Package ‘RCAS’

February 2, 2026

Type Package

Title RNA Centric Annotation System
Version 1.37.0

Date 2024-03-19

Description RCAS is an R/Bioconductor package designed as a generic reporting tool for the
functional analysis of transcriptome-wide regions of interest detected by
high-throughput experiments. Such transcriptomic regions could be, for instance,
signal peaks detected by CLIP-Seq analysis for protein-RNA interaction sites,
RNA modification sites (alias the epitranscriptome), CAGE-tag locations, or any
other collection of query regions at the level of the transcriptome. RCAS
produces in-depth annotation summaries and coverage profiles based on the
distribution of the query regions with respect to transcript features (exons,
introns, 5'/3' UTR regions, exon-intron boundaries, promoter regions). Moreover,
RCAS can carry out functional enrichment analyses and discriminative motif
discovery.

License Artistic-2.0
LazyData TRUE
Depends R (>= 3.3.0), plotly (>=4.5.2), DT (>= 0.2), data.table,

Imports GenomicRanges, IRanges, BSgenome, BSgenome.Hsapiens.UCSC.hg19,
GenomelnfoDb (>= 1.12.0), Biostrings, rtracklayer,
GenomicFeatures, txdbmaker, rmarkdown (>= 0.9.5), genomation
(>=1.5.5), knitr (>= 1.12.3), BiocGenerics, S4Vectors,
plotrix, pbapply, RSQLite, proxy, pheatmap, ggplot2, cowplot,
seqLogo, utils, ranger, gprofiler2

RoxygenNote 7.3.1

Suggests testthat, covr, BiocManager
SystemRequirements pandoc (>=1.12.3)
VignetteBuilder knitr

biocViews Software, GeneTarget, MotifAnnotation, MotifDiscovery, GO,
Transcriptomics, GenomeAnnotation, GeneSetEnrichment, Coverage

git_url https://git.bioconductor.org/packages/RCAS
git_branch devel

2 Contents

git_last_commit 1a77884
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Bora Uyar [aut, cre],
Dilmurat Yusuf [aut],
Ricardo Wurmus [aut],
Altuna Akalin [aut]

Maintainer Bora Uyar <bora.uyar@mdc-berlin.de>

Contents
calculateCoverageProfile L 3
calculateCoverageProfileFromTxdb 4
calculateCoverageProfileList 4
calculateCoverageProfileListFromTxdb 5
checkSeqDb L 6
createControlRegions L e 6
createDB 7
createOrthologousGeneSetList L 8
deleteSampleDataFromDB L 9
discoverFeatureSpecificMotifs L oo 9
EXIraCtSEqUENCES . . « . v v v v v e e e e e e e e e e e e e e e e e 10
findDifferentialMotifs L 11
findEnrichedFunctions L 12
generateKmers L L 13
getFeatureBoundaryCoverage 13
getFeatureBoundaryCoverageBin L oo 14
getFeatureBoundaryCoverageMultio oL 15
getlntervalOverlapMatrix 16
getMotifSummaryTableo 17
getPWM . . e 18
getTargetedGenesTable e 18
getTxdbFeatures 19
getTxdbFeaturesFromGRanges o L. 19
g 20
importBed 21
importBedFiles 21
ImportGtf e e e e 22
parseMsigdb 23
plotFeatureBoundaryCoverage 24
printMsigdbDataset e 25
queryGff L 25
queryRegions 26
retrieveOrthologs e 26

runGSEA . . . L L 26

calculateCoverageProfile 3

runMotifDiscovery L e e e 27
runMotifRGo 28
runReport e 28
runReportMetaAnalysis 30
runTopGO L e e 31
summarizeDatabaseContent o 32
summarizeQueryRegions Lo 32
summarizeQueryRegionsMultio 0oL oo 33
Index 34

calculateCoverageProfile
calculateCoverageProfile

Description

This function checks overlaps between input query regions and annotation features, and then calcu-
lates coverage profile along target regions.

Usage

calculateCoverageProfile(
queryRegions,
targetRegions,
sampleN = 0,
bin.num = 100,
bin.op = "mean",
strand.aware = TRUE

Arguments

queryRegions GRanges object imported from a BED file using importBed function

targetRegions GRanges object containing genomic coordinates of a target feature (e.g. exons)

sampleN If set to a positive integer, targetRegions will be downsampled to sampleN
regions
bin.num Positive integer value (default: 100) to determine how many bins the targetRe-

gions should be split into (See genomation::ScoreMatrixBin)

bin.op The operation to apply for each bin: min’, 'max’, or 'mean’ (default: mean).
(See genomation::ScoreMatrixBin)

strand.aware TRUE/FALSE (default: TRUE) The strands of target regions are considered.

Value

A ScoreMatrix object returned by genomation::ScoreMatrixBin function. Target regions are
divided into 100 equal sized bins and coverage level is calculated in a strand-specific manner.

4 calculateCoverageProfileList

Examples

data(gff)
data(queryRegions)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
df <- calculateCoverageProfile(queryRegions = queryRegions,
targetRegions = txdbFeatures$exons,
sampleN = 1000)

calculateCoverageProfileFromTxdb
calculateCoverageProfileFromTxdb

Description

This function is deprecated. Use ?calculateCoverageProfile instead.

Usage

calculateCoverageProfileFromTxdb()

calculateCoverageProfilelList
calculateCoverageProfileList

Description

This function checks overlaps between input query regions and a target list of annotation features,
and then calculates the coverage profile along the target regions.

