
Package ‘RTN’
February 2, 2026

Type Package

Title RTN: Reconstruction of Transcriptional regulatory Networks and
analysis of regulons

Version 2.35.0

Author
Clarice Groeneveld [ctb], Gordon Robertson [ctb], Xin Wang [aut], Michael Fletcher [aut], Flo-
rian Markowetz [aut], Kerstin Meyer [aut], and Mauro Castro [aut]

Maintainer Mauro Castro <mauro.a.castro@gmail.com>

Depends R (>= 3.6.3), methods,

Imports RedeR, minet, viper, mixtools, snow, stats, limma, data.table,
IRanges, igraph, S4Vectors, SummarizedExperiment, car, pwr,
pheatmap, grDevices, graphics, utils

Suggests RUnit, BiocGenerics, BiocStyle, knitr, rmarkdown

Description A transcriptional regulatory network (TRN) consists of a collection of transcription fac-
tors (TFs) and the regulated target genes. TFs are regulators that recognize specific DNA se-
quences and guide the expression of the genome, either activating or repressing the expres-
sion the target genes. The set of genes controlled by the same TF forms a regulon. This pack-
age provides classes and methods for the reconstruction of TRNs and analysis of regulons.

License Artistic-2.0

biocViews Transcription, Network, NetworkInference, NetworkEnrichment,
GeneRegulation, GeneExpression, GraphAndNetwork,
GeneSetEnrichment, GeneticVariability

VignetteBuilder knitr

URL http://dx.doi.org/10.1038/ncomms3464

Collate ClassUnions.R AllChecks.R AllClasses.R AllGenerics.R
AllSupplementsTNA.R AllSupplementsTNI.R AllSupplementsAVS.R
AllPlotsTNA.R AllPlotsAVS.R AllPlotsTNI.R TNA-methods.R
TNI-methods.R AVS-methods.R TNI-pruning.R TNI-annotation.R
TNI-subgroups.R

LazyLoad yes

git_url https://git.bioconductor.org/packages/RTN

1

http://dx.doi.org/10.1038/ncomms3464

2 Contents

git_branch devel

git_last_commit 4efc78c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
RTN-package . 3
AVS-class . 4
avs.evse . 5
avs.get . 8
avs.pevse . 9
avs.plot1 . 12
avs.plot2 . 13
avs.rvse . 14
avs.vse . 16
RTN.data . 19
TNA-class . 20
tna.get . 22
tna.gsea1 . 24
tna.gsea2 . 26
tna.mra . 28
tna.plot.gsea1 . 29
tna.plot.gsea2 . 31
TNI-class . 33
tni.alpha.adjust . 34
tni.annotate.regulons . 35
tni.annotate.samples . 37
tni.area3 . 39
tni.bootstrap . 40
tni.conditional . 42
tni.constructor . 44
TNI.data . 46
tni.dpi.filter . 47
tni.get . 48
tni.graph . 50
tni.gsea2 . 51
tni.overlap.genesets . 53
tni.permutation . 55
tni.plot.checks . 56
tni.plot.sre . 58
tni.preprocess . 59
tni.prune . 60
tni.regulon.summary . 62
tni.replace.samples . 63

RTN-package 3

tni.sre . 64
tni2tna.preprocess . 65
upgradeTNA . 66
upgradeTNI . 67

Index 68

RTN-package Reconstruction and Analysis of Transcriptional Networks.

Description

A transcriptional regulatory network (TRN) consists of a collection of transcription factors (TFs)
and the regulated target genes. TFs are regulators that recognize specific DNA sequences and guide
the expression of the genome, either activating or repressing the expression the target genes. The
set of genes controlled by the same TF forms a regulon. This package provides classes and methods
for the reconstruction of TRNs and analysis of regulons.

Index

TNI-class: an S4 class for Transcriptional Network Inference.
tni.preprocess: a preprocessing method for objects of class TNI.
tni.permutation: inference of transcriptional networks.
tni.bootstrap: inference of transcriptional networks.
tni.dpi.filter: data processing inequality (DPI) filter.
tni.conditional: conditional mutual information analysis.
tni.get: get information from individual slots in a TNI object.
tni.graph: compute a graph from TNI objects.
tni.gsea2: compute regulon activity.
tni.prune: prune regulons to remove redundant targets for regulon activity analysis.
tni.sre: subgroup regulon difference analysis.
tni.plot.sre: plot subgroup regulon rnrichment .
tni.regulon.summary: return a summary of network and regulons.
tni.plot.checks: plot regulon target counts.
tni.alpha.adjust: adjust the significance level for two datasets.
tni.replace.samples: replace samples of an existing TNI-class objects.
tni2tna.preprocess: a preprocessing method for objects of class TNI.
TNA-class: an S4 class for Transcriptional Network Analysis.
tna.mra: master regulator analysis (MRA) over a list of regulons.
tna.gsea1: one-tailed gene set enrichment analysis (GSEA) over a list of regulons.
tna.gsea2: two-tailed gene set enrichment analysis (GSEA) over a list of regulons.
tna.get: get information from individual slots in a TNA object.
tna.plot.gsea1: plot results from the one-tailed GSEA.
tna.plot.gsea2: plot results from the two-tailed GSEA.
AVS-class: an S4 class to do enrichment analyses in associated variant sets (AVSs).
avs.vse: variant set enrichment analysis.
avs.evse: an eQTL/VSE pipeline for variant set enrichment analysis.

4 AVS-class

avs.pevse: an EVSE pipeline using precomputed eQTLs.
avs.get: get information from individual slots in an AVS object.
avs.plot1: plot results from AVS methods, single plots.
avs.plot2: plot results from AVS methods, multiple plots.

Further information is available in the vignettes by typing vignette("RTN"). Documented topics
are also available by typing help.start() and selecting the RTN package from the menu.

Author(s)

Maintainer: Mauro Castro <mauro.a.castro@gmail.com>

References

Fletcher M.N.C. et al., Master regulators of FGFR2 signalling and breast cancer risk. Nature
Communications, 4:2464, 2013.

Castro M.A.A. et al., Regulators of genetic risk of breast cancer identified by integrative network
analysis. Nature Genetics, 48:12-21, 2016.

AVS-class Class "AVS": an S4 class for variant set enrichment analysis.

Description

This S4 class includes a series of methods to do enrichment analyses in Associated Variant Sets
(AVSs).

Objects from the Class

Objects can be created by calls of the form new("AVS", markers).

Slots

markers: Object of class "character", a data frame, a ’BED file’ format with rs# markers mapped
to the same genome build of the LD source in the RTNdata package.

validatedMarkers: Object of class "data.frame", a data frame with genome positions of the
validated markers.

variantSet: Object of class "list", an associated variant set.

randomSet: Object of class "list", a random associated variant set.

para: Object of class "list", a list of parameters for variant set enrichment analysis.

results: Object of class "list", a list of results (see return values in the AVS methods).

summary: Object of class "list", a list of summary information for markers, para, and results.

status: Object of class "character", a character value specifying the status of the AVS object
based on the available methods.

avs.evse 5

Methods

avs.vse signature(object = "AVS"): see avs.vse

avs.evse signature(object = "AVS"): see avs.evse

avs.rvse signature(object = "AVS"): see avs.rvse

avs.pevse signature(object = "AVS"): see avs.pevse

avs.get signature(object = "AVS"): see avs.get

Author(s)

Mauro Castro

See Also

TNA-class

Examples

Not run:
#This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
data(bcarisk, package = "RTNdata.LDHapMapRel27.hg18")
avs <- avs.preprocess.LDHapMapRel27.hg18(bcarisk, nrand=100)

End(Not run)

avs.evse An eQTL/VSE pipeline for variant set enrichment analysis.

Description

The VSE method (avs.vse) provides a robust framework to cope with the heterogeneous structure
of haplotype blocks, and has been designed to test enrichment in cistromes and epigenomes. In
order to extend the variant set enrichment to genes this pipeline implements an additional step
using expression quantitative trait loci (eQTLs).

Usage

avs.evse(object, annotation, gxdata, snpdata, glist=NULL, maxgap=250, minSize=100,
pValueCutoff=0.05, pAdjustMethod="bonferroni", boxcox=TRUE,
fineMapping=TRUE, verbose=TRUE)

6 avs.evse

Arguments

object an object of class AVS-class.

annotation a data frame with genomic annotations listing chromosome coordinates to which
a particular property or function has been attributed. It should include the fol-
lowing columns: <CHROM>, <START>, <END> and <ID>. The <ID> column
can be any genomic identifier, while values in <CHROM> should be listed in
[’chr1’, ’chr2’, ’chr3’ ..., ’chrX’]. Both <START> and <END> columns corre-
spond to chromosome positions mapped to the human genome assembly used to
build the AVS object.

gxdata object of class "matrix", a gene expression matrix.

snpdata either an object of class "matrix" or "ff", a single nucleotide polymorphism
(SNP) matrix.

glist an optional list with character vectors mapped to the ’annotation’ data via <ID>
column. This list is used to run a batch mode for gene sets and regulons.

maxgap a single integer value specifying the max distant (kb) between the AVS and the
annotation used to compute the eQTL analysis.

minSize if ’glist’ is provided, this argument is a single integer or numeric value speci-
fying the minimum number of elements for each gene set in the ’glist’. Gene
sets with fewer than this number are removed from the analysis. If ’fineMap-
ping=FALSE’, an alternative min size value can be provided as a vector of the
form c(minSize1, minSize2) used to space the null distributions (see ’fineMap-
ping’).

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

boxcox a single logical value specifying to use Box-Cox procedure to find a transforma-
tion of the null that approaches normality (when boxcox=TRUE) or not (when
boxcox=FALSE). See powerTransform and bcPower.

fineMapping if ’glist’ is provided, this argument is a single logical value specifying to com-
pute individual null distributions, sized for each gene set (when fineMapping=TRUE).
This option has a significant impact on the running time required to perform
the computational analysis, especially for large gene set lists. When fineMap-
ping=FALSE, a low resolution analysis is performed by pre-computing a fewer
number of null distributions of different sizes (spaced by ’minSize’), and then
used as a proxy of the nulls.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’what’ options in avs.get.

Author(s)

Mauro Castro

avs.evse 7

See Also

AVS-class

Examples

Not run:
This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
library(Fletcher2013b)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)

##
Build AVS and random AVSs (mapped to hg18)
##

#--- step 1: load 'risk SNPs' data (e.g. BCa risk SNPs from the GWAS catalog)
data(bcarisk, package = "RTNdata.LDHapMapRel27.hg18")

#--- step 2: build an AVS and 1000 matched random AVSs for the input 'risk SNPs'
bcavs <- avs.preprocess.LDHapMapRel27.hg18(bcarisk, nrand=1000)

##
Example of EVSE analysis for sets of genomic
annotations (e.g. regulons, gene sets, etc.)
##

#--- step 1: load a precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")

#--- step 2: load genomic annotation for all genes
genemap <- as.data.frame(genes(TxDb.Hsapiens.UCSC.hg18.knownGene))
genemap <- genemap[,c("seqnames","start","end","gene_id")]
colnames(genemap) <- c("CHROM","START","END","ID")

#--- step 3: load a TNI object, or any other source of regulons (e.g. gene sets)
#--- and prepare a gene set list
#--- (gene ids should be the same as in the 'genemap' object)
data("rtni1st")
glist <- tni.get(rtni1st,what="refregulons",idkey="ENTREZ")
glist <- glist[c("FOXA1","GATA3","ESR1")] #reduce the list for demonstration!

#--- step 4: input matched variation and gene expression datasets!
#--- here we use two "toy" datasets for demonstration purposes only.
data(toy_snpdata, package="RTNdata.LDHapMapRel27.hg18")
data(toy_gxdata, package="RTNdata.LDHapMapRel27.hg18")

#--- step 5: run the avs.evse pipeline
bcavs<-avs.evse(bcavs, annotation=genemap, gxdata=toy_gxdata,

snpdata=toy_snpdata, glist=glist, pValueCutoff=0.01)

#--- step 6: generate the EVSE plots
avs.plot2(bcavs,"evse", height=2.5, width.panels=c(1,2), rmargin=0)

8 avs.get

NOTE REGARDING THIS EXAMPLE
#- This example is for demonstration purposes only, using toy datasets.
#- Any eventual positive/negative associations derived from these datasets
#- are not comparable with the original studies that described the method
#- (doi: 10.1038/ng.3458; 10.1038/ncomms3464).
####################################

End(Not run)

avs.get Get information from individual slots in an AVS object.

