Package ‘Pigengene’

February 2, 2026
Type Package
Title Infers biological signatures from gene expression data
Version 1.37.0
Date 2016-03-31

Author Habil Zare, Amir Foroushani, Rupesh Agra-
hari, Meghan Short, Isha Mehta, Neda Emami, and Sogand Sajedi

Maintainer Habil Zare <zare@u.washington.edu>

biocViews GeneExpression, RNASeq, NetworkInference, Network,
GraphAndNetwork, Biomedicallnformatics, SystemsBiology,
Transcriptomics, Classification, Clustering, DecisionTree,
DimensionReduction, PrincipalComponent, Microarray,
Normalization, ImmunoOncology

Depends R (>=4.0.3), graph, BiocStyle (>= 2.28.0)

Description Pigengene package provides an efficient way to infer
biological signatures from gene expression profiles. The
signatures are independent from the underlying platform, e.g.,
the input can be microarray or RNA Seq data. It can even infer
the signatures using data from one platform, and evaluate them
on the other. Pigengene identifies the modules (clusters) of
highly coexpressed genes using coexpression network analysis,
summarizes the biological information of each module in an
eigengene, learns a Bayesian network that models the
probabilistic dependencies between modules, and builds a
decision tree based on the expression of eigengenes.

License GPL (>=2)

Imports bnlearn (>=4.7), C50 (>= 0.1.2), MASS, matrixStats, partykit,
Rgraphviz, WGCNA, GO.db, impute, preprocessCore, grDevices,
graphics, stats, utils, parallel, pheatmap (>= 1.0.8), dplyr,
gdata, clusterProfiler, ReactomePA, ggplot2, openxlsx, DBI,
DOSE

Suggests org.Hs.eg.db (>=3.7.0), org.Mm.eg.db (>= 3.7.0), biomaRt (>=
2.30.0), knitr, AnnotationDbi, energy

VignetteBuilder knitr



2 Contents

NeedsCompilation no

git_url https://git.bioconductor.org/packages/Pigengene
git_branch devel

git_last_commit b4e2edc

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
Pigengene-package . . . . . . .. ... 3
aml ... e 4
applyfilter . . . . . . L 5
balance . . . . . ... 6
calculate.beta . . . . ... 7
checknas . . . . . . .. e 8
check.pigengene.input . . . . . . . ... e 9
combine.networks . . . . . .. L. e 11
COMPACEATER . .« + v v v v v v e e e e e e e e e e e e e e e e e e e e e 12
COMPULE.PIZENZENE . . . o v v v v v e e e e e e e e e e e e e e e e e 14
deormatriX . . . .. .. e e e 16
determine.modules . . . . ... L. 17
drawbn . . . . 19
eigengenes33 . . . L . L L. e e e e e e 20
CENE.MAPPING . « . « v v v v e e e e e e e e e e e e e e e e e e e 21
getenriched.pw . . . . . . . L e 23
getfitted.leaf . . . . . ... L 24
GELEENES  © . v v v i e e e e e e e e e e e e e e e e e e e e 25
getused.features . . . . .. L. L L e 26
learn.bn . . .. L 27
make.decision.tree . . . . . ... L. 31
makefilter . . . . . .. L e 34
mds . ..o e e e 35
message.df . . ... 36
module.heatmap . . . . . . ..o 37
ONE.SEP.PIZENZENE . . . . . . . vttt e e e e e e e e e e 38
pheatmap.type . . . . . . . .. e e e e 42
PIZENZENE . . . . . . L e e e e e e 43
pigengene-class . . . . ... e e e 44
plot.pigengene . . . . . . . ... L e e e e e 45
preds.at . ..o e e 47
PrOJECL.IZeN . . . . . . . o o i i e e e 48
pvalues.manova . . . . ... e e e e e e 50
save.df . .o L 51

WECNAONE.SIED « . v v v v v e v v e e e e e e e e e e e e e e e e e e 52



Pigengene-package 3

Index 54

Pigengene-package Infers robust biological signatures from gene expression data

Description

Pigengene identifies gene modules (clusters), computes an eigengene for each module, and uses
these biological signatures as features for classification. The resulting biological signatures are
very robust with respect to the profiling platform. For instance, if Pigenegene computes a biological
signature using a microarray dataset, it can infer the same signature in an RNA Seq dataset such
that it is directly comparable across the two datasets.

Details

Package: Pigengene
Type: Package
Version:  0.99.0
Date: 2016-04-25
License: GPL (>=2)

The main function is one.step.pigengene which requires a gene expression profile and the cor-
responding conditions (types). Individual functions are provided to facilitate running the pipeline
in a customized way. Also, the inferred biological signatures (computed eigengenes) are useful for
other supervised or unsupervised analyses.

In most functions of this package, eigenegenes are computed or used as robust biological signatures.
Briefly, each eigengene is a weighted average of the expression of all genes in a module (cluster),
where the weights are adjusted in a way that the explained variance is maximized.

Author(s)

Amir Foroushani, Habil Zare, and Rupesh Agrahari

Maintainer: Habil Zare <zare @txstate.edu>

References

Foroushani, Amir, et al. "Large-scale gene network analysis reveals the significance of extracellular
matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene
package and its applications." BMC medical genomics 10.1 (2017): 1-15.

See Also

Pigengene-package, one.step.pigengene, compute.pigengene, project.eigen, WGCNA: :blockwiseModules



4 aml

Examples

data(aml)

data(mds)

d1l <- rbind(aml,mds)

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

pl <- one.step.pigengene(Data=d1,saveDir="'pigengene', bnNum=10, verbose=1,
seed=1, Labels=Labels, toCompact=FALSE, doHeat=FALSE)

plot(p1$c5treeRes$c5Trees[["34"]1])

## See pigengene for results.

aml AML gene expression profile

Description

Gene expression profile of 202 acute myeloid leukemia (AML) cases from Mills et al. study. The
profile was compared with the profile of 164 myelodysplastic syndromes (MDS) cases and only the
1000 most differentially expressed genes are included.

Usage

data("aml")

Format

A numeric matrix

Details

The columns and rows are named according to the genes Entrez, and patient IDs, respectively. The
original data was produced using Affymetrix Human Genome U133 Plus 2.0 Miccoaray. Mills et
al. study is part of the MILE Study (Microarray Innovations In LEukemia) program, and aimed at
prediction of AML transformation in MDS.

Value

It is a 202*1000 numeric matrix.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

References

Mills, Ken I, et al. (2009). Microarray-based classifiers and prognosis models identify subgroups
with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.
Blood 114.5: 1063-1072.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

apply.filter 5

See Also

Pigengene-package, one.step.pigengene, mds, pigengene

Examples

library(pheatmap)
data(aml)
pheatmap(aml[,1:20], show_rownames=FALSE)

apply.filter Applies a given filter on the data

Description

Takes as input gamma and epsilon values and a filter graph, which is represented by an adjacency
matrix named filt. Applies the filter on the data in either of the two ways: a) with normalization
of the filter by degrees in the graph, b) without normalization.

Usage

apply.filter(gamma, filt, Data, doNormalize=FALSE)

Arguments
gamma This value is in the [0,1] range and determines the weight of the filter data.
Setting to 0 will result in not filtering at all.
filt It is a binary matrix computed by the make. filter function.
Data A matrix or data frame (or list of matrices or data frames) containing the ex-

pression data, with genes corresponding to columns and rows corresponding to
samples. Rows and columns must be named. For example, for RNA-Seq data,
log(RPKM+1) can be used.

doNormalize If TRUE, the filter will be normalized by the degree in the graph using the filt *
DA(-1), where D is a diagonal matrix with degrees of filt on its diagonal.

Value
filtered A filtered matrix computed using the gamma*sData formula, where sData is the
scaled Data and filtN is the normalized or unormalized filter.
Author(s)

Habil Zare and Neda Emami.

See Also

make.filter, determine.modules



6 balance

Examples

data(aml)

data(mds)

dl <- rbind(aml,mds)[, 1:200]

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

p@ <- one.step.pigengene(Data=d1, saveDir=".", verbose=1,

seed=1, Labels=Labels, naTolerance=0.5,

RsquaredCut=0.8, doNetOnly=TRUE)

##Making the filter
made <- make.filter(network=p@$Network, epsilon=0.7, outPath=".")

##Applying the filter
f1 <- apply.filter(gamma=0.5, filt=made$filt, Data=d1)

balance Balances the number of samples

Description

Oversamples data by repeating rows such that each condition has roughly the same number of
samples.

Usage

balance(Data, Labels, amplification = 5, verbose = @, naTolerance=0.05)

Arguments
Data A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.
Labels A (preferably named) vector containing the Labels (condition types) for Data.

Names must agree with rows of Data.

amplification An integer that controls the number of repeats for each condition. The number
of all samples roughly will be multiplied by this factor after oversampling.

verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

naTolerance Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.



calculate.beta 7

Value
A list of:
balanced The matrix of oversampled data
Reptimes A vector of integers named by conditions reporting the number of repeats for

each condition.

origSampleInds The indices of rows in balanced that correspond to the original samples before
oversampling

Author(s)

Habil Zare

See Also

Pigengene-package, one.step.pigengene, wgcna.one. step, compute.pigengene

Examples

data(aml)

data(mds)

dl <- rbind(aml,mds)

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))
names(Labels) <- rownames(d1)

b1 <- balance(Data=d1, Labels=Labels)

d2 <- b1$balanced

calculate.beta Estimates an appropriate power value

Description

The WGCNA package assumes that in the coexpression network the genes are connected with a power-
law distribution. Therefore, it need a soft-thresholding power for network construction, which is
estimated by this auxiliary function.

Usage

calculate.beta(saveFile = NULL, RsquaredCut = 0.8, Data, doThreads=FALSE,
verbose = 0)



Arguments

saveFile

RsquaredCut

Data

doThreads

verbose

Value
A list of:
sft
power

powers

RsquaredCut

References

check.nas

The file to save the results in. Set to NULL to disable.

A threshold in the range [0,1] used to estimate the power. A higher value can
increase power. For technical use only. See pickSoftThreshold for more de-
tails.

A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.

Boolean. Allows WGCNA to run a little faster using multi-threading but might
not work on all systems.