Usage

calculateCoverageProfilelList(
queryRegions,
targetRegionslList,
sampleN = 0,
bin.num = 100,
bin.op = "mean”,
strand.aware = TRUE

calculateCoverageProfileListFromTxdb 5

Arguments

queryRegions GRanges object imported from a BED file using importBed function

targetRegionsList
A list of GRanges objects containing genomic coordinates of target features (e.g.
transcripts, exons, introns)

sampleN If set to a positive integer, targetRegions will be downsampled to sampleN
regions
bin.num Positive integer value (default: 100) to determine how many bins the targetRe-

gions should be split into (See genomation::ScoreMatrixBin)

bin.op The operation to apply for each bin: *min’, 'max’, or “'mean’ (default: mean).
(See genomation::ScoreMatrixBin)

strand.aware = TRUE/FALSE (default: TRUE) The strands of target regions are considered.

Value

A data.frame consisting of four columns: 1. bins level 2. meanCoverage 3. standardError 4. feature
Target regions are divided into 100 equal sized bins and coverage level is summarized in a strand-
specific manner using the genomation: :ScoreMatrixBin function. For each bin, mean coverage
score and the standard error of the mean coverage score is calculated (plotrix::std.error)

Examples

data(gff)
data(queryRegions)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
dfList <- calculateCoverageProfilelList(queryRegions = queryRegions,
targetRegionsList = txdbFeatures,
sampleN = 1000)

calculateCoverageProfilelListFromTxdb
calculateCoverageProfileListFromTxdb

Description

This function is deprecated. Use ?calculateCoverageProfileList instead.

Usage

calculateCoverageProfileListFromTxdb()

6 createControlRegions

checkSeqDb checkSeqDb

Description
Given a string that denotes a genome version (e.g. hg19) returns the BSgenome object matching the
genome version that are available in BSgenome::available.genomes()

Usage

checkSeqDb(genomeVersion)

Arguments
genomeVersion String that denotes genome version. To unambigously select a BSgenome ob-
ject, provide a string that matches the end of the available genomes at: BSgenome::available.genomes().
Value

Returns a BSgenome object that uniquely matches the genome Version.

Examples

checkSegDb('hg19')

createControlRegions createControlRegions

Description
Given a GRanges object of query regions, create a background set of peaks that have the same
length distribution based on the flanking regions of the peaks.

Usage

createControlRegions(queryRegions)

Arguments
queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function.
Value

GRanges object that contains the same number of regions as query regions

createDB

Examples

data(queryRegions)

controlRegions <-

createControlRegions(queryRegions = queryRegions)

createDB

createDB

Description

Creates an sqlite database consisting of various tables of data obtained from processed BED files

Usage

createDB(
dbPath = file
projDataFile,
gtfFilePath =

.path(getwd(), "rcasDB.sqlite"),

nn
’

update = FALSE,

genomeVersion

’

annotationSummary = TRUE,
coverageProfiles = TRUE,

motifAnalysis = TRUE,
nodeN = 1
)
Arguments

dbPath Path to the sqlite database file (could be an existing file or a new file path to be
created at the given path)

projDataFile A file consisting of meta-data about the input samples. Must minimally consist
of two columns: 1. sampleName (name of the sample) 2. bedFilePath (full path
to the location of the BED file containing data for the sample)

gtfFilePath Path to the GTF file (preferably downloaded from the Ensembl database) that
contains genome annotations

update TRUE/FALSE (default: FALSE) whether an existing database should be up-
dated

genomeVersion A character string to denote for which genome version the analysis is being
done. Available options are hg19/hg38 (human), mm9/mm10 (mouse), celQ
(worm) and dm3 (ly).

annotationSummary
TRUE/FALSE (default: TRUE) whether annotation summary module should be
run

coverageProfiles
TRUE/FALSE (default: TRUE) whether coverage profiles module should be run

motifAnalysis TRUE/FALSE (default: TRUE) whether motif discovery module should be run

nodeN Number of cpus to use for parallel processing (default: 1)

8 createOrthologousGeneSetList

Value

Path to an SQLiteConnection object created by RSQLite package

Examples

FUS_path <- system.file("extdata”, "FUS_Nakaya2013c_hg19.bed",
package="RCAS"')

FMR1_path <- system.file("extdata”,
"FMR1_Ascano2012a_hg19.bed"”, package='RCAS")

projData <- data.frame('sampleName' = c('FUS', 'FMR1'),
'bedFilePath' = c(FUS_path,FMR1_path), stringsAsFactors = FALSE)

write.table(projData, 'myProjDataFile.tsv', sep = '\t', quote =FALSE,
row.names = FALSE)

gtfFilePath <- system.file("extdata",
"hg19.sample.gtf", package='RCAS')

createDB(dbPath = 'hg19.RCASDB.sqlite',

projDataFile = './myProjDataFile.tsv',
gtfFilePath = gtfFilePath,
genomeVersion = 'hgl9',

motifAnalysis = FALSE,
coverageProfiles = FALSE)

#Note: to add new data to an existing database, set update = TRUE

createOrthologousGeneSetList
createOrthologousMsigdbDataset This function is deprecated. For
functional enrichment analysis, use findEnrichedFunctions.

Description

createOrthologousMsigdbDataset This function is deprecated. For functional enrichment analysis,
use findEnrichedFunctions.

