Package ‘RGraph2js’

February 2, 2026

Type Package

Title Convert a Graph into a D3js Script

Version 1.39.0

Date 2016-05-09

Imports utils, whisker, rjson, digest, graph

Suggests RUnit, BiocStyle, BiocGenerics, xtable, sna

Description Generator of web pages which display interactive
network/graph visualizations with D3js, jQuery and Raphael.

License GPL-2

SystemRequirements jQuery, jQueryUl, qTip2, D3js and Raphael are
required Javascript libraries made available via the online
CDNIS service (http://cdnjs.cloudflare.com).

Collate 'RGraph2js-package.R' 'dataformating.R' 'utils.R'
jstemplate.R' 'htmltemplate.R' 'graph2js.R’

biocViews Visualization, Network, GraphAndNetwork, ThirdPartyClient
NeedsCompilation no

Author Stephane Cano [aut, cre], Sylvain Gubian [aut], Florian Martin
[aut]

Maintainer Stephane Cano <DL .RSupport@pmi.com>
git_url https://git.bioconductor.org/packages/RGraph2js
git_branch devel

git_last_commit 4327aeb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

2

generateOptionsJSCode

Contents
generateOptionsJSCode 2
getAdjMato e 3
getDefaultOptions L e 3
getDefaultToolParameters i 7
getEdgesDataFrame 8
getHTMLContainerCodet 9
getHTMLStyleCode 9
getJSCode e e 10
getNodesDataFrame L 10
getUUID o e 11
graph2js e e e 12
graph2jSon L e e e e e 14

Index 16

generateOptionsJSCode Generate javascript code based on general options, options for con-

tainers and network data

Description

Generate javascript code based on general options, options for containers and network data

Usage

generateOptionsJSCode(opts)
Arguments

opts list containing general options for GraphRender component
Value

String containing JS code for component options

Author(s)

Sylvain Gubian <DL .RSupport@pmi.com>

getAdjMat 3

getAdjMat Get a RGraph2js compatible adjacency matrix from the provided R
object.

Description

Get a RGraph2js compatible adjacency matrix from the provided R object.

Usage
getAdjMat (A)
Arguments
A signed weighted adjacency matrix or an instance of the class graphAM, graphBAM,
graphNEL or clusterGraph from the graph package
Value

the RGraph2js compatible adjacency matrix

Author(s)

Stephane Cano <stephane.cano@pmi.com>, PMP SA.

getDefaultOptions Generate a list containing parameters for the D3js component’s op-
tions with default values

Description

Generate a list containing parameters for the D3js component’s options with default values

Usage

getDefaultOptions()

Value

list of parameters with default values

4 getDefaultOptions

Description of the available options

w : width of the component in pixels
h : height of the component in pixels

minZoombFactor : float [0,n], 1 means 100%
maxZoomFactor : float [0,n], 1 means 100%

layout_forceLinkDistance : float

If distance is specified, sets the target distance between linked nodes to the specified value. If dis-
tance is not specified, returns the layout’s current link distance, which defaults to 20. Typically, the
distance is specified in pixels; however, the units are arbitrary relative to the layout’s size.

layout_forceCharge : float

If charge is specified, sets the charge strength to the specified value. If charge is not specified, re-
turns the current charge strength, which defaults to -900. A negative value results in node repulsion,
while a positive value results in node attraction. For graph layout, negative values should be used;
for n-body simulation, positive values can be used. All nodes are assumed to be infinitesimal points
with equal charge and mass. Charge forces are implemented efficiently via the Barnes-Hut algo-
rithm, computing a quadtree for each tick. Setting the charge force to zero disables computation of
the quadtree, which can noticeably improve performance if you do not need n-body forces.

layout_linkStrength : float [0,1]
If strength is specified, sets the strength (rigidity) of links to the specified value in the range [0,1].
If strength is not specified, returns the layout’s current link strength, which defaults to 1.

