
Package ‘OrderedList’
February 2, 2026

Title Similarities of Ordered Gene Lists

Version 1.83.0

Date 2008-07-09

Author Xinan Yang, Stefanie Scheid, Claudio Lottaz

Description Detection of similarities between ordered lists of genes.
Thereby, either simple lists can be compared or gene expression
data can be used to deduce the lists. Significance of
similarities is evaluated by shuffling lists or by resampling
in microarray data, respectively.

Maintainer Claudio Lottaz <Claudio.Lottaz@klinik.uni-regensburg.de>

Depends R (>= 3.6.1), Biobase, twilight

Imports methods

LazyLoad yes

URL http://compdiag.molgen.mpg.de/software/OrderedList.shtml

License GPL (>= 2)

biocViews Microarray, DifferentialExpression, MultipleComparison

vignetteBuilder knitr

git_url https://git.bioconductor.org/packages/OrderedList

git_branch devel

git_last_commit 9b40a29

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
check.test.args . 2
compareLists . 3
getOverlap . 5

1

http://compdiag.molgen.mpg.de/software/OrderedList.shtml

2 check.test.args

OL.data . 7
OL.result . 7
OrderedList . 8
overlap . 11
plot.OrderedList . 11
prepareData . 13
preparePermutations . 14
print.OrderedList . 15
scoreOrderComparison . 16
scoreRankings . 17
shuffledRandomScores . 18

Index 19

check.test.args Helper Function to Compute Test Statistics

Description

These function compute test statistics for all rows in a matrix.

Usage

test.fc(m, cl, paired)
test.t(m, cl, paired)
test.z(m, cl, paired)
check.test.args(m, cl, paired)

Arguments

m the matrix of numeric values. For each row of the matrix, one test statistic is
computed.

cl a vector of class labels. cl must have as many elements as there are columns in
m.

paired logical, is TRUE, if the data in the two classes are paired.

Details

check.test.arg is used by the other methods to check their arguments. test.t and test.z inter-
face with the C-code contained in the twilight package in order to speed-up the computation.

Value

An array of the corresponding test statistic containing one element per row of the input matrix.

Author(s)

Claudio Lottaz

compareLists 3

See Also

twilight.teststat

compareLists Compare Ordered Lists with Weighted Overlap Score

Description

The two orderings received as parameters are compared using the weighted overlap score and com-
pared with a random distribution of that score (yielding an empirical p-value).

Usage

compareLists(ID.List1, ID.List2, mapping = NULL,
two.sided=TRUE, B = 1000, alphas = NULL,
invar.q = 0.5, min.weight = 1e-5,
no.reverse=FALSE)

Arguments

ID.List1 first ordered list of identifiers to be compared.
ID.List2 second ordered list to be compared, must have the same length as ID.List1.
mapping maps identifiers between the two lists. This is a matrix with two columns. All

items in ID.List1 must match to exactly one entry of column 1 of the mapping,
each element in ID.List2 must match exactly one element in column 2 of the
mapping. If mapping is NULL, the two lists are expected to contain the same
identifiers and there must be a one-to-one relationship between the two.

two.sided whether the score is to be computed considering both ends of the list, or just the
top members.

B the number of permutations used to estimate empirical p-values.
alphas a set of alpha candidates to be evaluated. If set to NULL, alphas are determined

such that reasonable maximal ranks to be considered result.
invar.q quantile of genes expected to be invariant. These are not used during shuffling,

since they are expected to stay away from the ends of the lists, even when the
data is perturbed to generate the NULL distribution. The default of 0.5 is rea-
sonable for whole-genome gene expression analysis, but must be reconsidered
when the compared lists are deduced from other sources.

min.weight the minimal weight to be considered.
no.reverse skip computing scores for reversed second list.

Details

The two lists received as arguments are matched against each other according to the given mapping.
The comparison is performed from both ends by default. Permutations of lists are used to generate
random scores and compute empirical p-values. The evaluation is also performed for the case the
lists should be reversed. From the resulting output, the set of overlapping list identifiers can be
extracted using function getOverlap.

4 compareLists

Value

An object of class listComparison is returned. It contains the following list elements:

n the length of the lists

call the input parameters

nn the maximal number of genes corresponding to the alphas and the minimal
weight

scores scores for the straight list comparisons

revScores scores for the reversed list comparison

pvalues p-values for the straight list comparison

revPvalues p-values for the reversed list comparison

overlap number of overlapping identifiers per rank in straight comparison

revOverlap number of overlapping identifiers per rank in reversed comparison

randomScores random scores per weighting parameter

ID.List1 same as input ID.List1

ID.List2 same as input ID.List2

There are print and plot methods for listComparison objects. The plot method takes a parameter
which to specify whether "overlap" or "density" is to be drawn.