Usage

createOrthologousGeneSetList ()

deleteSampleDataFromDB 9

deleteSampleDataFromDB
deleteSampleDataFromDB

Description

Given a list of sample names, the function deletes all datasets calculated for the given samples from
the database.

Usage

deleteSampleDataFromDB(dbPath, sampleNames)

Arguments
dbPath Path to the sqlite database
sampleNames The names of the samples for which all relevant datasets should be deleted from
the database. Tip: Use RSQLite::dbReadTable function to read the table *pro-
cessedSamples’ to see which samples are available in the database.
Value

SQLiteConnection object with updated contents in the dbPath

discoverFeatureSpecificMotifs
discoverFeatureSpecificMotifs

Description

This function groups query regions based on their overlap with different transcript features and
generates a table of top enriched motif and matching patterns for each given transcript feature type
along with some other motif discovery related statistics.

Usage

discoverFeatureSpecificMotifs(queryRegions, txdbFeatures, ...)

10

Arguments

queryRegions

txdbFeatures

Value

extractSequences

GRanges object containing coordinates of input query regions imported by the
importBed function

A list of GRanges objects where each GRanges object corresponds to the ge-
nomic coordinates of gene features such as promoters, introns, exons, 5°/3’
UTRs and whole transcripts. This list of GRanges objects are obtained by the
function getTxdbFeaturesFromGRanges or getTxdbFeatures.

Other arguments passed to runMotifRG function. Important arguments are ’genome V-
ersion” and motifN. If motifN is bigger than 1, then multiple motifs will be found
but only the top motif will be plotted.

A data.frame object

Examples

Not run:
data(gff)

data(queryRegions)

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
discoverFeatureSpecificMotifs(queryRegions = queryRegions,
genomeVersion = 'hgl19', txdbFeatures = txdbFeatures,
motifN = 1, nCores = 1)

End(Not run)

extractSequences extractSequences

Description

Given a GRanges object and a genome version (hgl19, mm9, cel0 or dm3), this function extracts
the DNA sequences for all genomic regions found in an input object.

Usage

extractSequences(queryRegions, genomeVersion)

Arguments

queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function

genomeVersion A character string to denote the BS genome library required to extract sequences.
Auvailable options are hgl19, mm9, ce10 and dm3.

findDifferentialMotifs 11

Value

DNAStringSet object will be returned

Examples
data(queryRegions)
sequences <- extractSequences(queryRegions = queryRegions,

genomeVersion = 'hgl9')

findDifferentialMotifs
Find Differential Motifs

Description

Find Differential Motifs

Usage

findDifferentialMotifs(
querySeqs,
controlSeqgs,
motifWidth = 6,
motifN = 1,
nCores = 1,
maxMismatch = 1

Arguments

querySeqs A DNAStringSet object that is the regions of interest.
controlSeqgs A DNAStrintSet object that serve as the control

motifWidth A Positive integer (default: 6) for the generated k-mers. Warning: we recom-
mend using values below 10 as the computation gets exponentially difficult as
the motif width is increased.

motifN A positive integer (default:1) denoting the maximum number of motifs that
should be returned by the findDifferentialMotif's function

nCores A positive integer (default:1) number of cores used for parallel execution.

maxMismatch A positive integer (default: 1) - maximum number of mismatches to allow when
searching for k-mer matches in sequences.

12 findEnrichedFunctions

Examples

data(queryRegions)

get query and control sequences

querySeqgs <- extractSequences(queryRegions[1:500], 'hgl9')
controlRegions <- createControlRegions(queryRegions[1:500])
controlSeqs <- extractSequences(controlRegions, 'hgl9')

#run motif discovery

motifResults <- findDifferentialMotifs(querySeqs = querySegs,
controlSeqs = controlSegs,
motifWidth = 5,
motifN = 1,
maxMismatch = 0,
nCores = 1)

#summarize motif results

getMotifSummaryTable(motifResults)

findEnrichedFunctions findEnrichedFunctions

Description

Find enriched functional terms among the genes that overlap the regions of interest.

Usage
findEnrichedFunctions(targetGenes, species, ...)
Arguments
targetGenes Vector of Ensembl gene ids or gene names
species First letter of genus + species name: e.g. hsapiens
Other arguments to be passed to gprofiler2::gost
Details

This function is basically a call to gprofiler2::gost function. It is here to serve as a replacement for
other deprecated functional enrichment functions.

Examples
data(gff)
data(queryRegions)

overlaps <- queryGff(queryRegions, gff)
res <- findEnrichedFunctions(unique(overlaps$gene_id), 'hsapiens')

generateKmers 13

generateKmers Generate K-mers

Description

Given a list of characters, generates all possible fixed length strings

Usage

generateKmers(k, letters = c("A", "C", "G", "T"))

Arguments
k The length of the strings to be generated
letters A character vector

Value

Vector of strings

Examples

generateKmers(3, c('A', 'C', 'G"))

getFeatureBoundaryCoverage
getFeatureBoundaryCoverage

Description

This function extracts the flanking regions of 5’ and 3 boundaries of a given set of genomic features
and computes the per-base coverage of query regions across these boundaries.

