
Package ‘PPInfer’
February 2, 2026

Type Package

Title Inferring functionally related proteins using protein
interaction networks

Description Interactions between proteins occur in many, if not most, biological processes. Most pro-
teins perform their functions in networks associated with other pro-
teins and other biomolecules. This fact has motivated the development of a variety of experimen-
tal methods for the identification of protein interactions. This variety has in turn ush-
ered in the development of numerous different computational approaches for modeling and pre-
dicting protein interactions. Sometimes an experiment is aimed at identifying proteins closely re-
lated to some interesting proteins. A network based statistical learning method is used to in-
fer the putative functions of proteins from the known functions of its neighboring pro-
teins on a PPI network. This package identifies such proteins often involved in the same or simi-
lar biological functions.

Version 1.37.0

Date 2022-11-17

Author Dongmin Jung, Xijin Ge

Maintainer Dongmin Jung <dmdmjung@gmail.com>

Depends biomaRt, fgsea, kernlab, ggplot2, igraph, STRINGdb,
yeastExpData

Imports httr, grDevices, graphics, stats, utils

License Artistic-2.0

biocViews Software, StatisticalMethod, Network, GraphAndNetwork,
GeneSetEnrichment, NetworkEnrichment, Pathways

NeedsCompilation no

git_url https://git.bioconductor.org/packages/PPInfer

git_branch devel

git_last_commit 37e1583

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

2 PPInfer-package

Contents

PPInfer-package . 2
enrich.net . 3
GSEA.barplot . 4
net.infer . 6
net.infer.ST . 7
net.kernel . 9
ORA . 10
ORA.barplot . 11
ppi.infer.human . 12
ppi.infer.mouse . 13
self.train.kernel . 15

Index 17

PPInfer-package Inferring functionally related proteins using protein interaction net-
works

Description

Interactions between proteins occur in many, if not most, biological processes. Most proteins per-
form their functions in networks associated with other proteins and other biomolecules. This fact
has motivated the development of a variety of experimental methods for the identification of protein
interactions. This variety has in turn ushered in the development of numerous different computa-
tional approaches for modeling and predicting protein interactions. Sometimes an experiment is
aimed at identifying proteins closely related to some interesting proteins. A network based statisti-
cal learning method is used to infer the putative functions of proteins from the known functions of
its neighboring proteins on a PPI network. This package identifies such proteins often involved in
the same or similar biological functions.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Dongmin Jung, Xijin Ge

Maintainer: Dongmin Jung <dmdmjung@gmail.com>

enrich.net 3

enrich.net Visualize network for the functional enrichment analysis

Description

The connection between nodes depends on the proportion of overlapping genes between two cate-
gories.

Usage

enrich.net(x, gene.set, node.id, node.name = node.id, pvalue,
n = 50, numChar = NULL, pvalue.cutoff = 0.05,
edge.cutoff = 0.05, degree.cutoff = 0,
edge.width = function(x) {10*x^2},
node.size = function(x) {2.5*log10(x)},
group = FALSE, group.color = c('red', 'green'),
group.shape = c('circle', 'square'),
legend.parameter = list('topright'),
show.legend = TRUE, ...)

Arguments

x a result with category and p-value of gene sets
gene.set gene sets which is already used for functional enrichment
node.id name of gene sets
node.name label of nodes in the network (default: node.id)
pvalue pvalues for categories
n number of top categories (default: 50)
numChar the maximal number of characters of the label of gene sets
pvalue.cutoff nodes with p-values which are greater than pvalue.cutoff are removed (default:

0.05)
edge.cutoff edges with the proportion which is less than edge.cutoff are removed (default:

0.05)
degree.cutoff nodes with the degrees which are less than degree.cutoff are removed (default:

0)
edge.width width of edges
node.size size of nodes
group variable for group
group.color color for group (default: red and green for 2 groups)
group.shape shape for group (default: circle and square for 2 groups)
legend.parameter

list of parametres for the legend
show.legend show the legend (default: TRUE)
... additional parameters for the igraph

4 GSEA.barplot

Value

plot for the network. The size of nodes is proportional to the size of gene sets. The more significant
categories are, the less transparent their nodes are.

