Package ‘OncoSimulR’

February 2, 2026
Type Package

Title Forward Genetic Simulation of Cancer Progression with Epistasis
Version 4.13.1

Date 2026-01-31

Maintainer Ramon Diaz-Uriarte <rdiaz02@gmail.com>

Description Functions for forward population genetic simulation in asexual populations, with spe-
cial focus on cancer progression. Fitness can be an arbitrary function of genetic interactions be-
tween multiple genes or modules of genes, including epistasis, order restrictions in mutation ac-
cumulation, and order effects. Fitness (includ-
ing just birth, just death, or both birth and death) can also be a function of the relative and abso-
lute frequencies of other genotypes (i.e., frequency-dependent fitness). Mutation rates can dif-
fer between genes, and we can include mutator/antimutator genes (to model mutator pheno-
types). Simulating multi-species scenarios and therapeutic interventions, including adaptive ther-
apy, is also possible. Simulations use continuous-time models and can include driver and passen-
ger genes and modules. Also included are functions for: simulating ran-
dom DAGs of the type found in Oncogenetic Trees, Conjunctive Bayesian Net-
works, and other cancer progression models; plotting and sampling from single or multiple real-
izations of the simulations, including single-cell sampling; plotting the parent-child relation-
ships of the clones; generating random fitness landscapes (Rough Mount Fuji, House of Cards, ad-
ditive, NK, Ising, and Eggbox models) and plotting them.

biocViews BiologicalQuestion, SomaticMutation
License GPL (>= 3)

URL https://github.com/rdiaz02/0ncoSimul,

https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/

BugReports https://github.com/rdiaz02/0ncoSimul/issues
Depends R (>=3.5.0)

Imports Rcpp (>=0.12.4), parallel, data.table, graph, Rgraphviz,
gtools, igraph, methods, RColorBrewer, grDevices, car, dplyr,
smatr, ggplot2, ggrepel, stringr

Suggests BiocStyle, knitr, Oncotree, testthat (>= 1.0.0), rmarkdown,
bookdown, pander

https://github.com/rdiaz02/OncoSimul
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/
https://github.com/rdiaz02/OncoSimul/issues

LinkingTo Rcpp

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/OncoSimulR
git_branch devel

git_last_commit 10bf4le

git_last_commit_date 2026-01-31

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Ramon Diaz-Uriarte [aut, cre],
Sergio Sanchez-Carrillo [aut],
Juan Antonio Miguel Gonzalez [aut],
Mark Taylor [ctb] (plot.stream, plot.stacked),
Niklas Endres [ctb] (vignette examples, freq-dep-fitness time),
Javier Mu~noz Haro [aut] (interventions),
Alberto Gonzalez Klein [aut] (user-specified death rates),
Javier Lopez Cano [aut] (user-defined variables),
Arash Partow [ctb] (ExprTk),
Sophie Brouillet [ctb] (MAGELLAN),
Sebastian Matuszewski [ctb] (MAGELLAN),
Harry Annoni [ctb] (MAGELLAN),
Luca Ferretti [ctb] MAGELLAN),
Guillaume Achaz [ctb] (MAGELLAN),
Wolodzko Tymoteusz [ctb] (multivariate hypergeometric),
Guillermo Gorines Cordero [ctb] (rfitness),
Ivan Lorca Alonso [ctb] (rfitness),
Francisco Mu~noz Lopez [ctb] (rfitness),
David Roncero Moro~no [ctb] (rfitness),
Alvaro Quevedo [ctb] (rfitness),
Pablo Perez [ctb] (rfitness),
Cristina Devesa [ctb] (rfitness),
Alejandro Herrador [ctb] (rfitness),
Holger Froehlich [ctb] (simOGraph (transitive closure)),
Florian Markowetz [ctb] (simOGraph (transitive closure)),
Achim Tresch [ctb] (simOGraph (transitive closure)),
Theresa Niederberger [ctb] (simOGraph (transitive closure)),
Christian Bender [ctb] (simOGraph (transitive closure)),
Matthias Maneck [ctb] (simOGraph (transitive closure)),
Claudio Lottaz [ctb] (simOGraph (transitive closure)),
Tim Beissbarth [ctb] (simOGraph (transitive closure)),
Sara Dorado Alfaro [ctb] (vignette examples),
Miguel Hernandez del Valle [ctb] (vignette examples),
Alvaro Huertas Garcia [ctb] (vignette examples),
Diego Ma~nanes Cayero [ctb] (vignette examples),
Alejandro Martin Mu~noz [ctb] (vignette examples),
Marta Couce Iglesias [ctb] (vignette examples),
Silvia Garcia Cobos [ctb] (vignette examples),

Contents 3
Carlos Madariaga Aramendi [ctb] (vignette examples),
Ana Rodriguez Ronchel [ctb] (vignette examples),
Lucia Sanchez Garcia [ctb] (vignette examples),
Yolanda Benitez Quesada [ctb] (vignette examples),
Asier Fernandez Pato [ctb] (vignette examples),
Esperanza Lopez Lopez [ctb] (vignette examples),
Alberto Manuel Parra Perez [ctb] (vignette examples),
Jorge Garcia Calleja [ctb] (vignette examples),
Ana del Ramo Galian [ctb] (vignette examples),
Alejandro de los Reyes Benitez [ctb] (vignette examples),
Guillermo Garcia Hoyos [ctb] (vignette examples),
Rosalia Palomino Cabrera [ctb] (vignette examples),
Rafael Barrero Rodriguez [ctb] (vignette examples),
Silvia Talavera Marcos [ctb] (vignette examples)
Contents
allFitnessEffects e 4
benchmarks L e e e e e 13
createlnterventions L. e e e e e e e 13
createUserVars e e e e e e 16
evalAllGenotypes 19
example-missing-drivers L. oL e 24
examplePosets 25
examplesFitnessEffects 26
freq-dep-simul-examples e 27
mcfls . . . e e e 28
oncoSimullndiv 28
OncoSimulWide2Long L 45
plotfitnessEffects L 46
plotoncosimul 49
plotClonePhylog e 54
plotFitnessLandscape 56
plotPoset 59
POM . . . e e e 61
POSEL .« © o e e 63
TNESS e e e 65
samplePop L 71
sSimOGraph e e e 74
to_Magellan e e e 76
vignette_pre_computed L Lo e 78
Index 80

4 allFitnessEffects

allFitnessEffects Create fitness and mutation effects specification from restrictions,
epistasis, and order effects.

Description

Given one or more of a set of poset restrictions, epistatic interactions, order effects, and genes
without interactions, as well as, optionally, a mapping of genes to modules, return the complete
fitness specification.

For mutator effects, given one or more of a set of epistatic interactions and genes without interac-
tions, as well as, optionally, a mapping of genes to modules, return the complete specification of
how mutations affect the mutation rate.

This function can be used also to produce the fitness specification needed to run simulations in a
frequency dependent fitness way. In that situation we presume that the effects must be considered
as fitness effects and never as mutator effects (see details for more info).

The output of these functions is not intended for user consumption, but as a way of preparing data
to be sent to the C++ code.

Usage

allFitnessEffects(rT = NULL, epistasis = NULL, orderEffects = NULL,
noIntGenes = NULL, geneToModule = NULL, drvNames = NULL,
genotFitness = NULL, keepInput = TRUE, frequencyDependentBirth =
FALSE, frequencyDependentDeath = FALSE, frequencyDependentFitness,
frequencyType = NA, deathSpec = FALSE)

allMutatorEffects(epistasis = NULL, noIntGenes = NULL,
geneToModule = NULL,
keepInput = TRUE)

Arguments

r7 A restriction table that is an extended version of a poset (see poset). A restric-
tion table is a data frame where each row shows one edge between a parent and
a child. A restriction table contains exactly these columns, in this order:

parent The identifiers of the parent nodes, in a parent-child relationship. There
must be at least on entry with the name "Root".
child The identifiers of the child nodes.

s A numeric vector with the fitness effect that applies if the relationship is sat-
isfied.

sh A numeric vector with the fitness effect that applies if the relationship is not
satisfied. This provides a way of explicitly modeling deviatons from the
restrictions in the graph, and is discussed in Diaz-Uriarte, 2015.

typeDep The type of dependency. Three possible types of relationship exist:

allFitnessEffects

epistasis

orderEffects

nolntGenes

geneToModule

drvNames

AND, monotonic, or CMPN Like in the CBN model, all parent nodes
must be present for a relationship to be satisfied. Specify it as "AND"
or "MN" or "monotone".

OR, semimonotonic, or DMPN A single parent node is enough for a rela-
tionship to be satisfied. Specify it as "OR" or "SM" or "semimonotone".

XOR or XMPN Exactly one parent node must be mutated for a relation-
ship to be satisfied. Specify it as "XOR" or "xmpn" or "XMPN".

In addition, for the nodes that depend only on the root node, you can use
"—"or "-" if you want (though using any of the other three would have the
same effects if a node that connects to root only connects to root).

This paramenter is not used if frequencyDependentBirth is TRUE.

A named numeric vector. The names identify the relationship, and the numeric
value is the fitness (or mutator) effect. For the names, each of the genes or
modules involved is separated by a ":". A negative sign denotes the absence of
that term.

This paramenter is not used if frequencyDependentBirth is TRUE.

A named numeric vector, as for epistasis. A ">" separates the names of the
genes of modules of a relationship, so that "U > Z" means that the relationship
is satisfied when mutation U has happened before mutation Z.

This paramenter is not used if frequencyDependentBirth is TRUE.

A numeric vector (optionally named) with the fitness coefficients (or mutator
multiplier factor) of genes (only genes, not modules) that show no interactions.
These genes cannot be part of modules. But you can specify modules that have
no epistatic interactions. See examples and vignette.

Of course, avoid using potentially confusing characters in the names. In partic-

non

ular, "," and ">" are not allowed as gene names.

This paramenter is not used if frequencyDependentBirth is TRUE.

A named character vector that allows to match genes and modules. The names
are the modules, and each of the values is a character vector with the gene names,
separated by a comma, that correspond to a module. Note that modules cannot
share genes. There is no need for modules to contain more than one gene. If
you specify a geneToModule argument, and you used a restriction table, the
geneToModule must necessarily contain, in the first position, "Root" (since the
restriction table contains a node named "Root"). See examples below.

This paramenter is not used if frequencyDependentBirth is TRUE.

The names of genes that are considered drivers. This is only used for: a) de-
ciding when to stop the simulations, in case you use number of drivers as a
simulation stopping criterion (see oncoSimulIndiv); b) for summarization pur-
poses (e.g., how many drivers are mutated); c¢) in figures. But you need not
specifiy anything if you do not want to, and you can pass an empty vector (as
character(@)). The default has changed with respect to v.2.1.3 and previous:
it used to be to assume that all genes that were not in the noIntGenes were
drivers. The default now is to assume nothing: if you want drvNames you have
to specify them.

allFitnessEffects

genotFitness A matrix or data frame that contains explicitly the mapping of genotypes to birth
and optionally death. For now, we only allow epistasis-like relations between
genes (so you cannot code order effects this way).