Usage

getFeatureBoundaryCoverage(
queryRegions,
featureCoords,
flankSize = 500,
boundaryType,
sampleN = 0

14 getFeatureBoundaryCoverageBin

Arguments

queryRegions GRanges object imported from a BED file using importBed function
featureCoords GRanges object containing the target feature coordinates

flankSize Positive integer that determines the number of base pairs to extract around a
given genomic feature boundary

boundaryType (Options: fiveprime or threeprime). Denotes which side of the feature’s bound-
ary is to be profiled.

sampleN A positive integer value less than the total number of featuer coordinates that
determines whether the target feature coordinates should be randomly down-
sampled. If set to 0, no downsampling will happen. If

Value

a data frame containin three columns. 1. fivePrime: Coverage at 5’ end of features 2. threePrime:
Coverage at 3’ end of features; 3. bases: distance (in bp) to the boundary

Examples

data(queryRegions)

data(gff)

txdb <- txdbmaker: :makeTxDbFromGRanges(gff)

transcriptCoords <- GenomicFeatures::transcripts(txdb)

transcriptEndCoverage <- getFeatureBoundaryCoverage (
queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
boundaryType = 'threeprime',
sampleN = 1000)

getFeatureBoundaryCoverageBin
getFeatureBoundaryCoverageBin

Description

This function extracts the flanking regions of 5” and 3’ boundaries of a given set of genomic features,
splits them into 100 equally sized bins and computes the per-bin coverage of query regions across
these boundaries.

Usage

getFeatureBoundaryCoverageBin(
queryRegions,
featureCoords,
flankSize = 50,
sampleN = 0

)

getFeatureBoundaryCoverageMulti 15

Arguments

queryRegions GRanges object imported from a BED file using importBed function
featureCoords GRanges object containing the target feature coordinates

flankSize Positive integer that determines the number of base pairs to extract around a
given genomic feature boundary

sampleN A positive integer value less than the total number of featuer coordinates that
determines whether the target feature coordinates should be randomly down-
sampled. If set to 0, no downsampling will happen. If

Value

a data frame containin three columns. 1. fivePrime: Coverage at 5’ end of features 2. threePrime:
Coverage at 3’ end of features; 3. bases: distance (in bp) to the boundary

Examples

data(queryRegions)

data(gff)

txdb <- txdbmaker: :makeTxDbFromGRanges(gff)

transcriptCoords <- GenomicFeatures::transcripts(txdb)

transcriptEndCoverageBin <- getFeatureBoundaryCoverageBin (
queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
sampleN = 1000)

getFeatureBoundaryCoverageMulti
getFeatureBoundaryCoverageMulti

Description

This function is a wrapper function to run RCAS::getFeatureBoundaryCoverage multiple times,
which is useful to get coverage signals across different kinds of transcript features for a given list
of bed files imported as a GRangesList object.

Usage

getFeatureBoundaryCoverageMulti(bedData, txdbFeatures, sampleN = 10000)

Arguments

bedData GRangesList object imported from multiple BED files using importBedFiles
function

txdbFeatures List of GRanges objects - outputs of getTxdbFeaturesFromGRanges and getTxdbFeatures
functions

16 getIntervalOverlapMatrix

sampleN (default=10000) Positive integer value that is used to randomly down-sample
the target feature coordinates to improve the runtime. Set to O to avoid down-
sampling.
Value

A data.frame object with coverage data at three prime and five prime boundaries of a list of transcript
features

Examples

data(gff)

data(queryRegions)

queryRegionsList <- GenomicRanges: :GRangesList(queryRegions, queryRegions)
names(queryRegionsList) <- c('ql', 'g2')

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)
getFeatureBoundaryCoverageMulti(queryRegionsList, txdbFeatures, sampleN = 500)

getIntervalOverlapMatrix
getintervalOverlapMatrix

Description

This function is used to obtain a binary matrix of overlaps between a list of GRanges objects
(GRangesList object) and a target GRanges object. The resulting matrix has N rows where N is the
number of intervals in the target GRanges object and M columns where M is the number GRanges
objects in the query GRangesList object.

Usage

getIntervalOverlapMatrix(
queryRegionsList,
targetRegions,
targetRegionNames = NULL,
nodeN = 1

Arguments
queryRegionsList
A GRangesList object
targetRegions A GRanges object
targetRegionNames
Optional vector of names to be used as rownames in the resulting matrix. The
vector indices must correspond to the intervals in targetRegions object.

nodeN Positive integer value to use one or more cpus for parallel computation (default:

Y

getMotitSummaryTable 17

Value

A binary matrix object consisting of number of rows equal to the number of intervals in targe-
tRegions object, and number of columns equal to the number of GRanges objects available in the
queryRegionsList object.

Examples

data(gff)

inputl <- system.file("extdata”, "testfile.bed”, package='RCAS')
input2 <- system.file("extdata”, "testfile2.bed"”, package='RCAS')
bedData <- RCAS::importBedFiles(filePaths = c(inputl, input2))

M <- RCAS::getIntervalOverlapMatrix(

queryRegionsList = bedData,

targetRegions = gff[gff$type == 'gene',][1:100],
targetRegionNames = gff[gff$type == 'gene',]1[1:100]$gene_name)

getMotifSummaryTable getMotifSummaryTable

Description

Get summary stats for top discovered motifs

Usage

getMotifSummaryTable(motifResults)

Arguments

motifResults Output object of runMotifDiscovery function

Value

A data.frame object containing summary statistics about the discovered motifs

Examples
data(queryRegions)
motifResults <- runMotifDiscovery(queryRegions = queryRegions[1:1000],
genomeVersion = 'hgl9"',
resize = 15,
motifN = 1,

maxMismatch = 1,
nCores = 2)
motifSummary <- getMotifSummaryTable(motifResults)

18 getTargetedGenesTable

getPWM getPWM

Description

Given a vector of strings of equal width, generate a position-specific weight matrix based on the
frequency of occurrence of the unique letters found in the sequences.