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

The full output of pickSoftThreshold function
The estimated power (beta) value
The numeric vector of all tried powers

The value of input argument RsquaredCut

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559

See Also

pickSoftThreshold, blockwiseModules, one.step.pigengene, wgcna.one.step

Examples

data(aml)

p1 <- calculate.beta(Data=aml[,1:200])

check.nas

Removes NAs from a data matrix

Description

Checks Data for NA values.

Usage

check.nas(Data, naTolerance=0.05, na.rm=TRUE)



check.pigengene.input

Arguments

Data

naTolerance

na.rm

Value

A list of:

cleaned

tooNaGenes

replacedNaNum

Author(s)
Habil Zare

See Also

A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.

A number in the 0-1 range. If the frequency of NAs in a column of Data is more
than this threshold , then that column will be removed.

If TRUE, NAs in the Data will be replaces with the average of the column, how-
ever, if the frequency of NAs in the column is too high (i.e., more than naTolerance),
the whole column will be removed.

The cleaned data with no NA value. Rows are the same as Data, but some
columns may be deleted.

A character vector of those genes (i.e., column names of Data) that had too
many NAs, and therefore were removed.

The number of NA entries in the matrix that were replaced with the average of
the corresponding column (gene).

check.pigengene.input, Pigengene-package

Examples

data(aml)
dim(aml)

aml[1:410]1<-NA

c1 <- check.nas(Data=aml)
dim(c1$cleaned)
c1$tooNaGenes

rm(aml)

check.pigengene.input Quality check on the imput

Description

Checks Data and Labels for NA values, row and column names, etc.



10

Usage

check.pigengene.input

check.pigengene.input(Data, Labels, na.rm = FALSE, naTolerance=0.05)

Arguments

Data

Labels

na.rm

naTolerance

Value

A list of:

Data

Labels

Author(s)

Habil Zare

See Also

A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.

A (preferably named) vector containing the Labels (condition types) for Data.
Names must agree with rows of Data.

If TRUE, NAs in the Data will be replaces with the average of the column, how-
ever, if the frequency of NAs in the column is too high, the whole column will be
removed.

Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

The checked Data matrix, NA possibly removed and rows are ordered as names
of Labels.

The checked vector of Labels

check.nas, one.step.pigengene, Pigengene-package

Examples

data(aml)

Labels <- c(rep("AML" ,nrow(aml)))

names(Labels) <- rownames(aml)

c1 <- check.pigengene.input(Data=aml, Labels=Labels,na.rm=TRUE)
Data <- cl1$Data

Labels <- c1$Labels



combine.networks 11

combine.networks Combines two or more networks

Description

Takes as input two or more adjacency matrices, and the corresponding contributions. Computes
a combined network (weighted graph) in which the weight on an edge between two nodes is an
average of the weights on the same edge in the input networks.

Usage

combine.networks(nets, contributions, outPath, midfix="",
powerVector=1:20, verbose=1, RsquaredCut=0.75, minModuleSize=5,
doRemoveTOM=TRUE, datExpr, doReturNetworks=FALSE, doSave=FALSE, doIdentifyModule=TRUE)

Arguments

nets A list of adjacency matrices (networks), which can be generated using e.g., the
WGCNA: : adjacency function. Rows and columns must be named.

contributions A numeric vector with the same length as nets. In computing the average weight
on each edge in the combined network, first the edge weights from individual
networks are multiplied by their corresponding contributions, then the result will
be divided by the sum of weights of all networks containing this edge.

outPath A string to the path where plots and results will be saved.
midfix An optional string used in the output file names.
powerVector A numeric vector of power values that are tried to find the best one. See WGCNA: : pickSoftThreshold
documentation.
verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.
RsquaredCut A threshold in the range [0,1] used to estimate the power. A higher value can
increase power. For technical use only. See pickSoftThreshold for more de-
tails.

minModuleSize The value that controls the minimum number of genes per module. See WGCNA: :blockwiseModules.

doRemoveTOM A boolean determining the big TOM file must remove or not.

datExpr The expression matrix that WGCNA: : blockwiseModules uses for fine-tuning and
removing genes from modules. This is not an ideal behavior by WGCNA.

doReturNetworks

A boolean value to determine whether to return Network, which is relatively a
big matrix (typically GBs). Set to FALSE not to waste memory.

doSave A boolean value to determine whether the whole output of this function (typi-
cally 1-2 GBs) should be saved as combinedNetwork. Set to FALSE not to waste
disk space.

doIdentifyModule

A boolean value to determine whether modules should be identified. Set it to
FALSE if you just need the network, not the modules.



12 compact.tree

Value

A list with following components

call The command that created the results
midfix The input argument
Network The adjacency matrix of the combined network

denominators A matrix, each cell of which is the sum of weights of all networks contributing
to the edge corresponding to that cell

power The power (beta) value used for the combined network

fits The fit indices calculated for the combined network

net The output of WGCNA: :blockwiseModules containing the module information
in its colors field

modules The output of WGCNA: :blockwiseModules

combinedNetworkFile

The path to the saved file containing combinedNetwork

Note

If the networks have different node sets, the combined network will be computed on the union of
nodes.

See Also

WGCNA: :blockwiseModules, WGCNA: : TOMsimilarity, and WGCNA: : pickSoftThreshold. fromSimilarity

Examples

data(aml)

data(mds)

nets <- list()

## Make the coexpression networks:

nets[["aml"”]] <- abs(stats::cor(aml[,1:200]))

nets[["mds"]] <- abs(stats::cor(mds[,1:200]))

## Combine them:

combined <- combine.networks(nets=nets, contributions=c(nrow(aml), nrow(mds)),
outPath=".", datExpr=rbind(aml, mds)[,1:200])

print(table(combined$modules))

compact.tree Reduces the number of genes in a decision tree

Description

In a greedy way, this function removes the genes with smaller weight one-by-one, while assessing
the accuracy of the predictions of the resulting trees.



compact.tree 13

Usage
compact.tree(c5Tree, pigengene, Data=pigengene$Data, Labels=pigengene$Labels,
testD=NULL, testL=NULL, saveDir=".", verbose=0)
Arguments
c5Tree A decision tree of class C50 that uses module eigengenes, or NULL. If NULL, If
NULL, expression plots for all modules are created.
pigengene A object of pigengene-class, output of compute.pigengene
Data A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.
Labels Labels (condition types) for the (training) expression data. It is a named vector
of characters. Data will be subset according to these names.
testD The test expression data, for example, from an independent dataset. Optional.
testL Labels (condition types) for the (test) expression data. Optional.
saveDir Where to save the plots of the tree(s)
verbose Integer level of verbosity. 0 means silent and higher values produce more details
of computation.
Value

A list with following elements is invisibly returned:

call The call that created the results
predTrain Prediction using projected data without compacting
predTrainCompact

Prediction after compacting
genes A character vector of all genes in the full tree before compacting
genesCompacted A character vector of all genes in the compacted tree

trainErrors A matrix reporting errors on the train data. The rows are named according to
the number of removed genes. Each column reports the number of misclassified
samples in one condition (type) except the last column that reports the total.

testErrors A matrix reporting errors on the test data similar to trainErrors
queue A numeric vector named by all genes contributing to the full tree before com-
pacting. The numeric values are weights increasingly ordered by absolute value.
pos The number of removed genes
txtFile Confusion matrices and other details on compacting are reported in this text file
References

Large-scale gene network analysis reveals the significance of extracellular matrix pathway and
homeobox genes in acute myeloid leukemia, Foroushani A, Agrahari R, Docking R, Karsan A,
and Zare H. In preparation.

Gene shaving as a method for identifying distinct sets of genes with similar expression patterns,
Hastie, Trevor, et al. Genome Biol 1.2 (2000): 1-0003.



14 compute.pigengene

See Also

Pigengene-package, compute.pigengene, make.decision. tree, C5.0, Pigengene-package

Examples

## Data:

data(aml)

data(mds)
data(pigengene)

d1l <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,

saveDir="trees"”, minPerLeaf=14:15, doHeat=FALSE,verbose=3,

toCompact=FALSE)

c1 <- compact.tree(c5Tree=trees$c5Trees[["15"]], pigengene=pigengene,
saveDir="compacted”, verbose=1)

compute.pigengene Computes the eigengenes

Description

This function takes as input the expression data and module assignments, and computes an eigen-
gene for each module using PCA. If you already have a Pigengene object, you can use the project.eigen
function to infer the values of your eigengenes in a new expression dataset.

Usage

compute.pigengene(Data, Labels, modules, saveFile = "pigengene.RData",
selectedModules = "All", amplification = 5, doPlot = TRUE,
verbose = @, dOrderByW = TRUE, naTolerance=0.05, doWgcna=FALSE, doMinimize=FALSE)

Arguments

Data A matrix or data frame containing the training expression data, with genes cor-
responding to columns and rows corresponding to samples. Rows and columns
must be named.

Labels A (preferably named) vector containing the Labels (condition types) for the
training Data. Names must agree with rows of Data.

modules A numeric vector, named by genes, that reports the module (clustering) assign-
ments.

saveFile The file to save the results. NULL will disable saving, and thus requires doPlot
to be FALSE.

selectedModules

A numeric vector determining which modules to use, or set to "All" (default) to
include every module.



compute.pigengene 15

amplification An integer that controls the number of repeats for each condition. The number
of all samples roughly will be multiplied by this factor after oversampling. See
balance.

doPlot Boolean determining whether heatmaps of expression of eigengenes should be
ploted and saved. Set it to FALSE for large data to avoid memory exhaustion.

verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

dOrderByW If TRUE, the genes will be ordered in the csv file based on their absolute weight
in the corresponding module.

naTolerance Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

doWgcna If FALSE, prcomp will be used to compute PCA. Otherwise, WGCNA: :blockwiseModules
will be used leading to consuming more memory with no advantages.

doMinimize If TRUE, only the minimal elements essential for the project.eigen function
will be included, leading to an order of magnitude smaller pigengene object.
Details
Rows of Data are oversampled using balance so that each condition has roughly the same number
of samples. For each module, an eigengene is computed using PCA.
Value

An object of pigengene-class.

Author(s)

Habil Zare and Amir Foroushani

References

Large-scale gene network analysis reveals the significance of extracellular matrix pathway and
homeobox genes in acute myeloid leukemia, Foroushani A, Agrahari R, Docking R, Karsan A,
and Zare H. In preparation.