Genotypes can be specified in two ways:

* As amatrix (or data frame) with g + 1 columns or g + 2 columns, depending
if death is specified or not(where g > 1). Each of the first g columns contains
a 1 or a 0 indicating that the gene of that column is mutated or not. Column
g+ 1 contains the birth values. This is, for instance, the output you will
get from rfitness. If the matrix has all columns named, those will be
used for the names of the genes. Of course, except for column or row
names, all entries in this matrix or data frame must be numeric, except
when frequencyDependentBirth is TRUE. In this case, last column must
be character and contains birth equations.

¢ As a two column data frame. The second column is birth, and the first col-
umn are genotypes, given as a character vector. For instance, a row "A, B"
would mean the genotype with both A and B mutated. If frequencyDependentBirth
is TRUE both columns must be character vectors.

When frequencyDependentBirth = FALSE, fitness must be >= @. If any possi-
ble genotype is missing, its fitness is assumed to be 0, except for WT (if WT
is missing, its fitness is assumed to be 1 —see examples); this also applies to
frequency-dependent fitness.

In contrast, if frequencyDependentBirth = TRUE, the Fitness column must con-
tain the fitness specification equations, like characters, using as variables the
frequencies (absolute or relative) of the all possible genotypes. We use "f" to
denote relative frecuencies and "n" for absolute. Letter "N" (UPPER CASE)
is reserved to denote total population size, thus f=n/N for each possible geno-
type. Relative frequency variables must be f_ for wild type, f_1 or f_A if first
gene is mutated, f 2 or f_B if is the case for the second one, f_1_2 or f_A_B,
if both the first and second genes are mutated, and so on. For anything beyond
the trivially simple, using letters (not numbers) is strongly recommended. Note
also that you need not specify the fitness of every genotype (those missing are
assumed to have a fitness of 0), nor do you need to pass the WT genotype. See
the vignette for many examples.

If we want to use absolute numbers (absolute frequencies), just subtitute "f" for
"n". The choice between relative or absolute frequencies may be specified also
in frequencyType or, if using the default (auto) it can be automatically inferred.
Mathematical operations and symbols allowed are described in the documen-
tation of C++’s library ExprTk that is used to parse and evaluate the fitness
equations (see references for more information).

keepInput If TRUE, whether to keep the original input. This is only useful for human
consumption of the output. It is useful because it is easier to decode, say, the
restriction table from the data frame than from the internal representation. But
if you want, you can set it to FALSE and the object will be a little bit smaller.

frequencyDependentBirth
If FALSE, the default value, all downstream work will be realised in a way
not related to frequency depedent fitness situations. That implies that fitness
specifications are fixed, except death rate in case of McFarland model (see

allFitnessEffects 7

oncoSimulIndiv for more details). If TRUE, you are in a frequency depen-
dent fitness situation, where fitness specification ecuations must be passed as
characters at genotFitness.

frequencyDependentDeath
If FALSE, the default value, all downstream work will be realised in a way
not related to frequency depedent fitness situations. That implies that fitness
specifications are fixed, except death rate in case of McFarland model (see
oncoSimulIndiv for more details). If TRUE, you are in a frequency depen-
dent fitness situation, where fitness specification ecuations must be passed as
characters at genotFitness.

frequencyDependentFitness
NA.

frequencyType frequencyType is a character that specify whether we are using absolute or rela-
tives frequecies and can take tree values depending on frequencyDependentFitness.
Use "abs", for absolute frequencies, or "rel", for relative ones. Remember that
you must to use "f" for relative frequency and "n" for absolute in genoFitness.
Set to NA for non-frequency-dependent fitness.

deathSpec If FALSE, the default value, all downstream work will be realised in a way in
which we assume that death is not specified by the user in genotFitness. If
TRUE, that means that death was specified by the user.

Details

allFitnessEffects is used for extremely flexible specification of fitness and mutator effects, in-
cluding posets, XOR relationships, synthetic mortality and synthetic viability, arbitrary forms of
epistatis, arbitrary forms of order effects, etc. allFitnessEffects produce the output necessary to
pass to the C++ code the fitness/mutator specifications to run simulations. Please, see the vignette
for detailed and commented examples.

allMutatorEffects provide the same flexibility, but without order and posets (this might be in-
cluded in the future, but I have seen no empirical or theoretical argument for their existence or
relevance as of now, so I do not add them to minimize unneeded complexity).

If you use both for simulations in the same call to, say, oncoSimulIndiv, all the genes specified in
allMutatorEffects MUST be included in the allFitnessEffects object. If you want to have
genes that have no direct effect on fitness, but that affect mutation rate, you MUST specify them in
the call to allFitnessEffects, for instance as noIntGenes with an effect of 0. When you run the
simulations in frequencyDependentBirth = TRUE or frequencyDependentDeath = TRUE only
fitness effects are allowed, and must be codified in genotFitness.

If you use genotFitness then you cannot pass modules, nolntgenes, epistasis, or rT. This makes
sense, because using genotFitness is saying "this is the mapping of genotypes to birth and maybe
death. Period", so we should not allow further modifications from other terms. This is always the
case when frequencyDependentBirth = TRUE or frequencyDependentDeath = TRUE.

If you use genotFitness you need to be careful when you use Bozic’s model (as you get a death
rate of 0).

If you use genotFitness note that we force the WT (wildtype) to always be 1 so birth rates (death
rates) are rescaled in case of frequencyDependentBirth = FALSE (frequencyDependentDeath
= FALSE). In contrast, when frequencyDependentBirth = TRUE (frequencyDependentDeath =

8 allFitnessEffects

TRUE) you are free to determine the birth rate (death rate) as a function of the frequencies of the
genotypes (see genotFitness and the vignette).

When using genotFitness, any genotype with a fitness <= le-9 is removed from the table of
genotypes, thus making it a non-viable genotype during simulations.

Value

An object of class "fitnessEffects" or "mutatorEffects". This is just a list, but it is not intended for
human consumption. The components are:

long.rt The restriction table in "long format", so as to be easy to parse by the C++ code.

long.epistasis Ditto, but for the epistasis specification.
long.orderEffects
Ditto for the order effects.

long.geneNoInt Ditto for the non-interaction genes.

geneModule Similar, for the gene-module correspondence.

graph An igraph object that shows the restrictions, epistasis and order effects, and is
useful for plotting.

drv The numeric identifiers of the drivers. The numbers correspond to the internal
numeric coding of the genes.

rT If keepInput is TRUE, the original restriction table.

epistasis If keepInput is TRUE, the original epistasis vector.

orderEffects If keepInput is TRUE, the original order effects vector.

noIntGenes If keepInput is TRUE, the original nolntGenes.

fitnessLandscape

A data.frame that contains number of genes + 1 columns, where the first columns
are the genes (1 if mutated and 0 if not) and the last one contains the fitnesses.
fitnessLandscape_df
A data.frame with the same information of fitnessLandscape, but in this case
ther are only two columns: Genotype, that has genotypes as vectors codified as
characters, and Fitness.
fitnessLandscape_gene_id
A data.frame with two columns (Gene and GeneNumlID), that map by rows
genes as letters (Gene) with genes as numbers (GeneNumlID).
fitnessLandscapeVariables
A character vector that contains the frequency variables necessary for the C++
code. The "fvars".
frequencyDependentBirth
TRUE or FALSE as we have explained before.
frequencyDependentDeath
TRUE or FALSE as we have explained before.
frequencyDependentFitness
DEPRECATED. Use instead of frequencyDependentFitness for old nomen-
clature.

allFitnessEffects 9

frequencyType A character string "abs" or "rel" (or NULL).
deathSpec TRUE or FALSE as we have explained before.

full_FDF_spec For frequency-dependent birth (death), a complete data frame showing the geno-
types (as matrix, letters, and "fvars") and the birth (death) specification, in terms
of the original specification (Birth_as_letters (Death_as_letters) and with geno-
types mapped to numbers according to the "fvars" (Birth_as_fvars (Death_as_fvars)).
If birth (death) was originally specified in terms of numbers, these two columns
will be identical. All the information in this data frame is implicitly above, but
this simplifies checking that you are doing what you think you are doing.

Note

Please, note that the meaning of the fitness effects in the McFarland model is not the same as in the
original paper; the fitness coefficients are transformed to allow for a simpler fitness function as a
product of terms. This differs with respect to v.1. See the vignette for details.

The names of the genes and modules can be fairly arbitrary. But if you try hard you can confuse
the parser. For instance, using gene or module names that contain "," or ":", or ">" is likely to get
you into trouble. Of course, you know you should not try to use those characters because you know
those characters have special meanings to separate names or indicate epistasis or order relationships.
Right now, using those characters as names is caught (and result in stopping) if passed as names for

nolntGenes.

At the moment, the variables you need to specify in the fitness equations when you are in a fre-
quency dependent fitness situation are fixed as we have explained in genotFitness. Perhaps using
different and strange combinations of "f_" or "n_" followed by letters and numbers you could con-
fuse the R parser, but never the C++ one. For a correct performance please be aware of this.

Author(s)

Ramon Diaz-Uriarte

References

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations during
tumor progression: effects of passengers, evolutionary models, and sampling doi:10.1186/s12859-
01504667.

McFarland, C.~D. et al. (2013). Impact of deleterious passenger mutations on cancer progression.
Proceedings of the National Academy of Sciences of the United States of AmericaV, 110(8), 2910-5.

Partow, A. ExprTk: C++ Mathematical Expression Library (MIT Open Souce License). http:
//www.partow.net/programming/exprtk/.
See Also

evalGenotype, evalAllGenotypes, oncoSimulIndiv, plot.fitnessEffects, evalGenotypeFitAndMut,
rfitness, plotFitnessLandscape

https://doi.org/10.1186/s12859-015-0466-7
https://doi.org/10.1186/s12859-015-0466-7
http://www.partow.net/programming/exprtk/
http://www.partow.net/programming/exprtk/

10 allFitnessEffects

Examples

A simple poset or CBN-like example

cs <- data.frame(parent = c(rep(”"Root”, 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s =0.1,
sh = -0.9,
typeDep = "MN")

cbn1 <- allFitnessEffects(cs)

plot(cbnl)

A more complex example, that includes a restriction table

order effects, epistasis, genes without interactions, and moduels

p4 <- data.frame(parent = c(rep("Root”, 4), "A", "B", "D", "E", "C", "F"),
child = C("A”’ IIBII, IIDII’ IIEII, “C", "C”’ IIFII, IIFII’ "G“, ”G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(@, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN",6 "SM" k6 "SM"))

oe <- c("C>F" =-0.1, "H>1" =0.12)
sm <- c("I:J" = -1)
sv <= c("-K:M" = -.5, "K:-M" = -.5)

epist <- c(sm, sv)

modules <- c("Root” = "Root”, "A" = "al",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "el",
"EM o= F1, 2", "GM = "gl,
"H" = "h1, h2", "I" = "i1",

nIMo= M§1 27, "KM o= "k1, k2", "M = "m1")

set.seed(1) ## for repeatability
noint <- rexp(5, 10)
names(noint) <- paste@("n”, 1:5)

fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe,
nolntGenes = noint, geneToModule = modules)

plot(fea)

Modules that show, between them,
no epistasis (so multiplicative effects).
We specify the individual terms, but no value for the ":".
fnme <- allFitnessEffects(epistasis = c("A" = 0.1,
"B = 9.2),
geneToModule = c("A" = "al, a2",

allFitnessEffects

"B = nb-l n))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)