Usage
getPWM(sequences, letters = c("A", "C", "G", "T"))

Arguments

sequences vector of strings of equal widths.

letters vector of characters to consider as the an alphabet
Value

A matrix of position-specific-weights.

Examples

sequences = c("GGAGAG", "GAAGAA", "TGAGAA", "GGAGAA", "GAAGAA")
getPWM(sequences)

getTargetedGenesTable getTargetedGenesTable

Description

This function provides a list of genes which are targeted by query regions and their correspond-
ing numbers from an input BED file. Then, the hits are categorized by the gene features such as
promoters, introns, exons, 5°/3’ UTRs and whole transcripts.

Usage

getTargetedGenesTable(queryRegions, txdbFeatures)

Arguments

queryRegions GRanges object containing coordinates of input query regions imported by the
importBed function

txdbFeatures A list of GRanges objects where each GRanges object corresponds to the ge-
nomic coordinates of gene features such as promoters, introns, exons, 5°/3’
UTRs and whole transcripts. This list of GRanges objects are obtained by the
function getTxdbFeaturesFromGRanges or getTxdbFeatures.

getTxdbFeatures 19

Value

A data.frame object where rows correspond to genes and columns correspond to gene features

Examples

data(gff)

data(queryRegions)

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

featuresTable <- getTargetedGenesTable(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

#or

Not run:

txdb <- txdbmaker::makeTxDbFromGRanges(gff)

txdbFeatures <- getTxdbFeatures(txdb)

featuresTable <- getTargetedGenesTable(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

End(Not run)

getTxdbFeatures getTxdbFeatures

Description

This function is deprecated. Use getTxdbFeaturesFromGRanges instead.

Usage

getTxdbFeatures()

getTxdbFeaturesFromGRanges
getTxdbFeaturesFromGRanges

Description

This function takes as input a GRanges object that contains GTF file contents (e.g from the output
of importGtf function). Then extracts the coordinates of gene features such as promoters, introns,
exons, 5°/3° UTRs and whole transcripts.

Usage

getTxdbFeaturesFromGRanges(gffData)

20 gtf

Arguments

gffData A GRanges object imported by importGtf function

Value

A list of GRanges objects

Examples

data(gff)
txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

gff Sample GFF file imported as a GRanges object

Description

This dataset contains genomic annotation data from Ensembl version 75 for Homo sapiens down-
loaded from Ensembl. The GFF file is imported via the importGtf function and a subset of the data
is selected by choosing features found on "chrl’.

Usage

gff

Format

GRanges object with 238010 ranges and 16 metadata columns

Value

A GRanges object

Source

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.
gz

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz
ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz

importBed 21

importBed importBed

Description

This function uses rtracklayer: :import.bed() function to import BED files

Usage

importBed(filePath, sampleN = @, keepStandardChr = TRUE, debug = TRUE, ...)
Arguments

filePath Path to a BED file

sampleN A positive integer value. The number of intervals in the input BED file are

randomly downsampled to include intervals as many as sampleN. The input will
be downsampled only if this value is larger than zero and less than the total
number of input intervals.

keepStandardChr
TRUE/FALSE (default:TRUE). If set to TRUE, will convert the seqlevelsStyle
to "UCSC’ and apply keepStandardChromosomes function to only keep data
from the standard chromosomes

debug TRUE/FALSE (default: TRUE). Set to FALSE to turn off messages

Other arguments passed to rtracklayer::import.bed function

Value

A GRanges object containing the coordinates of the intervals from an input BED file

Examples

input <- system.file("extdata”, "testfile.bed”, package='RCAS'")
importBed(filePath = input, keepStandardChr = TRUE)

importBedFiles importBedFiles

Description
This function is a wrapper that uses RCAS: : importBed () function to import BED files as a GRanges-
List object

Usage

importBedFiles(filePaths, ...)

22 importGtf

Arguments
filePaths A vector of paths to one or more BED files
Other parameters passed to RCAS::importBed and rtracklayer::import.bed func-
tion
Value

A GRangesList object containing the coordinates of the intervals from multiple input BED files

Examples

inputl <- system.file("extdata”, "testfile.bed”, package='RCAS'")
input2 <- system.file("extdata"”, "testfile2.bed"”, package='RCAS')
bedData <- importBedFiles(filePaths = c(input1, input2),
keepStandardChr = TRUE)

when importing multiple bed files with different column names, it
is required to pass the common column names to be parsed from the

bed files
bedData <- importBedFiles(filePaths = c(inputl, input2),
colnames = c('chrom', 'start', 'end', 'strand'))
importGtf importGtf
Description

This function uses rtracklayer: :import.gff () function to import genome annoatation data from
an Ensembl gtf file

Usage

importGtf(
filePath,
saveObjectAsRds = TRUE,
readFromRds = TRUE,
overwriteObjectAsRds = FALSE,
keepStandardChr = TRUE,

Arguments

filePath Path to a GTF file

saveObjectAsRds
TRUE/FALSE (default:TRUE). If it is set to TRUE, a GRanges object will be
created and saved in RDS format (<filePath>.granges.rds) so that importing can
re-use this .rds file in next run.