See Also

Pigengene-package, one.step.pigengene, wgcna.one.step, project.eigen, make.decision. tree,
moduleEigengenes

Examples

## Data:

data(aml)
data(mds)
data(eigengenes33)



16 dcor.matrix

d1 <- rbind(aml,mds)

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

modules33 <- eigengenes33$modules[colnames(d1)]

## Computing:

pigengene <- compute.pigengene(Data=d1, Labels=Labels, modules=modules33,
saveFile="pigengene.RData"”, doPlot=TRUE, verbose=3)

class(pigengene)

plot(pigengene, fontsize=12)

## If you need the pigengene object only to compute eigengenes

## in a new dataset, you can make is much smaller.

pigengeneM <- compute.pigengene(Data=d1, Labels=Labels, modules=modules33,
saveFile="pigengene.RData", doPlot=TRUE, verbose=1, doMinimize=TRUE)

object.size(pigengene)/10"6 ## MB

object.size(pigengeneM)/10%6 ## MB

dcor.matrix Computes distance correlation for give matrix

Description
This function computes the distance correlation between every pair of columns of the input data
matrix.

Usage

dcor.matrix(Data)

Arguments

Data A matrix containing the data

Details

Using for loops, all pairs of columns are passed to 1ink[energy]{dcor?} function from link[energyJ{energy-package}.

Value
A numeric square matrix. The number of rows and columns is equal to the number of columns of
Data and they are named accordingly.

Note

This function uses for loops, which are not efficient for an input matrix with too many columns.



determine.modules 17

Author(s)

Habil Zare

References

Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), Measuring and Testing Dependence by Cor-
relation of Distances, _Annals of Statistics_, Vol. 35 No. 6, pp. 2769-2794.

<URL.: http://dx.doi.org/10.1214/009053607000000505>

Szekely, G.J. and Rizzo, M.L. (2009), Brownian Distance Covariance, _Annals of Applied Statis-
tics_, Vol. 3, No. 4, 1236-1265.

<URL: http://dx.doi.org/10.1214/09-A0OAS312>

Szekely, G.J. and Rizzo, M.L. (2009), Rejoinder: Brownian Distance Covariance, _Annals of Ap-
plied Statistics_, Vol. 3, No. 4, 1303-1308.

See Also

link[energyl{dcor}

Examples

## Data:

data(aml)

dcor1 <- dcor.matrix(Data=aml[,1:5])
dcor1

## Comparison with Pearson:

corl <- abs(stats::cor(aml[,1:5]))

## With 202 samples, distance and Pearson correlations do not differ much:
dcorl-cor1

dcor2 <- dcor.matrix(Data=aml[1:20,1:5])

cor2 <- abs(stats::cor(aml[1:20,1:5]))

## Distance correlation is more robust if fewer samples are available:
dcor2-cor2

plot(dcor2-corl,corl-cor2,xlim=c(-0.5,0.5),ylim=c(-0.5,0.5))

determine.modules Identifies modules of the network

Description

Takes as input a network (i.e., weighted graph) and identifies modules (i.e., clusters of similar
genes) using WGCNA: :blockwiseModules. It also produces a plot showing the number of genes in
each module.



18

Usage

determine.modules(network, outPath, midfix=

determine.modules

nn

, powerVector=1:20,

verbose=1, RsquaredCut=0.75, minModuleSize=5, doRemoveTOM=FALSE,

Arguments

network
outPath
midfix
powerVector
verbose
RsquaredCut
minModuleSize

doRemoveTOM
datExpr

doSave

Value

datExpr, doSave=FALSE)

An adjacency matrix of the network that is built using combine.networks.
A string to the path where plots and results will be saved.
An optional string used in the output file names.

A numeric vector of integer values that are tried to find the best power. See
WGCNA: :pickSoftThreshold.

The integer level of verbosity, where 0 means silent and higher values produce
more details.

A threshold in the range [0,1] used to estimate the power. A higher value can
increase power. For technical use only. See pickSoftThreshold for more de-
tails.

The value that controls the minimum number of genes per module. See WGCNA: :blockwiseModules.
A boolean determining whether the big TOM file must remove or not.

The expression matrix that WGCNA: : blockwiseModules uses for fine-tuning and
removing genes from modules. This is not an ideal behavior by WGCNA.

A boolean value to determine whether the whole output of this function (typi-
cally 1-2 GBs) should be saved as combinedNetwork. Set to FALSE not to waste
disk space.

A list with the following components:

call
midfix
power
fits

modules

net

Author(s)

The call that created the results.

The midfix input.

The integer value of the estimated power computed by pickSoftThreshold. fromSimilarity.
The fitIndices output from pickSoftThreshold.fromSimilarity.

A vector that representing the identified modules. Its length is equal to the num-
ber of nodes in the network, named by node names (i.e., row names of network),
and values are the corresponding module numbers.

The full output of the blockwiseModules function.

Neda Emami and Habil Zare.

See Also

apply.filter, combine.networks, make.filter



draw.bn 19

Examples

data(aml)

##Making the coexpression network
network <- abs(stats::cor(aml[,1:200]))

##Identifying modules
identifiedMod <- determine.modules(network=network, outPath=".", datExpr=aml[,1:200])
print(table(identifiedMod$modules))

draw.bn Draws a Bayesian network

Description

Draws the BN using appropriate colors and font size.

Usage

draw.bn(BN, plotFile = NULL, inputType = "ENTREZIDat", edgeColor = "blue",
DiseaseCol = "darkgreen", DiseaseFill = "red"”, DiseaseChildFill = "pink",
nodeCol = "darkgreen”, nodeFill = "yellow", moduleNamesFile = NULL,
mainText = NULL, nodeFontSize = 14 %* 1.1, verbose = 0)

Arguments

BN An object of bn-class

plotFile If not NULL, the plot will be saved here.

inputType The type of gene IDs in BN

edgeColor The color of edges

DiseaseCol The color of the border of the Disease node

DiseaseFill The color of the area inside the Disease node

DiseaseChildFill
The color of the area inside the children of the Disease node

nodeCol The color of the border of the usual nodes excluding Disease and its children

nodeFill The color of the area inside the usual nodes

moduleNamesFile
An optional csv file including the information to rename the nodes name. See
coderename.node.

mainText The main text shown at the top of the plot

nodeFontSize Adjusts the size of nodes

verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.



20 eigengenes33

Value

A list with following components:

call The call that created the results
BN An echo of input BN argument
renamedBN An object of bn-class when moduleNamesFile is provided
gr The full output of graphviz.plot function
Author(s)
Habil Zare
See Also

bnlearn-package, Pigengene-package, learn.bn, graph-class

Examples

## See lear.bn function.

eigengenes33 Eigengenes of 33 modules

Description

This list contains partial eigengenes computed from AML and MDS gene expression profiles pro-
vided by Mills et al. These data are included to illustrate how to use Pigengene-package and also
to facilitate reproducing the results presented in the corresponding paper.

Usage

data(eigengenes33)

Format

A list

Details

The top 9166 differentially expressed genes were identified and their expressions in AML were
used for identifying 33 modules. The first column, MEQ, corresponds to module O (outliers) and is
usually ignored. The eigengene for each module was obtained using compute.pigengene function.
Oversampling was performed with amplification=5 to adjust for unbalanced sample-size.



gene.mapping 21

Value

It is a list of 3 objects:
aml A 202 by 34 matrix. Each column reports the values of a module eigengene for AML cases.
mds A 164 by 34 matrix for MDS cases with columns similar to aml.

modules A numeric vector of length 9166 labeling members of each module. Named by Entrez ID.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

References

Mills, Ken L., et al. (2009). Microarray-based classifiers and prognosis models identify subgroups
with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.
Blood 114.5: 1063-1072.

See Also

Pigengene-package, compute.pigengene, aml, mds, learn.bn

Examples

library(pheatmap)

data(eigengenes33)

pheatmap(eigengenes33$aml, show_rownames=FALSE)

## See Pigengene::learn.bn() documentation for more examples.

gene.mapping Maps gene IDs

Description

Takse as input gene IDs in a convention, say REFSEQ, and converts them to another convention.

Usage

gene.mapping(ids, inputType = "REFSEQ", outputType = "SYMBOL",
leaveNA = FALSE, inputDb = "Human"”, outputDb = inputDb,
verbose = 0)


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

22

Arguments
ids
inputType
outputType
leaveNA
inputDb
outputDb

verbose

Details

gene.mapping

A character vector of input gene IDs
The type of input IDs.

The type of output IDs. If it is a character vector, mapping will be done for each
element.

If TRUE,the IDs that were not matched are left with NAs in the second column of
the output, otherwise (i.e., default) the input IDs are returned.

The input data base. Use org.Hs.eg.db for human and org.Mm.eg.db for
mouse. The default "Human" character uses the former.

The output data base. If it is a list, mapping will be done for each element.

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

It can map homologous genes between species e.g. from mouse to human. If more than 1 ID found
for an input gene, only one of them is returned.

Value

A matrix of characters with 3 columns: input, outputl, and output2. The last one is guaranteed not
to be NA if leaveNA=FALSE

Author(s)

Amir Foroushani, Habil Zare, and Rupesh Agrahari

References

Pages H, Carlson M, Falcon S and Li N. AnnotationDbi: Annotation Database Interface. R package

version 1.32.3.

See Also

AnnotationDb-class, org.Hs.eg.db org.Mm.eg.db

Examples

library(org.Hs.eg.db)
gl <- gene.mapping(ids="NM_001159995")

print(gl)

## Mapping to multiple convention

library(org.Mm.eg.db)

g2 <- gene.mapping(ids=c("NM_170730", "NM_001013580"),
inputType="REFSEQ", inputDb=org.Mm.eg.db,
outputType=c(”"SYMBOL", "ENTREZID"),
outputDb=1list(org.Hs.eg.db,org.Mm.eg.db), verbose=1)

print(g2)



get.enriched.pw 23

get.enriched.pw Performs pathway over representation analysis

Description

Takes as input a vector or list of gene IDs in any convention, and performs over representation
analysis.

Usage

get.enriched.pw(genes, idType, pathwayDb, ont=c("BP", "MF", "CC"),

Org="Human", OrgDb=NULL, outPath, pvalueCutoff=0.05,
pAdjustMethod="BH", fontSize=14, verbose=0)

Arguments

genes A character vector or a named list of genes for which pathway over representa-
tion analysis to be done.

idType A string describing the type of input gene ID e.g., "ENTREZID", "REFSEQ",
"SYMBOL".

pathwayDb A character vector determining which enrichment database to be used e.g., "GO",
"KEGG", "REACTOME", or "NCG".

ont GO ontology terms to be analysed e.g., "BP", "MF" or "CC". Default is all three.