Epistasis for fitness and simple mutator effects

fe <- allFitnessEffects(epistasis = c("a : b"” = 0.3,
"y oot =
nolntGenes = c("e" =

fm <- allMutatorEffects(noIntGenes = c("a" = 10,
Ilcll = 5))

evalAllGenotypesFitAndMut(fe, fm, order = FALSE)
Simple fitness effects (noIntGenes) and modules
for mutators

fe2 <- allFitnessEffects(noIntGenes =
c(al = 0.1, a2 = 0.2,

b1 = 0.01, b2 = 0.3, b3 = 0.2,
cl = 0.3, c2 =-0.2))
fm2 <- allMutatorEffects(epistasis = c("A" =5,
"B" = 10,
"c¢" = 3),
geneToModule = c("A" = "al, a2",

"M = ”b1, b2, b3",
ncu - "C‘], czu))

evalAllGenotypesFitAndMut(fe2, fm2, order = FALSE)

Passing fitness directly, a complete fitness specification
with a two column data frame with genotypes as character vectors

(m4 <- data.frame(G = c("A, B", "A", "WT", "B"), F =c(3, 2, 1, 4)))
fem4 <- allFitnessEffects(genotFitness = m4)

Verify it interprets what it should: m4 is the same as the evaluation
of the fitness effects (note row reordering)
evalAllGenotypes(fem4, addwt = TRUE, order = FALSE)

Passing fitness directly, a complete fitness specification
that uses a three column matrix

m5 <- cbind(c(o, 1, 0, 1), c(o, o, 1, 1), c(1, 2, 3, 5.5))
fem5 <- allFitnessEffects(genotFitness = m5)

12

allFitnessEffects

Verify it interprets what it should: m5 is the same as the evaluation
of the fitness effects
evalAllGenotypes(fem5, addwt = TRUE, order = FALSE)

Passing fitness directly, an incomplete fitness specification
that uses a three column matrix
m6 <- cbind(c(1, 1), c(1, @), c(2, 3))

fem6 <- allFitnessEffects(genotFitness = m6)
evalAllGenotypes(fem6, addwt = TRUE, order = FALSE)

Plotting a fitness landscape

fe2 <- allFitnessEffects(noIntGenes =

c(al = 0.1,
b1 = 0.01,
cl = 0.3))

plot(evalAllGenotypes(fe2, order = FALSE))

same as
plotFitnessLandscape(evalAllGenotypes(fe2, order = FALSE))

same as
plotFitnessLandscape(fe2)

#i#t#HH# Defaults for missing genotypes

As a two-column data frame

(m8 <- data.frame(G = c("A, B, C", "B"), F = c(3, 2)))

evalAllGenotypes(allFitnessEffects(genotFitness = m8),
addwt = TRUE)

As a matrix

(m9 <- rbind(c(0, 1, @, 1, 4), c(1, @, 1, 0, 1.5)))

evalAllGenotypes(allFitnessEffects(genotFitness = m9),
addwt = TRUE)

#iHHHHHH# Frequency Dependent Birth
genofit <- data.frame(A = c(o, 1, 0, 1),
B =c(o, 0, 1, 1),
Birth = c("max(3, 2*xf_)",
"max(1.5, 3x(f_ + f_1))",
"max(2, 3x(f_ + f_2))",
"max(2, 5xf_ - @.5x(f_1 + f_2) + 15%xf_1_2)"),
stringsAsFactors = FALSE)

afe <- allFitnessEffects(genotFitness = genofit,

benchmarks 13

frequencyDependentBirth = TRUE,
frequencyType = "rel")

##Ploting fitness landscape in case of spPopSizes = c(5000, 2500, 3000, 7500)
plotFitnessLandscape(evalAllGenotypes(afe, spPopSizes = c(5000, 2500, 3000, 7500)))

Reinitialize the seed
set.seed(NULL)

benchmarks Summary results from some benchmarks reported in the vignette.

Description

Summary results from some benchmarks reported in the vignette. Included are timings, sizes of
return objects and key oputput from each simulation.

They are here mainly to facilitate creation of table from the vignette itself. The scripts are available
under "inst/miscell".

Usage

data(benchmark_1)
data(benchmark_1_0.05)
data(benchmark_2)
data(benchmark_3)

Format

Data frames.

Examples

data(benchmark_1)
benchmark_1

createlnterventions Function that checks and creates an specification for interventions.

Description

This functions checks that the user has specified correctly the interventions and also makes some
modifications in the specification, so the "core" of the code that runs the simulation can "understand"
them and execute them.

14

Usage

createlnterventions

createlnterventions(interventions, genotFitness, frequencyType = "auto")

Arguments

interventions

genotFitness

frequencyType

Details

Interventions must be a list of lists, where each "sub-list" must have the follow-
ing fields:

* ID: The identifier of the intervention, must be unique. * Trigger: The situa-
tion in the simulation that triggers/activates the intervention. * What Happens:
"What happens" in the simulation. Basically, once the trigger is satisfied, this
defines how the population is affected by the intervention. * Periodicity: De-
fines the periodicity of the intervention. * Repetitions: Defines the maximum
repetitions of each intervention in the simulation.

Object that allFitnessEffects returns, it is necessary to call that function
before creating interventions. Also, when calling allFitnessEffects frequen-
cyDependentFitness must be TRUE.

If you want to specify the frequency type of the simulation, by default is set to
llautoﬂ

See the vignette for details about differences between intervening on the total population or over
specific genotypes and when do each occur.

Value

Returns the same list of list that the user specifies, but with the following changes:

First, it transforms the arguments that refer to the genotipes, for example: n_A is the actual pop-
ulation of A in the simulation for a T given. But in the C++ part, "A" receives a Genotype ID, in
this case 1, so n_A in the simulation is n_1. (For more info run allFitnessEffects with param-
eter frequencyDependentFitness = TRUE, then, check the data that returns, specificly, the field
$full_FDF_spec. There you have more info about those transformations).

Then, it checks that all fields of the sub-lists are correctly specified.

Finally, it returns the list of interventions with the modifications needed for the code to interpret it

correctly.

Examples

#first we create and the populations to simulate.
fal <- data.frame(Genotype = c("A", "B"),

Fitness = c("1.001 + (@*n_A)",
"1.002"))

afd3 <- allFitnessEffects(genotFitness = fal,

frequencyDependentFitness = TRUE,
frequencyType = "abs")

now we especify intervention to drastically reduce A population

createlnterventions 15

depending on the T of the simulation
list_of_interventions <- list(

list(ID = "intOverA",
Trigger = "(T >=5)",
WhatHappens = "n_A = n_A x 0.1",
Repetitions = 0,
Periodicity = Inf

)

we transform the intervention to somthing the simulation can process
final_interventions <- createlnterventions(interventions = list_of_interventions, afd3)

we run the simulations passing the interventions as an argument
ep2 <- oncoSimulIndiv(
afd3,
model = "McFL",
mu = le-4,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
sampleEvery = 0.01,
finalTime = 5.2,
onlyCancer = FALSE,
interventions = final_interventions

)

you can also make the intervention depend on the total population
list_of_interventionsl <- list(

list(ID = "intOverTotPop”,
Trigger = "(N >= 5000)",
WhatHappens = "N =N * 0.1",
Repetitions = 0,
Periodicity = Inf

)

or depend over the population of a genotype
list_of_interventions2 <- list(

list(ID = "intOverTotPop”,
Trigger = "(n_A >= 5000)",
WhatHappens = "n_ =n_B * 0.1",
Repetitions = 0,
Periodicity = Inf

)

or mix it all together using logic conectors
list_of_interventions2 <- list(

list(ID = "intOverTotPop”,
Trigger = "((n_A >= 200) and (N >= 2000)) or (T > 20)",
WhatHappens = "n_ = n_B * 0.1",
Repetitions = 0,

Periodicity = Inf

16

createUserVars

)
)
createUserVars Functions that check and create specifications for user variables and
rules.
Description

This functions check that the user has specified correctly the user variables and rules and also
makes some modifications in the specification, so the "core" of the code that runs the simulation
can "understand" them and execute them.

Usage

createUserVars(userVars)

createRules(rules, genotFitness, frequencyType = "auto")

Arguments

userVars

rules

genotFitness

frequencyType

Details

N/A

userVars must be a list of lists, where each "sub-list" must have the following
fields:

* name: The name of the variable, must be unique. * Value: initial numeric
value of the variable.

rules must be a list of lists, where each "sub-list" must have the following fields:

* ID: The identifier of the rule, must be unique. * Condition: boolean expres-
sion that, if true, determines the execution of the rule. * Condition: expression
thatdetermines the variables that will be modified when the condition is true, it
can be arbitrarily complex using other simulation parameters such as N, T and
genotype populations and rates.

Object that allFitnessEffects returns, it is necessary to call that function
before creating interventions. Also, when calling allFitnessEffects frequen-
cyDependentFitness must be TRUE.

If you want to specify the frequency type of the simulation, by default is set to
"auto"

createUser Vars 17

Value

For createUserVars, the same list that the user specifies, after checking that all the parameters
are correctly specified. For createRules the same list of list that the user specifies, but with the
following changes:

First, it transforms the arguments that refer to the genotipes, for example: n_A is the actual pop-
ulation of A in the simulation for a T given. But in the C++ part, "A" receives a Genotype ID, in
this case 1, so n_A in the simulation is n_1. (For more info run allFitnessEffects with param-
eter frequencyDependentFitness = TRUE, then, check the data that returns, specificly, the field
$full_FDF_spec. There you have more info about those transformations).

Then, it checks that all fields of the sub-lists are correctly specified.

Finally, it returns the list of rules with the modifications needed for the code to interpret it correctly.