Description

Get information from individual slots in an AVS object.

Usage

avs.get(object, what="summary", report=FALSE, pValueCutoff=NULL)

Arguments

object an object of class ’AVS’ AVS-class.

what a single character value specifying which information should be retrieved from
the slots. Options: ’markers’, ’validatedMarkers’, ’variantSet’, ’randomSet’,
’linkedMarkers’, ’randomMarkers’, ’vse’, ’evse’, ’rvse’, ’pevse’, ’annotation.vse’,
’annotation.evse’, ’annotation.rvse’, ’annotation.pevse’, ’summary’ and ’status’.

report a single logical value indicating whether to return results from ’vse’, ’evse’ as a
consolidated table (if TRUE), or as they are (if FALSE).

pValueCutoff an optional single numeric value specifying the cutoff to retrive results for p-
values considered significant.

Value

get the slot content from an object of class ’AVS’ AVS-class.

Author(s)

Mauro Castro

avs.pevse 9

Examples

Not run:
#This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27)
data(bcarisk, package="RTNdata.LDHapMapRel27")
bcavs <- avs.preprocess.LDHapMapRel27(bcarisk, nrand=1000)
avs.get(avs)

End(Not run)

avs.pevse An EVSE pipeline using precomputed eQTLs.

Description

The VSE method (avs.vse) provides a robust framework to cope with the heterogeneous structure
of haplotype blocks, and has been designed to test enrichment in cistromes and epigenomes. In
order to extend the variant set enrichment to genes this pipeline implements an additional step
using precomputed expression quantitative trait loci (eQTLs).

Usage

avs.pevse(object, annotation, eqtls, glist, maxgap=250, minSize=100,
pValueCutoff=0.05, pAdjustMethod="bonferroni", boxcox=TRUE,
verbose=TRUE)

Arguments

object an object of class ’AVS’ (see AVS-class).

annotation a data frame with genomic annotations listing chromosome coordinates to which
a particular property or function has been attributed. It should include the fol-
lowing columns: <CHROM>, <START>, <END> and <ID>. The <ID> column
can be any genomic identifier, while values in <CHROM> should be listed in
[’chr1’, ’chr2’, ’chr3’ ..., ’chrX’]. Both <START> and <END> columns corre-
spond to chromosome positions mapped to the human genome assembly used to
build the AVS object.

eqtls object of class ’data.frame’ with at least two columns, including the following
column names: <RSID> and <GENEID>.

glist a list with character vectors mapped to the ’annotation’ data via <ID> column.
This list is used to run a batch mode for gene sets and regulons.

maxgap a single integer value specifying the max distant (kb) used to assign the eQTLs
in the ’eqtls’ object.

minSize if ’glist’ is provided, this argument is a single integer or numeric value speci-
fying the minimum number of elements for each gene set in the ’glist’. Gene
sets with fewer than this number are removed from the analysis. if ’fineMap-
ping=FALSE’, an alternative min size value can be provided as a vector of the

10 avs.pevse

form c(minSize1, minSize2) used to space the null distributions (see ’fineMap-
ping’).

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

boxcox a single logical value specifying to use Box-Cox procedure to find a transforma-
tion of the null that approaches normality (when boxcox=TRUE) or not (when
boxcox=FALSE). See powerTransform and bcPower.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’what’ options in avs.get.

Author(s)

Mauro Castro, Steve Booth

See Also

AVS-class

Examples

Not run:

This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
library(Fletcher2013b)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)

##
Example of EVSE analysis for sets of genomic
annotations (e.g. regulons, gene sets, etc.)
##

#--- step 1: load a precomputed AVS
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")

#--- step 2: load genomic annotation for all genes
genemap <- as.data.frame(genes(TxDb.Hsapiens.UCSC.hg18.knownGene))
genemap <- genemap[,c("seqnames","start","end","gene_id")]
colnames(genemap) <- c("CHROM","START","END","ID")

#--- step 3: load a TNI object (or any other source of regulons)
#--- and prepare a gene set list.
#--- Note: gene ids should be the same as in the 'genemap' object.
data("rtni1st")
glist <- tni.get(rtni1st,what="refregulons",idkey="ENTREZ")

avs.pevse 11

glist <- glist[c("FOXA1","GATA3","ESR1")] #reduce the list for demonstration!

#--- step 4: load precomputed eQTLs
#--- Please note that the input data should represent eQTLs from genome-wide
#--- calls, that is, the universe size should cover 'all SNPs' vs. 'all genes'.
#--- The correct represetation of universe size is essential to build the
#--- null distributions. Or, to put it another way, the eQTL analysis
#--- should unbiasedly test linked and random markers from the AVS.
#--- In this example it represents 2029 + 966240 SNPs:

lkMarkers <- avs.get(bcavs,what="linkedMarkers")
length(lkMarkers) # i.e. 2029 risk associated and linked SNPs

rdMarkers <- avs.get(bcavs,what="randomMarkers")
length(rdMarkers) # i.e. 966240 random SNPs

#--- Now we prepare a 'toy' dataset for demonstration purposes only
#--- by picking (naively) SNPs within 250 kb window around the
#--- genomic annotation.

load HapMap SNPs (release 27) mapped to hg18
data("popsnp2")

map SNPs to the genomic annotation
query <- with(popsnp2,

GRanges(chrom, IRanges(position, position),
id=rsid)
)

subject <- with(genemap,
GRanges(CHROM, IRanges(START, END),
id=ID)
)

hits <- findOverlaps(query,subject, maxgap = 250000)

reduce 'hits' just for demonstration
hits <- hits[sort(sample(length(hits), 50000))]

build a 'toy_eqtls' data frame
toy_eqtls <- data.frame(rsid = popsnp2$rsid[from(hits)],

geneid = genemap$ID[to(hits)])

#--- step 5: run the 'avs.pevse' pipeline
#--- important: set 'maxgap' to the same searching window used
#--- in the dQTL analysis (e.g. 250kb)
bcavs <- avs.pevse(bcavs, annotation=genemap, glist=glist,

eqtls=toy_eqtls, maxgap = 250)

#--- step 6: generate the pEVSE plots
avs.plot2(bcavs,"pevse",height=2.5)

###
#--- parallel version for 'step 5' with SNOW package!

12 avs.plot1

library(snow)
options(cluster=snow::makeCluster(3, "SOCK"))
bcavs <- avs.pevse(bcavs, annotation=genemap, glist=glist,
eqtls=toy_eqtls, maxgap = 250)
stopCluster(getOption("cluster"))

ps. as a technical note, the parallel version uses a
slightly different overlap-based operation, which might
bring slightly different counts depending on the data
input organization

End(Not run)

avs.plot1 Plot results from AVS methods, single plots.

Description

This function takes an AVS object and plots results from the VSE and EVSE methods.

Usage

avs.plot1(object, what="vse", fname=what, ylab="genomic annotation",
xlab="Number of clusters mapping to genomic annotation", breaks="Sturges",
maxy=200, pValueCutoff=1e-2, width=8, height=3)

Arguments

object an object of class ’AVS’ AVS-class.

what a character value specifying which analysis should be used. Options: "vse" and
"evse".

fname a character value specifying the name of output file.

ylab a character value specifying the y-axis label.

xlab a character value specifying the x-axis label.

breaks breaks in the histogram, see hist function.

maxy a numeric value specifying the max y-limit.

pValueCutoff a numeric value specifying the cutoff for p-values considered significant.

width a numeric value specifying the width of the graphics region in inches.

height a numeric value specifying the height of the graphics region in inches.

Value

A plot showing results from the VSE and EVSE methods.

avs.plot2 13

Author(s)

Mauro Castro

Examples

see 'avs.vse' and 'avs.evse' methods.

avs.plot2 Plot results from AVS methods, multiple plots.

Description

This function takes an AVS object and plots results from the VSE and EVSE methods.

Usage

avs.plot2(object, what="evse", fname=what, width=14, height=2.5,
width.panels=c(1,3), rmargin=1, at.x=seq(-4,8,2), decreasing=TRUE,
ylab="Annotation", xlab="Clusters of risk-associated and linked SNPs",
tfs=NULL)

Arguments

object an object of class ’AVS’ AVS-class.

what a single character value specifying which analysis should be used. Options:
"vse" and "evse".

fname a character value specifying the name of output file.

height a numeric value specifying the height of the graphics region in inches.

width a numeric value specifying the width of the graphics region in inches.

width.panels a vector of the form c(width1, width2) specifying the proportional width of the
1st and 2nd panels of the plot, respectively.

rmargin a numeric value specifying the right margin in inches.

at.x a numeric vector specifying which x-axis tickpoints are to be drawn.

decreasing a logical value, used to sort by EVSE scores.

ylab a character value specifying the y-axis label.

xlab a character value specifying the x-axis label (on the top of the grid image).

tfs an optional vector with annotation identifiers (e.g. transcription factor).

Value

A plot showing results from the VSE and EVSE methods.

14 avs.rvse

Author(s)

Mauro Castro

Examples

see 'avs.vse' and 'avs.evse' methods.

avs.rvse An rQTL/VSE pipeline for variant set enrichment analysis.

Description

The VSE method (avs.vse) provides a robust framework to cope with the heterogeneous structure
of haplotype blocks, and has been designed to test enrichment in cistromes and epigenomes. In
order to extend the variant set enrichment to genes this pipeline implements an additional step
using regulon quantitative trait loci (rQTLs).

Usage

avs.rvse(object, annotation, regdata, snpdata, glist,
maxgap=250, minSize=100, pValueCutoff=0.05,
pAdjustMethod="bonferroni", boxcox=TRUE, verbose=TRUE)

Arguments

object an object of class AVS-class.

annotation a data frame with genomic annotations listing chromosome coordinates to which
a particular property or function has been attributed. It should include the fol-
lowing columns: <CHROM>, <START>, <END> and <ID>. The <ID> column
can be any genomic identifier, while values in <CHROM> should be listed in
[’chr1’, ’chr2’, ’chr3’ ..., ’chrX’]. Both <START> and <END> columns corre-
spond to chromosome positions mapped to the human genome assembly used to
build the AVS object.

regdata object of class "matrix", a regulon activity matrix.

snpdata either an object of class "matrix" or "ff", a single nucleotide polymorphism
(SNP) matrix.

glist a list with character vectors mapped to the ’annotation’ data via <ID> column.
This list is used to run a batch mode for gene sets and regulons.

maxgap a single integer value specifying the max distant (kb) between the AVS and the
annotation used to compute the eQTL analysis.

minSize if ’glist’ is provided, this argument is a single integer or numeric value specify-
ing the minimum number of elements for each gene set in the ’glist’. Gene sets
with fewer than this number are removed from the analysis.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

avs.rvse 15

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

boxcox a single logical value specifying to use Box-Cox procedure to find a transforma-
tion of the null that approaches normality (when boxcox=TRUE) or not (when
boxcox=FALSE). See powerTransform and bcPower.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’what’ options in avs.get.

Author(s)

Mauro Castro

See Also

AVS-class

Examples

Not run:
This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
library(Fletcher2013b)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)

##
Build AVS and random AVSs (mapped to hg18)
##

#--- step 1: load 'risk SNPs' data (e.g. BCa risk SNPs from the GWAS catalog)
data(bcarisk, package = "RTNdata.LDHapMapRel27.hg18")

#--- step 2: build an AVS and 1000 matched random AVSs for the input 'risk SNPs'
bcavs <- avs.preprocess.LDHapMapRel27.hg18(bcarisk, nrand=1000)

##
Example of RVSE analysis
##

#--- step 1: load a precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")

#--- step 2: load genomic annotation for all genes
genemap <- as.data.frame(genes(TxDb.Hsapiens.UCSC.hg18.knownGene))
genemap <- genemap[,c("seqnames","start","end","gene_id")]
colnames(genemap) <- c("CHROM","START","END","ID")

#--- step 3: load a TNI object and get a list with regulons

16 avs.vse

#--- (ids should be the same as in 'genemap')
data("rtni1st")
glist <- tni.get(rtni1st,what="refregulons",idkey="ENTREZ")
glist <- glist[c("FOXA1","GATA3","ESR1")] #reduce the list for demonstration!

