Package ‘PepSetTest’

February 2, 2026
Title Peptide Set Test
Version 1.5.0

Description Peptide Set Test (PepSetTest) is a peptide-
centric strategy to infer differentially expressed proteins in LC-MS/MS proteomics data.
This test detects coordinated changes in the expression of peptides originat-
ing from the same protein and compares these changes against the rest of the peptidome.
Compared to traditional aggregation-based approaches, the peptide set test demonstrates im-
proved statistical power, yet controlling the Type I error rate correctly in most cases.
This test can be valuable for discovering novel biomarkers and prioritizing drug targets, espe-
cially when the direct application of
statistical analysis to protein data fails to provide substantial insights.

License GPL (>=3)

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1

Imports dplyr, limma, Ime4, MASS, matrixStats, reshape?2, stats,
tibble, SummarizedExperiment, methods

Suggests statmod, BiocStyle, knitr, rmarkdown, tidyr

biocViews DifferentialExpression, Regression, Proteomics,
MassSpectrometry

VignetteBuilder knitr
URL https://github.com/IJmWangBio/PepSetTest

BugReports https://github.com/IJmWangBio/PepSetTest/issues
git_url https://git.bioconductor.org/packages/PepSetTest

git_branch devel

git_last_commit f2ac665

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Junmin Wang [aut, cre]

Maintainer Junmin Wang <jmwang.bio@gmail.com>

1

https://github.com/JmWangBio/PepSetTest
https://github.com/JmWangBio/PepSetTest/issues

2 PepSetTest-package

Contents
PepSetTest-package 2
AgglimmaWorkflow 3
AggPeps . . . e 5
CompPepSetTest e 6
CompPepSetTestWorkflow L 8
EnframeContrastsRes 10
EstimInterPepCor 11
FitContrasts e 13
FitLmerBySample 14
RobustReg e 15
SelfContPepSetTestWorkflow 16
TTestwCor e e e e e e e e e e e e e e e 18

Index 20

PepSetTest-package PepSetTest: Peptide Set Test

Description

Peptide Set Test (PepSetTest) is a peptide-centric strategy to infer differentially expressed proteins
in LC-MS/MS proteomics data. This test detects coordinated changes in the expression of peptides
originating from the same protein and compares these changes against the rest of the peptidome.
Compared to traditional aggregation-based approaches, the peptide set test demonstrates improved
statistical power, yet controlling the Type I error rate correctly in most cases. This test can be
valuable for discovering novel biomarkers and prioritizing drug targets, especially when the direct
application of statistical analysis to protein data fails to provide substantial insights.

Author(s)

Maintainer: Junmin Wang <jmwang.bio@gmail.com>

See Also

Useful links:

* https://github.com/JmWangBio/PepSetTest

* Report bugs at https://github.com/IJmWangBio/PepSetTest/issues

https://github.com/JmWangBio/PepSetTest
https://github.com/JmWangBio/PepSetTest/issues

AgglLimmaWorkflow

AgglimmaWorkflow

Aggregation-based LIMMA workflow

Description

Given peptide abundance and assignment of peptide sequences to proteins, execute the aggregation-
based LIMMA workflow to compute the log2 fold change, p-value, and adjusted p-value of all

proteins identified.

Usage

Aggl immaWorkflow(
dat,
contrasts.par,
group,
pep_mapping_tbl,
covar = NULL,
method = c("sum”, "robreg"),

logged = c(TRUE, FALSE),
npep.trend = FALSE,

eb = TRUE

Arguments

dat

contrasts.par

group

pep_mapping_tbl

covar
method

logged
npep.trend

eb

a dataframe or matrix of peptide abundance, or a SummarizedExperiment ob-
ject where grouping and peptide-protein mapping are provided in colData and
rowData, respectively.

group levels to be compared separated by dash (e.g., "B-A" if group B is to be
compared against group A)

a vector of group levels corresponding to each sample. Alternatively, it can be
the column name of the group in colData if dat is a SummarizedExperiment
object.

a table mapping peptides to proteins. Alternatively, it can be the column name
of the protein in rowData if dat is a SummarizedExperiment object.

covariate matrix. Alternatively, it can be the column names of the covariates in
colData if dat is a SummarizedExperiment object.

method of aggregation. Options including "sum" (summed peptide intensity)
and "robreg" (robust regression with M-Estimation).