Author(s)

Dongmin Jung, Xijin Ge

References

Yu G, Wang L, Yan G and He Q (2015). "DOSE: an R/Bioconductor package for Disease Ontology
Semantic and Enrichment analysis." Bioinformatics, 31(4), pp. 608-609.

See Also

igraph

Examples

data(examplePathways)
data(exampleRanks)
set.seed(1)
result.GSEA <- fgsea(examplePathways, exampleRanks, nperm = 1000)
enrich.net(result.GSEA, examplePathways, node.id = 'pathway',

pvalue = 'pval', edge.cutoff = 0.6, degree.cutoff = 1,
n = 50, vertex.label.cex = 0.75, show.legend = FALSE,
edge.width = function(x) {5*sqrt(x)},
layout = igraph::layout.kamada.kawai)

GSEA.barplot Visualize the gene set enrichment analysis

Description

For the functional enrichment analysis, we can visualize the result from the gene set enrichment
analysis.

Usage

GSEA.barplot(object, category, score, pvalue, top = 10,
sort = NULL, decreasing = FALSE, numChar = NULL,
title = NULL, transparency = 0.5, plot = TRUE)

GSEA.barplot 5

Arguments

object a table with category, enrichment score and p-value of gene sets

category name of gene sets

score enrichment score

pvalue p-value of gene sets

top the number of top categories (default: 10)

sort a variable used for sorting data

decreasing logical indicating whether ascending or descending order (default: FALSE)

numChar the maximal number of characters of the name of gene sets

title title for the plot

transparency transparency (default: 0.5)

plot return plot when plot is true, otherwise return table (default: TRUE)

Value

GSEA barplot

Author(s)

Dongmin Jung, Xijin Ge

References

Yu G, Wang L, Yan G and He Q (2015). "DOSE: an R/Bioconductor package for Disease Ontology
Semantic and Enrichment analysis." Bioinformatics, 31(4), pp. 608-609.

See Also

ggplot2

Examples

data(examplePathways)
data(exampleRanks)
set.seed(1)
result.GSEA <- fgsea(examplePathways, exampleRanks, nperm = 1000)
GSEA.barplot(result.GSEA, category = 'pathway', score = 'NES',

pvalue = 'pval', sort = 'NES', decreasing = TRUE)

6 net.infer

net.infer Inferring functionally related proteins using networks

Description

Proteins can be classified by using networks to identify functionally closely related proteins.

Usage

net.infer(target, kernel, top = NULL, cross = 0,
C = 1, nu = 0.2, epsilon = 0.1, cache1 = 40,
tol1 = 0.001, shrinking1 = TRUE, cache2 = 40,
tol2 = 0.001, shrinking2 = TRUE)

Arguments

target set of interesting proteins or target class

kernel the regularized Laplacian matrix for a graph

top number of top proteins most closely related to target class (default: all proteins
except for target and pseudo-absence class)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data
is performed to assess the quality of the model

C cost of constraints violation for SVM (default: 1)

nu The nu parameter for OCSVM (default: 0.2)

epsilon epsilon in the insensitive-loss function for OCSVM (default: 0.1)

cache1 cache memory in MB for OCSVM (default: 40)

tol1 tolerance of termination criterion for OCSVM (default: 0.001)

shrinking1 option whether to use the shrinking-heuristics for OCSVM (default: TRUE)

cache2 cache memory in MB for SVM (default: 40)

tol2 tolerance of termination criterion for SVM (default: 0.001)

shrinking2 option whether to use the shrinking-heuristics for SVM (default: TRUE)

Value

list list of a target class used in the model

error training error

CVerror cross validation error, (when cross > 0)

top top proteins

score decision values for top proteins

Author(s)

Dongmin Jung, Xijin Ge

net.infer.ST 7

References

Senay, S. D. et al. (2013). Novel three-step pseudo-absence selection technique for improved
species distribution modelling. PLOS ONE. 8(8), e71218.