#--- step 4: compute single-sample regulon activity
rtni1st <- tni.gsea2(rtni1st, regulatoryElements = c("FOXA1","GATA3","ESR1"))
regdata <- tni.get(rtni1st, what = "regulonActivity")$diff

#--- step 5: load a variation dataset matched with the regulon activity dataset
#--- here we use a "toy" dataset for demonstration purposes only.
data(toy_snpdata, package="RTNdata.LDHapMapRel27")

#--- step 6: check "snpdata"" and "regdata"" alignment (samples on cols)
regdata <- t(regdata)
all(colnames(toy_snpdata)==colnames(regdata))
#TRUE

#--- step 7: run the avs.rvse pipeline
bcavs <- avs.rvse(bcavs,

annotation=genemap,
regdata=regdata,
snpdata=toy_snpdata,
glist=glist,
pValueCutoff=0.01)

#--- step 8: generate the RVSE plot
avs.plot2(bcavs, "rvse", height=2.5)

End(Not run)

avs.vse Variant set enrichment (VSE) analysis.

Description

The VSE method tests the enrichment of an AVS for a particular trait in a genomic annotation.

Usage

avs.vse(object, annotation, glist=NULL, maxgap=0, minSize=100,
pValueCutoff=0.05, pAdjustMethod="bonferroni", boxcox=TRUE,
verbose=TRUE)

Arguments

object an object of class AVS-class.

avs.vse 17

annotation a data frame with genomic annotations listing chromosome coordinates to which
a particular property or function has been attributed. It should include the fol-
lowing columns: <CHROM>, <START>, <END> and <ID>. The <ID> column
can be any genomic identifier, while values in <CHROM> should be listed in
[’chr1’, ’chr2’, ’chr3’ ..., ’chrX’]. Both <START> and <END> columns corre-
spond to chromosome positions mapped to the human genome assembly used to
build the AVS object.

glist an optional list with character vectors mapped to the ’annotation’ data via <ID>
column. This list is used to run a batch mode for gene sets and regulons.

maxgap a single integer value specifying the max distant (kb) between the AVS and the
annotation used to compute the enrichment analysis.

minSize if ’glist’ is provided, this argument is a single integer or numeric value specify-
ing the minimum number of elements for each gene set in the ’glist’. Gene sets
with fewer than this number are removed from the analysis.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

boxcox a single logical value specifying to use Box-Cox procedure to find a transforma-
tion of the null that approaches normality (when boxcox=TRUE) or not (when
boxcox=FALSE). See powerTransform and bcPower.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’what’ options in avs.get.

Author(s)

Mauro Castro

See Also

AVS-class

Examples

Not run:
This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
library(Fletcher2013b)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)

##
Build AVS and random AVSs (mapped to hg18)
##

#--- step 1: load 'risk SNPs' data (e.g. BCa risk SNPs from the GWAS catalog)

18 avs.vse

data(bcarisk, package = "RTNdata.LDHapMapRel27.hg18")

#--- step 2: build an AVS and 1000 matched random AVSs for the input 'risk SNPs'
bcavs <- avs.preprocess.LDHapMapRel27.hg18(bcarisk, nrand=1000)

##
Example of VSE analysis for ERa and FOXA1
cistromes (one genomic annotation each time)
##

#--- step 1: load a precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")

#--- step 2: load cistrome data from the Fletcher2013b package
#NOTE: Fletcher2013b is a large data package, but only two 'bed files'
#are used to illustrate this analysis (ESR1bdsites and FOXA1bdsites).
#these bed files provide ERa and FOXA1 binding sites mapped by
#ChIP-seq experiments
data(miscellaneous)

#--- step 3: run the avs.vse pipeline
bcavs <- avs.vse(bcavs, annotation=ESR1bdsites$bdsites,

pValueCutoff=0.001)
bcavs <- avs.vse(bcavs, annotation=FOXA1bdsites$bdsites,

pValueCutoff=0.001)

#--- step 4: generate the VSE plots
avs.plot2(bcavs,"vse",height=2.2, width.panels=c(1,2), rmargin=0)

##
Example of VSE analysis for sets of genomic
annotations (e.g. regulons, gene sets, etc.)
##

#--- step 1: load the precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")

#--- step 2: load genomic annotation for all genes
genemap <- as.data.frame(genes(TxDb.Hsapiens.UCSC.hg18.knownGene))
genemap <- genemap[,c("seqnames","start","end","gene_id")]
colnames(genemap) <- c("CHROM","START","END","ID")

#--- step 3: load a TNI object, or any other source of regulons (e.g. gene sets)
#--- and prepare a gene set list
#--- (gene ids should be the same as in the 'genemap' object)
data("rtni1st")
glist <- tni.get(rtni1st,what="refregulons",idkey="ENTREZ")
glist <- glist[c("FOXA1","GATA3","ESR1")] #reduce the list for demonstration!

#--- step 4: run the avs.vse pipeline
bcavs<-avs.vse(bcavs, annotation=genemap, glist=glist, pValueCutoff=0.05)

#--- step 5: generate the VSE plots

RTN.data 19

avs.plot2(bcavs,"vse", height=2.5, width.panels=c(1,2), rmargin=0)

NOTE REGARDING THIS EXAMPLE
#- This example is for demonstration purposes only;
#- we recommend using the EVSE/eQTL approach when analysing genes/regulons.
#- Also, the AVS object here is not the same as the one used in the study that
#- extended the method (doi:10.1038/ng.3458), so the results are not comparable;
#- (here fewer risk SNPs are considered, and without an eQTL step).
####################################

End(Not run)

RTN.data Pre-processed datasets for the RTN package.

Description

Datasets used to demonstrate RTN main functions.

Format

tniData, tnaData, and tfsData

Details

The tniData and tnaData datasets were extracted, pre-processed and size-reduced from Fletcher et
al. (2013) and Curtis et al. (2012). They consist of two lists used in the RTN vignettes for demon-
stration purposes only. The tniData list contains the ’expData’, ’rowAnnotation’ and ’colAnnota-
tion’ R objects, while the tnaData list contains the ’phenotype’, ’phenoIDs’ and ’hits’ R objects.

The tfsData consists of a list with gene annotation for human transcription factors (TFs), compiled
from 6 resources (Lambert et. al 2018; Carro et al. 2010; Vaquerizas et al. 2009; D. L. Fulton et
al. 2009; Yusuf et al. 2012; and Ravasi et al. 2010), and provided here in the form of ’data frame’
objects that include ENTREZ and HGNC gene symbol annotation.

The pksData consists of a list with gene annotation for human protein kinases, retrived from
the Swiss-Prot Protein Knowledgebase (https://www.uniprot.org/docs/pkinfam), release 2020_02
of 22-Apr-2020.

tniData$expData a named gene expression matrix with 120 samples (a subset from the Fletcher2013b).

tniData$rowAnnotation a data.frame of characters with gene annotation (a subset from the Fletcher2013b).

tniData$colAnnotation a data.frame of characters with sample annotation (a subset from the
Fletcher2013b).

tnaData$phenotype a named numeric vector with differential gene expression data.

tnaData$phenoIDs a data.frame of characters with probe ids matching a secundary annotation
source (e.g. Probe-to-ENTREZ).

tnaData$hits a character vector with genes differentially expressed.

20 TNA-class

tfsData$Lambert2018 a data.frame listing TFs from Lambert et. al (2018).

tfsData$Yusuf2012 a data.frame listing TFs from Yusuf et al. (2012).

tfsData$Carro2010 a data.frame listing TFs from Carro et al. (2010).

tfsData$Ravasi2010 a data.frame listing TFs from Ravasi et al. (2010).

tfsData$Fulton2009 a data.frame listing TFs from Fulton et al. (2009).

tfsData$Vaquerizas2009 a data.frame listing TFs from Vaquerizas et al. (2009).

tfsData$all a data.frame listing all TFs.

pksData$pkinfam2020 a data.frame listing human protein kinases.

References

Carro, M.S. et al., The transcriptional network for mesenchymal transformation of brain tumors.
Nature, 463(7279):318-325, 2010.

Curtis C. et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel
subgroups. Nature, 486(7403):346-352, 2012.

Fletcher, M.N.C. et al., Master regulators of FGFR2 signalling and breast cancer risk. Nature
Communications, 4:2464, 2013.

Fulton, D.L. et al., TFCat: the curated catalog of mouse and human transcription factors. Genome
Biology, 10(3):R29, 2009.

Lambert, S.A. et al., The Human Transcription Factors. Cell, 172(4):650-665, 2018.

Ravasi, T. et al., An atlas of combinatorial transcriptional regulation in mouse and man. Cell,
140(5):744-752, 2010.

Vaquerizas, J.M. et al., A census of human transcription factors: function, expression and evolution.
Nature Reviews Genetics, 10(4):252-263, 2009.

Yusuf, D. et al., The Transcription Factor Encyclopedia. Genome Biology, 13(3):R24, 2012.

Examples

data(tniData)
data(tnaData)
data(tfsData)
data(pksData)

TNA-class Class "TNA": an S4 class for Transcriptional Network Analysis.

Description

This S4 class includes a series of methods to do enrichment analyses in transcriptional networks.

Objects from the Class

Objects can be created by calls of the form new("TNA", referenceNetwork, transcriptionalNetwork,
regulatoryElements, phenotype, hits).

TNA-class 21

Slots

referenceNetwork: Object of class "matrix", an optional partial co-expression matrix.

transcriptionalNetwork: Object of class "matrix", a partial co-expression matrix.

regulatoryElements: Object of class "char_Or_NULL", a vector of regulatory elements (e.g.
transcription factors).

phenotype: Object of class "num_Or_int", a numeric or integer vector of phenotypes named by
gene identifiers.

hits: Object of class "character", a character vector of gene identifiers for those considered as
hits.

gexp: Object of class "matrix", a gene expression matrix.

rowAnnotation: Object of class "data.frame", a data frame with row annotation (e.g. probe-to-
gene information).

colAnnotation: Object of class "data.frame", a data frame with column annotation (e.g. sample
information).

listOfReferenceRegulons: Object of class "list", a list of regulons derived from the refer-
enceNetwork.

listOfRegulons: Object of class "list", a list of regulons derived from the transcriptionalNet-
work (a ’regulon’ is a vector of genes or potential transcription factor targets).

listOfModulators: Object of class "list", a list of modulators derived from the tni.conditional
analysis.

para: Object of class "list", a list of parameters for transcriptional network analysis. These
parameters are those listed in the functions tna.mra, tna.gsea1, and tna.gsea2.

results: Object of class "list", a list of results (see return values in the functions tna.mra,tna.gsea1,
and tna.gsea2)

summary: Object of class "list", a list of summary information for transcriptionalNetwork,
regulatoryElements, phenotype,listOfRegulons, para, and results.

status: Object of class "character", a character value specifying the status of the TNI object
based on the available methods.

Methods

tna.mra signature(object = "TNA"): see tna.mra

tna.gsea1 signature(object = "TNA"): see tna.gsea1

tna.gsea2 signature(object = "TNA"): see tna.gsea2

tna.get signature(object = "TNA"): see tna.get

Author(s)

Mauro Castro

See Also

TNI-class. tni2tna.preprocess.

22 tna.get

Examples

see 'tni2tna.preprocess' method!

tna.get Get information from individual slots in a TNA object.

Description

Get information from individual slots in a TNA object. Available results from a previous analysis
can be selected either by pvalue cutoff (default) or top significance.

Usage

tna.get(object, what="summary", order=TRUE, ntop=NULL, reportNames=TRUE,
idkey=NULL)

Arguments

object an object of class TNA-class.

what a single character value specifying which information should be retrieved from
the slots. Options: ’summary’, ’status’, ’para’, ’pheno’, ’hits’, ’regulatoryEle-
ments’, ’tnet’, ’refnet’, ’regulons’, ’refregulons’, ’regulons.and.mode’, ’refregu-
lons.and.mode’, ’rowAnnotation’, ’colAnnotation’, ’mra’, ’gsea1’, ’gsea2’, ’gsea2summary’.

order a single logical value specifying whether or not the output data should be ordered
by significance. Valid only for ’mra’, ’gsea1’ and ’gsea2’ options.

ntop a single integer value specifying to select how many results of top significance
from ’mra’, ’gsea1’ and ’gsea2’ options.

reportNames a single logical value specifying to report regulons with ’names’ (when report-
Names=TRUE) or not (when reportNames=FALSE). This option is effective
only if transcription factors were named with alternative identifiers in the pre-
processing analysis. It takes effect on ’mra’, ’gsea1’ and ’gsea2’ options.

idkey an optional single character value specifying an ID name from the available
’TNA’ annotation to be used as alias for data query outputs (obs. it has no effect
on consolidated tables).