Examples

#first we create and the populations to simulate.
fal <- data.frame(Genotype = c("A", "B"),
Fitness = c("1.001 + (@*n_A)",
"1.002"))

afd3 <- allFitnessEffects(genotFitness = fal,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

now we specify some user variables
userVars <- list(

list(Name = "user_varl”,
Value =0

)’

list(Name = "user_var2",
Value =3

)Y

list(Name = "user_var3",
Value = 2.5

)

)

we call the function to check the specification of the variables
userVars <- createUserVars(userVars = userVars)

we determine the rules that modify the variables
rules <- list(
1list(ID = "rule_1",
Condition = "T > 20",
Action = "user_var_1 = 1"
),list(ID = "rule_2",
Condition = "T > 30",
Action = "user_var_2 = 2; user_var3 = 2xN"
),list(ID = "rule_3",
Condition = "T > 40",
Action = "user_var_3 = 3;user_var_2 = n_A*n_B"

18

createUserVars

we call the function to check the specification of the rules
rules <- createRules(rules = rules, afd3)

we run the simulations passing theese lists as arguments
ep3 <- oncoSimulIndiv(
afd3,
model = "McFL",
mu = le-4,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
sampleEvery = 0.01,
finalTime = 5.2,
onlyCancer = FALSE,
userVars = userVars,
rules = rules

)

you can also make the rules depend on the total population
rules <- list(
list(ID = "rule_1",
Condition = "N > 5000",
Action = "user_var_1 = 1"
),list(ID = "rule_2",
Condition = "N <= 5000",
Action = "user_var_1 = 2"
),list(ID = "rule_3",
Condition = "N > 4000",
Action = "user_var_2 = 1;user_var_3 = 1"
),list(ID = "rule_4",
Condition = "N <= 4000",
Action = "user_var_2 = 2;user_var_3 = 3"

or depend on the population of each genotype
rules <- list(
list(ID = "rule_1",
Condition = "n_B > 300",
Action = "user_var_1 = 1"
),list(ID = "rule_2",
Condition = "n_B > 400",
Action = "user_var_1 = 2"
),list(ID = "rule_3",
Condition = "n_B <= 300",
Action = "user_var_1 = 3"
),list(ID = "rule_4",
Condition = "n_B <= 200",
Action = "user_var_1 = 4"

evalAllGenotypes 19

)

or depend on other previously defined user vars
rules <- list(
1list(ID = "rule_3",
Condition = "T > 10",

Action = "user_var_1 = 1"
),list(ID = "rule_1",

Condition = "user_var_1 = 0",

Action = "user_var_2 = 1"
),list(ID = "rule_2",

Condition = "user_var_1 = 1",

Action = "user_var_2 = 2"

or mix it all together using logic conectors
rules <- list(
1list(ID = "rule_3",
Condition = "T > 10 and N < 5000",

Action = "user_var_1 = 1"

y,1ist(ID = "rule_1",
Condition = "user_var_1 = @ and n_B > 1000",
Action = "user_var_2 = 1"

)

)
evalAllGenotypes Evaluate fitness/mutator effects of one or all possible genotypes.
Description

Given a fitnessEffects/mutatorEffects description, obtain the fitness/mutator effects of a single or
all genotypes.
Usage

evalGenotype(genotype, fitnessEffects, spPopSizes = NULL,
verbose = FALSE, echo = FALSE, model = "",
currentTime = 0)

evalGenotypeMut (genotype, mutatorEffects, spPopSizes = NULL,
verbose = FALSE, echo = FALSE, currentTime = @)

evalAllGenotypes(fitnessEffects, order = FALSE, max = 256, addwt = FALSE,
model = "", spPopSizes = NULL, currentTime = @)

evalAllGenotypesMut (mutatorEffects, max = 256, addwt = FALSE,

20 evalAllGenotypes

spPopSizes = NULL, currentTime = Q)

evalGenotypeFitAndMut(genotype, fitnessEffects,
mutatorEffects, spPopSizes = NULL,
verbose = FALSE, echo = FALSE,

nn

model = , currentTime = Q)

evalAllGenotypesFitAndMut (fitnessEffects, mutatorEffects,
order = FALSE, max = 256, addwt = FALSE,
model = "", spPopSizes = NULL, currentTime = 0)

Arguments

genotype (For evalGenotype). A genotype, as a character vector, with genes separated
by "," or ">", or as a numeric vector. Use the same integers or characters used
in the fitnessEffects object. This is a genotype in terms of genes, not modules.
Using "," or ">" makes no difference: the sequence is always taken as the order
in which mutations occurred. Whether order matters or not is encoded in the

fitnessEffects object.
fitnessEffects A fitnessEffects object, as produced by allFitnessEffects.
mutatorEffects A mutatorEffects object, as produced by allMutatorEffects.

order (For evalAllGenotypes). If TRUE, then order matters. If order matters, then
generate not only all possible combinations of the genes, but all possible permu-
tations for each combination.

max (For evalAllGenotypes). By default, no output is shown if the number of
possible genotypes exceeds the max. Increase as needed.

addwt (For evalAllGenotypes). Add the wildtype (no mutations) explicitly? In case
of frequencyDependentFitness = TRUE the fitness of WT is always shown.

model Either nothing (the default) or "Bozic". If "Bozic" then the fitness effects con-
tribute to decreasing the Death rate. Otherwise Birth rate is shown (and labeled
as Fitness).

verbose (For evalGenotype). If set to TRUE, print out the individual terms that are
added to 1 (or subtracted from 1, if model is "Bozic").

echo (For evalGenotype). If set to TRUE, show the input genotype and print out
a message with the death rate or fitness value. Useful for some examples, as
shown in the vignette.

spPopSizes spPopSizes is only needed when frequencyDependentFitness = TRUE and
you want to evaluate fitness with evalGenotype or evalAllGenotypes (see
these functions for more info).
spPopSizes is a numeric vector that contains the population sizes of the clones,
in the same order of genotypes appear in the Genotype column of genotFitness.
In your_object$full_FDF_spec you can see the genotypes (and the order) for
which you need to pass the values (recall genotypes not specified explicitly are
given a value of 0 and do not show up in this table).
It is strongly recommended that spPopSizes be a named vector to allow for
checks and matches to the actual genotypes.

evalAllGenotypes 21

currentTime The time of the simulation. It is possible to access to the current time and run in-
terventions for example using the frequency-dependent-fitness functionality or
modifying the mutation rate through oncoSimul functions such as oncoSimulln-
div. With evalAllGenotypes we can check if the fitness has changed before or
after a specific timepoint.

Value

For evalGenotype ecither the value of fitness or (if verbose = TRUE) the value of fitness and its
individual components.

For evalAllGenotypes a data frame with two columns, the Genotype ,the Birth Rate (or Death
Rate, if Bozic) and the Death Rate (if deathSpec = TRUE in fitnessEffects. The notation for the
Genotype column is a follows: when order does not matter, a comma "," separates the identifiers
of mutated genes. When order matters, a genotype shown as “x >y _ z” means that a mutation in
“x” happened before a mutation in “y”; there is also a mutation in “z” (which could have happened
before or after either of “x” or “y”), but “z” is a gene for which order does not matter. In all cases,

a "WT" denotes the wild-type (or, actually, the genotype without any mutations).

If you use both fitnessEffects and mutatorEffectsin acall, all the genes specified inmutatorEffects
MUST be included in the fitnessEffects object. If you want to have genes that have no direct ef-

fect on fitness, but that affect mutation rate, you MUST specify them in the call to fitnessEffects,

for instance as noIntGenes with an effect of 0.

When you are in a frequency dependent fitness situation you must set frequencydependentBirth =
TRUE and/or frequencydependentDeath = TRUE and spPopSizes must not be NULL and its length
must be equal to the number of possible genotypes. Here only evalGenotype and evalAllGenotypes
make sense.

Note

Modules are, of course, taken into account if present (i.e., fitness is specified in terms of modules,
but the genotype is specified in terms of genes).

About the naming. This is the convention used: "All" means we will go over all possible genotypes.
A function that ends as "Genotypes" returns only fitness effects (for backwards compatibility and
because mutator effects are not always used). A function that ends as "Genotype(s)Mut" returns
only the mutator effects. A function that ends as "FitAndMut" will return both fitness and mutator
effects.

Functions that return ONLY fitness or ONLY mutator effects are kept as separate functions because
they free you from specifyin mutator/fitness effects if you only want to play with one of them.

Author(s)

Ramon Diaz-Uriarte, Sergio Sanchez Carrillo, Juan Antonio Miguel Gonzalez

See Also

allFitnessEffects.

22

Examples

evalAllGenotypes

A three-gene epistasis example

sa <- 0.1

sb <- 0.15

sc <- 0.2

sab <- 0.3

sbc <- -0.25

sabc <- 0.4

sac <- (1 +sa) * (1 +sc) -1

E3A <- allFitnessEffects(epistasis =

c("A:-B:-C" = sa,

"-A:B:-C" = sb,
"-A:-B:C" = sc,
"A:B:-C" = sab,
"-A:B:C" = sbc,
"A:-B:C" = sac,
"A : B : C" = sabc)

)
evalAllGenotypes(E3A, order = FALSE, addwt = FALSE)
evalAllGenotypes(E3A, order = FALSE, addwt = TRUE, model = "Bozic")
evalGenotype("B, C", E3A, verbose = TRUE)

Order effects and modules
ofe2 <- allFitnessEffects(orderEffects = c("F > D" = -0.3, "D > F" = 0.4),
geneToModule =
c("Root"” = "Root",

"EM o= nf1) 2, £37,
"D = "d1, d2"))

evalAllGenotypes(ofe2, order = TRUE, max = 325)[1:15, 1]
Next two are identical

evalGenotype("d1 > d2 > f3", ofe2, verbose = TRUE)
evalGenotype("dl , d2 , f3", ofe2, verbose = TRUE)

This is different

evalGenotype("f3 , d1 , d2", ofe2, verbose = TRUE)
but identical to this one

evalGenotype("f3 > d1 > d2", ofe2, verbose = TRUE)

Restrictions in mutations as a graph. Modules present.

p4 <- data.frame(parent = c(rep("Root”, 4), "A", "B”, "D”, "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(@, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),

typeDep = c(rep("-=", 4),

evalAllGenotypes

IIXMPNH s IIXMPNH R HMNH) IIMNII s IISMII s IISMH))
fp4m <- allFitnessEffects(p4,

geneToModule = c("Root” = "Root", "A" = "al",
IIBII = Ilb1 R b2”’ HCII = Hc1 II’
"pr o= d1, d2", "E" = "el”,

WEM = ME1F27) MGM = "gl™))
evalAllGenotypes(fp4m, order = FALSE, max = 1024, addwt = TRUE)[1:15,]
evalGenotype("b1, b2, el, f2, al”, fp4m, verbose = TRUE)

Of course, this is identical; b1l and b2 are same module
and order is not present here

evalGenotype(”al, b2, el, f2", fp4m, verbose = TRUE)
evalGenotype(”al > b2 > el > 2", fp4m, verbose = TRUE)

We can use the exact same integer numeric id codes as in the
fitnessEffects geneModule component:

evalGenotype(c(1L, 3L, 7L, 9L), fp4m, verbose = TRUE)

Epistasis for fitness and simple mutator effects

fe <- allFitnessEffects(epistasis = c("a : b" = 0.3,
"o : ¢c" =0.5),
nolntGenes = c("e"” = 0.1))

fm <- allMutatorEffects(noIntGenes = c("a” = 10,
e = 5Yy)

evalAllGenotypesFitAndMut(fe, fm, order = "FALSE")

Simple fitness effects (noIntGenes) and modules
for mutators

fe2 <- allFitnessEffects(noIntGenes =
c(al = 0.1, a2 = 0.2,
b1 0.01, b2 = 0.3, b3 =0.2,
cl 0.3, c2 = -0.2))

fm2 <- allMutatorEffects(epistasis = c("A" =5,

"B = 10,
e = 3y,
geneToModule = c("A" = "al, a2",

"B" = "b1, b2, b3",
"er o= 1, c2™)

Show only all the fitness effects

24

example-missing-drivers

evalAllGenotypes(fe2, order = FALSE)

Show only all mutator effects
evalAllGenotypesMut(fm2)

Show all fitness and mutator
evalAllGenotypesFitAndMut (fe2, fm2, order = FALSE)

This is probably not what you want
try(evalAllGenotypesMut(fe2))

... nor this
try(evalAllGenotypes(fm2))

Show the fitness effect of a specific genotype
evalGenotype(”al, c2", fe2, verbose = TRUE)

Show the mutator effect of a specific genotype
evalGenotypeMut(”al, c2", fm2, verbose = TRUE)

Fitness and mutator of a specific genotype
evalGenotypeFitAndMut("al, c2", fe2, fm2, verbose = TRUE)

This is probably not what you want
try(evalGenotype(”al, c2", fm2, verbose = TRUE))

Not what you want either
try(evalGenotypeMut(”al, c2", fe2, verbose = TRUE))

Frequency dependent birth example
r <- data.frame(Genotype = c("WT", "A", "B", "A, B"),
Birth = c("1 + 1.5%xf_",
"5 + 3x(f_A + f_B + f_A_B)",
"5 + 3%x(f_A + f_B + f_A_B)",
"7 + 5x(f_A + f_B + f_A_B)"),
stringsAsFactors = FALSE)

afe <- allFitnessEffects(genotFitness = r,

frequencyDependentBirth = TRUE,
frequencyType = "rel")

evalAllGenotypes(afe, spPopSizes = c(5000, 2500, 2500, 500))

example-missing-drivers
An example where there are intermediate missing drivers.

examplePosets 25

Description

An example where there are intermediate missing drivers. This is fictitious and I’ve never seen it.
But it is here to check plots work even if there are no cases of some intermediate value of drivers (2
in this case). bl1 contains the full, original data, whereas b12 contains the same data where there
are no cases with exactly 2 drivers.

