSe input file from SIAMCAT object

Description

This function creates a LEfSe input file from SIAMCAT object

Usage

siamcat.to.lefse(siamcat, filename = "siamcat_output.txt")

Arguments

siamcat object of class siamcat-class

filename name of the input file to which data will be save

Value

nothing but data is written to a file

Examples

data(siamcat_example)
siamcat.to.lefse(siamcat_example)

siamcat.to.maaslin create a MaAsLin input file from SIAMCAT object

Description

This function creates a MaAsLin merged PCL single input file from SIAMCAT object

Usage

siamcat.to.maaslin(siamcat, filename = "siamcat_output.pcl")

Arguments

siamcat object of class siamcat-class

filename name of the input file to which data will be save

56 summarize.features

Value

nothing but data is written to a file

Examples

data(siamcat_example)
siamcat.to.maaslin(siamcat_example)

siamcat_example SIAMCAT example

Description

Reduced version of the CRC dataset from Zeller et al. MSB 2014 (see http://msb.embopress.
org/content/10/11/766), containing 100 features (15 associated features at 5% FDR in the orig-
inal dataset and 85 random other features) and 141 samples, saved after the complete SIAMCAT
pipelinehas been run.

Thus, the example dataset contains entries in every slot of the SIAMCAT object (see siamcat-class),
e.g, eval_data or data_split.

Mainly used for running the examples in the function documentation.

Source

http://msb.embopress.org/content/10/11/766

summarize.features Summarize features

Description

This function summarize features on a specific taxonomic level

Usage

summarize.features(siamcat, level = 'g__',
feature.type='original', verbose=1)

Arguments

siamcat object of class siamcat-class
level string, at which level to summarize (e.g. g__ = genus)
feature.type string, on which type of features should the function work? Can be either

"original", "filtered", or "normalized". Please only change this paramter
if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766
http://msb.embopress.org/content/10/11/766

train.model 57

Details

This function will summarize features at different taxonomic levels, e.g. transform species-level
relative abundance into genus-level taxonomic profiles.

The function expects a SIAMCAT object that either contains an entry in the tax_table slot of its
phyloseq object, OR a set of feature names which encode taxonomic information, e.g.

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Acidimicrobiales;..

Then, for a given taxonomic level (e.g. g__), the function will sum up all the relative abundances
of features belonging to the same group at that specific taxonomic level.

Please note that this function is currently maturing and not necessarily reliable!!!

Value

object of class siamcat-class with a summarized feature table

Examples

load the phyloseq example data
data("GlobalPatterns")
create an example label
label <- create.label(meta=sample_data(GlobalPatterns),

label = "SampleType",
case = c("Freshwater", "Freshwater (creek)", "Ocean"))

run the constructor function
siamcat <- siamcat(phyloseq=GlobalPatterns, label=label, verbose=1)
siamcat <- summarize.features(siamcat, level='Genus', verbose=3)

train.model Model training

Description

This function trains the a machine learning model on the training data

Usage

train.model(siamcat, method = "lasso", measure = "classif.acc",
param.set = NULL, grid.size=11, min.nonzero=5, perform.fs = FALSE,
param.fs = list(no_features = 100, method = "AUC", direction="absolute"),
feature.type='normalized', verbose = 1)

Arguments

siamcat object of class siamcat-class

method string, specifies the type of model to be trained, may be one of these: c('lasso',
'enet', 'ridge', 'lasso_ll', 'ridge_ll','randomForest')

58 train.model

measure character, specifies the model selection criterion during internal cross-validation,
see mlr_measures for more details, defaults to 'classif.acc'

param.set list, set of extra parameters for mlr, see below for details, defaults to NULL

grid.size integer, grid size for internal tuning (needed for some machine learning methods,
for example lasso_ll), defaults to 11

min.nonzero integer number of minimum nonzero coefficients that should be present in the
model (only for 'lasso', 'ridge', and 'enet'), defaults to 5

perform.fs boolean, should feature selection be performed? Defaults to FALSE

param.fs list, parameters for the feature selection, see Details, defaults to list(thres.fs=100,
method.fs="AUC", direction='absolute')

feature.type string, on which type of features should the function work? Can be either
"original", "filtered", or "normalized". Please only change this paramter
if you know what you are doing!

verbose integer, control output: 0 for no output at all, 1 for only information about
progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Value

object of class siamcat-class with added model_list

Machine learning methods

This functions performs the training of the machine learning model and functions as an interface to
the mlr3-package.