See Also

ksvm

Examples

example 1
Not run:
string.db.9606 <- STRINGdb$new(version = '11', species = 9606,

score_threshold = 999)
string.db.9606.graph <- string.db.9606$get_graph()
K.9606 <- net.kernel(string.db.9606.graph)
rownames(K.9606) <- substring(rownames(K.9606), 6)
colnames(K.9606) <- substring(colnames(K.9606), 6)
target <- colnames(K.9606)[1:100]
infer <- net.infer(target, K.9606, 10)

End(Not run)

example 2
data(litG)
litG <- igraph.from.graphNEL(litG)
sg <- decompose(litG, min.vertices = 50)
sg <- sg[[1]]
K <- net.kernel(sg)
litG.infer <- net.infer(names(V(sg))[1:10], K, top=20)

net.infer.ST Inferring functionally related proteins with self training

Description

This function is the self-training version of net.infer. The function net.infer is the special case of
net.infer.ST where a single iteration is conducted.

Usage

net.infer.ST(target, kernel, top = NULL, C = 1, nu = 0.2,
epsilon = 0.1, cache1 = 40, tol1 = 0.001, shrinking1 = TRUE,
cache2 = 40, tol2 = 0.001, shrinking2 = TRUE, thrConf = 0.9,
maxIts = 10, percFull = 1, verbose = FALSE)

8 net.infer.ST

Arguments

target set of interesting proteins or target class
kernel the regularized Laplacian matrix for a graph
top number of top proteins most closely related to target class (default: all proteins

except for target and pseudo-absence class)
C cost of constraints violation for SVM (default: 1)
nu The nu parameter for OCSVM (default: 0.2)
epsilon epsilon in the insensitive-loss function for OCSVM (default: 0.1)
cache1 cache memory in MB for OCSVM (default: 40)
tol1 tolerance of termination criterion for OCSVM (default: 0.001)
shrinking1 option whether to use the shrinking-heuristics for OCSVM (default: TRUE)
cache2 cache memory in MB for SVM (default: 40)
tol2 tolerance of termination criterion for SVM (default: 0.001)
shrinking2 option whether to use the shrinking-heuristics for SVM (default: TRUE)
thrConf A number between 0 and 1, indicating the required classification confidence for

an unlabelled case to be added to the labelled data set with the label predicted
predicted by the classification algorithm (default: 0.9)

maxIts The maximum number of iterations of the self-training process (default: 10)
percFull A number between 0 and 1. If the percentage of labelled cases reaches this value

the self-training process is stoped (default: 1)
verbose A boolean indicating the verbosity level of the function. (default: FALSE)

Value

list list of a target class used in the model
error training error
top top proteins
score decision values for top proteins

Author(s)

Dongmin Jung, Xijin Ge

See Also

self.train

Examples

data(litG)
litG <- igraph.from.graphNEL(litG)
sg <- decompose(litG, min.vertices = 50)
sg <- sg[[1]]
K <- net.kernel(sg)
litG.infer.ST <- net.infer.ST(names(V(sg))[1:10], K, top=20)

net.kernel 9

net.kernel Kernel matrix for a graph

Description

This function gives the regularized Laplacian matrix for a graph.

Usage

net.kernel(g, decay = 0.5)

Arguments

g graph

decay decaying constant (default: 0.5)

Value

the regularized Laplacian matrix

Author(s)

Dongmin Jung, Xijin Ge

See Also

laplacian_matrix

Examples

example 1
Not run:
string.db.9606 <- STRINGdb$new(version = '11', species = 9606,

score_threshold = 999)
string.db.9606.graph <- string.db.9606$get_graph()
K.9606 <- net.kernel(string.db.9606.graph)

End(Not run)

example 2
data(litG)
litG <- igraph.from.graphNEL(litG)
sg <- decompose(litG, min.vertices=50)
sg <- sg[[1]]
K <- net.kernel(sg)

10 ORA

ORA Over-representation Analysis

Description

the result from the over-representation analysis

Usage

ORA(pathways, gene.id, minSize = 1, maxSize = Inf,
p.adjust.methods = NULL)

Arguments

pathways list of gene sets

gene.id set of genes

minSize Minimal size of a gene set

maxSize Maximal size of a gene set

p.adjust.methods

a correction method

Value

ORA result

Author(s)

Dongmin Jung, Xijin Ge

See Also

fisher.test

Examples

data(examplePathways)
data(exampleRanks)
geneNames <- names(exampleRanks)
set.seed(1)
gene.id <- sample(geneNames, 100)
ORA(examplePathways, gene.id)

ORA.barplot 11

ORA.barplot Visualize the over-representation analysis

Description

For the functional enrichment analysis, we can visualize the result from the over-representation
analysis.