Org A character string equal to "Human" or "Mouse" determining the reference or-
ganism to be used. For "Human" and "Mouse" org.Hg.eg.db and org.Mm.eg.db
will be used, respectively. If Org is not NULL, OrgDb must be NULL.

OrgDb The reference data base to be used. Use e.g. org.Ce.eg. db for *’Celegans’ when
analysing Celegans data. If OrgDb is not NULL, Org must be NULL.

outPath A file path where results will be saved.

pvalueCutoff A numerical value that determines a cutoff of adjusted pValue.

pAdjustMethod A string passed to the clusterProfiler::enrichGO function to determine the method
for adjusting the p-value. Options include "holm", "hochberg", "hommel", "bon-
ferl‘orli", ”BH", "BY”, "fdr”, nnonen.

fontSize A numerical value that determines the font size of the y-axis and the title in the
plot.

verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

Value

A list:

enriched A list of output of enrichment analysis for different database analyzed.

noEnrichment A vector of database names in which no enriched pathways were found.



24 get fitted.leaf

The output is saved for each selected module under the moduleName_enrichment folder. There
is a subfolder that includes an excel file and plot(s). Each sheet in the excel file corresponds to a
pathway database (KEGG in the below example). Each row is an overrepresented pathway.

Author(s)
Isha Mehta, Habil Zare, and Sogand Sajedi

References

Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He, clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 2012,
16(5):284-287

Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for reactome pathway
analysis and visualization. Molecular BioSystems 2016, 12(2):477-479

See Also

enrichGO, enrichKEGG, enrichNCG, enrichPathway

Examples

library(org.Hs.eg.db)
genes <- c(”NM_170730", "NM_001013580", "NM_002142", "NM_003417", "NM_000082",
"NM_006158", "NM_006047", "NM_022356", "NM_003979", "NM_001030", "NM_022872")
pl <- get.enriched.pw(genes=genes, idType="REFSEQ", pathwayDb="G0", Org="Human",
outPath=getwd(), verbose=1)

get.fitted.leaf Returs the leaf for each sample

Description

Taking as input a tree and data, this function determines the leaf each sample will fall in.

Usage

get.fitted.leaf(c5Tree, inpDTemp, epsi = 10*(-7))

Arguments
c5Tree A decision tree of class C50@ that uses module eigengenes, or NULL. If NULL,
expression plots for all modules are created.
inpDTemp The possibly new data matrix with samples on rows

epsi A small perturbation to resolve the boundary issue



get.genes 25

Value

A numeric vector of node indices named by samples (rows of inpDTemp)

Note

This function is tricky because C50 uses a global variable.

Author(s)

Amir Foroushani

See Also

Pigengene-package, make.decision. tree, compact.tree, compute.pigengene, module.heatmap,
get.used.features, preds.at

Examples

## Data:

data(aml)

data(mds)
data(pigengene)

d1 <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,

saveDir="trees"”, minPerLeaf=15, doHeat=FALSE,verbose=3,
toCompact=FALSE)

f1 <- get.fitted.leaf(c5Tree=trees$c5Trees[["15"]1],
inpDTemp=pigengene$eigengenes)

get.genes List the (most relevant) genes for a decision tree.

Description
This function returns all genes that are left after shrinking (compacting ) a given tree. If enhance is
set to TRUE, it makes sure that the output contains at least two genes from each used module.
Usage

get.genes(c5Tree = NULL, pigengene = NULL, queue = NULL, modules = NULL, pos=0,
enhance = TRUE)



26

Arguments

queue

pos

enhance

modules
c5Tree

pigengene

Details

get.used.features

A character vector. The membership queue for a decsision tree.

Number of genes that are considered from removal. Same interpretation as in
preds.at

If enhance is set to TRUE, the function makes sure that the output contains at least
two genes from each used module. Otherwise, exactly the pos first elements of
the queue are removed from consideration.

Named character vector listing the module assignments.
A decision tree of class C50.

An object in pigengene-class, usually created by compute.pigengene.

This function needs modules and queue, or alternatively, c5Tree and pigengene.

Value

A character vector containing the names of the genes involved in the modules whose eigengenes
are used in the tree. If pos > 9, the first pos such genes with lowest absolute membership in their
respective modules are filtered.

See Also

Pigengene-package, compact.tree,preds.at, get.used. features, make.decision.tree

Examples

## Data:
data(aml)
data(mds)

data(pigengene)
d1l <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,

saveDir="trees"”, minPerLeaf=15, doHeat=FALSE,verbose=3,
toCompact=FALSE)

gl <- get.genes(c5Tree=trees$c5Trees[["15"]1],pigengene=pigengene)

get.used.features

Return the features used in a tree

Description

Only some of the features will be automatically selected and used in a decision tree. However, an
object of class C5.0 does not have the selected feature names explicitly. This function parses the
tree component and extracts the names of features contributing to the tree.



learn.bn 27

Usage

get.used.features(c5Tree)

Arguments

c5Tree A decision tree of class 50

Value

A character vector of the names of features (module eigengenes) contributing to the input decision
tree.

Author(s)

Amir Foroushani

See Also

Pigengene-package, make.decision. tree, compact. tree, compute.pigengene, module.heatmap,
get.fitted.leaf, preds.at, Pigengene-package

Examples

## Data:

data(aml)

data(mds)
data(pigengene)

d1l <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,
saveDir="trees", minPerLeaf=15, doHeat=FALSE,verbose=3,
toCompact=FALSE)

get.used.features(c5Tree=trees$c5Trees[["15"1])

learn.bn Learns a Bayesian network

Description

This function takes as input the eigengenes of all modules and learns a Bayesian network using
bnlearn package. It builds several individual networks from random staring networks by optimizing
their score. Then, it infers a consensus network from the ones with relatively "higher" scores. The
default hyper-parameters and arguments should be fine for most applications.



28

Usage

learn.bn

learn.bn(pigengene=NULL, Data=NULL, Labels=NULL, bnPath = "bn", bnNum = 100,

consensusRatio = 1/3, consensusThresh = "Auto”, doME@ = FALSE,
selectedFeatures = NULL, trainingCases = "All"”, algo = "hc", scoring = "bde",
restart = @, pertFrac = 0.1, doShuffle = TRUE, use.Hartemink = TRUE,
bnStartFile = "None", use.Disease = TRUE, use.Effect = FALSE, dummies = NULL,
tasks = "All"”, onCluster = !(which.cluster()$cluster == "local"),

inds = 1:ceiling(bnNum/perJob), perJob = 2, maxSeconds = 5 * 60,

timeJob = "00:10:00", bnCalculationJob = NULL, seed = NULL, verbose = 0,
naTolerance=0.05)

Arguments

pigengene An object from pigengene-class. The output of compute.pigengene func-
tion.

Data A matrix or data frame containing the training data with eigengenes correspond-
ing to columns and rows corresponding to samples. Rows and columns must be
named.

Labels A (preferably named) vector containing the Labels (condition types) for the
training data. Names must agree with rows of Data.

bnPath The path to save the results

bnNum The total number of individual networks. In practice, the number of learnt net-

scoring

works can be less than bnNum because some jobs may take too long and be
terminated.

consensusRatio A numeric in the range 0-1 that determines what portion of highly scored net-

works should be used to build the consensus network

consensusThresh

A vector of thresholds in the range @-1. For each threshold t, a consensus
network will be build by considering the arcs that are present in at least a fraction
of t of the individual networks. Alternatively, if it is "Auto" (the default), the
threshold will be automatically set to the mean plus the standard deviation of the
frequencies (strengths) of all arcs in the individual networks.

doMEQ If TRUE, module O (the outliers) will be considered in learning the Bayesian
network.
selectedFeatures

A character vector. If not NULL, only these features (eigengenes) will be used.

trainingCases A character vector that determines which cases (samples) should be considered

for learning the network.

algo The algorithm that bnlean uses for optimizing the score. The default is "hc" (hill

climbing). See arc. strength for other options and more details.

A character determining the scoring criteria. Use ’bde’ and bic’ for the Bayesian
Dirichlet equivalent and Bayesian Information Criterion scores, respectively.
See score for technical details.

restart The number of random restarts. For technical use only. See hc.



learn.bn

pertFrac

doShuffle

use.Hartemink

bnStartFile

use.Disease

use.Effect If TRUE, the condition variable beAML will be included in the network, which
cannot be the parent of any other variable.

dummies A vector of numeric values in the range 0-1. Dummy random variables will be
added to the Bayesian network to check whether the learning process is effective.
For development purposes only.

tasks A character vector and a subset of c("1learn”, "harvest”, "consensus”,"
that identifies the tasks to be done. Useful if part of the analysis was done pre-
viously, otherwise set to "A11".

onCluster A Boolean variable that is FALSE if the learning is not done on a computer clus-
ter.

inds The indices of the jobs that are included in the analysis.

perJob The number of individual networks that are learnt by 1 job.

maxSeconds An integer limiting computation time for each training job that runs locally, i.e.,
when oncluster=FALSE.

timeJob The time in "hh:mm:ss"” format requested for each job if they are running on a
computer cluster.

bnCalculationJob
An R script used to submit jobs to the cluster. Set to NULL if not using a cluster.
An example is provided at system. file("script”, "bn.calculation.job.R",
package="Pigengene")

seed The random seed that can be set to an integer to reproduce the same results.

verbose Integer level of verbosity. 0 means silent and higher values produce more details
of computation.

naTolerance Upper threshold on the fraction of entries per gene that can be missing. Genes

29

A numeric in the range 0-1 that determines the number of attempts to randomly
insert/remove/reverse an arc on every random restart. For technical use only.

The ordering of the features (eigengenes) is important in making the initial net-
work. If doShuffle=TRUE, they will be shuffled before making every initial
network.

If TRUE, Hartemink algorithm will be used to discretize data. Otherwise, interval
discretization will be applied. See bnlearn:discretize.

Optionally, learning can start from a Bayesian network instead of a random net-
work. bnStartFile should contain a list called selected and selected$BN
should be an object of bn-class. Non-technical users can set to "None" to
disable.