layout_friction : float

If friction is specified, sets the friction coefficient to the specified value. If friction is not specified,
returns the current coefficient, which defaults to 0.9. The name of this parameter is perhaps mis-
leading; it does not correspond to a standard physical coefficient of friction. Instead, it more closely
approximates velocity decay: at each tick of the simulation, the particle velocity is scaled by the
specified friction. Thus, a value of 1 corresponds to a frictionless environment, while a value of 0
freezes all particles in place. Values outside the range [0,1] are not recommended and may have
destabilizing effects.

layout_chargeDistance : float

If distance is specified, sets the maximum distance over which charge forces are applied. If distance
is not specified, returns the current maximum charge distance, which defaults to infinity. Specifying
a finite charge distance improves the performance of the force layout and produces a more localized
layout; distance-limited charge forces are especially useful in conjunction with custom gravity.

layout_theta : float

If theta is specified, sets the Barnes-Hut approximation criterion to the specified value. If theta is
not specified, returns the current value, which defaults to 0.8. Unlike links, which only affect two
linked nodes, the charge force is global: every node affects every other node, even if they are on
disconnected subgraphs. To avoid quadratic performance slowdown for large graphs, the force lay-
out uses the Barnes-Hut approximation which takes O(n log n) per tick. For each tick, a quadtree
is created to store the current node positions; then for each node, the sum charge force of all other
nodes on the given node are computed. For clusters of nodes that are far away, the charge force is

getDefaultOptions 5

approximated by treating the distance cluster of nodes as a single, larger node. Theta determines
the accuracy of the computation: if the ratio of the area of a quadrant in the quadtree to the distance
between a node to the quadrant’s center of mass is less than theta, all nodes in the given quadrant
are treated as a single, larger node rather than computed individually.

layout_gravity : float

If gravity is specified, sets the gravitational strength to the specified value. If gravity is not speci-
fied, returns the current gravitational strength, which defaults to 0.1. The name of this parameter
is perhaps misleading; it does not correspond to physical gravity (which can be simulated using a
positive charge parameter). Instead, gravity is implemented as a weak geometric constraint simi-
lar to a virtual spring connecting each node to the center of the layout’s size. This approach has
nice properties: near the center of the layout, the gravitational strength is almost zero, avoiding any
local distortion of the layout; as nodes get pushed farther away from the center, the gravitational
strength becomes strong in linear proportion to the distance. Thus, gravity will always overcome
repulsive charge forces at some threshold, preventing disconnected nodes from escaping the layout.
Gravity can be disabled by setting the gravitational strength to zero. If you disable gravity, it is
recommended that you implement some other geometric constraint to prevent nodes from escaping
the layout, such as constraining them within the layout’s bounds.

maxLayoutlterations : the max allowed number to perform

displayNetworkEveryNLayoutlterations : 1 means always, 0 to display only on layout comple-
tion

optimizeDisplayWhenLayoutRunning : boolean, TRUE to simplify the display when the layout
engine is running

FALSE otherwise.

nodeSize : size of the node in pixels

nodeRoundedCornerPixels : apply rounded corners on rectangle like shapes
displayNodeLabels : boolean, display node names besides them
nodeBorderColor : RGB hex color

leadingNodeBorderColor : RGB hex color

nonelLeadingNodeOpacity : float [0,1], 1 means fully opaque
nodeLabelsColor : RGB hex color, example "#444444"

nodeLabelsFont : example "6px sans-serif"

dragNodeBorderColor : the node border color to apply on dragging

selectNodeBorderColor : the node border color to apply on left-click, "#ff0000"

getDefaultOptions

displayBarPlotsInsideNodes : boolean, display barplots inside nodes
barplotInNodeTooltips : boolean, display barplots inside node’s tooltips

barplotInsideNodeBorderColor : the barplot borders color, example *#000000°
barplotInsideNodeBorderWidth : the barplot borders width in pixels, example *2px’

nodeTooltipOpacity : float [0,1], 1 means fully opaque (for link tooltips as well)
displayBarplotTooltips : boolean, (dis/en)able tooltips for each barplot’s bar
nodeTooltipActivationDelay : milliseconds (for link tooltips as well)
nodeTooltipDeactivationDelay : milliseconds (for link tooltips as well)
barplotInNodeTooltipsFontSize : pixels

enableNodeDragging : boolean, allow/deny node dragging
jsFunctionToCallOnNodeClick : name of the javascript function to call on node click
example:

To call the following function

var myfunction = function(nodeObj) alert(nodeObj.name); ;

you should set jsFunctionToCallOnNodeClick="myfunction’

displayColorScale : show a color scale in the toolbar

scaleGradient : define the linear color gradient

Linear gradient format is "<angle>-<colour>[-<colour>[:<offset>]]*-<colour>"
examples: "90-#fff-#000" => 90 degree gradient from white to black
"O-#ftf-#£00:20-#000" -> 0 degree gradient from white via red (at 20%) to black.
scaleLabelsFontFamily : example "monospace"

scaleLabelsFontSize : in pixels

scaleHeight : in pixels

scaleTickSize : in pixels

scaleTicksPercents : to draw a tick every 20%: "[20,40,60,80,100]"

exportCGI : boolean, enable a CGI convertion in the export function, permit only the SVG ex-
port otherwise

getDefaultToolParameters 7

Author(s)

Sylvain Gubian <DL . RSupport@pmi. com>

Examples

v <-c(0, 0, 1, 1, 0
0, 0, 0, 0, @
-1, 0, 0, 1, @
a <- matrix(v, 3, 5)
colnames(a) <- LETTERS[1:5]
rownames(a) <- LETTERS[1:3]

’

)

’

opts <- getDefaultOptions()
opts$nodelLabelsFont <- '16px sans-serif'

g <- graph2js(A=a, opts=opts)

getDefaultToolParameters
Function wich generates a list containing parameters for Tools in the
D3js component with default values

Description
Function wich generates a list containing parameters for Tools in the D3js component with default
values

Usage

getDefaultToolParameters()

Value

list of parameters with default values

Author(s)

Sylvain Gubian <DL .RSupport@pmi.com>

8 getEdgesDataFrame

getEdgesDataFrame Create Edges data. frame from Adjacency matrix and properties

Description

Create Edges data. frame from Adjacency matrix and properties

Usage

getEdgesDataFrame(A, eGlobal = NULL, eProp = NULL)

Arguments

A signed weighted adjacency matrix

eGlobal A list of properties for assigning all edges. Default value is NULL

eProp A data. frame for assigning some nodes properties Default value is NULL
Value

A data.frame

Author(s)

Sylvain Gubian <DL .RSupport@pmi.com>

Examples
v <-c(0, 0, 1, 1, 0,
o? o? e? e? 0’
_1! 0! 0) 1) 0)

a <- matrix(v, 3, 5)

colnames(a) <- LETTERS[1:5]

rownames(a) <- LETTERS[1:3]

eGlobal <- list(color="#5555ff")

eProp <- data.frame(from=c('A','C"'), to=c('B', 'A'), width=c(2,2))
getEdgesDataFrame(A=a, eGlobal=eGlobal, eProp=eProp)

getHTML ContainerCode

getHTMLContainerCode Generate a HTML table node code for component based on template

Description

Generate a HTML table node code for component based on template

Usage

getHTMLContainerCode(id, toolParam)

Arguments

id String for component identification

toolParam list containing options for tools options of the GraphRender component
Value

String which is the HTML code generated

Author(s)

Sylvain Gubian <DL .RSupport@pmi.com>

getHTMLStyleCode Generate a HTML style code for component based on template

Description

Generate a HTML style code for component based on template

Usage

getHTMLStyleCode(id)
Arguments

id String for component identification
Value

String which is the HTML style code generated

Author(s)

Sylvain Gubian <DL . RSupport@pmi. com>

10 getNodesDataFrame

getJSCode Generate javascript code based on general options and network data

Description

Generate javascript code based on general options and network data

Usage

getJSCode(dataJson, id, opts, toolParam)