The function expects a siamcat-class-object with a prepared cross-validation (see create.data.split)
in the data_split-slot of the object. It then trains a model for each fold of the data split.

The different machine learning methods are implemented as Learners from the mlr3learners pack-
age:

• 'lasso', 'enet', and 'ridge' use the 'classif.cv_glmnet' or 'regr.cv_glmnet' Learn-
ers, which interface to the glmnet package,

• 'lasso_ll' and 'ridge_ll' use a custom Learner, which is only available for classification
tasks. The underlying package is the LiblineaR packge.

• 'randomForest' is implemented via the 'classif.ranger' or regr.ranger Learners avail-
able trough the ranger package.

Hyperparameter tuning

There is additional control over the machine learning procedure by supplying information through
the param.set parameter within the function. We encourage you to check out the excellent mlr
documentation for more in-depth information.

Here is a short overview which parameters you can supply in which form:

https://mlr3book.mlr-org.com/optimization.html
https://mlr3book.mlr-org.com/optimization.html

validate.data 59

• enet The alpha parameter describes the mixture between lasso and ridge penalty and is -
per default- determined using internal cross-validation (the default would be equivalent to
param.set=list('alpha'=c(0,1))). You can supply either the limits of the hyperparameter
exploration (e.g. with limits 0.2 and 0.8: param.set=list('alpha'=c(0.2,0.8))) or you
can supply a fixed alpha value as well (param.set=list('alpha'=0.5)).

• lasso_ll/ridge_ll You can supply both class.weights and the cost parameter (cost of the con-
straints violation, see LiblineaR for more info). The default values would be equal to param.set=list('class.weights'=c(5,
1),'cost'=c(-2, 3)).

• randomForest You can supply the two parameters num.trees (Number of trees to grow) and
mtry (Number of variables randomly sampled as candidates at each split). See also ranger for
more info. The default values correspond to param.set=list('num.trees'=c(100, 1000),
'mtry'= c(round(sqrt.mdim / 2), round(sqrt.mdim), round(sqrt.mdim * 2))) with sqrt.mdim=sqrt(nrow(data)).

Feature selection

If feature selection should be performed (for example for functional data with a large number of
features), the param.fs list should contain:

• no_features - Number of features to be retained after feature selection,

• method - method for the feature selection, may be AUC, gFC, or Wilcoxon for binary classifi-
cation problems or spearman, pearson, or MI (mutual information) for regression problems

• direction - indicates if the feature selection should be performed in a single direction only.
Can be either

– absolute - select the top associated features (independent of the sign of enrichment),
– positivethe top positively associated featured (enriched in the case group for binary

classification or enriched in higher values for regression),
– negative the top negatively associated features (inverse of positive)

Direction will be ignored for Wilcoxon and MI.

Examples

data(siamcat_example)

simple working example
siamcat_example <- train.model(siamcat_example, method='lasso')

validate.data Validate samples in labels, features, and metadata

Description

This function checks if labels are available for all samples in features. Additionally validates meta-
data, if available.

Usage

validate.data(siamcat, verbose = 1)

60 volcano.plot

Arguments

siamcat an object of class siamcat-class
verbose integer, control output: 0 for no output at all, 1 for only information about

progress and success, 2 for normal level of information and 3 for full debug
information, defaults to 1

Details

This function validates the data by checking that labels are available for all samples in the feature
matrix. Furthermore, the number of samples per class is checked to ensure a minimum number. If
metadata is available, the overlap between labels and metadata is checked as well.
This function is run when a siamcat-class object is created.

Value

an object of class siamcat-class

Examples

data(siamcat_example)

validate.data should be run before completing the pipeline
since the complete pipeline had been run on siamcat_example, we
construct a new siamcat object for the example
feat <- orig_feat(siamcat_example)
label <- label(siamcat_example)
siamcat <- siamcat(feat=feat, label=label, validate=FALSE)
siamcat <- validate.data(siamcat, verbose=2)

volcano.plot Visualize associations between features and classes as volcano plot

Description

This function creates a volcano plot to vizualize the association between features and the label

Usage

volcano.plot(siamcat, fn.plot=NULL, color.scheme="RdYlBu",
annotate=5)

Arguments

siamcat object of class siamcat-class
fn.plot string, filename for the pdf-plot. If fn.plot is NULL, the plot will be produced

in the active graphics device.
color.scheme valid R color scheme or vector of valid R colors (must be of the same length as

the number of classes), defaults to 'RdYlBu'

annotate integer, number of features to annotate with the name

weight_matrix 61

Details

bla bla bla

Value

Does not return anything, but produces a volcano plot based on association measures