Usage

data("ex_missing_drivers_b11"); data("ex_missing_drivers_b12")

Format

Two objects of class "oncosimul".

See Also

plot.oncosimul

Examples

data(ex_missing_drivers_b11)
plot(ex_missing_drivers_b11, type = "line")
dev.new()

data(ex_missing_drivers_b12)
plot(ex_missing_drivers_b12, type = "line")

examplePosets Example posets

Description

Some example posets. For simplicity, all the posets are in a single list. You can access each poset
by accessing each element of the list. The first digit or pair of digits denotes the number of nodes.

Poset 1101 is the same as the one in Gerstung et al., 2009 (figure 2A, poset 2). Poset 701 is the
same as the one in Gerstung et al., 2011 (figure 2B, left, the pancreatic cancer poset). Those posets
were entered manually at the command line: see poset.

Usage

data("examplePosets")

26 examplesFitnessEffects

Format

The format is: List of 13 $ p1101: num [1:10, 1:2] 11333778910 ... $ p1102: num [1:9, 1:2]
11333779102...$pl103: num [1:9,1:2111333778102...$pl1104: num [1:9,1:2]113
37792102...$p901 : num [1:8,1:2] 1245785123 ... $p902 : num [1:6,1:2] 1245752
356...$p903: num [1:6,1:2]1257812368...$p904 : num [1:6,1:2] 1455172586 ...
$p701 : num [1:9,1:2]1111234452...$p702 : num [1:6,1:2] 1111242345 ... $p703
cmum [1:6,1:2]1 1111352345, $p704 : num [1:6, 1:211111452345 ... $p705: num
[1:6,1:211211122546...

Source

Gerstung et al., 2009. Quantifying cancer progression with conjunctive Bayesian networks. Bioin-
formatics, 21: 2809-2815.

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

See Also

poset

Examples

data(examplePosets)

Plot all of them
par(mfrow = c(3, 5))

invisible(sapply(names(examplePosets),
function(x) {plotPoset(examplePosets[[x]],
main = x,
box = TRUE)}))

examplesFitnessEffects
Examples of fitness effects

Description

Some examples of fitnessEffects objects. This is a collection, in a list, of most of the fitnessEf-
fects created (using allFitnessEffects) for the vignette. See the vignette for descriptions and
references.

Usage

data("examplesFitnessEffects"”)

freq-dep-simul-examples 27

Format

The format is a list of fitnessEffects objects.

See Also

allFitnessEffects

Examples

data(examplesFitnessEffects)
plot(examplesFitnessEffects[["fea"]1])

evalAllGenotypes(examplesFitnessEffects[["cbn1"”]], order = FALSE)

freq-dep-simul-examples
Runs from simulations of frequency-dependent examples shown in the
vignette.

Description

Simulations shown in the vignette. Since running them can take a few seconds, we have pre-run
them, and stored the results.

Usage

data(woAntibS)

Format

For output from runs of oncoSimulIndiv a list of classes oncosimul and oncosimul2.

See Also

oncoSimulIndiv

Examples

data(woAntibS)
plot(woAntibS, show = "genotypes"”, type = "line",
col = c("black”, "green”, "red"))

28 oncoSimullndiv

mcfLs mcfLs simulation from the vignette

Description
Trimmed output from the simulation mcfLs in the vignette. This is a somewhat long run, and we
have stored here the object (after trimming the Genotype matrix) to allow for plotting it.

Usage

data("mcfLs")

Format

An object of class "oncosimul2". A list.

See Also

plot.oncosimul

Examples

Not run:
data(mcfLs)

plot(mcflLs, addtot = TRUE, 1lwdClone = 0.9, log = "")
summary (mcfLs)

End(Not run)

oncoSimulIndiv Simulate tumor progression for one or more individuals, optionally
returning just a sample in time.

Description

Simulate tumor progression including possible restrictions in the order of driver mutations. Op-
tionally add passenger mutations. When used in frequency dependent fitness situation, only fitness
effects are allowed. Simulation is done using the BNB algorithm of Mather et al., 2012.

oncoSimullndiv

Usage

oncoSimulIndiv(fp, model = "Exp",

numPassengers = @, mu = le-6, muEF = NULL,
detectionSize = 1e8, detectionDrivers = 4,

detectionProb = NA,
sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,
0.025),

initSize = 500, s = 0.1, sh = -1,
K = sum(initSize)/(exp(1) - 1), keepEvery = sampleEvery,
minDetectDrvCloneSz = "auto",
extraTime = 0,
finalTime = ©.25 * 25 * 365, onlyCancer = FALSE,
keepPhylog = FALSE,
mutationPropGrowth = ifelse(model == "Bozic”,
FALSE, TRUE),
max.memory = 2000, max.wall.time = 200,
max.num.tries = 500,
errorHitWallTime = TRUE,
errorHitMaxTries = TRUE,
verbosity = 0,
initMutant = NULL,
AND_DrvProbExit = FALSE,
fixation = NULL,
seed = NULL,
interventions = NULL,
userVars = NULL,
rules = NULL)

oncoSimulPop(Nindiv, fp, model = "Exp", numPassengers = @, mu = le-6,
muEF = NULL,
detectionSize = 1e8, detectionDrivers = 4,
detectionProb = NA,
sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,
0.025),

initSize = 500, s = 0.1, sh = -1,
K = sum(initSize)/(exp(1) - 1), keepEvery = sampleEvery,
minDetectDrvCloneSz = "auto”,
extraTime = 0,
finalTime = 0.25 % 25 * 365, onlyCancer = FALSE,
keepPhylog = FALSE,
mutationPropGrowth = ifelse(model == "Bozic",

FALSE, TRUE),
max.memory = 2000, max.wall.time = 200,
max.num.tries = 500,
errorHitWallTime = TRUE,
errorHitMaxTries = TRUE,
initMutant = NULL,

29

30

oncoSimullndiv

AND_DrvProbExit = FALSE,
fixation = NULL,
verbosity = 0,

mc.cores = detectCores(),
seed = "auto",
interventions = NULL,
userVars = NULL,

rules = NULL)

oncoSimulSample(Nindiv,

p,

model = "Exp”,

numPassengers = 0,

mu = le-6,

muEF = NULL,

detectionSize = round(runif(Nindiv, 1e5, 1e8)),

detectionDrivers = {
if(inherits(fp, "fitnessEffects”)) {
if(length(fp$drv)) {
nd <- (2: round(@.75 * length(fp$drv)))

} else {
nd <- 9e6
}
} else {

nd <- (2 : round(@.75 * max(fp)))
3
if (length(nd) == 1)
nd <- c(nd, nd)
sample(nd, Nindiv,
replace = TRUE)
3
detectionProb = NA,
sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,

0.025),
initSize = 500,
s =0.1,
sh = -1,
K = sum(initSize)/(exp(1) - 1),
minDetectDrvCloneSz = "auto",
extraTime = 0,
finalTime = .25 x 25 * 365,

onlyCancer = FALSE, keepPhylog = FALSE,
mutationPropGrowth = ifelse(model == "Bozic",

FALSE, TRUE),
max.memory = 2000,
max.wall.time.total = 600,

oncoSimullndiv 31

max.num.tries.total = 500 * Nindiv,
typeSample = "whole”,
thresholdWhole = 0.5,
initMutant = NULL,
AND_DrvProbExit = FALSE,
fixation = NULL,
verbosity =1,
showProgress = FALSE,
seed = "auto",
interventions = NULL,
userVars = NULL,

rules = NULL)

Arguments
Nindiv Number of individuals or number of different trajectories to simulate.
fp Either a poset that specifies the order restrictions (see poset if you want to use

the specification as in v.1. Otherwise, a fitnessEffects object (see al1FitnessEffects).
You must always use a fitnessEffects object when you are in a frequency depen-

dent fitness simulation; of course in this case fp$frequencyDependentFitness

must be TRUE.

Other arguments below (s, sh, numPassengers) make sense only if you use a
poset, as they are included in the fitnessEffects object.

model One of "Bozic", "Exp", "Arb", "McFarlandLog", "McFarlandLogD" (the last
two can be abbreviated to "McFL" and "McFLD", respectively). The default is
"Exp". (See vignette for the difference between "McFL" and "McFLD": in the
former, death rate = log(1+ N/ K) where K is the initial equilibrium population
size; when using "McFLD", death rate = max(1,log(1 + N/K)), so that death
rate never goes below 1.). If "Arb" (arbitrary) model is specified, death must be
present in allFitnessEffects, and vice versa.

numPassengers This has no effect if you use the allFitnessEffects specification. This hap-
pens always when you are in a simulation that use frequency dependent fitness.
If you use the specification of v.1., the number of passenger genes. Note that
using v.1 the total number of genes (drivers plus passengers) must be smaller
than 64.
All driver genes should be included in the poset (even if they depend on no one
and no one depends on them), and will be numbered from 1 to the total number
of driver genes. Thus, passenger genes will be numbered from (number of driver
genes + 1):(number of drivers + number of passengers).

mu Mutation rate. Can be a single value or a named vector. If a single value,
all genes will have the same mutation rate. If a named vector, the entries
in the vector specify the gene-specific mutation rate. If you pass a vector, it
must be named, and it must have entries for all the genes in the fitness spec-
ification. Passing a vector is only available when using fitnessEffects objects
for fitness specification. Mutation rates <10*-20 are not accepted. See also
mutationPropGrowth.

32

muEF

detectionSize

oncoSimullndiv

Mutator effects. A mutatorEffects object as obtained from allMutatorEffects.
This specifies how mutations in certain genes change the mutation rate over all
the genome. Therefore, this allows you to specify mutator phenotypes: models
where mutation of one (or more) gene(s) leads to an increase in the mutation
rate. This is only available for version 2 (and above) specifications.

All the genes specified in muEF MUST be included in fp. If you want to have
genes that have no direct effect on fitness, but that affect mutation rate, you
MUST specify them in fp, for instance as noIntGenes with an effect of 0.

If you use mutator effects you must also use fitnessEffects in fp.

‘What is the minimal number of cells for cancer to be detected. For oncoSimulSample

this can be a vector.
If set to NA, detectionSize plays no role in stopping the simulations.

detectionDrivers

detectionProb

The minimal number of drivers (not modules, drivers, whether or not they are
from the same module) present in any clone for cancer to be detected. For
oncoSimulSample this can be a vector.