Boolean variable indicating whether abundance data have been log-transformed

logical, should a number-of-peptide-trend be allowed for the prior variance?
Default is constant prior variance.

logical, whether to output the result from the empirical Bayes or ordinary ap-
proach.

4 AggLimmaWorkflow

Value

Aggl immaWorkflow returns a dataframe containing the following columns

feature unique protein identifier
logFC log2 fold change
t t-statistic
P.Value raw p-value
adj.P.val p-value adjusted via the Benjamini-Hochberg method
B B-statistic (empirical Bayes only)
Author(s)

Junmin Wang

References

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma pow-
ers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research 43, e47.

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@("Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate peptide mapping table
pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:500),
protein = paste@("Protein”, rep(1:100, each = 5)))

Generate groups and contrasts
group <- c(rep("A", 3), rep("B", 3))
contrasts.par <- "B-A"

AgglimmaWorkflow(dat, contrasts.par = contrasts.par,
group = group,
pep_mapping_tbl = pep_mapping_tbl,

method = "sum”,
logged = FALSE)

Store data as a SummarizedExperiment object; add covariates
library(tibble)

library(SummarizedExperiment)

colData <- data.frame(sample = LETTERS[seq_along(group)], group = group,
sex = c("M", "F", "M", "F", "F", "M"), age = 1:6) |>
column_to_rownames(var = "sample")

rowData <- pep_mapping_tbl |> column_to_rownames(var = "peptide")

dat.nn <- dat

rownames(dat.nn) <- NULL

AggPeps 5

colnames(dat.nn) <- NULL
dat.se <- SummarizedExperiment(assays = list(int = dat.nn), colData = colData, rowData = rowData)

AgglimmaWorkflow(dat.se, contrasts.par = contrasts.par,

group = "group”,

covar = c("sex", "age"),
pep_mapping_tbl = "protein”,
method = "sum”,

logged = FALSE)

AggPeps Aggregate peptide abundance values

Description

Given peptide abundance and assignment of peptide sequences to proteins, aggregate peptide abun-
dance values into protein abundance values.

Usage
AggPeps(
dat,
pep_mapping_tbl,
method = c("sum”, "robreg"),
logged = c(TRUE, FALSE)
)
Arguments
dat a dataframe or matrix of peptide abundance, or a SummarizedExperiment ob-

ject where grouping and peptide-protein mapping are provided in colData and
rowData, respectively.

pep_mapping_tbl
a table mapping peptides to proteins. Alternatively, it can be the column name
of the protein in rowData if dat is a SummarizedExperiment object.

method method of aggregation. Options including "sum" (summed peptide intensity)
and "robreg" (robust regression with M-Estimation).
logged Boolean variable indicating whether abundance data have been log-transformed
Value

AggPeps returns a list containing a matrix of protein abundance values and a vector of number of
peptides

Author(s)

Junmin Wang

6 CompPepSetTest

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@("Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate peptide mapping table

pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:500),
protein = paste@("Protein”, rep(1:100, each = 5)))

AggPeps(dat, pep_mapping_tbl, method = "sum",
logged = FALSE)

Store data as a SummarizedExperiment object

library(tibble)
library(SummarizedExperiment)
rowData <- pep_mapping_tbl |> column_to_rownames(var = "peptide")

dat.nn <- dat

rownames(dat.nn) <- NULL

colnames(dat.nn) <- NULL

dat.se <- SummarizedExperiment(assays = list(int = dat.nn), rowData = rowData)
AggPeps(dat.se, pep_mapping_tbl = "protein”, method = "sum”,
logged = FALSE)

CompPepSetTest Competitive peptide set test

Description

Given peptide-wise t-statistics and assignment of peptides to proteins, conduct peptide set tests to
assess differential protein expression.

Usage

CompPepSetTest(
result,
pep_mapping_tbl,
stat = c("t", "logFC"),
cor_coef = 0,
pepC.estim = c("sd”, "mad")

Arguments

result output from EnframeContrastsRes

CompPepSetTest 7

pep_mapping_tbl
a table mapping peptides to proteins. Alternatively, it can be the column name
of the protein in rowData if dat is a SummarizedExperiment object.

stat statistics to be used in the peptide set test. Options include "t" (t-statistic) and
"logFC" (log2 fold change).

cor_coef inter-peptide correlation coefficient(s)

pepC.estim estimator of the variance of peptide-wise t-statistics not belonging to the protein

of interest, i.e., test set. Options include "sd" and "mad". "sd" represents sample
standard deviation. "mad" represents sample median absolute deviation.