Usage

ORA.barplot(object, category, size, count, pvalue, top = 10,
sort = NULL, decreasing = FALSE, p.adjust.methods = NULL,
numChar = NULL, title = NULL, transparency = 0.5,
plot = TRUE)

Arguments

object a table with category, size, count and p-value of gene sets

category name of gene sets

size size of gene sets

count count of gene sets

pvalue p-value of gene sets

top the number of top categories (default: 10)

sort a variable used for sorting data

decreasing logical indicating whether ascending or descending order (default: FALSE)
p.adjust.methods

a correction method

numChar the maximal number of characters of the name of gene sets

title title for the plot

transparency transparency (default: 0.5)

plot return plot when plot is true, otherwise return table (default: TRUE)

Value

ORA barplot

Author(s)

Dongmin Jung, Xijin Ge

References

Yu G, Wang L, Yan G and He Q (2015). "DOSE: an R/Bioconductor package for Disease Ontology
Semantic and Enrichment analysis." Bioinformatics, 31(4), pp. 608-609.

12 ppi.infer.human

See Also

p.adjust, ggplot2

Examples

data(examplePathways)
data(exampleRanks)
geneNames <- names(exampleRanks)
set.seed(1)
gene.id <- sample(geneNames, 100)
result.ORA <- ORA(examplePathways, gene.id)
ORA.barplot(result.ORA, category = "Category", size = "Size",

count = "Count", pvalue = "pvalue", sort = "pvalue")

ppi.infer.human Inferring functionally related proteins using protein networks for hu-
man

Description

This function is designed for human protein-protein interaction from STRING database. Default
format is ’hgnc’. The number of proteins is 10 in default. Note that the number of proteins used as
a target may be different from the number of proteins in the input since mapping between formats
is not always one-to-one in getBM.

Usage

ppi.infer.human(target, kernel, top = 10, classifier = net.infer,
input = "hgnc_symbol", output = "hgnc_symbol", ...)

Arguments

target set of interesting proteins or target class
kernel the regularized Laplacian matrix for a graph
top number of top proteins most closely related to target class (default: 10)
classifier net.infer or net.infer.ST (default: net.infer)
input input format
output output format
... additional parameters for the chosen classifier

Value

list list of a target class used in the model
error training error
CVerror cross validation error, (when cross > 0 in net.infer)
top top proteins
score decision values for top proteins

ppi.infer.mouse 13

Author(s)

Dongmin Jung, Xijin Ge

See Also

net.infer, net.infer.ST, getBM

Examples

example 1
string.db.9606 <- STRINGdb$new(version = '11', species = 9606,

score_threshold = 999)
string.db.9606.graph <- string.db.9606$get_graph()
K.9606 <- net.kernel(string.db.9606.graph)
rownames(K.9606) <- substring(rownames(K.9606), 6)
colnames(K.9606) <- substring(colnames(K.9606), 6)
target <- colnames(K.9606)[1:100]
infer.human <- ppi.infer.human(target, K.9606, input = "ensembl_peptide_id")

Not run:
example 2
library(graph)
data(apopGraph)
target <- nodes(apopGraph)
apoptosis.infer <- ppi.infer.human(target, K.9606, 100)

example 3
library(KEGGgraph)
library(KEGG.db)
pName <- "p53 signaling pathway"
pId <- mget(pName, KEGGPATHNAME2ID)[[1]]
getKGMLurl(pId, organism = "hsa")
p53 <- system.file("extdata/hsa04115.xml", package="KEGGgraph")
p53graph <- parseKGML2Graph(p53,expandGenes=TRUE)

entrez <- translateKEGGID2GeneID(nodes(p53graph))
httr::set_config(httr::config(ssl_verifypeer = FALSE))
human.ensembl <- useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
target <- getBM(attributes=c('entrezgene', 'hgnc_symbol'),

filter = 'entrezgene', values = entrez,
mart = human.ensembl)[,2]

p53.infer <- ppi.infer.human(target, K.9606, 100)