For oncoSimulSample, if there are drivers (either because you are using a v.1
object or because you are using a fitnessEffects object with a drvNames com-
ponent —see allFitnessEffects—) the default is a vector of drivers from a
uniform between 2 and 0.75 the total number of drivers. If there are no drivers
(because you are using a fitnessEffects object without a drvNames, either be-
cause you specified it explicitly or because all of the genes are in the noIntGenes
component) the simulations should not stop based on the number of drivers (and,
thus, the default is set to 9e6). This is the case when you run the simulation with
frequency dependent fitness.

If set to NA, detectionDrivers plays no role in stopping the simulations.

Vector of arguments for the mechanism where probability of detection depends
on size. If NA, this mechanism is not used. If ‘default’, the vector will be popu-
lated with default values. Otherwise, a named vector with some of the following
named elements (see ‘Details’):

* PDBaseline: Baseline size subtracted to total population size to compute
the probability of detection. If not given explicitly, the default is 1.2 *
initSize (or 1.2 * sum(initSize) when multiple initMutants).

* p2: The probability of detection at population size n2. If you specificy p2
you must also specify n2 and you must not specify cPDetect. The fault is
0.1.

* n2: The population size at which probability of detection is p2. The default
is 2 * initSize.

* cPDetect: The change in probability of detection with size. If you specify
it, you should not specify either of p2 or n2. See ‘Details’.

* checkSizePEvery: Time between successive checks for the probability of
exiting as a function of population size. If not given explicitly, the default
is 20. See ‘Details’.

If you only provide some of the elements (except for the pair p2, n2, where you
must provide both if you provide any), the rest will be filled with default values.

This option can not be used with v.1 objects.

oncoSimullndiv

sampleEvery

initSize

K
keepEvery

33

How often the whole population is sampled. This is not the same as the interval
between successive samples that are kept or stored (for that, see keepEvery).

For very fast growing clones, you might need to have a small value here to min-
imize possible numerical problems (such as huge increase in population size be-
tween two successive samples that can then lead to problems for random number
generators). Likewise, for models with density dependence (such as McF) this
value should be very small.

Initial population size. If you are passing more than one initMutant, the initial
population sizes of each clone/species/genotype, given in the same order as in
the initMutant vector. initMutant thus allows to start the simulation from
arbitrary population compositions. Combined with mu it allows for multispecies
simulations (see the vignette for examples).

Initial population equilibrium size in the McFarland models.

Time interval between successive whole population samples that are actually
stored. This must be larger or equal to sampleEvery. If keepEvery is not a
multiple integer of sampleEvery, the interval between successive samples that
are stored will be the smallest multiple integer of sampleEvery that is larger
than or equal to keepEvery.

If you want nice plots, set sampleEvery and keepEvery to small values (say, 5
or 2). Otherwise, you can use a sampleEvery of 1 but a keepEvery of 15, so
that the return objects are not huge and the code runs a lot faster.

Setting keepEvery = NA means we only keep the very last sample. This is useful
if you only care about the final state of the simulation, not its complete history.

minDetectDrvCloneSz

extraTime

finalTime

onlyCancer

A value of 0 or larger than O (by default equal to initSize in the McFarland
model). If larger than 0, when checking if we are done with a simulation, we
verify that the sum of the population sizes of all clones that have a number of
mutated drivers larger or equal to detectionDrivers is larger or equal to this
minDetectDrvCloneSz.

The reason for this parameter is to ensure that, say, a clone with a certain number
of drivers that would cause the simulation to end has not just appeared and is
present in only one individual that might then immediately go extinct. This can
be relevant in secenarios such as the McFarland model.

If initSize is larger than 1 (you are passing multiple initMutants), the sum is
used.

See also extraTime.

A value larger than zero waits those many additional time periods before exiting
after having reached the exit condition (population size, number of drivers).
The reason for this setting is to prevent the McFL models from always exiting at
a time when one clone is increasing its size quickly (see minDetectDrvCloneSz).
By setting an extraTime larger than 0, we can sample at points when we are at
the plateau.

What is the maximum number of time units that the simulation can run. Set to
NA to disable this limit.

Return only simulations that reach cancer?

oncoSimullndiv

If set to TRUE, only simulations that satisfy the detectionDrivers or the
detectionSize requirements or that are "detected" because of the detectionProb
mechanism will be returned: the simulation will be repeated, within the limits
set by max.num.tries and max.wall.time (and, for oncoSimulSample also
max.num.tries.total and max.wall.time.total), until one which meets the
detectionDrivers or detectionSize or one which is detected stochastically
under detectionProb is obtained.

If onlyCancer = FALSE the simulation is returned regardless of final population
size or number of drivers in any clone and this includes simulations where the
population goes extinct.

The default used to be onlyCancer = TRUE; on version 3.99.10 it was changed
to onlyCancer = FALSE as this is the natural setting for simulating general sce-
narios. onlyCancer = TRUE, by design, leads to selection bias in the simulations
returned: we only see those that "reach cancer".

keepPhylog If TRUE, keep track of when and from which clone each clone is created. See
also plotClonePhylog.
mutationPropGrowth

If TRUE, make mutation rate proportional to growth rate, so clones that grow
faster also mutate faster (laso have a larger mutation rate): $mutation_rate =
mu * birth_rate$. With BNB mutation is actually "mutate after division": p.\
1232 of Mather et al., 2012 explains: "(...) mutation is simply defined as
the creation and subsequent departure of a single individual from the class".
Thus, if we want to have individuals of clones/genotypes/populations that di-
vide faster to also produce more mutants per unit time (per individual) we have
to set mutationPropGrowth = TRUE. Of course, this only makes sense in models
where birth rate changes.

initMutant For v.2: a string with the mutations of the initial mutant, if any. This is the same
format as for evalGenotype. The default (if you pass nothing) is to start the
simulation from the wildtype genotype with nothing mutated. For v.1 we no
longer accept initMutant: it will be ignored.
(evalGenotype also accepts the genotype as a numeric vector; initMutant
must be a character string.)

max.num.tries Only applies when onlyCancer = TRUE. What is the maximum number of times,
for an individual simulation, we can repeat the simulation for it to reach cancer?
There are certain parameter settings where reaching cancer is extremely unlikely
and you might not want to run forever in those cases.

max.num.tries. total
Only applies when onlyCancer = TRUE and for oncoSimulSample. What is the
maximum number of times, over all simulations for all individuals in a popu-
lation sample, that we can repeat the simulations so that cancer is reached for
all individuals? The idea is to set a limit on the average minimal probability of
reaching cancer for a set of simulations to be accepted.

max.wall.time Maximum wall time for the simulation of one individual (over all max.num. tries).
If the simulation is not done in this time, it is aborted.

max.wall.time.total
Maximum wall time for all the simulations (when using oncoSimulSample),
in seconds. If the simulation is not completed in this time, it is aborted. To

oncoSimullndiv 35

prevent problems from a single individual simulation going wild, this limit is
also enforced per simulation (so the run can be aborted directly from C++).
errorHitMaxTries
If TRUE (the default) a simulation that reaches the maximum number of repe-
titions allowed is considered not to have succesfully finished and, thus, an er-
ror, and no output from it will be reported. This is often what you want. See
Details.
errorHitWallTime
If TRUE (the default) a simulation that reaches the maximum wall time is con-
sidered not to have succesfully finished and, thus, an error, and no output from
it will be reported. This is often what you want. See Details.

max . memory The largest size (in MB) of the matrix of Populations by Time. If it creating it
would use more than this amount of memory, it is not created. This prevents you
from accidentally passing parameters that will return an enormous object.

verbosity If O, run silently. Iincreasing values of verbosity provide progressively more
information about intermediate steps, possible numerical notes/warnings from
the C++ code, etc. Values less than O supress some default notes: use with care.

typeSample "singleCell" (or "single") for single cell sampling, where the probability of sam-
pling a cell (a clone) is directly proportional to its population size. "wholeTu-
mor" (or "whole") for whole tumor sampling (i.e., this is similar to a biopsy
being the entire tumor). See samplePop.

thresholdWhole In whole tumor sampling, whether a gene is detected as mutated depends on
thresholdWhole: a gene is considered mutated if it is altered in at least thresh-
oldWhole proportion of the cells in that individual. See samplePop.

mc.cores Number of cores to use when simulating more than one individual (i.e., when
calling oncoSimulPop).

showProgress If TRUE, provide information, during exection, of the individual done, and the
number of attempts and time used.

AND_DrvProbExit
If TRUE, cancer will be considered to be reached if both the detectionProb
mechanism and detectionDrivers are satisfied. This is and AND, not an OR
condition. Using this option with fixation is not allowed (as it does not make
much sense).

fixation If non-NULL, a list or a vector, where each element of is a string with a gene
or a gene combination or a genotype (see below). Simulations will stop as soon
as any of the genes or gene combinations or genotypes are fixed (i.e., reach a
minimal frequency). If you pass gene combinations or genotypes, separate genes
with commas (not ’>’); this means order is not (yet?) supported. This way of
specifying gene combinations is the same as the one used for initMutant and
evalGenotype.

To differentiate between gene combinations and specific genotypes, genotypes
are specified by prepending them with a "_,". For instance, fixation =c("A",
"B, C") specifies stopping on any genotypes with those gene combinations.
In contrast, fixation=c("_,A", "_,B, C") specifies stopping only on gen-
toypes "A" or "B, C". See the vignette for further examples.

36

sh

seed

interventions

oncoSimullndiv

In addition to the gene combinations or genotypes themeselves, you can add to

the list or vector the named elements fixation_tolerance, min_successive_fixation

and fixation_min_size. fixation_tolerance: fixation is considered to have
happened if the genotype/gene combinations specified as genotypes/gene com-
binations for fixation have reached a frequency > 1 - fixation_tolerance.
(The default is 0, so we ask for genotypes/gene combinations with a frequency of
1, which might not be what you want with large mutation rates and complex fit-
ness landscape with genotypes of similar fitness.). min_successive_fixation:
during how many successive sampling periods the conditions of fixation need to
be fulfilled before declaring fixation. These must be successive sampling peri-
ods without interruptions (i.e., a single period when the condition is not fulfilled
will set the counter to 0). This can help to exclude short, transitional, local max-
ima that are quickly replaced by other genotypes. (The default is 50, but this is
probably too small for “real life” usage). fixation_min_size: you might only
want to consider fixation to have happened if a minimal size has been reached
(this can help weed out local maxima that have fitness that is barely above that
of the wild-type genotype). (The default is 0).

Using this option with AND_DrvProbExit is not allowed (as it does not make
much sense). This option is not allowed either with the old v.1 specification.

Selection coefficient for drivers. Only relevant if using a poset as this is included
in the fitnessEffects object. This will eventually be deprecated.

Selection coefficient for drivers with restrictions not satisfied. A value of 0
means there are no penalties for a driver appearing in a clone when its restric-
tions are not satisfied.

To specify "sh=Inf" (in Diaz-Uriarte, 2015) use sh = -1.

Only relevant if using a poset as this is included in the fitnessEffects object. This
will eventually be deprecated.