parseMsigdb 23
readFromRds TRUE/FALSE (default:TRUE). If it is set to TRUE, annotation data will be im-
ported from previously generated .rds file (<filePath>.granges.rds).
overwriteObjectAsRds
TRUE/FALSE (default:FALSE). If it is set to TRUE, existing .rds file (<filePath>.granges.rds)
will overwritten.
keepStandardChr
TRUE/FALSE (default:TRUE). If it is set to TRUE, seqlevelsStyle will be
converted to "UCSC’ and keepStandardChromosomes function will be applied
to only keep data from the standard chromosomes.
Other arguments passed to rtracklayer::import.gff function
Value

A GRanges object containing the coordinates of the annotated genomic features in an input GTF file

Examples

#import the data
Not run:

and write it into a .rds file

importGtf(filePath="'./Ensembl75.hg19.gtf")

End(Not run)
#import the data
Not run:

but don't save it as RDS

importGtf(filePath="./Ensembl75.hg19.gtf', saveObjectAsRds = FALSE)

End(Not run)
#import the data
Not run:

and overwrite the previously generated

importGtf(filePath="./Ensembl75.hg19.gtf', overwriteObjectAsRds = TRUE)

End(Not run)

parseMsigdb

parseMsigdb

Description

This function is deprecated. For functional enrichment analysis, use findEnrichedFunctions.

Usage

parseMsigdb()

24 plotFeatureBoundaryCoverage

plotFeatureBoundaryCoverage
plotFeatureBoundaryCoverage

Description
This function is used to create interactive plots displaying 5’ and 3’ end coverage profiles of given
transcript features.

Usage

plotFeatureBoundaryCoverage(cvgF, cvgT, featureName)

Arguments
cvgF data.frame object containing ’fiveprime’ coverage data returned by getFeature-
BoundaryCoverage function
cvgT data.fram object containing ’threeprime’ coverage data returned by getFeature-
BoundaryCoverage function
featureName character object. This is used to label the axes (e.g. transcripts, exons)
Value

a plotly htmlwidget is returned

Examples

data(queryRegions)

data(gff)

txdb <- txdbmaker::makeTxDbFromGRanges(gff)

transcriptCoords <- GenomicFeatures::transcripts(txdb)

cvgF <- getFeatureBoundaryCoverage (queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
boundaryType = 'fiveprime',
sampleN = 1000)

cvgT <- getFeatureBoundaryCoverage (queryRegions = queryRegions,
featureCoords = transcriptCoords,
flankSize = 100,
boundaryType = 'threeprime',
sampleN = 1000)
p <- plotFeatureBoundaryCoverage(cvgF = cvgF,
cvgT = cvgT,
featureName = 'transcript')

printMsigdbDataset 25

printMsigdbDataset Print MSIGDB Dataset to a file

Description

This function is deprecated. For functional enrichment analysis, use findEnrichedFunctions.

Usage

printMsigdbDataset()

queryGff queryGff

Description

This function checks overlaps between the regions in input query and in reference. Input query
should be in BED format and reference should be in GFF format. Both data are imported as
GRanges object.

Usage

queryGff(queryRegions, gffData)

Arguments

queryRegions GRanges object imported from a BED file using importBed function

gffData GRanges object imported from a GTF file using importGtf function

Value

a GRanges object (a subset of input gff) with an additional column *overlappingQuery’ that contains
the coordinates of query regions that overlap the target annotation features

Examples

data(queryRegions)
data(gff)
overlaps <- queryGff(queryRegions = queryRegions, gffData = gff)

26 runGSEA

queryRegions Sample BED file imported as a GRanges object

Description

This dataset contains a randomly selected sample of human LIN28A protein binding sites detected
by HITS-CLIP analysis downloaded from DoRina database (LIN28A HITS-CLIP hESCs (Wilbert
2012)). The BED file is imported via the importBed function and a subset of the data is selected by
randomly choosing 10000 regions.

Usage

queryRegions

Format

GRanges object with 10000 ranges and 2 metadata columns

Value

A GRanges object

Source

http://dorina.mdc-berlin.de/regulators

retrieveOrthologs retrieveOrthologs

Description

This function is deprecated. For functional enrichment analysis, use findEnrichedFunctions.

Usage

retrieveOrthologs()

runGSEA runGSEA

Description

This function is deprecated. For functional enrichment analysis, use findEnrichedFunctions.

Usage
runGSEA()

http://dorina.mdc-berlin.de/regulators

runMotitDiscovery

27

runMotifDiscovery

runMotifDiscovery

Description

This function builds a random forest classifier to find the top most discriminative motifs in the query
regions compared to the background. The background sequences are automatically generated based

on the query region

s. First, k-mers of a fixed length are generated. The query and control sequences

are searched for k-mers allowing for mismatches. A random forest model is trained to find the most
discriminative motifs.

Usage

runMotifDiscovery(

queryRegions,
resizeN = 0,

motifWidth = 6,

sampleN = 0,

genomeVersion,

maxMismatch =
motifN = 5,
nCores = 1

Arguments

queryRegions

resizeN

motifWidth

sampleN

genomeVersion

maxMismatch

motifN

nCores

1,

GRanges object containing coordinates of input query regions imported by the
importBed function

Integer value (default: 0) to resize query regions if they are shorter than the value
of resize. Set to 0 to disable resize.

A Positive integer (default: 6) for the generated k-mers. Warning: we recom-
mend using values below 10 as the computation gets exponentially difficult as
the motif width is increased.

A positive integer value. The queryRegions are randomly downsampled to in-
clude intervals as many as sampleN. The input will be downsampled only if this
value is larger than zero and less than the total number of input intervals.