Examples

Example data
data(siamcat_example)

Simple example
volcano.plot(siamcat_example, fn.plot='./volcano.pdf')

weight_matrix Retrieve the weight matrix from a SIAMCAT object

Description

Function to retrieve the feature weights from a SIAMCAT object

Usage

weight_matrix(siamcat, verbose=1)

S4 method for signature 'siamcat'
weight_matrix(siamcat, verbose = 1)

Arguments

siamcat (Required). An instance of siamcat-class that contains trained models
verbose integer, if the slot is empty, should a message be printed? values can be either 0

(no output) or 1 (print message)

Details

The function extracts the feature weights from all trained models acorss all cross-validation folds
and repeats.

Value

A matrix containing the feature weights or NULL

Examples

data(siamcat_example)
temp <- weight_matrix(siamcat_example)
temp[1:3, 1:3]

Index

∗ SIAMCAT
add.meta.pred, 5
association.plot, 6
check.associations, 10
check.confounders, 12
create.data.split, 13
evaluate.predictions, 17
filter.features, 21
make.predictions, 31
model.evaluation.plot, 34
model.interpretation.plot, 36
normalize.features, 40
select.samples, 51
train.model, 57
validate.data, 59
volcano.plot, 60

∗ add.meta.pred
add.meta.pred, 5

∗ association.plot
association.plot, 6

∗ check.associations
check.associations, 10

∗ check.confounders
check.confounders, 12

∗ create.data.split
create.data.split, 13

∗ create.label
create.label, 14

∗ data
feat.crc.zeller, 19
meta.crc.zeller, 33
siamcat_example, 56

∗ evaluate.predictions
evaluate.predictions, 17

∗ filter.features
filter.features, 21

∗ filter.label
filter.label, 23

∗ internal

accessSlot, 4
associations<-, 8
data_split<-, 16
eval_data<-, 19
filt_feat, 24
filt_feat<-, 25
get.component.classes, 26
label<-, 30
LearnerClassifLiblineaR, 30
meta<-, 34
model_list, 38
model_list<-, 39
norm_feat, 42
norm_feat<-, 43
orig_feat, 44
orig_feat<-, 45
parse.label.header, 46
physeq, 46
physeq<-, 47
pred_matrix<-, 48
read.lefse, 50
show,siamcat-method, 52
siamcat.to.lefse, 55
siamcat.to.maaslin, 55
summarize.features, 56

∗ make.predictions
make.predictions, 31

∗ model.evaluation.plot
model.evaluation.plot, 34

∗ model.interpretation.plot
model.interpretation.plot, 36

∗ normalize.features
normalize.features, 40

∗ plm.trainer
train.model, 57

∗ read.lefse
read.lefse, 50

∗ select.samples
select.samples, 51

62

INDEX 63

∗ siamcat.to.lefse
siamcat.to.lefse, 55

∗ validate.data
validate.data, 59

∗ volcano.plot
volcano.plot, 60

accessSlot, 4
add.meta.pred, 5
assign-associations (associations<-), 8
assign-data_split (data_split<-), 16
assign-eval_data (eval_data<-), 19
assign-filt_feat (filt_feat<-), 25
assign-label (label<-), 30
assign-meta (meta<-), 34
assign-model_list (model_list<-), 39
assign-norm_feat (norm_feat<-), 43
assign-orig_feat (orig_feat<-), 45
assign-physeq (physeq<-), 47
assign-pred_matrix (pred_matrix<-), 48
assoc_param, 9
assoc_param,siamcat-method

(assoc_param), 9
assoc_param_param (assoc_param), 9
association.plot, 6
associations, 8
associations,siamcat-method

(associations), 8
associations<-, 8
associations<-,siamcat,list-method

(associations<-), 8

check.associations, 6–9, 10, 54
check.confounders, 12
create.data.split, 13, 16, 54, 58
create.label, 14, 53, 54

data_split, 15
data_split,siamcat-method (data_split),

15
data_split<-, 16
data_split<-,siamcat,list-method

(data_split<-), 16

eval_data, 18
eval_data,siamcat-method (eval_data), 18
eval_data<-, 19
eval_data<-,siamcat,list-method

(eval_data<-), 19

evaluate.predictions, 17, 18, 55

feat.crc.zeller, 19
feature_type, 20
feature_type,siamcat-method

(feature_type), 20
feature_weights, 20
feature_weights,siamcat-method

(feature_weights), 20
filt_feat, 24
filt_feat,siamcat-method (filt_feat), 24
filt_feat<-, 25
filt_feat<-,siamcat,list-method