Value

CompPepSetTest returns a dataframe containing the following columns

protein unique protein identifier
NPeps number of peptides
Correlation inter-peptide correlation coefficient
Direction direction of change
PValue raw p-value
adj.P.val p-value adjusted via the Benjamini-Hochberg method
logFC average log2 fold change of peptides
Up number of upregulated peptides
Down number of downregulated peptides
Author(s)

Junmin Wang

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@(”Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate peptide mapping table
pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:500),
protein = paste@("Protein”, rep(1:100, each = 5)))

Generate groups and contrasts
group <- c(rep("A", 3), rep("B", 3))
contrasts.par <- "B-A"

fit.cont <- FitContrasts(dat, contrasts.par, group)
cont.res <- EnframeContrastsRes(fit.cont)

Run peptide set test based on t-statistics and standard deviation
CompPepSetTest(cont.res, pep_mapping_tbl, stat = "t",

8 CompPepSetTestWorkflow

cor_coef = 0, pepC.estim = "sd")

Run peptide set test based on log2 fold change and median absolute deviation
CompPepSetTest(cont.res, pep_mapping_tbl, stat = "logFC",
cor_coef = 0, pepC.estim = "mad")

CompPepSetTestWorkflow
Competitive Peptide Set Test Workflow

Description

Given peptide abundance and assignment of peptide sequences to proteins, execute the competitive
peptide set test workflow to compute the log2 fold change, p-value, and adjusted p-value of all
proteins identified.

Usage

CompPepSetTestWorkflow(
dat,
contrasts.par,
group,
pep_mapping_tbl,
covar = NULL,
stat = c("t", "logFC"),
correlated = FALSE,
equal.correlation = FALSE,
pepC.estim = c("sd”, "mad"),
logged = FALSE

Arguments

dat a dataframe or matrix of peptide abundance (row names should be peptide se-
quences or peptide IDs), or a SummarizedExperiment object where grouping
and peptide-protein mapping are provided in colData and rowData, respectively.

contrasts.par group levels to be compared separated by dash (e.g., "B-A" if group B is to be
compared against group A)

group a vector of group levels corresponding to each sample. Alternatively, it can be
the column name of the group in colData if dat is a SummarizedExperiment
object.

pep_mapping_tbl
a table mapping peptides to proteins (it should include two columns named "pep-
tide" and "protein"). Alternatively, it can be the column name of the protein in
rowData if dat is a SummarizedExperiment object.

CompPepSetTest Workflow 9

covar covariate matrix. Alternatively, it can be the column names of the covariates in
colData if dat is a SummarizedExperiment object.

stat statistics to be used in the peptide set test. Options include "t" (t-statistic) and
"logFC" (log2 fold change).

correlated Boolean variable indicating whether peptides are assumed to be correlated. If

correlated, inter-peptide correlation will be estimated.

equal.correlation
Boolean variable indicating whether all pairwise inter-peptide correlation co-
efficients are assumed to be equal within a protein. If true, the mixed model
approach will be applied; otherwise, the approach described in Wu and Smyth
(2012), Nucleic Acids Research will be applied. Note that this parameter matters
only if "correlated" is set to true.

pepC.estim estimator of the variance of peptide-wise t-statistics not belonging to the protein
of interest, i.e., test set. Options include "sd" and "mad". "sd" represents sample
standard deviation. "mad" represents sample median absolute deviation.

logged Boolean variable indicating whether abundance data have been log-transformed

Value

CompPepSetTestWorkflow returns a dataframe containing the following columns

protein unique protein identifier
NPeps number of peptides
Correlation inter-peptide correlation coefficient
Direction direction of change
PValue raw p-value
adj.P.val p-value adjusted via the Benjamini-Hochberg method
logFC average log2 fold change of peptides
Up number of upregulated peptides
Down number of downregulated peptides
Author(s)

Junmin Wang

References

Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene
correlation. Nucleic Acids Research 40, €133

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@("Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

10 EnframeContrastsRes

Generate peptide mapping table
pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:500),
protein = paste@("Protein”, rep(1:100, each = 5)))

Generate groups and contrasts
group <- c(rep("A", 3), rep("B", 3))
contrasts.par <- "B-A"

CompPepSetTestWorkflow(dat, contrasts.par = contrasts.par,
group = group,

pep_mapping_tbl = pep_mapping_tbl,

stat = "t",

correlated = TRUE,

equal.correlation = TRUE,

pepC.estim = "mad"”,

logged = FALSE)