Arguments
dataJson list containing network data for nodes and links
id String for component identification
opts list containing general options for GraphRender component
toolParam list containing urls to jquery, jquery-ui, d3js, GraphRender JS library, options
for the GraphRender tool
Value

String corresponding to JS code

Author(s)
Sylvain Gubian <DL .RSupport@pmi.com>

getNodesDataFrame Create Nodes data.frame from Adjacency matrix and properties for
specific nodes

Description

Create Nodes data.frame from Adjacency matrix and properties for specific nodes

Usage
getNodesDataFrame(A, nGlobal = NULL, nProp = NULL)

Arguments
A signed weighted adjacency matrix
nGlobal A list of properties for assigning all nodes. Default value is NULL

nProp A data. frame for assigning some nodes properties Default value is NULL

getUUID

Value

A data.frame

Author(s)

Sylvain Gubian <DL . RSupport@pmi.com>

Examples

v<-c(0, 0, 1,1, 0
0, 0, 0, 0,
-1, 0, 0, 1, 0

a <- matrix(v, 3, 5)

colnames(a) <- LETTERS[1:5]

rownames(a) <- LETTERS[1:3]

nGlobal <- list(color="#dedeff")

nProp <- data.frame(shape=c('triangle', 'lozenge'))

rownames(nProp) <- c('C', 'E")

getNodesDataFrame (A=a, nGlobal=nGlobal, nProp=nProp)

’

)

’

11

getUUID Function wich generates a UUID version 4

Description

Function wich generates a UUID version 4

Usage

getUUID(seed = NULL)

Arguments

seed Integer for seeding the R random generator

Value

String corresponding to the UUID generated.

12 graph2js

graph2js Generate the JSON code using D3js that draws A network from Adja-
cency matrix and edges, nodes properties.

Description

Generate the JSON code using D3js that draws A network from Adjacency matrix and edges, nodes

properties.
Usage
graph2js(A, innerValues = NULL, innerColors = NULL, innerTexts = NULL,
starplotValues = NULL, starplotColors = NULL, starplotLabels = NULL,

starplotTooltips = NULL, starplotUrlLinks = NULL,
starplotSectorStartedRad = NULL, starplotCircleFillColor = NULL,
starplotCircleFillOpacity = NULL, nodesGlobal = NULL, nodesProp = NULL,
edgesGlobal = NULL, edgesProp = NULL, outputDir = NULL,

filename = NULL, opts = list(), userCssStyles = NULL,

toolsPar = list(), id = getUUID())

Arguments

A signed weighted adjacency matrix or an instance of the class graphAM, graphBAM,
graphNEL or clusterGraph from the graph package

innerValues A matrix of inner node values to display Barplot or other component. In a row,
numerical values for a node.

innerColors A matrix of colors for coloring the inner node barplot or component . In a row,
colors values for a node.

innerTexts A matrix of labels for each bar in inner barplots. In a row, labels values for a

node.
starplotValues A matrix of [0,1] values for starpot sectors size
starplotColors A matrix of hex RGB colors for sectors colors

starplotLabels A matrix of labels identifying the sectors
starplotTooltips

A matrix of text or even html content for the sectors tooltips
starplotUrlLinks

A matrix of text for the sectors url links
starplotSectorStartedRad

A matrix with a single column of [0,2PI] values for the sector start in radians
starplotCircleFillColor

A matrix of hex RGB colors for the circle background
starplotCircleFillOpacity

A matrix of [0.0,1.0] values for the background opacity

nodesGlobal A list of global nodes properties.

graph2js 13

nodesProp A data. frame object containing properties for specifics nodes width, shape (in
‘rect’, ’circle’, 'lozenge’, ’triangle’), link, tooltip, highlight.X (X from 0 to N
for animation) columns

edgesGlobal A list of global edges properties.

edgesProp A data.frame object containing properties for specific edges from, to, width,
type, link, color columns

outputDir String that corresponds to the path to a folder or file where js code and depen-
dencies will be generated. If NULL is provided, javascript code is returned in the
returned 1ist by the function with the slots:

"jsIncludes’ A character string containing JS code for including the necessary
JS files

’styling” A character string which contains the CSS code for the GraphRenderer
component

’js” A character string containing the JavaScript code for the rendering of the
data

’html” A character string containing the HTML code for the rendering of the
component

filename String the name of the result HTML file, a name will be automatically generated
if not provided and by default.

opts list of options of the GraphRenderer component (See getDefaultOptions
function available options)

userCssStyles String containing user css styles. (See starplot demo)

toolsPar list of options for tools attached to GraphRenderer component. (See getDefaultToolParameters
for details)

id function, Unique IDs generator, Internal function getUUID by default.

Value

A list containing information of the generated js code.

Examples

v <-c(0, 0, 1,1, 0
0, 0, 0, 0, @
-1, 0, 0, 1, @
a <- matrix(v, 3, 5)
colnames(a) <- LETTERS[1:5]
rownames(a) <- LETTERS[1:3]
g <- graph2js(a)

’

)

’

14 graph2json

graph2json Generates JSON string correponding the the graph description

Description

Generates JSON string correponding the the graph description

Usage

graph2json(ndf, edf, innerValues = NULL, innerColors = NULL,
innerTexts = NULL, starplotColors = NULL, starplotValues = NULL,
starplotLabels = NULL, starplotTooltips = NULL, starplotUrlLinks = NULL,
starplotSectorStartRad = NULL, starplotCircleFillColor = NULL,
starplotCircleFillOpacity = NULL)

Arguments
ndf A data. frame correponding to nodes definition
edf A data. frame correponding to edges definition
innervalues A matrix of numerical values for plotting in the node
innerColors A matrix of string colors values for plotting in the node
innerTexts A matrix of strings for plotting in the node

starplotColors A matrix of hex RGB colors for sectors colors
starplotValues A matrix of [0,1] values for starpot sectors size

starplotlLabels A matrix of labels identifying the sectors

starplotTooltips
A matrix of text or even html content for the sectors tooltips

starplotUrlLinks
A matrix of text for the sectors url links
starplotSectorStartRad
A matrix with a single column of [0,2PI] values for the sector start in radians

starplotCircleFillColor
A matrix of hex RGB colors for the circle background

starplotCircleFillOpacity
A matrix of [0.0,1.0] values for the circle background opacity

Value

A JSON string with formatting

Author(s)

Sylvain Gubian <DL . RSupport@pmi. com>

graph2json

Examples
v <-c(o, o0, 1, 1, 0,
0 ’ O ’ 0 ’ 0 ’ 0 ’
-1, 0,0, 1, 0

a <- matrix(v, 3, 5)
colnames(a) <- LETTERS[1:5]
rownames(a) <- LETTERS[1:3]

nGlobal <- list(color="#dedeff")

nProp <- data.frame(shape=c('triangle', 'lozenge'))
rownames(nProp) <- c('C', 'E')

ndf <-getNodesDataFrame(A=a, nGlobal=nGlobal, nProp=nProp)

eGlobal <- list(color="#5555ff")
eProp <- data.frame(from=c('A','C'), to=c('B', 'A'), width=c(2,2))
edf <- getEdgesDataFrame(A=a, eGlobal=eGlobal, eProp=eProp)

graph2json(ndf=ndf, edf=edf)

15

Index

generateOptionsJSCode, 2
getAdjMat, 3
getDefaultOptions, 3
getDefaultToolParameters, 7
getEdgesDataFrame, 8
getHTMLContainerCode, 9
getHTMLStyleCode, 9
getJSCode, 10
getNodesDataFrame, 10
getUUID, 11

graph2js, 12
graph2json, 14

16

	generateOptionsJSCode
	getAdjMat
	getDefaultOptions
	getDefaultToolParameters
	getEdgesDataFrame
	getHTMLContainerCode
	getHTMLStyleCode
	getJSCode
	getNodesDataFrame
	getUUID
	graph2js
	graph2json
	Index