(filt_feat<-), 25
filt_params, 25
filt_params,siamcat-method

(filt_params), 25
filter.features, 21, 26, 27, 54
filter.label, 23

get.component.classes, 26
get.filt_feat.matrix, 24, 27
get.norm_feat.matrix, 27, 42
get.orig_feat.matrix, 28
glmnet, 58

label, 29
label,siamcat-method (label), 29
label<-, 30
label<-,siamcat,list-method (label<-),

30
LearnerClassifLiblineaR, 30
LiblineaR, 58, 59
lm, 11
lmerTest, 11

make.predictions, 31, 48, 55
meta, 32
meta,sample_data-method (meta), 32
meta,siamcat-method (meta), 32
meta.crc.zeller, 33
meta<-, 34
meta<-,siamcat,sample_data-method

(meta<-), 34
mlr3::Learner, 31
mlr3::LearnerClassif, 31
mlr3learners, 58
mlr_measures, 58
model.evaluation.plot, 34

64 INDEX

model.interpretation.plot, 36
model_list, 38
model_list,siamcat-method (model_list),

38
model_list<-, 39
model_list<-,siamcat,list-method

(model_list<-), 39
model_type, 39
model_type,siamcat-method (model_type),

39
models, 37
models,siamcat-method (models), 37

norm_feat, 42
norm_feat,siamcat-method (norm_feat), 42
norm_feat<-, 43
norm_feat<-,siamcat,list-method

(norm_feat<-), 43
norm_params, 41, 43
norm_params,siamcat-method

(norm_params), 43
normalize.features, 27, 32, 40, 42, 44, 54

orig_feat, 44
orig_feat,otu_table-method (orig_feat),

44
orig_feat,siamcat-method (orig_feat), 44
orig_feat<-, 45
orig_feat<-,siamcat,otu_table-method

(orig_feat<-), 45
otu_table-class, 44, 45, 53

p.adjust, 10
parse.label.header, 46
phyloseq, 57
phyloseq-class, 46, 47, 54
physeq, 46
physeq,ANY-method (physeq), 46
physeq,phyloseq-method (physeq), 46
physeq<-, 47
physeq<-,siamcat,phyloseq-method

(physeq<-), 47
pred_matrix, 48
pred_matrix,siamcat-method

(pred_matrix), 48
pred_matrix<-, 48
pred_matrix<-,siamcat,matrix-method

(pred_matrix<-), 48

ranger, 58, 59

read.label, 49, 53
read.lefse, 50
roc, 17

sample_data-class, 14, 33, 34, 53
select.samples, 51
show,siamcat-method, 52
SIAMCAT (SIAMCAT-package), 3
siamcat, 52, 54
siamcat-class, 5, 6, 8–14, 16–45, 47–49,

51–54, 54, 55–58, 60, 61
SIAMCAT-package, 3
siamcat.to.lefse, 55
siamcat.to.maaslin, 55
siamcat_example, 56
summarize.features, 56

tax_table, 57
train.model, 6, 13, 31, 54, 57

validate.data, 23, 59
volcano.plot, 60

weight_matrix, 21, 61
weight_matrix,siamcat-method

(weight_matrix), 61

	SIAMCAT-package
	accessSlot
	add.meta.pred
	association.plot
	associations
	associations<-
	assoc_param
	check.associations
	check.confounders
	create.data.split
	create.label
	data_split
	data_split<-
	evaluate.predictions
	eval_data
	eval_data<-
	feat.crc.zeller
	feature_type
	feature_weights
	filter.features
	filter.label
	filt_feat
	filt_feat<-
	filt_params
	get.component.classes
	get.filt_feat.matrix
	get.norm_feat.matrix
	get.orig_feat.matrix
	label
	label<-
	LearnerClassifLiblineaR
	make.predictions
	meta
	meta.crc.zeller
	meta<-
	model.evaluation.plot
	model.interpretation.plot
	models
	model_list
	model_list<-
	model_type
	normalize.features
	norm_feat
	norm_feat<-
	norm_params
	orig_feat
	orig_feat<-
	parse.label.header
	physeq
	physeq<-
	pred_matrix
	pred_matrix<-
	read.label
	read.lefse
	select.samples
	show,siamcat-method
	siamcat
	siamcat-class
	siamcat.to.lefse
	siamcat.to.maaslin
	siamcat_example
	summarize.features
	train.model
	validate.data
	volcano.plot
	weight_matrix
	Index