A character string to denote the BS genome library required to extract sequences.
Example: "hgl19’

A positive integer (default: 1) - maximum number of mismatches to allow when
searching for k-mer matches in sequences.

A positive integer (default:5) denoting the maximum number of motifs that
should be returned by the findDifferentialMotifs function

A positive integer (default:1) number of cores used for parallel execution.

28 runReport

Value

A list of four objects: k-mer count matrices for query and background and lists of string matches
for the top discriminating motifs (motifN).

Examples
data(queryRegions)
motifResults <- runMotifDiscovery(queryRegions = queryRegions[1:1000],
genomeVersion = 'hgl9',
motifWidth = 6,
resize = 15,
motifN = 1,
maxMismatch = 1,
nCores = 1)
runMotifRG run motifRG
Description
run motifRG
Usage
runMotifRG()
runReport Generate a RCAS Report for a list of transcriptome-level segments
Description

This is the main report generation function for RCAS. This function takes a BED file, a GTF file to
create a summary report regarding the annotation data that overlap the input BED file, enrichment
analysis for functional terms, and motif analysis.

Usage

runReport(
queryFilePath = "testdata”,
gffFilePath = "testdata”,
annotationSummary = TRUE,
goAnalysis = TRUE,
motifAnalysis = TRUE,
genomeVersion = "hg19",
outDir = getwd(),
printProcessedTables = FALSE,

runReport

sampleN = 0,

29

quiet = FALSE,
selfContained = TRUE

)
Arguments

queryFilePath a BED format file which contains genomic coordinates of protein-RNA binding
sites

gffFilePath A GTF format file which contains genome annotations (preferably from EN-
SEMBL)

annotationSummary
TRUE/FALSE (default: TRUE) A switch to decide if RCAS should provide
annotation summaries from overlap operations

goAnalysis TRUE/FALSE (default: TRUE) A switch to decide if RCAS should run GO
term enrichment analysis

motifAnalysis TRUE/FALSE (default: TRUE) A switch to decide if RCAS should run motif
analysis

genomeVersion A character string to denote for which genome version the analysis is being
done.

outDir Path to the output directory. (default: current working directory)

printProcessedTables
boolean value (default: FALSE). If set to TRUE, raw data tables that are used
for plots/tables will be printed to text files.

sampleN integer value (default: 0). A parameter to determine if the input query regions
should be downsampled to a smaller size in order to make report generation
quicker. When set to 0, downsampling won’t be done. To activate the sampling
a positive integer value that is smaller than the total number of query regions
should be given.

quiet boolean value (default: FALSE). If set to TRUE, progress bars and chunk labels
will be suppressed while knitting the Rmd file.

selfContained boolean value (default: TRUE). By default, the generated html file will be self-
contained, which means that all figures and tables will be embedded in a single
html file with no external dependencies (See rmarkdown::html_document)

Value

An html generated using rmarkdown/knitr/pandoc that contains interactive figures, tables, and text
that provide an overview of the experiment

Examples

#Default run will generate a report using built-in test data for hgl9 genome.

Not run:
runReport ()

End(Not run)

30 runReportMetaAnalysis

#A custom run for human

Not run:

runReport(queryFilePath = '"input.BED',
gffFilePath = 'annotation.gtf',
genomeVersion = 'hgl9')

End(Not run)

To turn off certain modules of the report

Not run:

runReport(queryFilePath = 'input.BED',
gffFilePath = 'annotation.gtf',
motifAnalysis = FALSE,
goAnalysis = FALSE)

End(Not run)

runReportMetaAnalysis runReportMetaAnalysis

Description

Generate a stand-alone HTML report with interactive figures and tables from a pre-calculated RCAS
database (using RCAS::createDB) to compare multiple samples.

Usage

runReportMetaAnalysis(
dbPath = "RCAS.sqlite”,
sampleTablePath,
outDir = getwd(),
outFile = NULL,
quiet = FALSE,
selfContained = TRUE

)
Arguments

dbPath Path to the sqlite database generated by RCAS::createDB

sampleTablePath
A tab-separated file with two columns (no rownames) header 1: sampleName,
header 2: sampleGroup

outDir Path to the output directory. (default: current working directory)

outFile Name of the output HTML report (by default, the base name of sampleTablePath
value is used to create a name for the HTML report)

quiet boolean value (default: FALSE). If set to TRUE, progress bars and chunk labels

will be suppressed while knitting the Rmd file.

runTopGO 31

selfContained boolean value (default: TRUE). By default, the generated html file will be self-
contained, which means that all figures and tables will be embedded in a single
html file with no external dependencies (See rmarkdown::html_document)

Value

An html generated using rmarkdown/knitr/pandoc that contains interactive figures, tables, and text
that provide an overview of the experiment

Examples

dbPath <- system.file("extdata”, "hgl19.RCASDB.sqlite",
package="RCAS")

#Hint: use RCAS::summarizeDatabaseContent to see which samples have processed
#data in the database.
summarizeDatabaseContent(dbPath = dbPath)

#Create a data table for samples and their groups sampleGroup field is used
#to group replicates of #the same sample into one group in visualizations.
#Any arbitrary name can be used for sampleGroup field. However, entries in
#the sampleName field must be available in the queried database
sampleData <- data.frame('sampleName' = c('FUS', 'FMR1'),

"sampleGroup' = c('FUS', 'FMR1'), stringsAsFactors = FALSE)
write.table(sampleData, 'sampleDataTable.tsv', sep = '\t',

quote =FALSE, row.names = FALSE)
#Use the generated database to run a report
runReportMetaAnalysis(dbPath = '"hg19.RCASDB.sqlite',

sampleTablePath = 'sampleDataTable.tsv')

runTopGO runTopGO

Description

This function is deprecated. Use findEnrichedFunctions instead.