Details

Options for the ’what’ argument retrieve the following types of information:

summary A list summarizing parameters and results available in the TNA object.

status A vector indicating the status of each available method in the pipeline.

para A list with the parameters used by each available method in the pipeline.

pheno A numeric vector of phenotypes named by gene identifiers (see tni2tna.preprocess).

tna.get 23

hits A character vector of gene identifiers for those considered as hits (see tni2tna.preprocess).

regulatoryElements A vector of regulatory elements (e.g. transcription factors).

tnet A data matrix with MI values, evaluated by the DPI filter. MI values are computed between
regulators and targets, with regulators on cols and targets on rows. Note that signals (+/-)
are assigned to the inferred associations in order to represent the ’mode of action’, which is
derived from Pearson’s correlation between regulators and targets.

refnet A data matrix with MI values (not evaluated by the DPI filter). MI values are computed
between regulators and targets, with regulators on cols and targets on rows. Note that signals
(+/-) are assigned to the inferred associations in order to represent the ’mode of action’, which
is derived from Pearson’s correlation between regulators and targets.

regulons A list with regulons extracted from the ’tnet’ data matrix.

refregulons A list with regulons extracted from the ’refnet’ data matrix.

regulons.and.mode A list with regulons extracted from the ’tnet’ data matrix, including the assiged
’mode of action’.

refregulons.and.mode A list with regulons extracted from the ’refnet’ data matrix, including the
assiged ’mode of action’.

rowAnnotation A data frame with probe-to-gene annotation.

colAnnotation A data frame with sample annotation.

mra A data frame with results from the tna.mra analysis pipeline.

gsea1 A data frame with results from the tna.gsea1 analysis pipeline.

gsea2 A data frame with results from the tna.gsea2 analysis pipeline.

Value

Get the slot content from a TNA-class object.

Author(s)

Mauro Castro

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

run MRA analysis pipeline

24 tna.gsea1

rtna <- tna.mra(rtna)

check summary
tna.get(rtna,what="summary")

get results, e.g., from the MRA analysis
tna.get(rtna,what="mra")

End(Not run)

tna.gsea1 One-tailed Gene Set Enrichment Analysis (GSEA) over a list of regu-
lons.

Description

This function takes a TNA object and returns the results of the GSEA analysis over a list of regulons
in a transcriptional network (with multiple hypothesis testing corrections).

Usage

tna.gsea1(object, pValueCutoff=0.05, pAdjustMethod="BH", minRegulonSize=15,
sizeFilterMethod="posORneg", nPermutations=1000, exponent=1, tnet="dpi",
signature=c("phenotype","hits"), orderAbsValue=TRUE, tfs=NULL, verbose=TRUE)

Arguments

object a preprocessed object of class ’TNA’ TNA-class.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minRegulonSize’ argument,
which is applyed to regulon’s positive and negative targets. Options: "posAND-
neg", "posORneg", "posPLUSneg". For "posANDneg", the number of both pos-
itive and negative targets should be > ’minRegulonSize’; for "posORneg", the
number of either positive or negative targets should be > ’minRegulonSize’; and
for "posPLUSneg", the number of all targets should be > ’minRegulonSize’.

nPermutations a single integer or numeric value specifying the number of permutations for
deriving p-values in GSEA.

exponent a single integer or numeric value used in weighting phenotypes in GSEA (see
’gseaScores’ function at HTSanalyzeR).

tna.gsea1 25

tnet a single character value specifying which transcriptional network should to used
to compute the GSEA analysis. Options: "dpi" and "ref".

signature a single character value specifying which signature to use in the GSEA method.
This could be the ’phenotype’ already provided by the user (usually log2 differ-
ential expression values) or a ’phenotype’ derived from the ’hits’; see tni2tna.preprocess
for details on ’phenotype’ and ’hits’ parameters.

orderAbsValue a single logical value indicating whether the values should be converted to ab-
solute values and then ordered (if TRUE), or ordered as they are (if FALSE).

tfs an optional vector with transcription factor identifiers.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’gsea1’ option in tna.get.

Author(s)

Mauro Castro, Xin Wang

See Also

TNA-class tna.plot.gsea1

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

#run GSEA1 analysis pipeline
rtna <- tna.gsea1(rtna)

#get results
tna.get(rtna, what="gsea1")

run parallel version with SNOW package!
library(snow)
options(cluster=snow::makeCluster(3, "SOCK"))
rtna <- tna.gsea1(rtna)

26 tna.gsea2

stopCluster(getOption("cluster"))

End(Not run)

tna.gsea2 Two-tailed Gene Set Enrichment Analysis (GSEA) over a list of regu-
lons.

Description

This function takes a TNA object and returns a CMAP-like analysis obtained by two-tailed GSEA
over a list of regulons in a transcriptional network (with multiple hypothesis testing corrections).

Usage

tna.gsea2(object, pValueCutoff=0.05, pAdjustMethod="BH", minRegulonSize=15,
sizeFilterMethod="posORneg", nPermutations=1000, exponent=1, tnet="dpi",
signature=c("phenotype","hits"), tfs=NULL, verbose=TRUE, doSizeFilter=NULL)

Arguments

object a preprocessed object of class ’TNA’ TNA-class.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minRegulonSize’ argument,
which is applyed to regulon’s positive and negative targets. Options: "posAND-
neg", "posORneg", "posPLUSneg". For "posANDneg", the number of both pos-
itive and negative targets should be > ’minRegulonSize’; for "posORneg", the
number of either positive or negative targets should be > ’minRegulonSize’; and
for "posPLUSneg", the number of all targets should be > ’minRegulonSize’.

nPermutations a single integer or numeric value specifying the number of permutations for
deriving p-values in GSEA.

exponent a single integer or numeric value used in weighting phenotypes in GSEA (see
’gseaScores’ function at HTSanalyzeR).

tnet a single character value specifying which transcriptional network should to used
to compute the GSEA analysis. Options: "dpi" and "ref".

signature a single character value specifying which signature to use in the GSEA method.
This could be the ’phenotype’ already provided by the user (usually log2 differ-
ential expression values) or a ’phenotype’ derived from the ’hits’; see tni2tna.preprocess
for details on ’phenotype’ and ’hits’ parameters.

tna.gsea2 27

tfs an optional vector with transcription factor identifiers.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

doSizeFilter ’doSizeFilter’ is deprecated, please use the ’filterSize’ parameter.

Value

a data frame in the slot "results", see ’gsea2’ option in tna.get.

Author(s)

Mauro Castro

See Also

TNA-class tna.plot.gsea2

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

#run GSEA2 analysis pipeline
rtna <- tna.gsea2(rtna)

#get results
tna.get(rtna, what="gsea2")

run parallel version with SNOW package!
library(snow)
options(cluster=snow::makeCluster(3, "SOCK"))
rtna <- tna.gsea2(rtna)
stopCluster(getOption("cluster"))

End(Not run)

28 tna.mra

tna.mra Master Regulator Analysis (MRA) over a list of regulons.

Description

This function takes a TNA object and returns the results of the RMA analysis over a list of regulons
from a transcriptional network (with multiple hypothesis testing corrections).

Usage

tna.mra(object, pValueCutoff=0.05, pAdjustMethod="BH", minRegulonSize=15,
tnet="dpi", tfs=NULL, verbose=TRUE)

Arguments

object a preprocessed object of class ’TNA’ TNA-class.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

tnet a single character value specifying which transcriptional network should to used
to compute the MRA analysis. Options: "dpi" and "ref".

tfs an optional vector with transcription factor identifiers.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

a data frame in the slot "results", see ’rma’ option in tna.get.

Author(s)

Mauro Castro

See Also

TNA-class

tna.plot.gsea1 29

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

#run MRA analysis pipeline
rtna <- tna.mra(rtna)

#get results
tna.get(rtna,what="mra")

End(Not run)

tna.plot.gsea1 Plot enrichment analyses from TNA objects.

Description

This function takes a TNA object and plots the one-tailed GSEA results for individual regulons.

Usage

tna.plot.gsea1(object, labPheno="", file="tna_gsea1",
filepath=".", regulon.order="size", ntop=NULL, tfs=NULL,
ylimPanels=c(0.0,3.5,0.0,0.8), heightPanels=c(1,1,3), width=4.4,
height=4, ylabPanels=c("Phenotype","Regulon","Enrichment score"),
xlab="Position in the ranked list of genes", alpha=0.5,
sparsity=10, autoformat=TRUE, plotpdf=TRUE, ...)

Arguments

object an object of class ’TNA’ TNA-class.

file a character string naming a file.

filepath a single character value specifying where to store GSEA figures.

regulon.order a single character value specifying whether regulons should be ordered by ’size’,
’score’, ’pvalue’, ’adj.pvalue’ and ’name’ (or ’none’ to keep the input ordering).

30 tna.plot.gsea1

ntop a single integer value specifying how many regulons of top significance will be
plotted.

tfs an optional vector with transcription factor identifiers (this option overrides the
’ntop’ argument).

ylimPanels a numeric vector of length=4 specifying y coordinates ranges of the 1st and 3th
plots (i.e. ylim for ’Phenotypes’ and ’Running enrichment score’).

heightPanels a numeric vector of length=3 specifying the relative height of each panel in the
plot.

width a single numeric value specifying the width of the graphics region in inches.

height a single numeric value specifying the height of the graphics region in inches.

ylabPanels a character vector of length=3 specifying the the title for the y axes.

xlab a single character value specifying the the title for the x axis.

labPheno a single character value specifying a label for the phenotype (will also be used
as the name of output file).

alpha a single numeric value in [0,1] specifying the transparency of the hits in the
ranked list.

sparsity a single integer value (>1) specifying the density of the dots representing the
running score.

autoformat a single logical value specifying to set the graph format using predefined themes.
This option overrides the "ylimPanels" argument.

plotpdf a single logical value specifying to whether to plot a PDF file or directly to
Viewer.

... other arguments used by the function pdf.

Value

A plot showing results from the ’tna.gsea1’ method.

Author(s)

Mauro Castro

See Also

tna.gsea1

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

tna.plot.gsea2 31

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

run GSEA analysis pipeline
rtna <- tna.gsea1(rtna)

plot available GSEA results
tna.plot.gsea1(rtna, labPheno="test")

End(Not run)

tna.plot.gsea2 Plot enrichment analyses from TNA objects.

Description

This function takes a TNA object and plots the two-tailed GSEA results for individual regulons.

Usage

tna.plot.gsea2(object, labPheno="", file="tna_gsea2", filepath=".",
regulon.order="size", ntop=NULL, tfs=NULL, ylimPanels=c(-3.0,3.0,-0.5,0.5),
heightPanels=c(2.0,0.8,5.0), width=2.8, height=3.0,
ylabPanels=c("Phenotype","Regulon","Enrichment score"),
xlab="Position in the ranked list of genes", alpha=1.0,
sparsity=10, autoformat=TRUE, plotpdf=TRUE, ...)

Arguments

object an object of class ’TNA’ TNA-class.

file a character string naming a file.

filepath a single character value specifying where to store GSEA2 figures.

regulon.order a single character value specifying whether regulons should be ordered by ’size’,
’score’, ’pvalue’, ’adj.pvalue’ and ’name’ (or ’none’ to keep the input ordering).

ntop a single integer value specifying how many regulons of top significance will be
plotted.

tfs an optional vector with transcription factor identifiers (this option overrides the
’ntop’ argument).

ylimPanels a numeric vector of length=4 specifying y coordinates ranges of the 1st and 3th
plots (i.e. ylim for ’Phenotypes’ and ’Running enrichment score’).

heightPanels a numeric vector of length=3 specifying the relative height of each panel in the
plot.

width a single numeric value specifying the width of the graphics region in inches.

32 tna.plot.gsea2

height a single numeric value specifying the height of the graphics region in inches.
ylabPanels a character vector of length=3 specifying the the title for the y axes.
xlab a single character specifying the the title for the x axis.
labPheno a single character specifying a label for the phenotype (will also be used as the

name of output file).
alpha a single numeric value in [0,1] specifying the transparency of the hits in the

ranked list.
sparsity a single integer value (>1) specifying the density of the dots representing the

running score.
autoformat a single logical value specifying to set the graph format using predefined themes.

This option overrides the "ylimPanels" argument.
plotpdf a single logical value specifying to whether to plot a PDF file or directly to

Viewer.
... other arguments used by the function pdf.

Value

A plot showing results from the ’tna.gsea2’ method.