Author(s)

Claudio Lottaz, Stefanie Scheid

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OrderedList, getOverlap

Examples

Compare two artificial lists with some overlap
data(OL.data)
list1 <- as.character(OL.datamapprostate)
list2 <- c(sample(list1[1:500]),sample(list1[501:1000]))
x <- compareLists(list1,list2)
x
getOverlap(x)

getOverlap 5

getOverlap Extracting the Intersecting IDs From a listComparison Object

Description

This function extracts the intersecting set of list identifiers from an object of class listComparison
as output of function compareLists. The user has to specify the maximum rank to be considered
to receive the intersecting set up to this rank.

Usage

getOverlap(x, max.rank = NULL, percent = 0.95)
S3 method for class 'listComparisonOverlap'
plot(x, which="overlap", no.title=FALSE, no.legend=FALSE,

list.name1="List 1", list.name2="List 2", ...)

Arguments

x An object of class listComparison.

max.rank The maximum rank to be considered.

percent The final list of overlapping genes consists of those probes that contribute a
certain percentage to the overall similarity score. Default is percent=0.95. To
get the full list of genes, set percent=1.

which select what to draw, either ’overlap’ or’scores’.

no.title whether to generate a title automatically.

no.legend whether to generate a legend automatically.

list.name1 A name for the first list provided to compareLists.

list.name2 A name for the second list provided to compareLists.

... Further arguments passed on to generic plot.

Details

Function compareLists returns a list comparison for several choices of alpha. The number of genes
to be taken into account differs dependent on alpha. One might now want to fix the number of genes
and receive the resulting set of intersecting list identifiers. To this end, the user chooses a maximum
rank to be considered from the values in column ’Genes’ of the listComparison object. The
direction (original or reversed) will internally be set to the direction yielding the higher similarity
score.

If two.sided was TRUE, the first max.rank IDs on top of the lists and the first max.rank identifiers
at the end of the lists are considered. If two.sided was FALSE, only the max.rank top identifiers
are evaluated for overlap.

6 getOverlap

Value

An object of class listComparisonOverlap is returned. It contains the following list elements:

n the length of the lists.

call the parameters of the input object.

nn the input max.rank.

score the observed similarity score.

pvalue p-values for the observed score.

overlaps number of overlapping identifiers per rank.

randomScores random scores for given parameters.

direction numerical value. Returns ’1’ if the similarity score is higher for the originally
ordered lists and ’-1’ if the score is higher for the comparison of one original to
one reversed list.

intersect Vector with the sorted overlapping list identifiers, which contribute percent to
the overall similarity score.

There are print and plot methods for listComparisonOverlap objects. The plot method takes a
parameter which to specify whether "overlap" or "scores" is to be drawn.

Author(s)

Claudio Lottaz, Stefanie Scheid

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OrderedList, compareLists

Examples

Compare two artificial lists with some overlap
data(OL.data)
list1 <- as.character(OL.datamapprostate)
list2 <- c(sample(list1[1:500]),sample(list1[501:1000]))
x <- compareLists(list1,list2)
x
getOverlap(x)

OL.data 7

OL.data Gene Expression and Clinical Information of Two Cancer Studies

Description

The data contains a list with three elements: breast, prostate and map. The first two are expres-
sion sets of class ExpressionSet taken from the breast cancer study of Huang et al. (2003) and the
prostate cancer study of Singh et al. (2002). Both data sets were preprocessed as described in Yang
et al. (2006). The data sets serve as illustration for function prepareData. Hence the sets contain
only a random subsample of the original probes. We further removed unneeded samples from both
studies.

The labels of the breast expression set were extended with ’B’ to create two data sets where the
probe IDs differ but can be mapped onto each other. The mapping is stored in the data frame map,
which consists of the two probe ID vectors.

Usage

data(OL.data)

References

Huang E, Cheng S, Dressman H, Pittman J, Tsou M, Horng C, Bild A, Iversen E, Liao M, Chen
C, West M, Nevins J, and Huang A (2003): Gene expression predictors of breast cancer outcomes,
Lancet 361, 1590–1596.

Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico
AV, Richie JP, Lander E, Loda M, Kantoff PW, Golub TR, and Sellers WR (2002): Gene expression
correlates of clinical prostate cancer behavior, Cancer Cell 1, 203–209.