Usage

runTopGO()

32 summarizeQueryRegions

summarizeDatabaseContent
summarizeDatabaseContent

Description

Given a path to an sqlite database created using RCAS::createDB function, accesses the database
and provides a quick summary of available samples and number of entries of each sample in the
available tables of the database.

Usage

summarizeDatabaseContent(dbPath)

Arguments

dbPath Path to the sqlite database

Value

A data.frame object

summarizeQueryRegions summarizeQueryRegions

Description

This function counts number of query regions that overlap with different types of gene features.

Usage

summarizeQueryRegions(queryRegions, txdbFeatures)

Arguments

queryRegions GRanges object imported from a BED file using importBed function

txdbFeatures List of GRanges objects - outputs of getTxdbFeaturesFromGRanges and getTxdbFeatures
functions

Value

A data frame with two columns where first column holds features and second column holds corre-
sponding counts

summarizeQueryRegionsMulti 33

Examples

data(gff)

data(queryRegions)

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

summary <- summarizeQueryRegions(queryRegions = queryRegions,
txdbFeatures = txdbFeatures)

summarizeQueryRegionsMulti
summarizeQueryRegionsMulti

Description

This function is a wrapper function to run RCAS::summarizeQueryRegions multiple times, which
is useful to get a matrix of overlap counts between a list of BED files with a txdbFeatures extracted
from GTF file

Usage

summarizeQueryRegionsMulti(queryRegionsList, txdbFeatures, nodeN = 1)

Arguments
queryRegionsList
GRangesList object imported from multiple BED files using importBedFiles
function

txdbFeatures List of GRanges objects - outputs of getTxdbFeaturesFromGRanges and getTxdbFeatures

functions

nodeN Positive integer value that denotes the number of cpus to use for parallel pro-
cessing (default: 1)

Value

A list consisting of two data.frame objects: one for raw overlap counts and one for percentage of
overlap counts (raw overlap counts divided by the number of query regions in the corresponding
BED file)

Examples

data(gff)

data(queryRegions)

queryRegionsList <- GenomicRanges: :GRangesList(queryRegions, queryRegions)

names(queryRegionsList) <- c('ql', 'g2')

txdbFeatures <- getTxdbFeaturesFromGRanges(gffData = gff)

summaryMatrix <- summarizeQueryRegionsMulti(queryRegionsList = queryRegionslList,
txdbFeatures = txdbFeatures)

Index

* datasets
gff, 20
queryRegions, 26

calculateCoverageProfile, 3

calculateCoverageProfileFromTxdb, 4

calculateCoverageProfilelist, 4

calculateCoverageProfileListFromTxdb
5

checkSeqDb, 6

createControlRegions, 6

createDB, 7

createOrthologousGeneSetlList, 8

deleteSampleDataFromDB, 9
discoverFeatureSpecificMotifs, 9

extractSequences, 10

findDifferentialMotifs, 11
findEnrichedFunctions, 12

generateKmers, 13
getFeatureBoundaryCoverage, 13
getFeatureBoundaryCoverageBin, 14
getFeatureBoundaryCoverageMulti, 15
getIntervalOverlapMatrix, 16
getMotifSummaryTable, 17

getPWM, 18

getTargetedGenesTable, 18
getTxdbFeatures, 10, 18, 19
getTxdbFeaturesFromGRanges, 10, 18, 19
gff, 20

importBed, 6, 10, 18, 21, 27
importBedFiles, 21
importGtf, 22

parseMsigdb, 23
plotFeatureBoundaryCoverage, 24
printMsigdbDataset, 25

34

queryGff, 25
queryRegions, 26

retrieveOrthologs, 26
runGSEA, 26
runMotifDiscovery, 27
runMotifRG, /0, 28
runReport, 28
runReportMetaAnalysis, 30
runTopGo, 31

summarizeDatabaseContent, 32
summarizeQueryRegions, 32
summarizeQueryRegionsMulti, 33

	calculateCoverageProfile
	calculateCoverageProfileFromTxdb
	calculateCoverageProfileList
	calculateCoverageProfileListFromTxdb
	checkSeqDb
	createControlRegions
	createDB
	createOrthologousGeneSetList
	deleteSampleDataFromDB
	discoverFeatureSpecificMotifs
	extractSequences
	findDifferentialMotifs
	findEnrichedFunctions
	generateKmers
	getFeatureBoundaryCoverage
	getFeatureBoundaryCoverageBin
	getFeatureBoundaryCoverageMulti
	getIntervalOverlapMatrix
	getMotifSummaryTable
	getPWM
	getTargetedGenesTable
	getTxdbFeatures
	getTxdbFeaturesFromGRanges
	gff
	importBed
	importBedFiles
	importGtf
	parseMsigdb
	plotFeatureBoundaryCoverage
	printMsigdbDataset
	queryGff
	queryRegions
	retrieveOrthologs
	runGSEA
	runMotifDiscovery
	runMotifRG
	runReport
	runReportMetaAnalysis
	runTopGO
	summarizeDatabaseContent
	summarizeQueryRegions
	summarizeQueryRegionsMulti
	Index