The seed for the C++ PRNG. You can pass a value. If you set it to NULL, then
a seed will be generated in R and passed to C++. If you set it to "auto", then
if you are using v.1, the behavior is the same as if you set it to NULL (a seed
will be generated in R and passed to C++) but if you are using v.2, a random
seed will be produced in C++. If you need reproducibility, either pass a value or
set it to NULL (setting it to NULL will make the C++ seed reproducible if you
use the same seed in R via set. seed). However, even using the same value of
seed is unlikely to give the exact same results between platforms and compilers.
Moreover, note that the defaults for seed are not the same in oncoSimulIndiv,
oncoSimulPop and oncoSimulSample.

When using oncoSimulPop, if you want reproducibility, you might want to, in
addition to setting seed = NULL, also do RNGkind ("L 'Ecuyer-CMRG") as we use
mclapply; look at the vignette of parallel.

This has no effect if you do not specify frequencyDependentFitness = TRUE
in allFitnessEffects function. Also, you must use createInterventions
function to create the correct type of parameter for the function oncoSimulPop
,oncoSimulIndiv , oncoSimulSample to process it correctly.

Use this argument in case you want to intervene in the simulation. With inter-
ventions, you can affect the total population size, or just some genotype-specific

oncoSimullndiv 37

population. You can complicate it as much as you want, or keep it simple, it is
really up to you.

Formally, interventions must be a list of lists, where each "sub-list" must have
the following fields:

* ID: The identifier of the intervention, must be unique. * Trigger: The situation
in the simulation that triggers/activates the intervention.

* What Happens: "What happens" in the simulation. Basically, once the trigger
is satisfied, this defines how the population is affected by the intervention. Please
see the vignette for details about the differences between when interventions that
affect a single genotype and those that affect the complete population occur.

* Periodicity: Defines the periodicity of the intervention. * Repetitions: Defines
the maximum repetitions of each intervention in the simulation.

userVars This has no effect if you do not specify frequencyDependentFitness = TRUE
in allFitnessEffects function. Also, you must use createuserVars func-
tion to create the correct type of parameter for the function oncoSimulPop ,
oncoSimulIndiv , oncoSimulSample to process it correctly.

Use this argument in case you want to define arbitrary variables that depend
on other simulation values. With the yser Variables you can simulate Adaptive
therapy by using this defined variables in the intervention’s whatHappens defi-
nition, or simply get more detailed insight by defining some interesting values
you desire as an output.

Formally, userVars must be a list of lists, where each "sub-list" must have the
following fields:

* Name: The name that identifies the new variable, must be unique. * Value:
The initial numeric value of the variable.

You must define the rules in order to determine how this variables will be
modified.

rules This has no effect if you do not specify frequencyDependentFitness = TRUE
in allFitnessEffects function. Also, you must use createRules function to
create the correct type of parameter for the function oncoSimulPop , oncoSimulIndiv
,oncoSimulSample to process it correctly. This also requires you to use userVars
as these rules operate on them and will not have any effect if thses do not exist.

Use this argument in order to determine how the defined user variebles will be
modified during the simulation. You can use any arbitrarily complex expression
depending on other simulation parameters such as T, N, Genotype populations
or genotype rates.

Formally, rules must be a list of lists, where each "sub-list" must have the fol-
lowing fields:

* ID: The identifier of the rule, must be unique. * Condition: The situation in
the simulation that triggers/activates the user variable modification. * Action:
The action that will take place once the condition is true. This defines wich user
variables will be modified and the expression that defines the new values for
them.

38 oncoSimullndiv

Details

The basic simulation algorithm implemented is the BNB one of Mather et al., 2012, where I have
added modifications to fitness based on the restrictions in the order of mutations.

Full details about the algorithm are provided in Mather et al., 2012. The evolutionary models,
including references, and the rest of the parameters are explained in Diaz-Uriarte, 2014, especially
in the Supplementary Material. The model called "Bozic" is based on Bozic et al., 2010, and the
model called "McFarland" in McFarland et al., 2013.

oncoSimulPop simply calls oncoSimullndiv multiple times. When run on POSIX systems, it can
use multiple cores (via mclapply).

The summary methods for these classes return some of the return values (see next) as a one-row
(for class oncosimul) or multiple row (for class oncosimulpop) data frame. The print methods for
these classes simply print the summary.

Changing options errorHitMaxTries and errorHitWallTime can be useful when conducting
many simulations, as in the call to oncoSimulPop: setting them to TRUE means nothing is recorded
for those simulations where ending conditions are not reached but setting them to FALSE would
allow you to record the output; this would potentially result in a mixture where some simulations
would not have reached the ending condition, but this might sometimes be what you want. Note,
however, that oncoSimulSample always has both them to TRUE, as it could not be otherwise.

GenotypesWDistinctOrderEff provides the information about order effects that is missing from
Genotypes. When there are order effects, the Genotypes matrix can contain genotypes that are
not distinguishable. Suppose there are two genes, the first and the second. In the Genotype
output you can get two columns where there is a 1 in both genes: those two columns corre-
spond to the two possible orders (first gene mutated first, or first gene mutated after the second).
GenotypesWDistinctOrderEff disambiguates this. The same is done by GenotypeslLabels; this
is easier to decode for a human (a string of gene labels) but a little bit harder to parse automatically.
Note that when you use the default print method for this object, you get, among others, a two-
column display with the GenotypelLabels information. When order matters, a genotype shown as

G99,

“x >y _ z” means that a mutation in “x” happened before a mutation in “y”; there is also a mutation

€y, 9

in “z” (which could have happened before or after either of “x” or “y”), but “z” is a gene for which

order does not matter. When order does not matter, a comma "," separates the identifiers of mutated
genes.

Detection of cancer can be a deterministic process, where cancer is always detected (and, thus, sim-
ulation ended) when certain conditions are met (detectionSize, detectionDrivers, fixation).
Alternatively, it can be stochastic process where probability of detection depends on size. Every so
often (see below) we assess population size, and detect cancer or not probabilistically (comparing
the probability of detection for that size with a random uniform number). Probability of detection
changes with population size according to the function

1— e7cPDetect((populationsize7PDBaseline)/PDBaseline)

You can pass cPDetect manually (you will need to set n2 and p2 to NA). However, it might be more
intuitive to specify the pair n2, p2, such that the probability of detection is p2 for population size n2
(and from that pair we solve for the value of cPDetect). How often do we check? That is controlled
by checkSizePEvery, the (minimal) time between successive checks (from among the sampling
times given by sampleEvery: the interval between successive assessments will be the smallest

oncoSimullndiv 39

multiple integer of sampleEvery that is larger than checkSizePEvery —see vignette for details).
checkSizePEvery has, by default, a different (and much larger) value than sampleEvery both to
allow to examine the effects of sampling, and to avoid many costly random number generations.

Please note that detectionProb is NOT available with version 1 objects.

Value

For oncoSimulIndiv a list, of class "oncosimul”, with the following components:

pops.by.time A matrix of the population sizes of the clones, with clones in columns and time
in row. Not all clones are shown here, only those that were present in at least on
of the keepEvery samples.

NumClones Total number of clones in the above matrix. This is not the total number of
distinct clones that have appeared over all simulations (which is likely to be
larger or much larger).

TotalPopSize Total population size at the end.

Genotypes A matrix of genotypes. For each of the clones in the pops.by.time matrix, its
genotype, with a 0 if the gene is not mutated and a 1 if it is mutated.

MaxNumDrivers The largest number of mutated driver genes ever seen in the simulation in any
clone.

MaxDriversLast The largest number of mutated drivers in any clone at the end of the simulation.
NumDriverslLargestPop
The number of mutated driver genes in the clone with largest population size.

LargestClone Population size of the clone with largest number of population size.
PropLargestPopLast
Ratio of LargestClone/TotalPopSize

FinalTime The time (in time units) at the end of the simulation.
NumIter The number of iterations of the BNB algorithm.

HittedWallTime TRUE if we reached the limit of max.wall.time. FALSE otherwise.
TotalPresentDrivers
The total number of mutated driver genes, whether or not in the same clone. The
number of elements in OccurringDrivers, below.

CountByDriver A vector of length number of drivers, with the count of the number of clones
that have that driver mutated.

OccurringDrivers
The actual number of drivers mutated.

PerSampleStats A 5 column matrix with a row for each sampling period. The columns are: total
population size, population size of the largest clone, the ratio of the two, the
largest number of drivers in any clone, and the number of drivers in the clone
with the largest population size.

other A list that contains statistics for an estimate of the simulation error when us-
ing the McFarland model as well as other statistics. For the McFarland model,
the relevant value is errorMF, which is -99 unless in the McFarland model. For
the McFarland model it is the largest difference of successive death rates. The

40

oncoSimullndiv

entries named minDMratio and minBMratio are the smallest ratio, over all simu-
lations, of death rate to mutation rate and birth rate to mutation rate, respectively.
The BNB algorithm thrives when those are large.

For oncoSimulPop a list of length Nindiv, and of class "oncosimulpop”, where each element of
the list is itself a list, of class oncosimul, with components as described above.

In v.2, the output is of both class "oncosimul" and "oncosimul2". The oncoSimullndiv return object
differs in

GenotypesWDistinctOrderEff
A list of vectors, where each vector corresponds to a genotype in the Genotypes,
showing (where it matters) the order of mutations. Each vector shows the geno-
types, with the numeric codes, showing explicitly the order when it matters. So
if you have genes 1, 2, 7 for which order relationships are given, and genes 3, 4,
5, 6 for which other interactions exist, any mutations in 1, 2, 7 are shown first,
and in the order they occurred, before showing the rest of the mutations. See
details.

GenotypesLabels
The genotypes, as character vectors with the original labels provided (i.e., not
the integer codes). As before, mutated genes, for those where order matters,
come first, and are separated by the rest by a "_". See details.

OccurringDrivers
This is the same as in v.1, but we use the labels, not the numeric id codes. Of
course, if you entered integers as labels for the genes, you will see numbers
(however, as a character string).

Note

Please, note that the meaning of the fitness effects in the McFarland model is not the same as in the
original paper; the fitness coefficients are transformed to allow for a simpler fitness function as a
product of terms. This differs with respect to v.1. See the vignette for details.

Author(s)

Ramon Diaz-Uriarte

References

Bozic, I, et al., (2010). Accumulation of driver and passenger mutations during tumor progression.
Proceedings of the National Academy of Sciences of the United States of AmericaV, 107, 18545—
18550.

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations during
tumor progression: effects of passengers, evolutionary models, and sampling doi:10.1186/s12859-
01504667.

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

McFarland, C.~D. et al. (2013). Impact of deleterious passenger mutations on cancer progression.
Proceedings of the National Academy of Sciences of the United States of AmericaV, 110(8), 2910-5.

https://doi.org/10.1186/s12859-015-0466-7
https://doi.org/10.1186/s12859-015-0466-7

oncoSimullndiv 41

Mather, W.~H., Hasty, J., and Tsimring, L.~S. (2012). Fast stochastic algorithm for simulating
evolutionary population dynamics. Bioinformatics (Oxford, England)V, 28(9), 1230-1238.