Store data as a SummarizedExperiment object; add covariates
library(tibble)

library(SummarizedExperiment)

colData <- data.frame(sample = LETTERS[seq_along(group)], group = group,
sex = c("M", "F", "M", "F", "F", "M"), age = 1:6) |>
column_to_rownames(var = "sample")

rowData <- pep_mapping_tbl |> column_to_rownames(var = "peptide”)

dat.nn <- dat

rownames(dat.nn) <- NULL

colnames(dat.nn) <- NULL

dat.se <- SummarizedExperiment(assays = list(int = dat.nn), colData = colData, rowData = rowData)

CompPepSetTestWorkflow(dat.se, contrasts.par = contrasts.par,

group = "group”,
pep_mapping_tbl = "protein”,
covar = c("sex", "age"),
stat = "t",

correlated = TRUE,
equal.correlation = TRUE,
pepC.estim = "mad”,
logged = FALSE)

EnframeContrastsRes Enframe result of LIMMA analysis

Description

Convert result of LIMMA analysis into a dataframe.

Usage

EnframeContrastsRes(eBayes.fit, eb = TRUE)

EstimInterPepCor 11

Arguments
eBayes.fit output from FitContrasts. See ?1imma: : eBayes for details.
eb logical, whether to output the result from the empirical Bayes or ordinary ap-
proach.
Value

EnframeContrastsRes returns a dataframe containing the following columns

feature unique feature identifier
logFC log2 fold change
t t-statistic
P.Value raw p-value
adj.P.val p-value adjusted via the Benjamini-Hochberg method
B B-statistic (empirical Bayes only)
Author(s)

Junmin Wang

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@(”Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate groups and contrasts
group <- c(rep("A”, 3), rep("B", 3))
contrasts.par <- "B-A"

fit.cont <- FitContrasts(dat, contrasts.par, group)
EnframeContrastsRes(fit.cont)

EstimInterPepCor Estimation of inter-peptide correlation

Description

Given peptide abundance and assignment of peptide sequences to proteins, estimate inter-peptide
correlation coefficient for each protein via the mixed model approach or approach described in Wu
and Smyth (2012), Nucleic Acids Research.

12 EstimInterPepCor

Usage

EstimInterPepCor(
dat,
design,
pep_mapping_tbl,
equal.correlation = FALSE,
logged = FALSE

)
Arguments
dat a dataframe or matrix of peptide abundance, or a SummarizedExperiment ob-
ject where grouping and peptide-protein mapping are provided in colData and
rowData, respectively.
design design matrix

pep_mapping_tbl
a table mapping peptides to proteins. Alternatively, it can be the column name
of the protein in rowData if dat is a SummarizedExperiment object.
equal.correlation

Boolean variable indicating whether all pairwise inter-peptide correlation co-
efficients are assumed to be equal within a protein. If true, the mixed model
approach will be applied; otherwise, the approach described in Wu and Smyth
(2012), Nucleic Acids Research will be applied. In either case, only non-negative
mean correlations are allowed.

logged Boolean variable indicating whether abundance data have been log-transformed

Value
EstimInterPepCor returns a numeric vector of inter-peptide correlation coefficients (one value for
each protein).

Author(s)

Junmin Wang and Steven Novick

References

Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene
correlation. Nucleic Acids Research 40, e133

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(540), ncol = 6)
colnames(dat) <- paste@("Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:90)

Generate peptide mapping table
pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:90),

FitContrasts 13

protein = paste@("Protein”, rep(1:30, each = 3)))

Generate design matrix

group <- c(rep("A", 3), rep("B", 3))
group <- factor(group)

design <- stats::model.matrix(~ @ + group)

EstimInterPepCor(dat, design, pep_mapping_tbl,
equal.correlation = TRUE, logged = FALSE)

FitContrasts Empirical Bayes moderated t-test

Description

Fit a linear model to feature abundance and compute moderated t-statistics via the empirical Bayes

method.
Usage
FitContrasts(
dat,
contrasts.par,
group,
covar = NULL,

logged = FALSE,
NPeptide = NULL

Arguments

dat a dataframe or matrix of feature (e.g., peptide, protein) abundance

contrasts.par group levels to be compared separated by dash (e.g., "B-A" if group B is to be
compared against group A)

group list of group levels corresponding to each sample. The order of group levels
needs to match that of samples in the feature abundance table.

covar covariate matrix

logged Boolean variable indicating whether data have been log-transformed

NPeptide numeric vector indicating number of peptides aggregated for each protein. logN-

Peptide will be passed to limma-trend. Constant prior variance if null.