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OL.result

OL.result Three Examples of Class ’OrderedList’

Description

The data set consists of an OrderedList object derived by applying function OrderedList on the
expression sets in OL.data. The function calls are given in the example section below.

Usage

data(OL.result)

8 OrderedList

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OL.data, OrderedList

Examples

Not run:
a <- prepareData(

list(data=OL.data$breast,name="breast",var="Risk",out=c("high","low"),paired=FALSE),
list(data=OL.data$prostate,name="prostate",var="outcome",out=c("Rec","NRec"),paired=FALSE),

mapping=OL.data$map
)

OL.result <- OrderedList(a)

End(Not run)

OrderedList Detecting Similarities of Two Microarray Studies

Description

Function OrderedList aims for the comparison of comparisons: given two expression studies
with one ranked (ordered) list of genes each, we might observe considerable overlap among the
top-scoring genes. OrderedList quantifies this overlap by computing a weighted similarity score,
where the top-ranking genes contribute more to the score than the genes further down the list. The
final list of overlapping genes consists of those probes that contribute a certain percentage to the
overall similarity score.

Usage

OrderedList(eset, B = 1000, test = "z", beta = 1, percent = 0.95,
verbose = TRUE, alpha=NULL, min.weight=1e-5, empirical=FALSE)

Arguments

eset Expression set containing the two studies of interest. Use prepareData to gen-
erate eset.

B Number of internal sub-samples needed to optimize alpha.

test String, one of ’fc’ (log ratio = log fold change), ’t’ (t-test with equal variances)
or ’z’ (t-test with regularized variances). The z-statistic is implemented as de-
scribed in Efron et al. (2001).

OrderedList 9

beta Either 1 or 0.5. In a comparison where the class labels of the studies match,
we set beta=1. For example, in each single study the first class relates to bad
prognosis while the second class relates to good prognosis. If a matching is not
possible, we set beta=0.5. For example, we compare a study with good/bad
prognosis classes to a study, in which the classes are two types of cancer tissues.

percent The final list of overlapping genes consists of those probes that contribute a
certain percentage to the overall similarity score. Default is percent=0.95. To
get the full list of genes, set percent=1.

verbose Logical value for message printing.

alpha A vector of weighting parameters. If set to NULL (the default), parameters
are computed such that top 100 to the top 2500 ranks receive weights above
min.weight.

min.weight The minimal weight to be taken into account while computing scores.

empirical If TRUE, empirical confidence intervals will be computed by randomly permuting
the class labels of each study. Otherwise, a hypergeometric distribution is used.
Confidence intervals appear when using plot.OrderedList.

Details

In short, the similarity measure is computed as follows: Based on two-sample test statistics like the
t-test, genes within each study are ranked from most up-regulated down to most down-regulated.
Thus we have one ordered list per study. Now for each rank going both from top (up-regulated
end) and from bottom (down-regulated end) we count the number of overlapping genes. The total
overlap An for rank n is defined as:

An = On(G1, G2) +On(f(G1), f(G2))

where G1 and G2 are the two ordered list, f(G1) and f(G2) are the two flipped lists with the down-
regulated genes on top and On is the size of the overlap of its two arguments. A preliminary version
of the weighted overlap over all ranks n is then given as:

Tα(G1, G2) =
∑
n

exp−αnAn.

The final similarity score includes the case that we cannot match the classes in each study exactly
and thus do not know whether up-regulation in one list corresponds to up- or down-regulation in
the other list. Here parameter β comes into play:

Sα(G1, G2) = maxβTα(G1, G2), (1− β)Tα(G1, f(G2)).

Parameter β is set by the user but parameter α has to be tuned in a simulation using sub-samples
and permutations of the original class labels.

Value

Returns an object of class OrderedList, which consists of a list with entries:

n Total number of genes.

label The concatenated study labels as provided by eset.

10 OrderedList

p The p-value specifying the significance of the similarity.

intersect Vector with sorted probe IDs of the overlapping genes, which contribute percent
to the overall similarity score.

alpha The optimal regularization parameter alpha.

direction Numerical value. Returns ’1’ if the similarity score is higher for the originally
ordered lists and ’-1’ if the score is higher for the comparison of one original to
one flipped list. Of special interest if beta=0.5.

scores Matrix of observed test scores with genes in rows and studies in columns.

sim.scores List with four elements with output of the resampling with optimal alpha.
SIM.observed: The observed similarity sore. SIM.alternative: Vector of ob-
served similarity scores simulated using sub-sampling within the distinct classes
of each study. SIM.random: Vector of random similarity scores simulated by
randomly permuting the class labels of each study. subSample: TRUE to indicate
that sub-sampling was used.

pauc Vector with pAUC-scores for each candidate of the regularization parameter α.
The maximal pAUC-score defines the optimal α. See also plot.OrderedList.

call List with some of the input parameters.

empirical List with confidence interval values. Is NULL if empirical=FALSE.