If TRUE, the condition variable Disease will be included in the network, which
cannot be the child of any other variable.

with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

graph”)



30

Details

learn.bn

For learning a Bayesian network with tens of nodes (eigengenes), bnNum=1000 or higher is recom-
mended. Increasing consensusThresh generally results in a network with fewer arcs. Nagarajan et
al. proposed a fundamental approach that determines this hyper-parameter based on the background
noise. They use non-parametric bootstrapping, which is not implemented in the current package yet.

The default values for the rest of the hyper-parameters should be fine for most applications.

Value

A list of:

consensusThresh
The vector of thresholds as described in the arguments.

indvPath The path where the individual networks were saved.

moduleFile The file containing data in appropriate format for bnlearn package and the black-
list arcs.

scorefFile The file containing the record of the successively jobs and the scores of the
corresponding individual networks.

consensusFile The file containing the consensus network and its BDe and BIC scores.

bnModuleRes The result of bn.module function. Useful mostly for development.

runs A list containing the record of successful jobs.

scores The list saved in scoreFile.

consensusThreshRes
The full output of consensus. thresh() function.

consensus] The consensus Bayesian network corresponding to the first threshold. It is the
output of consensus function and consensus1$BN is an object of bn-class.

scorePlot The output of plot.scores functions, containing the scores of individual net-
works.

graphs The output of plot. graphS function, containing the BDe score of the consensus
network.

timeTaken An object of difftime-class recording the learning wall-time.

use.Disease, use.Effect, use.Hartemink

Note

Some of the input arguments.

Running the jobs on a cluster needs a proper bnCalculationJob script. Also, the unexported
function sbatch() is adopted for a particular cluster and may need generalization on other clusters.

Author(s)

Amir Foroushani, Habil Zare, and Rupesh Agrahari



make.decision.tree 31

References

Hartemink A (2001). Principled Computational Methods for the Validation and Discovery of Ge-
netic Regulatory Networks. Ph.D. thesis, School of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

Nagarajan, Radhakrishnan, et al. (2010) Functional relationships between genes associated with
differentiation potential of aged myogenic progenitors. Frontiers in Physiology 1.

See Also

bnlearn-package, Pigengene-package, compute.pigengene

Examples

data(eigengenes33)

ms <- 10:20 ## A subset of modules for quick demonstration

amlE <- eigengenes33$aml[,ms]

mdsE <- eigengenes33$mds[,ms]

eigengenes <- rbind(amlE,mdsE)

Labels <- c(rep("AML",nrow(amlE)),rep("MDS",nrow(mdsE)))

names(Labels) <- rownames(eigengenes)

learnt <- learn.bn(Data=eigengenes, Labels=Labels,
bnPath="bnExample"”, bnNum=10, seed=1)

bn <- learnt$consensus1$BN

## Visualize:
d1 <- draw.bn(BN=bn,nodeFontSize=14)

## What are the children of the Disease node?
childrenD <- bnlearn::children(x=bn, node="Disease")
print(childrenD)

## Fit the parameters of the Bayesian network:
fit <- bnlearn::bn.fit(x=bn, data=learnt$consensusi$Data, method="bayes",6iss=10)

## The conditional probability table for a child of the Disease node:
fit[[childrenD[1]]]

## The fitted Bayesian network can be used for predicting the labels

## (i.e., values of the Disease node).

12 <- predict(object=fit, node="Disease"”, data=learnt$consensusi$Data, method="bayes-1w")
table(Labels, 12)

make.decision.tree Creates a decision tree to classify samples using the eigengenes values

Description

A decision tree in Pigengene-package uses module eigengenes to build a classifier that distin-
guishes the different classes. Briefly, each eigengene is a weighted average of the expression of all
genes in the module, where the weight of each gene corresponds to its membership in the module.



32

Usage

make.decision.tree

make.decision.tree(pigengene, Data,

Labels =

structure(pigengene$annotation[rownames(pigengene$eigengenes),
11, names = rownames(pigengene$eigengenes)),

testD = NULL, testL = NULL, selectedFeatures = NULL,
saveDir = "C5Trees”, minPerLeaf = NULL, useMod@® = FALSE,

costRatio

1, toCompact = NULL, noise = @, noiseRepNum = 10, doHeat=TRUE,

verbose = @, naTolerance=0.05)

Arguments

pigengene The pigengene object that is used to build the decision tree. See pigengene-class.

Data The training expression data

Labels Labels (condition types) for the (training) expression data. It is a named vector
of characters. Data and pigengene will be subset according to these names.

testD The test expression data, for example, from an independent dataset. Optional.

testL Labels (condition types) for the (test) expression data. Optional.

selectedFeatures
A numeric vector determining the subset of eigengenes that should be used as
potential predictors. By default ("All"), eigengenes for all modules are consid-
ered. See also useMod@.

saveDir Where to save the plots of the tree(s).

minPerLeaf Vector of integers. For each value, a tree will be built requiring at least that
many nodes on each leaf. By default (NULL), several trees are built, one for each
possible value between 2 and 10 percent of the number of samples.

useModo Boolean. Wether to allow the tree(s) to use the eigengene of module 0, which
corresponds to the set of outlier, as a proper predictor.

costRatio A numeric value effective only for 2 groups classification. The default value
(1) considers the misclassification of both conditions as equally disadvatageous.
Change this value to a larger or smaller value if you are more interested in the
specificity of predictions for condition 1 or condition 2, respectively.

toCompact An integer. The tree with this minPerLeaf value will be compacted (shrunk).

Compacting in this context means reducing the number of required genes for
the calculation of the relevant eigengenes and making the predictions using the
tree. If TRUE or NULL (default), the (persumably) most general proper tree (cor-
responding to the largest value in the minPerLeaf vector for which a tree could
be constructed) is compacted. Set to FALSE to turn off compacting.

noise, noiseRepNum

doHeat

verbose

For development purposes only. These parameters allow investigating the effect
of gaussian noise in the expression data on the accurracy of the tree for test data.

Boolean. Set to FALSE not to plot the heatmaps for faster comoutation.

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.



make.decision.tree

naTolerance

Details

33

Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

This function passes the inut eigengenes and appropriate arguments to C5.0 function from C50

package.

The effect of test data: Only when both testD and testL are provided, the test data will be used for
a) compacting the trees, b) plotting heatmaps of expression of genes in the compacted and full trees,
and c) the noise analysis. If either of testD or testL is NULL, then Data and Labels are instead
used for these purposes.

Value

A list with following elements:

call

c5Trees

minPerLeaf
compacted
heat

heatCompact

noisy

leaflLocs

toCompact
costs

saveDir

Note

The call that created the results

A list, with one element of class C5.0 for each attempted minNodesperleaf
value. The list is named with the corresponding values as characters. An extra
info element is added that includes information on the performance of the tree.

A numeric vector enumerating all of the attempted minPerLeaf values.
The full output of compact. tree function if toCompact is not FALSE
The output of module.heatmap function for the full tree if doHeat is not FALSE

The output of module. heatmap function for the compacted tree if toCompact is
not FALSE

The full output of noise.analysiy function if noise is not 0. For development
and evaluation purposes only.

A matrix reporting the leaf for each sample on 1 row. The columns are named
according to the correspoding minNodesperleaf value.

Echos the toCompact input argument
The cost matrix

The directory where plots are saved in

For faster computation in an initial, explanatory run, turn off compacting, which can take a few
minutes, with toCompact=FALSE.

See Also

Pigengene-package, compute.pigengene, compact.tree, C5.0, Pigengene-package



34 make.filter
Examples

## Data:

data(aml)

data(mds)

data(pigengene)

d1 <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,
saveDir="trees"”, minPerLeaf=14:15, doHeat=FALSE,verbose=3,
toCompact=15)

make.filter

Computes the filter based on a similarity network

Description

Takes as input the similarity matrix of a graph (i.e., network) and an epsilon value. It computes
a filter graph using the epsilon threshold. The dimention of the output filter matrix is the same as
the input similarity network. It also produces two plots showing the weighted degrees of the input
graph and degrees of the filter, respectively.

Usage

make.filter(network, epsilon, outPath=NULL)

Arguments

network

epsilon

outPath

Value

A matrix of similarity for the network.

A threshold for deciding which edges to keep. If the similarity is less than
l/epsilon (i.e., distance > epsilon), the edge will be removed, and it will be
kept in the filter graph otherwise.

A string determining the path where plots and results will be saved.

A list with the following components:

filt

epsilon

Author(s)

A matrix representing adjacency matrix of the computed filter graph. If the dis-
tance between two nodes in the similarity matrix is higher than epsilon, those
nodes are connected in the filter graph (i.e., the corresponding entry in the adja-
cency matrix is 1). Otherwise, the corresponding entry is 0.

The epsilon input.

Habil Zare and Neda Emami.



mds 35

See Also

one.step.pigengene, apply.filter

Examples

data(aml)

data(mds)

dl <- rbind(aml,mds)[, 1:200]

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

p@ <- one.step.pigengene(Data=d1, saveDir=".", verbose=1,

seed=1, Labels=Labels, naTolerance=0.5,

RsquaredCut=0.8, doNetOnly=TRUE)

##making the filter
made <- make.filter(network=p@$Network, epsilon=0.7, outPath=".")

mds MDS gene expression profile

Description

Gene expression profile of 164 myelodysplastic syndromes (MDS) cases from Mills et al. study.
The profile was compared with the profile of 202 acute myeloid leukemia (AML) cases and only
the 1000 most differentially expressed genes are included.

Usage

data("mds")

Format

A numeric matrix

Details

The columns and rows are named according to the genes Entrez, and patient IDs, respectively. The
original data was produced using Affymetrix Human Genome U133 Plus 2.0 Miccoaray.Mills et
al. study is part of the MILE Study (Microarray Innovations In LEukemia) program, and aimed at
prediction of AML transformation in MDS.

Value

It is a 164*1000 numeric matrix.



36 message.if

Note
This profile includes data of the 25 chronic myelomonocytic leukemia (CMLL) cases that can have
different expression signatures according to Mills et al.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

References

Mills, Ken I, et al. (2009). Microarray-based classifiers and prognosis models identify subgroups
with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.
Blood 114.5: 1063-1072.

See Also

Pigengene-package, one.step.pigengene, aml, compute.pigengene

Examples

library(pheatmap)
data(mds)
pheatmap(mds[,1:20], show_rownames=FALSE)

message.if Conditional messaging.

Description

Messages only if verbose is more than 0 and write in a text file if provided.