Value

FitContrasts returns an object of class MArrayLM. See ?1imma: : eBayes for details.

14 FitLmerBySample

Author(s)

Junmin Wang

References

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015). limma pow-
ers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research 43, e47.

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@(”Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate groups and contrasts
group <- c(rep("A", 3), rep("B", 3))
contrasts.par <- "B-A"

Run moderated t-test without covariates
FitContrasts(dat, contrasts.par, group)

Run moderated t-test with covariates
covar <- matrix(c(1:6, @, 1, @, 1, 1, @), nrow = 6, ncol = 2, byrow = FALSE)
FitContrasts(dat, contrasts.par, group, covar = covar)

FitLmerBySample Fit a linear mixed model

Description

Fit a linear mixed model to the abundance of peptides belonging to one protein and compute the
correlation coefficient based on variance components. Sample is treated as a random effect in the
mixed model.

Usage
FitLmerBySample(y, design)

Arguments
y a matrix of log2-transformed peptide abundance for one protein
design design matrix

Value

FitLmerBySample returns the estimated inter-peptide correlation coefficient.

RobustReg 15

Author(s)

Junmin Wang and Steven Novick

Examples

y <= matrix(rnorm(1000%6), 1000, 6)
design <- cbind(Intercept = 1, Group = c(@, @, @, 1, 1, 1))

FitLmerBySample(y, design)

RobustReg Robust Regression

Description

Estimate protein abundance by fitting a linear model to peptide abundance via robust regression.

Usage

RobustReg(dat, logged = FALSE)

Arguments
dat a dataframe or matrix of peptide abundance, or a SummarizedExperiment ob-
ject where grouping and peptide-protein mapping are provided in colData and
rowData, respectively.
logged Boolean variable indicating whether abundance data have been log-transformed
Value

RobustReg returns a numeric vector of estimated protein abundance.

Author(s)

Junmin Wang

References

Sticker, A, Goeminne, L, Martens, L, and Clement, L (2020). Robust Summarization and Inference
in Proteome-wide Label-free Quantification. Molecular & Cellular Proteomics 19, 1209-19.

Gatto, L, Rainer, J, and Gibb, S (2021). MsCoreUtils: Core Utils for Mass Spectrometry Data. R
packageversion 1.4.0. https://github.com/RforMassSpectrometry/MsCoreUtils

16 SelfContPepSetTestWorkflow

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(600), ncol = 6)
colnames(dat) <- paste@(”Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:100)

RobustReg(dat, logged = FALSE)

SelfContPepSetTestWorkflow
Self-contained Peptide Set Test Workflow

Description

Given peptide abundance and assignment of peptide sequences to proteins, execute the self-contained
peptide set test workflow to compute the log2 fold change, p-value, and adjusted p-value of all pro-
teins identified.

Usage
SelfContPepSetTestWorkflow(
dat,
contrasts.par,
group,
pep_mapping_tbl,
covar = NULL,
logged = FALSE
)
Arguments
dat a dataframe or matrix of peptide abundance (row names should be peptide se-

quences or peptide IDs), or a SummarizedExperiment object where grouping
and peptide-protein mapping are provided in colData and rowData, respectively.

contrasts.par group levels to be compared separated by dash (e.g., "B-A" if group B is to be
compared against group A)

group a vector of group levels corresponding to each sample. Alternatively, it can be
the column name of the group in colData if dat is a SummarizedExperiment
object.

pep_mapping_tbl
a table mapping peptides to proteins (it should include two columns named "pep-
tide" and "protein"). Alternatively, it can be the column name of the protein in
rowData if dat is a SummarizedExperiment object.

covar covariate matrix. Alternatively, it can be the column names of the covariates in
colData if dat is a SummarizedExperiment object.

logged Boolean variable indicating whether abundance data have been log-transformed

SelfContPepSetTest Workflow 17

Value

SelfContPepSetTestWorkflow returns a dataframe containing the following columns

protein unique protein identifier

NPeps number of peptides

Direction direction of change

PvValue raw p-value

adj.P.val adjusted p-value

logFC average log2 fold change of peptides

Up number of upregulated peptides

Down number of downregulated peptides
Author(s)