Author(s)

Mauro Castro

See Also

tna.gsea2

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

run GSEA2 analysis pipeline
rtna <- tna.gsea2(rtna)

plot available GSEA2 results
tna.plot.gsea2(rtna, labPheno="test")

End(Not run)

TNI-class 33

TNI-class Class "TNI": an S4 class for Transcriptional Network Inference.

Description

This S4 class includes a series of methods to do transcriptional network inference for high-throughput
gene expression.

Slots

gexp: Object of class "matrix", a gene expression matrix.

regulatoryElements: Object of class "character", a vector of regulatory elements (e.g. tran-
scription factors).

targetElements: Object of class "character", a vector of target elements (e.g. target genes).

modulators: Object of class "char_Or_NULL", a vector with modulator identifiers.

rowAnnotation: Object of class "data.frame", a data frame with row annotation (e.g. probe-to-
gene information).

colAnnotation: Object of class "data.frame", a data frame with column annotation (e.g. sample
information).

para: Object of class "list", a list of parameters for transcriptional network inference. These pa-
rameters are those listed in the functions tni.permutation, tni.bootstrap and tni.dpi.filter.

results: Object of class "list", a list of results (see the returned values in the functions tni.permutation).

summary: Object of class "list", a list of summary information for gexp, regulatoryElements,
para, and results.

status: Object of class "character", a character value specifying the status of the TNI object
based on the available methods.

Methods

tni.preprocess signature(object = "TNI"): see tni.preprocess

tni.permutation signature(object = "TNI"): see tni.permutation

tni.bootstrap signature(object = "TNI"): see tni.bootstrap

tni.dpi.filter signature(object = "TNI"): see tni.dpi.filter

tni.conditional signature(object = "TNI"): see tni.conditional

tni.get signature(object = "TNI"): see tni.get

tni.graph signature(object = "TNI"): see tni.graph

tni.gsea2 signature(object = "TNI"): see tni.gsea2

tni.area3 signature(object = "TNI"): see tni.area3

tni.regulon.summary signature(object = "TNI"): see tni.regulon.summary

tni.prune signature(object = "TNI"): see tni.prune

tni.replace.samples signature(object = "TNI"): see tni.replace.samples

34 tni.alpha.adjust

tni.annotate.regulons signature(object = "TNI"): see tni.annotate.regulons

tni.annotate.samples signature(object = "TNI"): see tni.annotate.samples

tni.overlap.genesets signature(object = "TNI"): see tni.overlap.genesets

tni2tna.preprocess signature(object = "TNI"): see tni2tna.preprocess

tni.sre signature(object = "TNI"): see tni.sre

Author(s)

Mauro Castro

See Also

TNA-class

Examples

see 'tni.constructor'!

tni.alpha.adjust Adjust the significance level for two datasets.

Description

When analyzing two datasets that have different numbers of samples, this function can be used to
assist the choice of a p value threshold for the tni.permutation() function, in order that RTN will
return regulon results that have been generated with similar tradeoffs between Type I and Type II
errors for both datasets. Doing this should help ensure that it is reasonable to compare the regulons
in the two datasets.

Usage

tni.alpha.adjust(nB, nA, alphaA, betaA = 0.2)

Arguments

nB a single integer specifying the number of samples in dataset ’B’.

nA a single integer specifying the number of samples in dataset ’A’.

alphaA a single numeric value specifying alpha for dataset ’A’ (Type I error probability).

betaA a single numeric value specifying beta for dataset ’A’ (Type II error probability).

Value

Significance level for ’nB’, given ’nA’, ’alphaA’ and ’betaA’.

tni.annotate.regulons 35

Note

The ’tni.alpha.adjust’ function calls the pwr.r.test function, which uses the ’uniroot’ function to
solve a power equation. The ’uniroot’ function aims to find a root in a given interval, searching from
lower to upper end-points. As the upper end-point must be strictly larger than the lower end-point,
in order to avoid an error when searching the root, ’nA’ must be greater than or equal to ’nB’ (i.e.
’nB’ is expected to be the smallest data set). Also, please note that ’uniroot’ eventually will not
find the root for the input arguments, especially when searching thresholds of low stringency (we
suggest to avoid setting ’alphaA’ > 0.01).

Author(s)

Mauro Castro, Gordon Robertson

See Also

pwr.r.test

Examples

estimate 'alphaB' for 'nB', given 'nA', 'alphaA' and 'betaA'
alphaB <- tni.alpha.adjust(nB = 100, nA = 300, alphaA = 1e-5, betaA = 0.2)

tni.annotate.regulons Annotate regulons with external gene set collections.

Description

This function calculates an enrichment score between gene sets and regulons.

Usage

tni.annotate.regulons(object, geneSetList, sampleSetList = NULL,
regulatoryElements = NULL, minSetSize = 15, sizeFilterMethod="posORneg",
exponent = 1, verbose = TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class already evaluated by the tni.dpi.filter
method.

geneSetList a list with gene sets.

sampleSetList an optional list with sample sets. The ’sampleSetList’ should list numerical or
integer vectors, with ’0s’ and ’1s’, which are used to split samples into two
groups. This option overrides the ’geneSetList’ parameter (see Details).

regulatoryElements

a vector of valid regulatory elements (e.g. transcription factors).

36 tni.annotate.regulons

minSetSize a single integer or numeric value specifying the minimum number of elements
in a gene set that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minSetSize’ argument, which
is applyed to regulon’s positive and negative targets. Options: "posANDneg",
"posORneg", "posPLUSneg". For "posANDneg", the number of both positive
and negative targets should be > ’minSetSize’; for "posORneg", the number
of either positive or negative targets should be > ’minRegulonSize’; and for
"posPLUSneg", the number of all targets should be > ’minSetSize’.

exponent a single integer or numeric value used in weighting phenotypes in GSEA (this
parameter only affects the ’dES’ option).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Details

Using the samples available in the provided TNI object, the ’tni.annotate.regulons’ calculates the
enrichment of each regulon for each gene set. First, the samples are split into two groups, one with
high average gene-set expression (GS_high) and the other with low average gene-set expression
(GS_low). Then a gene-wise differential expression (DEG) signature is generated by comparing
the GS_high vs. GS_low groups. The DEG signature is regarded as the gene-set phenotype in the
cohort. A GSEA-2T approach is used to calculate the activity score (dES) of each regulon in the
phenotype (for additional details on GSEA-2T, please see section 2.2 of the RTN’s vignette).

Value

A numeric matrix with dES scores between gene sets vs. regulons.

Author(s)

Mauro Castro

See Also

TNI-class

Examples

data(tniData)

Not run:

#compute regulons
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

tni.annotate.samples 37

#load a gene set collection
#here, we build three random gene sets for demonstration
geneset1 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset2 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset3 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneSetList <- list(geneset1=geneset1,

geneset2=geneset2,
geneset3=geneset3)

#compute regulon activity
dES <- tni.annotate.regulons(rtni, geneSetList)

End(Not run)

tni.annotate.samples Annotate samples with external gene set collections.

Description

This function calculates an enrichment score between gene sets and samples.

Usage

tni.annotate.samples(object, geneSetList, minSetSize = 15,
exponent = 1, samples=NULL, verbose = TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class.

geneSetList a list with gene sets.

minSetSize a single integer or numeric value specifying the minimum number of elements
in a gene set that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

exponent a single integer or numeric value used in weighting phenotypes in GSEA (this
parameter only affects the GSEA statistics).

samples an optional string vector listing the sample names for which will be computed
the GSEA statistics.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

38 tni.annotate.samples

Details

Using the samples available in the provided TNI object, the ’tni.annotate.samples’ calculates the
enrichment of each sample for each gene set. First, a gene-wise differential expression (DEG)
signature is generated by comparing the expression of a given sample with the avarage expression
of all samples. The DEG signature is regarded as a the sample phenotype, representing the relative
expression of the sample’s genes in the cohort. Then a single-sample Gene Set Enrichment Analysis
(ssGSEA) is used to calculate the enrichment score (ES) of the sample for a given gene set.

Value

A numeric matrix with association statistics between gene sets vs. samples.

Author(s)

Mauro Castro

See Also

TNI-class

Examples

data(tniData)

Not run:

#generate a TNI object
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

#load a gene set collection
#here, we build three random gene sets for demonstration
geneset1 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset2 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset3 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneSetList <- list(geneset1=geneset1,

geneset2=geneset2,
geneset3=geneset3)

#compute single-sample GSEA
#note: regulons are not required for this function,
#as it will assess the samples in the TNI object
ES <- tni.annotate.samples(rtni, geneSetList)

End(Not run)

tni.area3 39

tni.area3 Compute regulon activity by calling aREA (analytic Rank-based En-
richment Analysis) algorithm

Description

Uses aREA 3-tail algorithm to compute regulon activity for TNI-class objects.

Usage

tni.area3(object, minRegulonSize=15, sizeFilterMethod="posORneg", scale=FALSE, tnet="dpi",
regulatoryElements=NULL, samples=NULL, features=NULL, refsamp=NULL, log=FALSE, verbose=TRUE,
doSizeFilter=NULL)

Arguments

object a preprocessed object of class ’TNI’ TNI-class.

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon. Regulons smaller than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minRegulonSize’ argument,
which is applyed to regulon’s positive and negative targets. Options: "posAND-
neg", "posORneg", "posPLUSneg". For "posANDneg", the number of both pos-
itive and negative targets should be > ’minRegulonSize’; for "posORneg", the
number of either positive or negative targets should be > ’minRegulonSize’; and
for "posPLUSneg", the number of all targets should be > ’minRegulonSize’.

scale A logical value specifying if expression values should be centered and scaled
across samples (when verbose=TRUE) or not (when verbose=FALSE).

tnet can take values of ’refnet’, ’dpi’ or ’cdt’. It refers to the version of the regulatory
network that will be used for GSEA analysis.

regulatoryElements

an optional vector with transcription factor identifiers.

samples an optional string vector containing the sample names for which will be com-
puted regulon activity.

features a string vector containing features for feature selection.

refsamp an optional string vector containing the names of the reference samples for dif-
ferential expression calculations. If not provided, then the average of all samples
will be used as reference.

log a logical value. If TRUE, differential expression calculations will be computed
in log space.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

doSizeFilter a logical value. If TRUE, negative and positive targets are independently verified
by the ’minRegulonSize’ argument.

40 tni.bootstrap

Value

a list with enrichment scores for all samples in the TNI.

References

Alvarez et al. Functional characterization of somatic mutations in cancer using network-based
inference of protein activity. Nature Genetics, 48(8):838-847, 2016.

See Also

TNI-class aREA

Examples

data(tniData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

#run aREA algorithm
rtni <- tni.area3(rtni)

#get results
regulonActivity <- tni.get(rtni, what = "regulonActivity")

End(Not run)

tni.bootstrap Inference of consensus transcriptional networks.

Description

This function takes a TNI object and returns the consensus transcriptional network.

Usage

tni.bootstrap(object, nBootstraps=100, consensus=95, parChunks=NULL, verbose=TRUE)

tni.bootstrap 41

Arguments

object a processed object of class ’TNI’ TNI-class evaluated by the method tni.permutation.

nBootstraps a single integer or numeric value specifying the number of bootstraps for de-
riving a consensus between every TF-target association inferred in the mutual
information analysis. If running in parallel, nBootstraps should be greater and
multiple of parChunks.

consensus a single integer or numeric value specifying the consensus fraction (in percent-
age) under which a TF-target association is accepted.

parChunks an optional single integer value specifying the number of bootstrap chunks to be
used in the parallel analysis.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE)

Value

a matrix in the slot "results" containing a reference transcriptional network, see ’tn.ref’ option in
tni.get.

Author(s)

Mauro Castro

See Also

TNI-class

Examples

data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

linear version!
rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)

parallel version with SNOW package!
#library(snow)
#options(cluster=snow::makeCluster(3, "SOCK"))
#rtni <- tni.permutation(rtni)
#rtni <- tni.bootstrap(rtni)
#stopCluster(getOption("cluster"))

End(Not run)

42 tni.conditional

tni.conditional Modulators of transcription factor (TF) activity assessed by condi-
tional mutual information analysis.

Description

This function takes a TNI object and a list of candidate modulators, and computes the conditional
mutual information over the TF-target interactions in a transcriptional network (with multiple hy-
pothesis testing corrections). For each TF, the method measures the change in the mutual informa-
tion between the TF and its targets conditioned to the gene expression of a modulator.

Usage

tni.conditional(object, modulators, tfs=NULL, sampling=35, pValueCutoff=0.01,
pAdjustMethod="bonferroni", minRegulonSize=15, minIntersectSize=5,
miThreshold="md", prob=0.99, medianEffect=FALSE,
iConstraint=TRUE, verbose=TRUE, ...)