Author(s)

Xinan Yang, Claudio Lottaz, Stefanie Scheid

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

Efron B, Tibshirani R, Storey JD, and Tusher V (2001): Empirical Bayes analysis of a microarray
experiment, Journal of the American Statistical Society 96, 1151–1160.

See Also

prepareData, OL.data, OL.result, plot.OrderedList, print.OrderedList, compareLists

Examples

Let's compare the two example studies.
The first entries of 'out' both relate to bad prognosis.
Hence the class labels match between the two studies
and we can use 'OrderedList' with default 'beta=1'.
data(OL.data)
a <- prepareData(

list(data=OL.data$breast,name="breast",var="Risk",out=c("high","low"),paired=FALSE),
list(data=OL.data$prostate,name="prostate",var="outcome",out=c("Rec","NRec"),paired=FALSE),

mapping=OL.data$map
)

Not run:
OL.result <- OrderedList(a)

overlap 11

End(Not run)

The same comparison was done beforehand.
data(OL.result)
OL.result
plot(OL.result)

overlap Count Elements in Overlap between two Lists

Description

For each rank up to a given limit, count the number of elements in the overlap between two lists.

Usage

overlap(x1, x2, n)

Arguments

x1, x2 ordered lists

n the largest rank to be considered

Value

Returns a vector of integers. The i-th element gives the number of common elements in the first i
positions of both lists.

Author(s)

Claudio Lottaz

plot.OrderedList Plotting Function for OrderedList Objects

Description

The function generates three different plots, which can be selected via argument which. With default
which=NULL, all three figures are plotted into one graphics device.

Usage

S3 method for class 'OrderedList'
plot(x, which = NULL, no.title=FALSE, ...)

12 plot.OrderedList

Arguments

x Object of class OrderedList.

which Select one of the three figures described in the details section below.

no.title logical, whether to skip plotting a title.

... Additional graphical arguments.

Details

which is one of ’pauc’, ’scores’ or ’overlap’. If NULL, all figures are produced in a row.

Option ’pauc’ selects the plot of pAUC-scores, based on which the optimal α is chosen. The
pAUC-score measure the separability between the two distributions of observed and expected sim-
ilarity scores. The similarity scores depend on α and thus α is chosen where the pAUC-scores are
maximal. The optimal α is marked by a vertical line.

Figure ’scores’ shows kernel density estimates of the two score distributions underlying the pAUC-
score for optimal α. The red curve correspondence to simulated observed scores and the black curve
to simulated expected scores. The vertical red line denotes the actually observed similarity score.
The bottom rugs mark the simulated values. The two distributions got the highest pAUC-score of
separability and thus provide the best signal-to-noise separation.

Finally, ’overlap’ displays the numbers of overlapping genes in the two gene lists. The overlap size
is drawn as a step function over the respective ranks. Top ranks correspond to up-regulated and bot-
tom ranks to down-regulated genes. In addition, the expected overlap and 95% confidence intervals
derived from a hypergeometric distribution are plotted. If empirical=TRUE in OrderedList the
confidence intervals were derived empirically from shuffling the data and computing the overlap
under the null hypothesis.

Value

No value is returned.

Author(s)

Xinan Yang, Stefanie Scheid

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OrderedList

Examples

data(OL.result)
plot(OL.result)

prepareData 13

prepareData Combining Two Studies into an Expression Set

Description

The function prepares a collection of two expression sets (ExpressionSet) and/or Affy batches
(AffyBatch) to be passed on to the main function OrderedList. For each data set, one has to
specify the variable in the corresponding phenodata from which the grouping into two distinct
classes is done. The data sets are then merged into one ExpressionSet together with the rearranged
phenodata. If the studies were done on different platforms but a subset of genes can be mapped from
one chip to the other, this information can be provided via the mapping argument.

Please note that both data sets have to be pre-processed beforehand, either together or independent
of each other. In addition, the gene expression values have to be on an additive scale, that is
logarithmic or log-like scale.