Junmin Wang

References

Wu, D, Lim, E, Francois Vaillant, F, Asselin-Labat, M-L, Visvader, JE, and Smyth, GK (2010).
ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176-2182

Examples

Generate random peptide data

dat <- 2*matrix(rnorm(3000), ncol = 6)
colnames(dat) <- paste@(”Sample”, 1:6)
rownames(dat) <- paste@("Peptide”, 1:500)

Generate peptide mapping table
pep_mapping_tbl <- data.frame(peptide = paste@("Peptide”, 1:500),
protein = paste@("Protein”, rep(1:100, each = 5)))

Generate groups and contrasts
group <- c(rep("A", 3), rep("B", 3))
contrasts.par <- "B-A"

SelfContPepSetTestWorkflow(dat, contrasts.par = contrasts.par,
group = group,

pep_mapping_tbl = pep_mapping_tbl,

logged = FALSE)

Store data as a SummarizedExperiment object; add covariates
library(tibble)

library(SummarizedExperiment)

colData <- data.frame(sample = LETTERS[seq_along(group)], group = group,
sex = c("M", "F", "M", "F", "F", "M"), age = 1:6) |>
column_to_rownames(var = "sample")

rowData <- pep_mapping_tbl |> column_to_rownames(var = "peptide")

dat.nn <- dat

18 TTestwCor

rownames(dat.nn) <- NULL
colnames(dat.nn) <- NULL
dat.se <- SummarizedExperiment(assays = list(int = dat.nn), colData = colData, rowData = rowData)

SelfContPepSetTestWorkflow(dat.se, contrasts.par = contrasts.par,

group = "group”,
pep_mapping_tbl = "protein”,
covar = c("sex", "age"),

logged = FALSE)

TTestwCor Two-sample t-test accounting for inter-peptide correlation

Description

Test whether peptides belonging to the same protein are differentially expressed relative to the
rest of the peptidome, accounting for inter-peptide correlation. This function is adapted from
cameraPR() in LIMMA R package (Wu and Smyth (2012), Nucleic Acids Research).

Usage

TTestwCor(statistic, index, inter.pep.cor, pepC.estim = c("sd", "mad"))
Arguments

statistic a numeric vector of peptide-wise t-statistics.

index an index vector or a list of index vectors. statistic[index] selects corre-

sponding rows in the protein of interest, i.e., test set(s).

inter.pep.cor a numeric vector of inter-peptide correlation coefficients within the protein of
interest, i.e., test set(s).

pepC.estim estimator of the variance of peptide-wise t-statistics not belonging to the protein
of interest, i.e., test set. Options include "sd" and "mad". "sd" represents sample
standard deviation. "mad" represents sample median absolute deviation.

Value

TTestwCor returns a dataframe in which each row represents a protein of interest, i.e., test set.
Columns include

NPeps number of peptides

Correlation inter-peptide correlation coefficient
Direction direction of change

PValue raw p-value

adj.P.val p-value adjusted via the Benjamini-Hochberg method

TTestwCor 19

Author(s)

Junmin Wang

References

Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene
correlation. Nucleic Acids Research 40, €133

Examples

y <- matrix(rnorm(1000 x 6), 1000, 6)
design <- cbind(Intercept = 1, Group = c(@, 0, @, 1, 1, 1))

First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
yLindex1, 4:6] <- y[index1, 4:6]+1

fit <- limma::eBayes(limma::1lmFit(y, design))
TTestwCor (fit$t[, 2], index = index1,
inter.pep.cor = 0,

pepC.estim = "sd")

Index

* internal
PepSetTest-package, 2

AgglimmaWorkflow, 3
AggPeps, 5

CompPepSetTest, 6
CompPepSetTestWorkflow, 8

EnframeContrastsRes, 10
EstimInterPepCor, 11

FitContrasts, 13
FitLmerBySample, 14

PepSetTest (PepSetTest-package), 2
PepSetTest-package, 2

RobustReg, 15
SelfContPepSetTestWorkflow, 16

TTestwCor, 18

20

	PepSetTest-package
	AggLimmaWorkflow
	AggPeps
	CompPepSetTest
	CompPepSetTestWorkflow
	EnframeContrastsRes
	EstimInterPepCor
	FitContrasts
	FitLmerBySample
	RobustReg
	SelfContPepSetTestWorkflow
	TTestwCor
	Index