Arguments

object a processed object of class ’TNI’ TNI-class evaluated by the methods tni.permutation,
tni.bootstrap and tni.dpi.filter.

modulators a vector with identifiers for those considered as candidate modulators.

tfs a vector with TF identifiers. If NULL, the function will assess all TFs in the
network.

sampling a single integer value specifying the percentage of the available samples that
should be included in the analysis. For example, for each TF-target interaction
of a given hub, ’sampling = 35’ means that the conditional mutual information
will be computed from the top and bottom 35% of the samples ranked by the
gene expression of a given candidate modulator.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

minRegulonSize a single integer or numeric value specifying the minimum number of elements in
a regulon. Gene sets with fewer than this number are removed from the analysis.

minIntersectSize

a single integer or numeric value specifying the minimum number of observed
modulated elements in a regulon (as percentage value).

miThreshold a single character value specifying the underlying distribution used to estimate
the mutual information threshold. Options: ’md’ and ’md.tf’. In the 1st case,
’miThreshold’ is estimated from a pooled null distribution representing random
modulators, while in the 2nd case a specific mutual information threshold is esti-
mated for each TF conditioned on the random modulators. In the two options the
’miThreshold’ is estimated by permutation analysis (see ’prob’). Alternatively,

tni.conditional 43

users can either provide a custom mutual information threshold or a numeric
vector with lower (a) and upper (b) bounds for the differential mutual informa-
tion analysis (e.g. ’c(a,b)’).

prob a probability value in [0,1] used to estimate the ’miThreshold’ based on the
underlying quantile distribution.

medianEffect a single logical value specifying whether to assess the median effect of each
modulator. This global statistics does not affect the inferential process over
single TF-target interactions. This method is still experimental, it can be used as
a complementary analysis to chek the overall modulation effect onto all targets
listed in a given regulon (this step may require substantial computation time).

iConstraint a single logical value specifying whether to apply independence constraint be-
tween TFs and modulators (when verbose=TRUE) or not (when verbose=FALSE).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

... additional arguments passed to tna.graph function.

Value

a data frame in the slot "results", see ’cdt’ option in tni.get.

Author(s)

Mauro Castro

References

Wang, K. et al. Genome-wide identification of post-translational modulators of transcription factor
activity in human B cells. Nat Biotechnol, 27(9):829-39, 2009.

Castro, M.A.A. et al. RTN: Reconstruction and Analysis of Transcriptional Networks. Journal
Paper (in preparation), 2012.

See Also

TNI-class

Examples

data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

permutation/bootstrap analysis (infers the reference/relevance network)
rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)

44 tni.constructor

dpi filter (infers the transcriptional network)
rtni <- tni.dpi.filter(rtni)

get some candidate modulators for demonstration!
mod4test <- rownames(rtni@gexp)[sample(1:nrow(rtni@gexp),200)]

conditional analysis
rtni <- tni.conditional(rtni, modulators=mod4test, pValueCutoff=1e-3)

get results
cdt <- tni.get(rtni, what="cdt.table")

get summary on a graph object
g <- tni.graph(rtni, gtype="mmap")

###---
optional: plot the igraph object using RedeR
library(RedeR)

#--load reder interface
rdp <- RedPort()
calld(rdp)

#---add graph and legends
addGraph(rdp,g)
addLegend.shape(rdp,g)
addLegend.size(rdp,g)
addLegend.color(rdp,g,type="edge")
relax(rdp,p1=50,p5=20)

End(Not run)

tni.constructor A constructor for objects of class TNI.

Description

This function is the main entry point of the TNI pipeline.

Usage

tni.constructor(expData, regulatoryElements, rowAnnotation=NULL,
colAnnotation=NULL, cvfilter=FALSE, verbose=TRUE)

Arguments

expData a gene expression matrix or ’SummarizedExperiment’ object.

tni.constructor 45

regulatoryElements

a vector of regulatory elements (e.g. transcription factors).

rowAnnotation an optional data frame with gene annotation. Column 1 must provide all ids
listed in the gene expression matrix. Ideally, col1 = <ID>, col2 = <GENEID>,
and col3 = <SYMBOL>. Additional annotation can be included in the data
frame and will be passed to the resulting TNI object. Furthermore, in order
to eventually use the TNI object in AVS-class methods, it should also include
chromosome coordinates: columns <CHROM>, <START> and <END>. Values
in <CHROM> should be listed in [chr1, chr2, chr3, ..., chrX], while <START>
and <END> correspond to chromosome positions (see avs.evse).

colAnnotation an optional data frame with sample annotation.

cvfilter a single logical value specifying to remove duplicated genes in the gene expres-
sion matrix using the probe-to-gene annotation. In this case, ’rowAnnotation’
must be provided, with col1 = <ID> and col2 = <GENEID>. Genes duplicated
in col2 will be collapsed; the decision is made based on the maximum dinamic
range (i.e. keeping the gene with max coefficient of variation across all sam-
ples).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

A pre-processed TNI-class object.

Author(s)

Mauro Castro

See Also

TNI-class

Examples

data(tniData)

#--- run constructor
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

46 TNI.data

TNI.data A pre-processed TNI for demonstration purposes only.

Description

A minimum TNI object that can be used to demonstrate RTN functionalities.

Usage

data(stni)

Format

stniA TNI-class with a subset of samples and genes from the Fletcher2013b package.

Details

The TNI consists of a TNI-class with a subsetted gene expression matrix and reduced list of tran-
scription factors. It should be regarded as a toy example for demonstration purposes only, despite
being extracted, pre-processed and size-reduced from Fletcher et al. (2013) and Curtis et al. (2012).

Value

a TNI-class.

References

Fletcher M.N.C. et al., Master regulators of FGFR2 signalling and breast cancer risk. Nature
Communications, 4:2464, 2013.

Curtis C. et al., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel
subgroups. Nature 486, 7403. 2012.

Examples

data(stni)

tni.dpi.filter 47

tni.dpi.filter Data Processing Inequality (DPI) filter.

Description

This function takes a TNI object and returns the transcriptional network filtered by the data pro-
cessing inequality algorithm.

Usage

tni.dpi.filter(object, eps = 0, sizeThreshold = TRUE, minRegulonSize = 15, verbose = TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class evaluated by the methods tni.permutation
and tni.bootstrap.

eps a single numeric value (>= 0) specifying the threshold under which ARACNe
algorithm should apply the dpi filter. If not available (i.e. ’eps = NA’), then
the threshold is estimated from the empirical null distribution computed in the
permutation and bootstrap steps. For additional details see aracne.

sizeThreshold a logical value specifying if the ’minRegulonSize’ argument should be used
(when ’sizeThreshold = TRUE’) or not (when ’sizeThreshold = FALSE’). It will
have no effect when ’eps = NA’.

minRegulonSize a single integer or numeric value. This argument prevents the DPI algorithm
from removing additional targets from large unbalanced regulons, when the sub-
set of either positive or negative targets is below the ’minRegulonSize’.

verbose a single logical value specifying to display detailed messages (when ’verbose =
TRUE’) or not (when ’verbose = FALSE’).

Value

a mutual information matrix in the slot "results" containing a dpi-filtered transcriptional network,
see ’tn.dpi’ option in tni.get.

Author(s)

Mauro Castro

See Also

TNI-class

48 tni.get

Examples

data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

permutation analysis (infers the reference/relevance network)
rtni <- tni.permutation(rtni)

dpi filter (infers the transcriptional network)
rtni <- tni.dpi.filter(rtni)

End(Not run)

tni.get Get information from individual slots in a TNI object.

Description

Get available results from individual slots in a TNI object.

Usage

tni.get(object, what="summary", order=TRUE, ntop=NULL, reportNames=TRUE,
idkey=NULL)

Arguments

object an object of class TNI-class.

what a single character value specifying which information should be retrieved from
the slots. Options: ’summary’, ’status’, ’para’, ’gexp’,’regulatoryElements’,
’targetElements’, ’modulators’, ’tnet’, ’refnet’, ’regulons’, ’refregulons’, ’regu-
lons.and.mode’, ’refregulons.and.mode’, ’rowAnnotation’, ’colAnnotation’, ’cdt.list’,
’cdt.table’, ’regulonSize’,’regulonActivity’.

order a single logical value specifying whether or not the output data should be ordered
by significance. Valid only for ’cdt’ option.

ntop a single integer value specifying to select how many results of top significance
from ’cdt’ option.

reportNames a single logical value specifying to report regulators with ’names’ (when report-
Names=TRUE) or not (when reportNames=FALSE). This option takes effect on
’cdt’ option if regulators are named with alternative identifiers.

tni.get 49

idkey an optional single character value specifying an ID name from the available
’TNI’ annotation to be used as alias for data query outputs (obs. it has no effect
on consolidated tables).

Details

Options for the ’what’ argument:

summary A list summarizing parameters and results available in the TNI object (see tni.regulon.summary
for a summary of the network and regulons).

status A vector indicating the status of each available method in the pipeline.

para A list with the parameters used by each available method in the pipeline.

gexp A gene expression matrix.

regulatoryElements A vector of regulatory elements (e.g. transcription factors).

targetElements A vector of target elements (e.g. TF targets).

modulators A vector of modulators (e.g. TF modulators).

tnet A data matrix with MI values, evaluated by the DPI filter. MI values are computed between
regulators and targets, with regulators on cols and targets on rows. Note that signals (+/-)
are assigned to the inferred associations in order to represent the ’mode of action’, which is
derived from Pearson’s correlation between regulators and targets.

refnet A data matrix with MI values (not evaluated by the DPI filter). MI values are computed
between regulators and targets, with regulators on cols and targets on rows. Note that signals
(+/-) are assigned to the inferred associations in order to represent the ’mode of action’, which
is derived from Pearson’s correlation between regulators and targets.

regulons A list with regulons extracted from the ’tnet’ data matrix.

refregulons A list with regulons extracted from the ’refnet’ data matrix.

regulons.and.mode A list with regulons extracted from the ’tnet’ data matrix, including the assiged
’mode of action’.

refregulons.and.mode A list with regulons extracted from the ’refnet’ data matrix, including the
assiged ’mode of action’.

rowAnnotation A data frame with probe-to-gene annotation.

colAnnotation A data frame with sample annotation.

cdt.table A data frame with results from the tni.conditional analysis pipeline.

cdt.list A list with results from the tni.conditional analysis pipeline.

regulonSize A data frame with the number of targets annotated in each regulon.

regulonActivity A list with results from the tni.gsea2 analysis pipeline.

Value

Get the slot content from a TNI-class object.

Author(s)

Mauro Castro

50 tni.graph

Examples

data(tniData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

check summary
tni.get(rtni, what="summary")

get regulons
regulons <- tni.get(rtni, what = "regulons")

get status of the pipeline
tni.get(rtni, what="status")

End(Not run)

tni.graph Compute a graph from TNI objects (Deprecated).

Description

Extract results from a TNI object and compute a graph (Deprecated).

Usage

tni.graph(x, ...)

Arguments

x Deprecated arg.

... Additional deprecated args.

Value

—

Examples

deprecated function

tni.gsea2 51

tni.gsea2 Compute regulon activity by calling GSEA2 (two-tailed Gene Set En-
richment Analysis) algorithm

Description

Uses GSEA2 algorithm to compute regulon activity for TNI-class objects.

Usage

tni.gsea2(object, minRegulonSize=15, sizeFilterMethod="posORneg", scale=FALSE,
exponent=1, tnet="dpi", regulatoryElements=NULL, features=NULL, samples=NULL,
refsamp=samples, log=TRUE, alternative=c("two.sided", "less", "greater"),
targetContribution=FALSE, additionalData=FALSE, verbose=TRUE, doSizeFilter=NULL)

Arguments

object a preprocessed object of class ’TNI’ TNI-class.

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon. Regulons smaller than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minRegulonSize’ argument,
which is applyed to regulon’s positive and negative targets. Options: "posAND-
neg", "posORneg", "posPLUSneg". For "posANDneg", the number of both pos-
itive and negative targets should be > ’minRegulonSize’; for "posORneg", the
number of either positive or negative targets should be > ’minRegulonSize’; and
for "posPLUSneg", the number of all targets should be > ’minRegulonSize’.

scale A logical value specifying if expression values should be centered and scaled
across samples (when verbose=TRUE) or not (when verbose=FALSE).

exponent a single integer or numeric value used in weighting phenotypes in GSEA.

tnet can take values of ’ref’, ’dpi’ or ’cdt’. It refers to the version of the regulatory
network that will be used for GSEA analysis.

regulatoryElements

an optional vector with transcription factor identifiers.

features a string vector listing features for feature selection.

samples an optional string vector listing the sample names for which will be computed
the GSEA2.

refsamp an optional string vector listing the names of the reference samples for differen-
tial expression calculations. If not provided, then the average of all samples will
be used as reference.

log a logical value. If TRUE, it will check whether the expression values are pro-
vided as logged data; if not, it will performe a log2 transformation on expression
values before the differential expression calculations.