Usage

prepareData(eset1, eset2, mapping = NULL)

Arguments

eset1 The main inputs are the distinct studies. Each study is stored in a named list,
which has five elements: data, name, var, out and paired, see details below.

eset2 Same as eset2 for the second data set.

mapping Data frame containing one named vector for each study. The vectors are com-
prised of probe IDs that fit to the rownames of the corresponding expression set.
For each study, the IDs are ordered identically. For example, the kth row of
mapping provides the label of the kth gene in each single study. If all studies
were done on the same chip, no mapping is needed (default).

Details

Each study has to be stored in a list with five elements:

data Object of class ExpressionSet or AffyBatch.
name Character string with comparison label.
var Character string with phenodata variable. Based on this variable, the samples for the two-sample testing will be extracted.
out Vector of two character strings with the levels of var that define the two clinical classes. The order of the two levels must be identical for all studies. Ideally, the first entry corresponds to the bad and the second one to the good outcome level.
paired Logical - TRUE if samples are paired (e.g. two measurements per patients) or FALSE if all samples are independent of each other. If data are paired, the paired samples need to be in (whatever) successive order. Thus, the first sample of one condition must match to the first sample of the second condition and so on.

Value

An object of class ExpressionSet containing the joint data sets with appropriate phenodata.

Author(s)

Stefanie Scheid

14 preparePermutations

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OL.data, OrderedList

Examples

data(OL.data)

'map' contains the appropriate mapping between 'breast' and 'prostate' IDs.
Let's first concatenate two studies.
A <- prepareData(

list(data=OL.data$prostate,name="prostate",var="outcome",out=c("Rec","NRec"),paired=FALSE),
list(data=OL.data$breast,name="breast",var="Risk",out=c("high","low"),paired=FALSE),

mapping=OL.data$map
)

We might want to examine the first 100 probes only.
B <- prepareData(

list(data=OL.data$prostate,name="prostate",var="outcome",out=c("Rec","NRec"),paired=FALSE),
list(data=OL.data$breast,name="breast",var="Risk",out=c("high","low"),paired=FALSE),

mapping=OL.data$map[1:100,]
)

preparePermutations Prepare Permutation and Subsetting Matrices

Description

For a dataset specified with matrix and class labels, draws permutations and subsets.

Usage

preparePermutations(ids, paired, B, sample.ratio = 0.8)

Arguments

ids class labels

paired logical, whether samples in classes are paired.

B number of permutations and subsets to be drawn.

sample.ratio how many of the samples in a class are to be subsampled.

print.OrderedList 15

Value

Returns a list with the following items:

yperm the matrix of permutations.

ysubs the matrix of subsamplings.

Author(s)

Claudio Lottaz

print.OrderedList Printing Function for OrderedList Objects

Description

The function provides some information about objects that were generated by function OrderedList.

Usage

S3 method for class 'OrderedList'
print(x, ...)

Arguments

x An object of class OrderedList.

... Further printing arguments.

Value

No value is returned.

Author(s)

Stefanie Scheid

References

Yang X, Bentink S, Scheid S, and Spang R (2006): Similarities of ordered gene lists, to appear in
Journal of Bioinformatics and Computational Biology.

See Also

OrderedList

Examples

data(OL.result)
OL.result

16 scoreOrderComparison

scoreOrderComparison Score the Comparison of two Gene Rankings

Description

Compute weighted similarity score for gene rankings determined via the chosen test statistics.

Usage

scoreOrderComparison(exprs1, labels1, paired1,
exprs2, labels2, paired2,
test.method = test.z, nn, bases, two.sided, empirical)

scoreOrderComparisonBoth(exprs1, labels1, paired1,
exprs2, labels2, paired2,
test.method = test.z, nn, bases, two.sided, empirical)

Arguments

exprs1, exprs2 gene expression matrices.
labels1, labels2

class labels, one label per column in matrices.
paired1, paired2

logical, whether samples are paired in classes.

test.method a function computing one test statistics per row and taking a matrix, a label
vector and a logical for pairing as parameters. Valid examples are test.fc,
test.t and test.z.

nn a vector of rank limits. The score is computed taking into account ranks up to
these limits only. One limit per entry in bases.

bases a vector of bases used in weighted scores, is equal to exp(-alpha). The function
can compute scores for several regularization parameters in one go.

two.sided if TRUE both ends of the lists are taken into account, only top ranks are consid-
ered otherwise.

Details

scoreOrderComparison computes scores only for the direct comparison. scoreOrderComparisonBoth
in addition computes scores for reversed orders, i.e., one of the rankings is reversed.