Usage
message.if (me=NULL, verbose=0, txtFile=NULL, append=TRUE, ...)
Arguments
me The Message. Can be a character vector.
verbose A integer.
txtFile The text file in which the message will be written. Set to NULL to disable.
append logical. Set to FALSE to overwrite txtFile.
Arguments to be passed to capture.output.
Value

NULL


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

module.heatmap

Author(s)

Amir Foroushani

Examples

37

message.if ("Hello world!"”, verbose=1)

module.heatmap

Plots heatmaps for modules

Description

This function takes as input a tree and an object from pigengene-class and per any module used
in the tree, it plots one gene expression heatmap. Alternatively, it can plot a heatmap for every
module in the given pigengene object.

Usage

module.heatmap(c5Tree=NULL, pigengene, mes=NULL, saveDir, testD = NULL,

testL = NULL,

Arguments

c5Tree

pigengene

mes

saveDir

testD, testL

pos

verbose

doAddEigengene

scalePngs

pos = @, verbose=0, doAddEigengene=TRUE, scalePngs=1, ...)

A decision tree of class C50 that uses module eigengenes, or NULL. If NULL,
expression plots for all modules are created.

A object of pigengene-class, output of compute.pigengene

A character vector that determines which modules to plot, e.g., c("ME3","MES5").
Set it to NULL to plot a heatmap for every module. This argument will be ignored
if c5Tree is not NULL.

Directory to save the plots

Optional. The matrix of (independent) test expression data, and the correspond-
ing vector of labels. testL must be named according to the row names of testD.

Number of genes to discard. Interpreted the same way as in compact.tree and
preds.at

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

If TRUE, the eigengene of each module will be added to the corresponding heatmap.

If not 1, the size of pngs will be adjusted using this parameter. A typical value
would be 7.

Additional arguments. Passed to pheatmap. type



38 one.step.pigengene

Value

A list of:

call The call that created the results

saveDir An echo of the input argument determining where the plots are saved
See Also

Pigengene-package, make.decision. tree, compact.tree, compute.pigengene

Examples

## Data:

data(aml)

data(mds)
data(pigengene)

d1l <- rbind(aml,mds)

## Plotting the heatmaps of all modules:
module.heatmap(pigengene=pigengene, saveDir="heatmaps”, pos=0, verbose=1)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,
saveDir="trees"”, minPerLeaf=14:15, doHeat=FALSE,verbose=3,
toCompact=15)

## Plotting the heatmaps of only the modules in the tree:
module.heatmap(c5Tree=trees$c5Trees[["15"]], pigengene=pigengene,
saveDir="treeHeatmaps"”, pos=0, verbose=1)

one.step.pigengene Runs the entire Pigengene pipeline

Description

Runs the entire Pigengene pipeline, from gene expression to compact decision trees in a single
function. It identifies the gene modules using coexpression network analysis, computes eigengenes,
learns a Bayesian network, fits decision trees, and compact them.

Usage

one.step.pigengene(Data, saveDir="Pigengene"”, Labels, testD=NULL,
testlLabels=NULL, doBalance=TRUE, RsquaredCut=0.8, costRatio=1,
toCompact=FALSE, bnNum=0, bnArgs=NULL, useMod@=FALSE, mit="All",
verbose=0, doHeat=TRUE, seed=NULL, dOrderByW=TRUE, naTolerance=0.05,
doNetOnly=FALSE, doReturNetworks=doNetOnly, idType="ENTREZID",
pathwayDb=NULL, OrgDb=org.Hs.eg.db)



one.step.pigengene

Arguments

Data

Labels

saveDir

testD

testLabels

doBalance

RsquaredCut

costRatio

toCompact

bnNum
bnArgs
useModo

mit

verbose

doHeat

seed

dOrderByW

39

A matrix or data frame (or list of matrices or data frames) containing the training
expression data, with genes corresponding to columns and rows corresponding
to samples. Rows and columns must be named. For example, from RNA-Seq
data, log(RPKM+1) can be used.

A (preferably named) vector containing the Labels (condition types) for the
training Data. Or, if Data is a list, a list of label vectors corresponding to the
data sets in Data. Names must agree with rows of Data.

Directory to save the results.

Test expression data with syntax similar to Data, possibly with different rows
and columns. This argument is optional and can be set to NULL if test data are
not available.

A (preferably named) vector containing the Labels (condition types) for the test
Data. This argument is optional and can be set to NULL if test data are not
available.

Boolean. Whether the data should be oversampled before identifying the mod-
ules so that each condition contribute roughly the same number of samples to
clustering.

A threshold in the range [0,1] used to estimate the power. A higher value can in-
crease power. For technical use only. See pickSoftThreshold for more details.
A larger value generally leads to more modules.

A numeric value, the relative cost of misclassifying a sample from the first con-
dition vs. misclassifying a sample from the second condition.

An integer value determining which decision tree to shrink. It is the mini-
mum number of genes per leaf imposed when fitting the tree. Set to FALSE
to skip compacting, to NULL to automatically select the maximum value. See
make.decision. tree.

Desired number of bootstraped Baysian networks. Set to @ to skip BN learning.
A list of arguments passed to learn.bn function.

Boolean, whether to allow module zero (the set of outliers) to be used as a
predictor in the decision tree(s).

The "module identification type", a character vector determining the reference
conditions for clustering. If All’ (default), clustering is performed using the
entire data regardless of condition.

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

If TRUE the heatmap of expression of genes in the modules that contribute to the
the tree will be plotted.

Random seed to ensure reproducibility.

If TRUE, the genes will be ordered in the csv file based on their absolute weight
in the corresponding module.



40

one.step.pigengene

naTolerance Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

doNetOnly If TRUE, the pipeline does not continue after making the network and identifying
the modules, e.g., eigengenes will not be computed.

doReturNetworks
A boolean value to determine whether to return Network, which is relatively a
big matrix (typically GBs). Set to FALSE not to waste memory.

idType A string describing the type of input gene ID e.g., "ENTREZID", "REFSEQ",
"SYMBOL".
pathwayDb A character vector determining which enrichment database to be used by the

get.enriched.pw function e.g., "GO", "KEGG", "REACTOME", or "NCG".
Set to NULL to skip the pathway enrichment analysis.

OrgDb The reference data base to be used. Use e.g. org.Ce.eg.db for ’Celegans’ when
analysing Celegans data. If OrgDb is not NULL, Org must be NULL.

Details

This is the main function of the package Pigengene and performs several steps: First, modules are
identified in the training expression data, according to mit argument i.e. based on coexpression
behaviour in the corresponding conditions. Set it to "All" to use all training data for this step
regardless of the condition. If a list of data frames is provided in Data, similarity networks on the
data sets are computed and combined into one similarity network for the union of nodes across data
sets.

Then, the eigengenes for each module and each sample are calculated, where the expression of
an eigengene of a module in a sample is the weighted average of the expression of the genes in
that module in the sample. Technically, an eigengene is the first principal component of the gene
expression in a module. PCA ensures that the maximum variance accross all the training samples
is explained by the eigengene.

Next, (optionally —if bnNum is set to a value greater than 0), several bootstrapped Bayesian net-
works are learned and combined into a consensus network, in order to detect and illustrate the
probabilistic dependencies between the eigengenes and the disease subtype.

Next, decisision tree(s) are built that use the module eigengenes, or a subset of them, to distinguish
the classes (Labels). The accurracy of trees is assessed on the train and (if provided) test data.
Finally, the number of required genes for the calculation of the relevant eigengenes is reduced (the
tree is *compacted’). The accuracy of the tree is reassessed after removal of each gene.

Along the way, several self explanatory directories, heatmaps and plots are created and stored under
saveDir. See make.decision. tree for the effect of test data in the process.

Value

A list with the following components:

call The call that created the results.

modules A named vector. Names are genes IDs and values are the corresponding module
number.



one.step.pigengene

41

wgRes A list. The results of WGCNA clustering of the Data by wgcna.one.step if
Data is one matrix.
betaRes A list. The automatically selected beta (power) parameter which was used for
the WGCNA clustering. It is the result of the call to calculate.beta using the
expression data of mit conditions(s).
pigengene The pigengene object computed for the clusters, result of compute.pigengene.
leanrtBn A list. The results of learn.bn call for learning a Bayesian network using the
eigengenes.
selectedFeatures
A vector of the names of module eigengenes that were considered during the
construction of decision trees. If bnNum >0, this corresponds to the immediate
neighbors of the Disease or Effect variable in the consensus network.
c5treeRes A list. The results of make.decision. tree call for learning decision trees that
use the eigengenes as features.
Note
The individual functions are exported to facilitated running the pipeline step-by-step in a customized
way.
Author(s)

Amir Foroushani, Habil Zare, Rupesh Agrahari, and Meghan Short

References

Large-scale gene network analysis reveals the significance of extracellular matrix pathway and
homeobox genes in acute myeloid leukemia, Foroushani A, Agrahari R, Docking R, Karsan A,
and Zare H. In preparation.

See Also

check.pigengene.input, balance, calculate.beta, wgcna.one.step, compute.pigengene,
project.eigen, learn.bn, make.decision. tree, blockwiseModules

Examples

library(org.Hs.eg.db)

data(aml)
data(mds)

d1 <- rbind(aml,mds)

Labels <- c(rep("AML" ;nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

p1 <- one.step.pigengene(Data=d1,saveDir=".", bnNum=10, verbose=1, seed=1,
Labels=Labels, toCompact=FALSE, doHeat=FALSE)

plot(p1$c5treeRes$c5Trees[["34"]1])

non



42 pheatmap.type

pheatmap. type Plots heatmap with clustering only within types.

Description

This function first performs hierarchical clustering on samples (rows of data) within each condition.
Then, plots a heatmap without further clustering of rows.

Usage
pheatmap.type(Data, annRow, type = colnames(annRow)[1],
doTranspose=FALSE, conditions="Auto",...)
Arguments
Data A matrix with samples on rows and features (genes) on columns.
annRow A data frame with 1 column or more. Row names must be the same as row

names of Data.
type The column of annRow used for determining the condition

doTranspose If TRUE, the matrix will be transposed for the final plot. E.g., if the genes are on
the columns of Data, they will be shown on rows of the heatmap.

conditions A character vector that determines the conditions, and their order, to be included
in the heatmap. By default ("Auto"), an alphabetical order of all available con-
ditions in annRow will be used.

Additional arguments passed to pheatmap function.