52 tni.gsea2

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

targetContribution

This argument is used for internal calls. A single logical value specifying to re-
turn the contribution of each target in enrichment scores (when verbose=TRUE)
or not (when verbose=FALSE).

additionalData This argument is used for internal calls. A single logical value specifying to re-
turn the additional data objects (when verbose=TRUE) or not (when verbose=FALSE).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

doSizeFilter ’doSizeFilter’ is deprecated, please use the ’sizeFilterMethod’ parameter.

Value

a list with enrichment scores for all samples in the TNI. The list contains the following elements:

differential: A numeric "matrix" with differential enrichment scores (dES).

positive: A numeric "matrix" with enrichment scores from positive targets.

negative: A numeric "matrix" with enrichment scores from negative targets.

status: A numeric "matrix" with discretized scores derived from the dES values.

regulatoryElements: A character vector listing the regulatory elements assessed by the GSEA-2T
algorithm.

sections: A single numeric value used in internal plots.

Author(s)

Mauro Castro

See Also

TNI-class tna.gsea2 tna.plot.gsea2

Examples

data(tniData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

#run GSEA2 analysis pipeline
rtni <- tni.gsea2(rtni)

tni.overlap.genesets 53

#get results
regulonActivity <- tni.get(rtni, what = "regulonActivity")

#parallel version with SNOW package!
library(snow)
options(cluster=snow::makeCluster(3, "SOCK"))
rtni <- tni.gsea2(rtni)
stopCluster(getOption("cluster"))

End(Not run)

tni.overlap.genesets Associate regulons with external gene set collections.

Description

This function tests the overlap between gene sets and regulons.

Usage

tni.overlap.genesets(object, geneSetList, regulatoryElements = NULL,
minSetSize = 15, sizeFilterMethod="posORneg",
method = c("HT","JC"), pValueCutoff = 0.05,
pAdjustMethod = "BH", verbose = TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class already evaluated by the tni.dpi.filter
method.

geneSetList a list with gene sets.
regulatoryElements

a vector of valid regulatory elements (e.g. transcription factors).

minSetSize a single integer or numeric value specifying the minimum number of elements
in a gene set that must map to elements of the gene universe. Gene sets with
fewer than this number are removed from the analysis.

sizeFilterMethod

a single character value specifying the use of the ’minSetSize’ argument, which
is applyed to regulon’s positive and negative targets. Options: "posANDneg",
"posORneg", "posPLUSneg". For "posANDneg", the number of both positive
and negative targets should be > ’minSetSize’; for "posORneg", the number
of either positive or negative targets should be > ’minRegulonSize’; and for
"posPLUSneg", the number of all targets should be > ’minSetSize’.

method a string specifying the method used to assess the association between gene sets
and regulons (see ’Details’).

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant
(this parameter only affects the ’HT’ option).

54 tni.overlap.genesets

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details) (this parameter only affects the ’HT’ option).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Details

The ’HT’ option assesses the overlap between gene sets and regulons using a hypergeometric test,
and returns a data frame with the overlap statistics. The ’JC’ option assesses the overlap between
gene sets and regulons using the Jaccard Coefficient (JC), and retuns a matrix with JC values.

Value

Either a data frame or a numeric matrix with association statistics between gene sets vs. regulons.

Author(s)

Mauro Castro

See Also

TNI-class

Examples

data(tniData)

Not run:

#compute regulons
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

#load a gene set collection
#here, we build three random gene sets for demonstration
geneset1 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset2 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneset3 <- sample(tniData$rowAnnotation$SYMBOL,50)
geneSetList <- list(geneset1=geneset1,

geneset2=geneset2,
geneset3=geneset3)

#run the overlap analysis
ovstats <- tni.overlap.genesets(rtni, geneSetList, pValueCutoff = 1)

End(Not run)

tni.permutation 55

tni.permutation Inference of transcriptional networks.

Description

This function takes a TNI object and returns a transcriptional network inferred by mutual informa-
tion (with multiple hypothesis testing corrections).

Usage

tni.permutation(object, pValueCutoff=0.01, pAdjustMethod="BH", globalAdjustment=TRUE,
estimator="spearman", nPermutations=1000, pooledNullDistribution=TRUE,
boxcox=TRUE, parChunks=NULL, verbose=TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class.
pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.
pAdjustMethod a single character value specifying the p-value adjustment method to be used

(see ’p.adjust’ for details).
globalAdjustment

a single logical value specifying to run global p.value adjustments (when glob-
alAdjustment=TRUE) or not (when globalAdjustment=FALSE).

estimator a character string specifying the mutual information estimator. One of "pear-
son", "kendall", or "spearman" (default).

nPermutations a single integer value specifying the number of permutations for deriving TF-
target p-values in the mutual information analysis. If running in parallel, nPer-
mutations should be greater and multiple of parChunks.

pooledNullDistribution

a single logical value specifying to run the permutation analysis with pooled
regulons (when pooledNullDistribution=TRUE) or not (when pooledNullDistri-
bution=FALSE).

boxcox a single logical value specifying to use Box-Cox procedure to find a transforma-
tion of inferred associations that approaches normality (when boxcox=TRUE) or
not (when boxcox=FALSE). Dam et al. (2018) have acknowledged that differ-
ent RNA-seq normalization methods introduce different biases in co-expression
analysis, usually towards positive correlation, possibly affected by read-depth
differences between samples and the large abundance of 0 values present in
RNA-seq-derived expression matrices. In order to correct this positive correla-
tion bias we suggest using this box-cox correction strategy. See powerTransform
and bcPower.

parChunks an optional single integer value specifying the number of permutation chunks
to be used in the parallel analysis (effective only for "pooledNullDistribution =
TRUE").

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE)

56 tni.plot.checks

Value

a mutual information matrix in the slot "results" containing a reference transcriptional network, see
’tn.ref’ option in tni.get.

Author(s)

Mauro Castro

References

Dam et al. Gene co-expression analysis for functional classification and gene-disease predictions.
Brief Bioinform. 2018 Jul 20;19(4):575-592. doi: 10.1093/bib/bbw139.

See Also

TNI-class

Examples

data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

linear version (set nPermutations >= 1000)
rtni <- tni.permutation(rtni, nPermutations = 100)

parallel version with SNOW package!
#library(snow)
#options(cluster=snow::makeCluster(3, "SOCK"))
#rtni<-tni.permutation(rtni)
#stopCluster(getOption("cluster"))

End(Not run)

tni.plot.checks Plot regulon target counts.

Description

This funtion can help to check whether the numbers of positive and negative targets are reasonably
well balanced in the regulons.

Usage

tni.plot.checks(object, minRegulonSize = 15, option = c("barplot","edf","points"))

tni.plot.checks 57

Arguments

object a preprocessed object of class ’TNI’ TNI-class already evaluated by the tni.dpi.filter
method.

minRegulonSize a single integer or numeric value specifying the minimum number of elements
in a regulon (only affects the ’barplot’ option).

option plot option.

Value

A plot showing the distribution of regulons’ positive and negative targets.

Note

We have observed that transcription factor (TF) regulons reconstructed from RTN exhibit different
proportions of positive and negative targets. While the proportion can vary between different reg-
ulons, we have observed a consistent higher proportion of positive targets, especially when using
RNA-seq data. RTN uses mutual information (MI) to assess TF-target associations, assigning the
direction of the inferred associations by Spearman’s correlations. Dam et al. (2018) have acknowl-
edged that different RNA-seq normalization methods introduce different biases in co-expression
analysis, usually towards positive correlation, possibly affected by read-depth differences between
samples and the large abundance of 0 values present in RNA-seq-derived expression matrices. This
funtion can help to check whether the numbers of positive and negative target genes are reasonably
well balanced in the regulons.

Author(s)

Mauro Castro, Gordon Robertson

References

Dam et al. Gene co-expression analysis for functional classification and gene-disease predictions.
Brief Bioinform. 2018 Jul 20;19(4):575-592. doi: 10.1093/bib/bbw139.

Examples

data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

compute regulons
rtni <- tni.permutation(rtni, nPermutations = 1000)
rtni <- tni.permutation(rtni)
rtni <- tni.dpi.filter(rtni)

check target distribution

58 tni.plot.sre

tni.plot.checks(rtni)

End(Not run)

tni.plot.sre Plot Subgroup Regulon Enrichment for TNI-class objects.

Description

This method plots the results of the subgroup regulon enrichment analysis in a heatmap. The rows
of the heatmap represent enriched regulons, while the columns show the subgroups. The plotted
values correspond to average regulon activity for a regulon in a subgroup. Enriched values can be
marked.

Usage

tni.plot.sre(object, nGroupsEnriched = NULL, nTopEnriched = NULL,
colors = c("blue","white","red"), breaks = seq(-1.5, 1.5, 0.1),
markEnriched = TRUE, ...)

Arguments

object A TNI-class object.
nGroupsEnriched

a filter to keep ’nGroupsEnriched’ regulons; a single integer specifying how
many subgroups a regulon has to be enriched for it to appear in the rows of the
heatmap (it must be use either ’nGroupsEnriched’ or ’nTopEnriched’).

nTopEnriched a filter to keep ’nTopEnriched’ regulons; a single integer specifying how many
regulons will be shown for each group. The top regulons are chosen by signifi-
cance (it must be use either ’nTopEnriched’ or ’nGroupsEnriched’).

colors a vector of color for the ’pheatmap’.

breaks a numerical vector of breaks for the ’pheatmap’.

markEnriched a single logical value. If TRUE, asterisks are added to cells of heatmap that were
found to be significant.

... parameters passed to ’pheatmap’ for customization.

Value

A heatmap of the subgroup regulon enrichment results.

See Also

tni.sre

tni.preprocess 59

Examples

load tniData
data(tniData)

Not run:

preprocessing
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

permutation analysis (infers the reference/relevance network)
rtni <- tni.permutation(rtni)

dpi filter (infers the transcriptional network)
rtni <- tni.dpi.filter(rtni)

#run GSEA2 analysis pipeline
rtni <- tni.gsea2(rtni)

set sample groups
colAnnotation <- tni.get(rtni, "colAnnotation")
sampleGroups <- list(G1=colAnnotation$ID[1:60],

G2=colAnnotation$ID[61:90],
G3=colAnnotation$ID[91:120])

run subgroup regulon enrichment analysis
rtni <- tni.sre(rtni, sampleGroups)

plot results
tni.plot.sre(rtni)

End(Not run)

tni.preprocess A preprocessing function for objects of class TNI.

Description

This is a generic function, provides all preprocessing methods for the ’tni.constructor’ function.

Usage

tni.preprocess(object, rowAnnotation=NULL, colAnnotation=NULL, cvfilter=FALSE,
verbose=TRUE)

Arguments

object this argument is an object of class TNI-class.

60 tni.prune

rowAnnotation an optional data frame with gene annotation.

colAnnotation an optional data frame with sample annotation.

cvfilter a single logical value specifying to remove duplicated genes in the gene expres-
sion matrix using the gene annotation.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

A pre-processed TNI-class object.

Author(s)

Mauro Castro

See Also

tni.constructor

Examples

see 'tni.constructor'!

tni.prune Prune regulons to remove redundant targets for regulon activity anal-
ysis

Description

Uses network pruning methods to compute a ’core’ regulon that retains good correlation with orig-
inal regulon activity.

Usage

tni.prune(object, regulatoryElements = NULL, minRegCor = 0.95,
tarPriorityMethod = "EC", minPrunedSize = 30, verbose = TRUE, ...)

Arguments

object a preprocessed object of TNI-class.
regulatoryElements

an optional vector with regulatoryElements identifiers. If NULL, all regulato-
ryElements are used.

minRegCor an numeric value between 0 and 1. The minimum correlation between the orig-
inal activity values for a regulon and the activity after pruning.

tni.prune 61

tarPriorityMethod

method for prioritizing targets for the target backwards elimination. One of
"EC" (expression correlation), "MI" (mutual information) or "TC" (target con-
tribution).

minPrunedSize a single integer or numeric value specifying the minimum number of elements
in a regulon after pruning.