Value

For each entry in bases, thus for each regularization parameter alpha, one score is returned in an
array.

Author(s)

Claudio Lottaz

scoreRankings 17

scoreRankings Score the Comparison of two Rankings

Description

Two rankings are accepted as input in the form of corresponding ranks in two lists. The weighted
overlap score is computed efficiently without explicitly computing overlaps.

Usage

scoreRankings(r1, r2, nn, bases, two.sided=TRUE)

Arguments

r1 integer, ranks in the first list.

r2 integer, ranks in the second list. r1 and r2 must have the same length.

nn for each alpha to be used as weighting parameter, this array of integers contains
the maximal rank for which overlaps are considered.

bases for each alpha to be used as weighting parameter, this double array contains
exp(-alpha).

two.sided if TRUE both ends of the lists are taken into account, only top ranks are consid-
ered otherwise.

Details

The score to be computed is defined as the sum over the first ranks in two lists. The summed up
measure is the weighted overlap between the two lists:

score := sum(R = 1)nexp(−alphaR) ∗ overlap(L1[1 : R], L2[1 : R])

where n is the maximal rank to be considered and L1/L2 denote the sorted lists to be compared. In
this score, each gene contributes from the first rank where it is in the overlap up to n. For gene i:

scorei = sum(R = max(r1[i], r2[i])nexp(−alphaR))

where r1/r2 are the ranks of genes in L1/L2. Since this is a finite geometric series, it can be used
to speed up computation of our score:

scorei = (exp(−alphamin(r1[i], r2[i]))− exp(−alphan))/(1− exp(−alpha))

score = sum(i|r1[i] < n ∧ r2[i] < n)scorei

Analogue computations are performed by scoreRankings for list begins and list ends.

Value

An array of doubles with one score per weighting parameter to be considered is returned.

18 shuffledRandomScores

Author(s)

Claudio Lottaz

See Also

shuffledRandomScores,compareLists

shuffledRandomScores Generates Null-Distribution for List-Overlap-Scores

Description

A null-distribution for list-overlap scores is generated via simulation. Scores are computed for
random permutations.

Usage

shuffledRandomScores(n, nn, bases, B = 1000, two.sided=TRUE)

Arguments

n the length of the lists.

nn the maximal ranks to be considered, one entry per weighting parameter alpha.

bases exp(-alpha) for each weighting parameter alpha.

B the number of permutations to be drawn.

two.sided if TRUE both ends of the lists are taken into account, only top ranks are consid-
ered otherwise.

Value

Returns an object of type "shuffledRandomScores. Its only data is a matrix of random scores. One
column per alpha and one row per permutation is generated.

There are print and plot methods for "shuffledRandomScores objects.

Author(s)

Claudio Lottaz

See Also

compareLists

Index

∗ datagen
compareLists, 3
getOverlap, 5
prepareData, 13

∗ datasets
OL.data, 7
OL.result, 7

∗ hplot
plot.OrderedList, 11

∗ htest
OrderedList, 8

∗ internal
check.test.args, 2
overlap, 11
preparePermutations, 14
scoreOrderComparison, 16
scoreRankings, 17
shuffledRandomScores, 18

∗ print
print.OrderedList, 15

check.test.args, 2
compareLists, 3, 6, 10, 18

getOverlap, 4, 5

OL.data, 7, 7, 8, 10, 14
OL.result, 7, 7, 10
OrderedList, 4, 6–8, 8, 12–15
overlap, 11

plot.listComparison (compareLists), 3
plot.listComparisonOverlap

(getOverlap), 5
plot.OrderedList, 9, 10, 11
plot.shuffledRandomScores

(shuffledRandomScores), 18
prepareData, 7, 8, 10, 13
preparePermutations, 14
print.listComparison (compareLists), 3

print.listComparisonOverlap
(getOverlap), 5

print.OrderedList, 10, 15
print.shuffledRandomScores

(shuffledRandomScores), 18

scoreOrderComparison, 16
scoreOrderComparisonBoth

(scoreOrderComparison), 16
scoreRankings, 17
shuffledRandomScores, 18, 18

test.fc (check.test.args), 2
test.t (check.test.args), 2
test.z (check.test.args), 2
twilight.teststat, 3

19

	check.test.args
	compareLists
	getOverlap
	OL.data
	OL.result
	OrderedList
	overlap
	plot.OrderedList
	prepareData
	preparePermutations
	print.OrderedList
	scoreOrderComparison
	scoreRankings
	shuffledRandomScores
	Index