End(Not run)

ppi.infer.mouse Inferring functionally related proteins using protein networks for
mouse

14 ppi.infer.mouse

Description

This function is designed for mouse protein-protein interaction from STRING database. Default
format is ’mgi’. The number of proteins is 10 in default. Note that the number of proteins used as a
target may be different from the number of proteins in the input since mapping between formats is
not always one-to-one in getBM.

Usage

ppi.infer.mouse(target, kernel, top = 10, classifier = net.infer,
input = "mgi_symbol", output = "mgi_symbol", ...)

Arguments

target set of interesting proteins or target class

kernel the regularized Laplacian matrix for a graph

top number of top proteins most closely related to target class (default: 10)

classifier net.infer or net.infer.ST (default: net.infer)

input input format

output output format

... additional parameters for the chosen classifier

Value

list list of a target class used in the model

error training error

CVerror cross validation error, (when cross > 0 in net.infer)

top top proteins

score decision values for top proteins

Author(s)

Dongmin Jung, Xijin Ge

See Also

net.infer, net.infer.ST, getBM

Examples

string.db.10090 <- STRINGdb$new(version = '11', species = 10090,
score_threshold = 999)

string.db.10090.graph <- string.db.10090$get_graph()
K.10090 <- net.kernel(string.db.10090.graph)
rownames(K.10090) <- substring(rownames(K.10090), 7)
colnames(K.10090) <- substring(colnames(K.10090), 7)
target <- colnames(K.10090)[1:100]
infer.mouse <- ppi.infer.mouse(target, K.10090, input="ensembl_peptide_id")

self.train.kernel 15

self.train.kernel Self training for a kernel matrix

Description

This function can be used for classification of semi-supervised data by using the kernel support
vector machine.

Usage

self.train.kernel(K, y, type = 'response', C = 1, cache = 40,
tol = 0.001, shrinking = TRUE, thrConf = 0.9,
maxIts = 10, percFull = 1, verbose = FALSE)

Arguments

K kernel matrix

y lable vector

type one of response, probabilities ,votes, decision indicating the type of output (de-
fault: response)

C cost of constraints violation for SVM (default: 1)

cache cache memory in MB for SVM (default: 40)

tol tolerance of termination criterion for SVM (default: 0.001)

shrinking option whether to use the shrinking-heuristics for OCSVM (default: TRUE)

thrConf A number between 0 and 1, indicating the required classification confidence for
an unlabelled case to be added to the labelled data set with the label predicted
predicted by the classification algorithm (default: 0.9)

maxIts The maximum number of iterations of the self-training process (default: 10)

percFull A number between 0 and 1. If the percentage of labelled cases reaches this value
the self-training process is stoped (default: 1)

verbose A boolean indicating the verbosity level of the function (default: FALSE)

Value

prediction from the SVM

Author(s)

Dongmin Jung, Xijin Ge

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC.

16 self.train.kernel

Examples

data(litG)
litG <- igraph.from.graphNEL(litG)
sg <- decompose(litG, min.vertices = 50)
sg <- sg[[1]]
K <- net.kernel(sg)
y <- rep(NA, length(V(sg)))
y[1:10] <- 1
y[11:20] <- 0
y <- factor(y)
self.train.kernel(K, y)

Index

enrich.net, 3

GSEA.barplot, 4

net.infer, 6
net.infer.ST, 7
net.kernel, 9

ORA, 10
ORA.barplot, 11

ppi.infer.human, 12
ppi.infer.mouse, 13
PPInfer (PPInfer-package), 2
PPInfer-package, 2

self.train.kernel, 15

17

	PPInfer-package
	enrich.net
	GSEA.barplot
	net.infer
	net.infer.ST
	net.kernel
	ORA
	ORA.barplot
	ppi.infer.human
	ppi.infer.mouse
	self.train.kernel
	Index