Value
A list of:
pheatmap$s The results of pheatmap function for each condition
pheat The output of final pheatmap function applied on all data
ordering The ordering of the rows in the final heatmap
annRowAll The row annotation used in the final heatmap

Note

If type is not determined, by default the first column of annRow is used.

Author(s)
Habil Zare

See Also

eigengenes33, pheatmap



pigengene 43

Examples

data(eigengenes33)

dl <- eigengenes33$aml

d2 <- eigengenes33$mds

Disease <- c(rep("AML" ,nrow(d1)), rep("MDS",nrow(d2)))

Disease <- as.data.frame(Disease)

rownames(Disease) <- c(rownames(d1), rownames(d2))

p1 <- pheatmap.type(Data=rbind(d1,d2),annRow=Disease, show_rownames=FALSE)

pigengene An object of class Pigengene

Description

This is a toy example object of class pigengene-class. Itis used in examples of Pigengene-package.
Gene expression profile of 202 acute myeloid leukemia (AML) cases from Mills et al. study. The
profile was compared with the profile of 164 myelodysplastic syndromes (MDS) cases and only the
1000 most differentially expressed genes are included.

Usage

data(”aml™)

Format

An object of pigengene-class.

Details

The object is made using compute.pigengene function from aml and mds data as shown in the
examples. The R CMD build --resave-data trick was used to reduce the size of saved object from
3.1 MB to 1.4 MB.

Value

It is an object of pigengene-class.

Source

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

References

Mills, Ken I, et al. (2009). Microarray-based classifiers and prognosis models identify subgroups
with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.
Blood 114.5: 1063-1072.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15061

44 pigengene-class

See Also

Pigengene-package, pigengene-class, one.step.pigengene, mds, aml, compute.pigengene
project.eigen

Examples

library(pheatmap)
data(pigengene)
plot(pigengene, fontsize=12)

## To reproduce:

data(aml)

data(mds)

data(eigengenes33)

d1l <- rbind(aml,mds)

Labels <- c(rep("AML" ;nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

modules33 <- eigengenes33$modules[colnames(d1)]

## Computing:

computed <- compute.pigengene(Data=d1, Labels=Labels, modules=modules33,
saveFile="pigengene.RData", doPlot=FALSE, verbose=3)

class(computed)

plot(computed, fontsize=12, main="Reproduced")

pigengene-class The pigengene class

Description

A pigengene object holds the eigengenes, weights (memberships) and other related information.

Details

A object of class pigengene is the output of compute.pigengene function. Itis alist. If doMinimize=TRUE,
only the minimal elements needed to project eigengenes in a new dataset are included (i.e., see
project.eigen(pigengene=NULL)[["projectionaries”]]). Otherwise, it contains at least the
following components:

e call The call that created the results.

* Reptimes A named vector reporting the number of repeats for each condition in the oversam-
pling process, which is done by the balance function.

* eigenResults A list including at least eigengenes and varExplained. If doWgcna=TRUE,
then this list will be the full output of moduleEigengenes function with some fixes, e.g.,
we change eigengenes to a matrix, and use genes as its row names. Also, varExplained
is named according to modules. Setting doWgcna=TRUE leads to more memory usage and a
larger Pigengene object likely, with no advantage.

* Data The data matrix of gene expression.



plot.pigengene 45

e Labels A character vector giving the condition (type) for each sample (row of Data).

» eigengenes The matrix of eigengenes ordered based on selectedModules if provided. Rows
correspond to samples.

* membership The matrix of weights of genes (rows) in all modules (columns).

* orderedModules The module assignment numeric vector named with genes and ordered
based on module number.

* annotation A data frame containing labeling information useful in plotting. It has a column
named "Condition". Rows have sample names.

* saveFile The file where the pigengene object is saved.
* weightsCsvFile The file containing the weights in csv format. See dOrderByW=TRUE.

* weights The weight matrix, which is also saved in csv format. It has more columns than
membership but rows may be in a different order if dOrderByW=TRUE.

* heavyToLow If dOrderByW=TRUE, this will be the ordering of genes according to the modules
the belong to, where the genes in each module are ordered based on the absolute value of the
weights in that module. Also, the genes in the csv file are in this order.

For 2 or more groups (conditions), additional (optional) components include:

* pvalues A numeric matrix with columns "pValue", "FDR", and "Bonferroni". Rows cor-
respond to modules. The null hypothesis is that the eigengene is expressed with the same
distribution in all groups (conditions).

* log.pvalues A data frame with 1 column containing the logarithm of Bonferroni-adjusted
pvalues in base 10.

See Also

Pigengene-package, plot.pigengene, wgcna.one. step, compute.pigengene, learn.bn, make.decision. tree

plot.pigengene Plots and saves a pigengene object

Description

Plots a couple of heatmaps of expression of the eigengenes, weights (memberships), and so on.
Saves the plots in png format.

Usage

## S3 method for class 'pigengene'
plot(x, saveDir = NULL,
DiseaseColors="Auto",
fontsize = 35, doShowColnames = TRUE, fontsizeCol = 25,
doClusterCols = ncol(pigengene$eigengenes) > 1,
verbose = 2, doShowRownames = "Auto”,
pngfactor = max(2, ncol(pigengene$eigengenes)/16), do@Mem = FALSE, ...)



46

Arguments

X
saveDir

DiseaseColors

fontsize
doShowColnames
fontsizeCol
doClusterCols

verbose

doShowRownames
pngfactor
do@Mem

Details

plot.pigengene

The object from pigengene-class computed by compute.pigengene.
The dirctory for saving the plots

A vector of characters determining color for each disease. Names should match
the values in the first column of x$annotation.

Passd to pheatmap. type
Boolean
Numeric
Boolean

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

Boolean
A numeric adjusting the size of the png files
If TRUE, module 0 genes are included in the membership heatmap.

Passd to pheatmap. type function

Many of the arguments are passed to pheatmap.

Value

A list of:

heat

heatNotRows

Author(s)

The full output of pheatmap functionion

The full output of pheatmap. type function

Habil Zare ad Amir Foroushani

References

Large-scale gene network analysis reveals the significance of extracellular matrix pathway and
homeobox genes in acute myeloid leukemia, Foroushani A, Agrahari R, Docking R, Karsan A,
and Zare H. In preparation.

See Also

Pigengene-package, compute.pigengene, pheatmap. type



preds.at

47

Examples

## Data:

data(aml)

data(mds)

data(eigengenes33)

dl <- rbind(aml,mds)

Labels <- c(rep("AML" ,nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

Labels <- c(rep("AML",nrow(eigengenes33$aml)),rep("MDS",nrow(eigengenes33$mds)))

names(Labels) <- rownames(d1)

toyModules <- eigengenes33$modules[colnames(d1)]

## Computing:

pl <- compute.pigengene(Data=d1, Labels=Labels, modules=toyModules,
saveFile="pigengene.RData"”, doPlot=TRUE, verbose=3)

plot(p1,saveDir="plots")

preds.

at Prediction using a possibly compacted tree

Description

A decision tree in Pigengene uses module eigengenes to build a classifier that distincuishes two or
more classes. Each eigengene is a weighted average of the expression of all genes in the module,
where the weight of each gene corresponds to its membership in the module. Each modules might
contain dozens to hundreds of genes, and hence the final classifier might depend on the expression
of a large number of genes. In practice, it can be desireable to reduce the number of necessary genes
used by a decision tree. This function is helpful in observing changes to the classification output
after removing genes with lower weights membership. It determines how a given decision tree
would classify the expression data after removing a certain number of genes from consideration.

Usage

preds.at(c5Tree, pigengene, pos=0, Data)

Arguments

c5Tree A decision tree that uses eigengenes from the pigengene object to classify the
samples from the expression data.

pigengene A object of pigengene-class, output of compute.pigengene

pos Number of genes to be removed from the consideration. Genes are removed in
ascending order of their absolute weight in the relevant modules. If 0 (default),
the prediction will be done without compacting.

Data The expression possibly new data used for classification



48 project.eigen

Value

A list with following components:

predictions The vector of predictions after neglecting pos number of genes
eigengenes The values for the eigenges after neglecting pos number of genes
See Also

Pigengene-package, pigengene-class, make.decision.tree, compact. tree, compute.pigengene,
module.heatmap, get.used. features, get.fitted.leaf, Pigengene-package

Examples

## Data:

data(aml)

data(mds)
data(pigengene)

dl <- rbind(aml,mds)

## Fiting the trees:

trees <- make.decision.tree(pigengene=pigengene, Data=d1,
saveDir="trees"”, minPerLeaf=15, doHeat=FALSE,verbose=3,
toCompact=FALSE)

predsl <- preds.at(c5Tree=trees$c5Trees[["15"]], pigengene=pigengene,
pos=0, Data=d1)

project.eigen Infers eigengenes for given expression data

Description

This function projects (new) expression data onto the eigengenes of modules from another dataset.
It is useful for comparing the expression behaviour of modules accross (biologically related yet
independent) datasets, for evaluating the performance of a classifier on new datasets, and for exam-
ining the robustness of a pattern with regards to missing genes.

Usage

project.eigen(Data, saveFile = NULL, pigengene, naTolerance = 0.05,

verbose = @, ignoreModules = c())
Arguments
Data A matrix or data frame of expression data to be projected. Genes correspond to

columns, and rows correspond to samples. Rows and columns must be named.
It is OK to miss a few genes originally used to compute the eigengenes, thereby,
projection is robust to choose of platform.

saveFile If not NULL, where to save the results in .RData format.



project.eigen

pigengene

naTolerance

verbose

ignoreModules

Details

49

An object of pigengene-class, usually created by compute.pigengene. If
NULL, only projectionaries will be returned.

Upper threshold on the fraction of entries per gene that can be missing. Genes
with a larger fraction of missing entries are ignored. For genes with smaller frac-
tion of NA entries, the missing values are imputed from their average expression
in the other samples. See check.pigengene.input.

The integer level of verbosity. 0 means silent and higher values produce more
details of computation.

A vector of integers. In order to speed up the projection, it may be desirable
to focus only on the eigengenes of a few interesting modules. In that case,
the remaining modules can be listed here and will be ignored during projection
(Optional).

For each module, from the pigengene object, the weight (membership) of each gene is retrieved.
The eigengene is computed (inferred) on the new data as alinear combination using the correspond-
ing weights. The inferred eigengene vector will be normalized so that it has the same Euclidean
norm as the original eigengene vector.