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

... arguments passed to tni.gsea2

Value

a TNI-class object, with the pruned regulons.

Author(s)

Clarice Groeneveld

See Also

TNI-class tni.gsea2

Examples

data(tniData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

prune the PTTG1 regulon
rtni_pruned <- tni.prune(rtni, "PTTG1", tarPriorityMethod = "TC")

#parallel version with SNOW package!
#library(snow)
#options(cluster=makeCluster(3, "SOCK"))
#rtni_pruned <- tni.prune(rtni, c("PTTG1", "E2F2"))
#stopCluster(getOption("cluster"))

End(Not run)

62 tni.regulon.summary

tni.regulon.summary Summary of regulon characteristics.

Description

This function takes a TNI object and optionally a list of regulatory elements and returns a summary
of the network (if no regulatory elements are given) or of the chosen regulon or regulons.

Usage

tni.regulon.summary(object, regulatoryElements = NULL, verbose = TRUE)

Arguments

object a preprocessed object of class ’TNI’ TNI-class already evaluated by the tni.dpi.filter
method.

regulatoryElements

a vector of valid regulatory elements (e.g. transcription factors).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

It returns a print-out of the network summary (if verbose is TRUE) and invisibly returns a data.frame
of network characteristics such as regulon size and regulon balance.

Author(s)

Clarice Groeneveld

See Also

TNI-class

Examples

data(tniData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

Summary of the network

tni.replace.samples 63

tni.regulon.summary(rtni)

Summary of a regulon
tni.regulon.summary(rtni, regulatoryElements = "PTTG1")

End(Not run)

tni.replace.samples Entry point to assess new samples with previously calculated regulons.

Description

This function replaces samples of an existing TNI-class objects.

Usage

tni.replace.samples(object, expData, rowAnnotation=NULL, colAnnotation=NULL,
removeRegNotAnnotated=TRUE, verbose=TRUE)

Arguments

object an object of class TNI-class.

expData a gene expression matrix or ’SummarizedExperiment’ object.

rowAnnotation an optional data frame with gene annotation. Column 1 must provide all ids
listed in the gene expression matrix.

colAnnotation an optional data frame with sample annotation.
removeRegNotAnnotated

a single logical value specifying to remove ’regulatoryElements’ not annotated
in ’expData’ (when removeRegNotAnnotated=TRUE) or not (when removeReg-
NotAnnotated=FALSE).

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

A TNI-class object.

Author(s)

Mauro Castro

Examples

please the package's vignette

64 tni.sre

tni.sre Subgroup Regulon Enrichment for TNI-class objects.

Description

This method evaluates which regulons are enriched in sample groups, given a grouping variable. It
performs Fisher’s Exact Test whether a regulon is positively or negatively enriched in a subgroup
using regulon activity.

Usage

tni.sre(object, sampleGroups, regulatoryElements = NULL,
pValueCutoff = 0.05, pAdjustMethod = "BH")

Arguments

object A TNI object.

sampleGroups either a list featuring sample groups or a string indicating a group varible avail-
able in the TNI object.

regulatoryElements

an optional string vector specifying regulons to use for the analysis.

pValueCutoff a single numeric value specifying the cutoff for p-values considered significant.

pAdjustMethod a single character value specifying the p-value adjustment method to be used
(see ’p.adjust’ for details).

Value

A TNI-class object with the results of the subgroup regulon enrichment added to the results slot. To
recover the results, use tni.get(object, "regulonEnrichment")

See Also

tni.plot.sre

Examples

load tniData
data(tniData)

Not run:

compute regulons
rtni <- tni.constructor(expData=tniData$expData,

regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)

tni2tna.preprocess 65

rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)

#run GSEA2 analysis pipeline
rtni <- tni.gsea2(rtni)

set sample groups
colAnnotation <- tni.get(rtni, "colAnnotation")
sampleGroups <- list(G1=colAnnotation$ID[1:60],

G2=colAnnotation$ID[61:90],
G3=colAnnotation$ID[91:120])

run subgroup regulon enrichment analysis
rtni <- tni.sre(rtni, sampleGroups)

get results
tni.get(rtni, "subgroupEnrichment")

for a heatmap representation, see the tni.plot.sre() function.

End(Not run)

tni2tna.preprocess A preprocessing function for objects of class TNI.

Description

This is a generic function.

Usage

tni2tna.preprocess(object, phenotype=NULL, hits=NULL, phenoIDs=NULL,
duplicateRemoverMethod="max", verbose=TRUE)

Arguments

object a processed object of class ’TNI’ TNI-class evaluated by the methods tni.permutation,
tni.bootstrap and tni.dpi.filter.

phenotype a numeric vector of phenotypes named by gene identifiers (usually log2 differen-
tial expression values). Required for the tna.gsea1 and tna.gsea2) methods.

hits a character vector of gene identifiers for those considered as hits. Required for
the tna.mra method.

phenoIDs an optional 2cols-matrix used to aggregate genes in the ’phenotype’ (e.g. probe-
to-gene ids; in this case, col 1 should correspond to probe ids).

duplicateRemoverMethod

a single character value specifying the method to remove the duplicates. The
current version provides "min" (minimum), "max" (maximum), "average". Fur-
ther details in ’duplicateRemover’ function at the HTSanalyzeR package.

66 upgradeTNA

verbose a single logical value specifying to display detailed messages (when verbose=TRUE)
or not (when verbose=FALSE).

Value

A pre-processed TNA-class object.

Author(s)

Mauro Castro

See Also

TNI-class TNA-class

Examples

data(tniData)
data(tnaData)

Not run:

rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)

rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype,

hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)

End(Not run)

upgradeTNA Upgrade objects of class TNI.

Description

This function provides compatibility checks for a TNI class object.

Usage

upgradeTNA(object)

Arguments

object this argument is an object of class TNI-class.

upgradeTNI 67

Value

An updated TNA-class object.

Author(s)

Mauro Castro

Examples

Objects of class TNA generated by RTN (version <= 1.15.2) can be upgraded
to the latest version by calling upgradeTNA().

upgradeTNI Upgrade objects of class TNI.

Description

This function provides compatibility checks for a TNI class object.

Usage

upgradeTNI(object)

Arguments

object this argument is an object of class TNI-class.

Value

An updated TNI-class object.

Author(s)

Mauro Castro

Examples

Objects of class TNI generated by RTN (version <= 1.15.2) can be upgraded
to the latest version by calling upgradeTNI().

Index

∗ GSEA2
tna.plot.gsea2, 31

∗ GSEA
tna.gsea1, 24
tna.gsea2, 26
tna.plot.gsea1, 29
tni.gsea2, 51

∗ Prune
tni.prune, 60

∗ RMA
tna.mra, 28

∗ VSE
avs.plot1, 12
avs.plot2, 13

∗ aREA
tni.area3, 39

∗ annotate
tni.annotate.regulons, 35
tni.annotate.samples, 37
tni.overlap.genesets, 53

∗ classes
AVS-class, 4
TNA-class, 20
TNI-class, 33

∗ dataset
RTN.data, 19
TNI.data, 46

∗ methods
avs.evse, 5
avs.get, 8
avs.pevse, 9
avs.rvse, 14
avs.vse, 16
tna.get, 22
tni.alpha.adjust, 34
tni.bootstrap, 40
tni.conditional, 42
tni.constructor, 44
tni.dpi.filter, 47

tni.get, 48
tni.graph, 50
tni.permutation, 55
tni.plot.checks, 56
tni.preprocess, 59
tni.replace.samples, 63
tni2tna.preprocess, 65

∗ package
RTN-package, 3

∗ subgroups
tni.sre, 64

∗ summary
tni.regulon.summary, 62

∗ upgrade
upgradeTNA, 66
upgradeTNI, 67

aracne, 47
aREA, 39, 40
AVS-class, 3, 4
avs.evse, 3, 5, 5, 45
avs.evse,AVS-method (AVS-class), 4
avs.get, 4–6, 8, 10, 15, 17
avs.get,AVS-method (AVS-class), 4
avs.pevse, 4, 5, 9
avs.pevse,AVS-method (AVS-class), 4
avs.plot1, 4, 12
avs.plot2, 4, 13
avs.rvse, 5, 14
avs.rvse,AVS-method (AVS-class), 4
avs.vse, 3, 5, 9, 14, 16
avs.vse,AVS-method (AVS-class), 4

bcPower, 6, 10, 15, 17, 55

hist, 12

pksData (RTN.data), 19
powerTransform, 6, 10, 15, 17, 55
pwr.r.test, 35

68

INDEX 69

RTN (RTN-package), 3
RTN-package, 3
RTN.data, 19

stni (TNI.data), 46

tfsData (RTN.data), 19
TNA-class, 3, 20
tna.get, 3, 21, 22, 25, 27, 28
tna.get,TNA-method (TNA-class), 20
tna.gsea1, 3, 21, 23, 24, 30, 65
tna.gsea1,TNA-method (TNA-class), 20
tna.gsea2, 3, 21, 23, 26, 32, 52, 65
tna.gsea2,TNA-method (TNA-class), 20
tna.mra, 3, 21, 23, 28, 65
tna.mra,TNA-method (TNA-class), 20
tna.plot.gsea1, 3, 25, 29
tna.plot.gsea2, 3, 27, 31, 52
tnaData (RTN.data), 19
TNI, 58, 64
TNI-class, 3, 33
tni.alpha.adjust, 3, 34
tni.annotate.regulons, 34, 35
tni.annotate.regulons,TNI-method

(TNI-class), 33
tni.annotate.samples, 34, 37
tni.annotate.samples,TNI-method

(TNI-class), 33
tni.area3, 33, 39
tni.area3,TNI-method (TNI-class), 33
tni.bootstrap, 3, 33, 40, 42, 47, 65
tni.bootstrap,TNI-method (TNI-class), 33
tni.conditional, 3, 21, 33, 42, 49
tni.conditional,TNI-method (TNI-class),

33
tni.constructor, 44, 60
TNI.data, 46
tni.dpi.filter, 3, 33, 35, 42, 47, 53, 57, 62,

65
tni.dpi.filter,TNI-method (TNI-class),

33
tni.get, 3, 33, 41, 43, 47, 48, 56
tni.get,TNI-method (TNI-class), 33
tni.graph, 3, 33, 50
tni.graph,TNI-method (TNI-class), 33
tni.gsea2, 3, 33, 49, 51, 61
tni.gsea2,TNI-method (TNI-class), 33
tni.overlap.genesets, 34, 53

tni.overlap.genesets,TNI-method
(TNI-class), 33

tni.permutation, 3, 33, 41, 42, 47, 55, 65
tni.permutation,TNI-method (TNI-class),

33
tni.plot.checks, 3, 56
tni.plot.sre, 3, 58, 64
tni.preprocess, 3, 33, 59
tni.preprocess,TNI-method (TNI-class),

33
tni.prune, 3, 33, 60
tni.prune,TNI-method (TNI-class), 33
tni.regulon.summary, 3, 33, 49, 62
tni.regulon.summary,TNI-method

(TNI-class), 33
tni.replace.samples, 3, 33, 63
tni.replace.samples,TNI-method

(TNI-class), 33
tni.sre, 3, 34, 58, 64
tni.sre,TNI-method (TNI-class), 33
tni2tna.preprocess, 3, 21–23, 25, 26, 34, 65
tni2tna.preprocess,TNI-method

(TNI-class), 33
tniData (RTN.data), 19

upgradeTNA, 66
upgradeTNI, 67

	RTN-package
	AVS-class
	avs.evse
	avs.get
	avs.pevse
	avs.plot1
	avs.plot2
	avs.rvse
	avs.vse
	RTN.data
	TNA-class
	tna.get
	tna.gsea1
	tna.gsea2
	tna.mra
	tna.plot.gsea1
	tna.plot.gsea2
	TNI-class
	tni.alpha.adjust
	tni.annotate.regulons
	tni.annotate.samples
	tni.area3
	tni.bootstrap
	tni.conditional
	tni.constructor
	TNI.data
	tni.dpi.filter
	tni.get
	tni.graph
	tni.gsea2
	tni.overlap.genesets
	tni.permutation
	tni.plot.checks
	tni.plot.sre
	tni.preprocess
	tni.prune
	tni.regulon.summary
	tni.replace.samples
	tni.sre
	tni2tna.preprocess
	upgradeTNA
	upgradeTNI
	Index