Value

A list of:

projectionaries

projected
replacedNaNum
tooNaGenes

notMatched

Note

The character vector of names of minimal elements needed to be in the pigengene
object

The matrix of inferred (projected) eigengenes

The number of NA entries in the input Data that were replaced with the the
average expression of the corresponding gene

A character vector of genes that were ignored because they had too many NAs

A character vector of genes in the original eigengene that could not be matched
in the given input Data

The new data should use the same type of biolocal identifiers (e.g. Gene Symbols or ENTREZIDs)
as the original data for which the pigengene was constructed. It is, however, not required that
the new data originate from the same type of technology, e.g. the eigengenes can be based on
microarray experiments, whereas the new data comes from an RNA-Seq experiment. Nor is it
necessary that the new datset contains measurements for all of the genes from the original modules.

See Also

Pigengene-package, compute.pigengene moduleEigengenes



50

pvalues.manova

Examples

## Data:

data(aml)

data(mds)

data(eigengenes33)

dl <- rbind(aml,mds)

Labels <- c(rep("AML" ,nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

toyModules <- eigengenes33$modules[colnames(d1)]

## Computing:

p1 <- compute.pigengene(Data=d1, Labels=Labels, modules=toyModules,
saveFile="pigengene.RData"”, doPlot=TRUE, verbose=3, doMinimize=TRUE)

## How robust projecting is?

p2 <- project.eigen(Data=d1, pigengene = p1, verbose = 1)
plot(p1$eigengenes[,"ME1"],p2%$projected[, "ME1"])
stats::cor(pl1$eigengenes[,"ME1"],p2%$projectedl, "MET1"])

pvalues.manova Computes pvalues for multi-class differential expression

Description

Passes the arguments to manova, which performs multi-class analysis of variance.

Usage

pvalues.manova(Data, Labels)

Arguments
Data A matrix or data frame containing the (expression) data, with genes correspond-
ing to columns and rows corresponding to samples. Rows and columns must be
named.
Labels A (preferably named) vector containing the Labels (condition types). Names
must agree with rows of Data
Value

A list with following elements:

call

The call that created the results

pvals The matrix of pvalues with columns "pValue", "FDR", "Bonferroni". Rows are

named according to genes, the columns of Data.

manovaFit The full output of manova function.



save.if 51

Note

oneway . test function is a better generalizatoion to Welch’s t-tst from 2-calsses to multi-class be-
cause it dose not assume that the variaces are necessarly equal. However, in practice, with "enough
number of samples", the two approaches will lead to similar p-values.

Author(s)

Amir Foroushani

References

Krzanowski, W. J. (1988) _Principles of Multivariate Analysis. A User’s Perspective._ Oxford.

Hand, D. J. and Taylor, C. C. (1987) _Multivariate Analysis of Variance and Repeated Measures._
Chapman and Hall.

B. L. Welch (1951), On the comparison of several mean values: an alternative approach.

See Also

oneway . test, manova, compute.pigengene

Examples

data(eigengenes33)

dl <- rbind(eigengenes33$aml,eigengenes33$mds)

Labels <- c(rep("AML" ,nrow(eigengenes33$aml)),rep("MDS",nrow(eigengenes33$mds)))
names(Labels) <- rownames(d1)

ps <- pvalues.manova(Data=d1, Labels=Labels)

plot(logl@(ps$pvals[, "Bonferroni”]))

save.if Saves an object verbosely.

Description

Saves an R object, and reports the size of the saved object in memory and on file.

Usage
save.if(x1, file, compress=TRUE, verbose=1, ...)
Arguments
x1 The object to be saved.
file Where to save. If NULL, nothing will be saved.
compress A Boolean or character sent to the save function. The default TRUE leads to com-

pression using gzip. With "xz", maximum compression is obtained in expense
of more save and load time.



52

verbose

Value

wgcna.one.step

A numeric determining how much detail will be printed.

Optional arguments to be passed to the save function.

A list including file, and a vector of sizes of the object in memory and on file.

Author(s)

Amir Foroushani, and Habil Zare

See Also

message.if, save

Examples

ml <- matrix(@, nrow=1000, ncol=1000)
save.if(m1, file="./m1.RData"”, verbose=3)

wgcna.one.step

Module identification

Description

This function is a wrapper function for WGCNA::blockwiseModules and passes its arguments to
it. Some other arguments are fixed.

Usage

wgcna.one.step(Data, power, saveDir=".", blockSize = "All", saveTOMs = FALSE,
doThreads=FALSE, verbose = @, seed = NULL)

Arguments

Data

power
saveDir

blockSize

saveTOMs

doThreads

A matrix or data frame containing the expression data, with genes corresponding
to columns and rows corresponding to samples. Rows and columns must be
named.

Soft-thresholding power for network construction
The directory to save the results and plots. NULL will disable saving.

The size of block when the data is too big. If not "All" (default) may introduce
artifacts.

Boolean determining if the TOM data should be saved, which can be hundreds
of MBs and useful for identifying hubs.

Boolean. Allows WGCNA to run a little faster using multi-threading but might
not work on all systems.



wgcna.one.step 53

verbose The integer level of verbosity. 0 means silent and higher values produce more
details of computation.
seed Random seed to ensure reproducibility.
Details

Data, power, blockSize, saveTOMs, verbose, and seed are passed to WGCNA::blockwiseModules.

Value

A list with following components

call The command that created the results

genes The names of Data columns

modules A numeric vector, named by genes, that reports the module (clustering) assign-
ments.

moduleColors A character vector, named by genes, that reports the color of each gene accord-
ing to its module assignment

net The full output of blockwiseModules function
netFile The file in which the net object is saved
power An echo of the power argument.

References

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559
See Also

blockwiseModules, pickSoftThreshold, calculate.beta

Examples

data(aml)
wgRes <- wgcna.one.step(Data=aml[,1:200], seed=1, power=7,
saveDir="wgcna", verbose=1)



Index

* classes
pigengene-class, 44

* classif
compact.tree, 12
make.decision.tree, 31
one.step.pigengene, 38
project.eigen, 48

* cluster
calculate.beta, 7
combine.networks, 11
compute.pigengene, 14
determine.modules, 17
learn.bn, 27
module.heatmap, 37
one.step.pigengene, 38
pheatmap. type, 42
plot.pigengene, 45
project.eigen, 48
wgcna.one.step, 52

+ datasets
aml, 4
eigengenes33, 20
mds, 35
pigengene, 43
Pigengene-package, 3

* documentation
Pigengene-package, 3

* graphs
combine.networks, 11

+ graph
determine.modules, 17

+ hplot
pheatmap. type, 42

+* methods
pigengene-class, 44

* misc
gene.mapping, 21
get.enriched.pw, 23

+ models

54

one.step.pigengene, 38
Pigengene-package, 3

* optimize
apply.filter,5
learn.bn, 27
make.filter, 34
one.step.pigengene, 38

+ package
Pigengene-package, 3

* tree
compact.tree, 12
get.fitted.leaf, 24
get.genes, 25
get.used.features, 26
make.decision.tree, 31
module.heatmap, 37
one.step.pigengene, 38
preds.at, 47

* utilities
balance, 6
check.nas, 8

check.pigengene.input, 9

dcor.matrix, 16
draw.bn, 19
get.fitted.leaf, 24
get.used. features, 26
message.if, 36
module.heatmap, 37
pvalues.manova, 50
save.if, 51

adjacency, 11

aml, 4,21, 36,43, 44
apply.filter,5, 18,35
arc.strength, 28

balance, 6, 15,41, 44

blockwiseModules, 3,8, 11, 12, 15,17, 18,

41,52, 53



INDEX

C5.0, 14, 33
calculate.beta, 7,41, 53
check.nas, 8, 10
check.pigengene.input, 6, 9,9, 10, 15, 29,
33,40, 41,49
combine.networks, 11, /8
compact.tree, 12, 25-27, 33, 37, 38, 48
compute.pigengene, 3, 7, 13, 14, 14, 20, 21,
25-28, 31, 33, 36-38, 41, 4349, 51

dcor.matrix, 16
determine.modules, 5, 17
difftime, 30
discretize, 29
draw.bn, 19

eigengenes33, 20, 42
enrichGo, 23, 24
enrichKEGG, 24
enrichNCG, 24
enrichPathway, 24

gene.mapping, 21
get.enriched.pw, 23, 40
get.fitted.leaf, 24, 27,48
get.genes, 25
get.used.features, 25, 26, 26, 48
graphviz.plot, 20

hc, 28
learn.bn, 20, 21,27, 39, 41, 45

make.decision.tree, 14, 15, 25-27, 31,
38-41,45,48

make.filter, 5, I8, 34

manova, 50, 51

mds, 5, 21, 35,43, 44

message.if, 36, 52

module.heatmap, 25, 27, 33, 37, 48

moduleEigengenes, 15, 44, 49

one.step.pigengene, 3, 5,7, 8, 10, 15, 35
36, 38, 44

oneway.test, 5/

org.Hs.eg.db, 22

org.Mm.eg.db, 22

pheatmap, 42, 46
pheatmap. type, 37, 42, 46

55

pickSoftThreshold, 8, 11, 18, 39, 53

pickSoftThreshold.fromSimilarity, /2,
18

Pigengene (Pigengene-package), 3

pigengene, 5, 43

pigengene-class, 44

Pigengene-package, 3

plot, pigengene-method
(pigengene-class), 44

plot.pigengene, 45, 45

prcomp, 15

preds.at, 25-27, 37, 47

project.eigen, 3, 15,41,44, 48

pvalues.manova, 50

save, 51, 52
save.if, 51
score, 28

TOMsimilarity, 12

WGCNA, 7
wgcna.one.step, 7, 8, 15,41, 45,52



	Pigengene-package
	aml
	apply.filter
	balance
	calculate.beta
	check.nas
	check.pigengene.input
	combine.networks
	compact.tree
	compute.pigengene
	dcor.matrix
	determine.modules
	draw.bn
	eigengenes33
	gene.mapping
	get.enriched.pw
	get.fitted.leaf
	get.genes
	get.used.features
	learn.bn
	make.decision.tree
	make.filter
	mds
	message.if
	module.heatmap
	one.step.pigengene
	pheatmap.type
	pigengene
	pigengene-class
	plot.pigengene
	preds.at
	project.eigen
	pvalues.manova
	save.if
	wgcna.one.step
	Index