See Also

plot.oncosimul, samplePop, allFitnessEffects

Examples

A model similar to the one in McFarland. We use 270 genes.

set.seed(456)

nd <- 70
np <- 200
s <- 0.1
sp <- le-3

spp <= -sp/(1 + sp)
mcf1 <- allFitnessEffects(noIntGenes = c(rep(s, nd), rep(spp, np)),
drv = seq.int(nd))
mcf1s <- oncoSimulIndiv(mcf1,
model = "McFL",
mu = le-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,
initSize = 2000,
finalTime = 1000,
onlyCancer = FALSE)
plot(mcfls, addtot = TRUE, lwdClone = 0.6, log = "")
summary (mcf1s)
plot(mcfis)

Order effects with modules, and 5 genes without interactions
###H# with fitness effects from an exponential distribution

0i <- allFitnessEffects(orderEffects =

c("F>D" =-0.3, "D >F" =0.4),
noIntGenes = rexp(5, 10),
geneToModule =

c("Root"” = "Root",

"EM o= "f1, f2, 3",
"D" = "d1, d2"))
0iI1 <- oncoSimulIndiv(oi, model = "Exp")
0iI1$GenotypesLabels
0il1 ## note the order and separation by "_"

0iP1 <- oncoSimulPop(2, oi,
keepEvery = 10,

oncoSimullndiv

mc.cores = 2)
summary (0iP1)

Even if order exists, this cannot reflect it;

G1 to G10 are d1, d2, f1..,f3, and the 5 genes without
interaction

samplePop(0iP1)

0iS1 <- oncoSimulSample(2, oi)

The output contains only the summary of the runs AND
the sample:
0iS1

And their sizes do differ
object.size(0iS1)
object.size(0iP1)

#iHHHHHH# Using an extended poset for pancreatic cancer from Gerstung et al.
#iH (s and sh are made up for the example; only the structure
#iHt and names come from Gerstung et al.)

pancr <- allFitnessEffects(data.frame(parent = c("Root"”, rep("KRAS", 4), "SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4"”, "CDNK2A",

"TP53", "MLL3",

rep("PXDN", 3), rep("TGFBR2", 2)),
s = 0.05,
sh = -0.3,

typeDep = "MN"))
plot(pancr)

Use an exponential growth model
(pancr1 <- oncoSimulIndiv(pancr, model = "Exp"))

summary (pancr1)
plot(pancrl)

Pop and Sample

pancrPop <- oncoSimulPop(2,
pancr,
keepEvery = 10,
mc.cores = 2)

summary (pancrPop)

(pancrSPop <- samplePop(pancrPop))

(pancrSamp <- oncoSimulSample(2, pancr))

oncoSimullndiv

Not run:

Using gene-specific mutation rates

muv <- c("U" = 1e-3, "z" = le-7, "e" = 1e-6, "m" = 1e-5, "D" = le-4)
ni <- rep(0.01, 5)

names(ni) <- names(muv)

femuv <- allFitnessEffects(noIntGenes = ni)

oncoSimulIndiv(femuv, mu = muv)

End(Not run)
#iHHEHHH# Frequency dependent birth examples

An example with cooperation. Presence of WT favours all clones
and all clones have a positive effect on themselves
genofit <- data.frame(A = c(o, 1, 0, 1),
B =c(o, 0, 1, 1),
Birth = c("3 + 5xf_",
"3 + 5x(f_ + f_A)",
"3 + 5x(f_ + f_B)",
"5 + 6x(f_ + f_A_B)"))

afe <- allFitnessEffects(genotFitness = genofit,
frequencyDependentBirth = TRUE)

Use gene-specific mutation rates and start the simulation from
5000 WT and 1000 A mutants.
0si <- oncoSimullIndiv(afe,

model = "McFL",

onlyCancer = FALSE,

finalTime = 50,

mu = c("A" = 1e-6, B = 1e-8),

initMutant = c("WT", "A"),

initSize = c(5000, 1000),

keepPhylog = FALSE,

seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

osi

plot(osi, show = "genotypes"”, type = "line")

Not run:
This can be slow
osp <- oncoSimulPop(5,

afe,

model = "McFL",
initSize = 5000,
mu = le-6,

keepEvery = 5,

43

oncoSimullndiv

mc.cores = 2,
finalTime = 5000)

sp <- samplePop(osp)

sp

End(Not run)

A little bit more complex example situation. WT favours clones A and B. A and
B compete with each other. Presence of A and B favours clone A, B.

Not run:

This can be slow

genofit <- data.frame(A = c(0, 1, 0, 1),

B=c(o, 0,1, 1),
Birth = c("3 + 5xf_",

"3+ 5x(f_ + f_1 - f2)",
"3+ 5x(f_ + f_2 - f_1)"
"5+ Ex(F_1 + 2 + £.1.2)"))

afe <- allFitnessEffects(genotFitness = genofit,
frequencyDependentBirth = TRUE,
frequencyType = "rel")

osi <- oncoSimulIndiv(afe,
model = "McFL",
onlyCancer = FALSE,
finalTime = 200,
mu = le-6,
initSize = 5000,
keepPhylog = FALSE,

seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

osi
plot(osi, show = "genotypes"”, type = "line")

End(Not run)

Not run:

This can be slow

osp <- oncoSimulPop(5,
afe,
model = "McFL",
initSize = 5000,
onlyCancer = FALSE,
mu = le-6,
keepEvery = 5
mc.cores = 2)

’

summary (osp)

OncoSimulWide2Long 45

sp <- samplePop(osp)

sp

0ss <- oncoSimulSample(5,
afe,
model = "McFL",
initSize = 5000,
mu = le-6,
finalTime = 5000,
verbosity = 0)

0ss

End(Not run)

Reinitialize the RNG
set.seed(NULL)

OncoSimulWide2Long Convert the pops.by.time component of an oncosimul object into
"long" format.

Description

Convert the pops.by.time component from its "wide" format (with one column for time, and as
many columns as clones/genotypes) into "long" format, so that it can be used with other functions,
for instance for plots.

Usage

OncoSimulWide2Long(x)

Arguments

X An object of class oncosimul or oncosimul2.

Value
A data frame with four columns: Time; Y, the number of cells (the population size); Drivers, a

factor with the number of drivers of the given genotype; Genotype, the genotyp.

Author(s)

Ramon Diaz-Uriarte

46 plot.fitnessEffects

See Also

oncoSimulIndiv

Examples

data(examplesFitnessEffects)

sm <- oncoSimulIndiv(examplesFitnessEffects$chbni,
model = "McFL",
mu = 5e-7,
detectionSize = 1e8,
detectionDrivers = 2,
sampleEvery = 0.025,
keepEvery = 5,
initSize = 2000,
onlyCancer = FALSE)

class(sm)

1sm <- OncoSimulWide2Long(sm)

head(1sm)

summary (lsm)

plot.fitnessEffects Plot fitnessEffects objects.

Description
Plot the restriction table/graph of restrictions, the epistasis, and the order effects in a fitnessEffects
object. This is not a plot of the fitness landscape; for that, see plotFitnessLandscape.

Usage

S3 method for class 'fitnessEffects'
plot(x, type = "graphNEL", layout = NULL,
expandModules = FALSE, autofit = FALSE,

scale_char = ifelse(type == "graphNEL", 1/10, 5),
return_g = FALSE, lwdf =1, ...)
Arguments
X A fitnessEffects object, as produced by allFitnessEffects.
type Whether you want a "graphNEL" or an "igraph" graph.
layout For "igraph", the layout. For example, if you know you really have only a tree

you might want to use layout.reingold.tilford. Note that there is very
limited support for passing options, etc. In most cases, it is either the default or
the layout.reingold.tilford.

plot.fitnessEffects 47

expandModules If there are modules with multiple genes, if you set this to TRUE modules will
be replaced by their genes.

autofit If TRUE, we try to fit the edges to the labels. This is a very experimental feature,
likely to be not very robust.

scale_char If using autofit = TRUE, the scaling factor for the size of the rectangles as a
function of the number of characters. You have to play with this because the
best value can depend on a number of things.

return_g It TRUE, the graph object (graphNEL or igrap) is returned.
lwdf The multiplier factor for 1wd when using "graphNEL".

Other arguments passed to plot. Not used for now.

Value

A plot.

Order and epistatic relationships have orange edges. OR (semimonotone) relationships blue, and
XOR red. All others have black edges (so AND and unique edges from root). Epistatic rela-
tionships, being symmetrical, have no arrows between nodes and have a dotted line type. Order
relationships have an arrow from the earlier to the later event and have a different dotted line (Ity 3).

If return_g is TRUE, you are returned also the graph object (igraph or graphNEL) so that you can
manipulate it further.

Note

The purpose of the plot is to get a quick idea of the relationships. Note that three-way (or higher
order) epistatic relationships cannot be shown as such (we would show all possible pairs, but that is
not quite the same thing). Likewise, there is no reasonable way to convey the pressence of a "-" in
the epistatic relationship.

Genes without interactions are not shown.

Author(s)

Ramon Diaz-Uriarte

See Also

allFitnessEffects, plotFitnessLandscape

Examples

n

cs <- data.frame(parent = c(rep(”"Root”, 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s =0.1,
sh = -0.9,
typeDep = "MN")

cbn1 <- allFitnessEffects(cs)
plot(cbn1, "igraph")

48

plot.fitnessEffects

library(igraph) ## to make layouts available
plot(cbnl, "igraph”, layout = layout.reingold.tilford)

A DAG with the three types of relationships

p3 <- data.frame(parent = c(rep("Root”, 4), "a", "b", "d", "e", "c", "f"),
child = c("a", "b", "d", "e", "c", "c", "f", "f", "g", "g"),
s = c(0.91, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(@, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

TXMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp3 <- allFitnessEffects(p3)

plot(fp3)

plot(fp3, "igraph", layout = layout.reingold.tilford)

A more complex example, that includes a restriction table

order effects, epistasis, genes without interactions, and moduels

p4 <- data.frame(parent = c(rep("Root”, 4), "A", "B", "D", "E", "C", "F"),
Child = C(HA”’ HBII, NDII’ HEII, “C“, IICH’ HFII, NFII’ HGII, “G“),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(@, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM" 6 "SM"))

oe <- c("C>F"=-0.1, "H>1I" =0.12)
sm <- c("I:J" = -1)
sv <= c("-K:M" = -5, "K:-M" = -.5)

epist <- c(sm, sv)

modules <- c("Root” = "Root”, "A" = "al",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "el”,
"F" = "f1, 2", "G" = "gl1",
"H" = "h1, h2", "I" = "i1",
"J" o= "j1, j2", "K' = "k1, k2", "M" = "m1")

noint <- rexp(5, 10)
names(noint) <- paste@("n”, 1:5)

fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe,
noIntGenes = noint, geneToModule = modules)

plot(fea)
plot(fea, expandModules = TRUE)
plot(fea, type = "igraph")

plot.oncosimul

49

plot.oncosimul

Plot simulated tumor progression data.

Description

Plots data generated from the simulations, either for a single individual or for a population of indi-

viduals, with time units in the x axis and nubmer of cells in the y axis.

In "drivers" plots, by default, all clones with the same number of drivers are plotted using the same
colour (but different line types), and clones with different number of drivers are plotted in different
colours. Plots can alternatively display genotypes instead of drivers.

Plots available are line plots, stacked area, and stream plots.

Usage

S3 method for class 'oncosimul'

plot(x,

show = "drivers”,

type = ifelse(show == "genotypes",
"stacked”, "line"),

col = "auto”,

log = ifelse(type == "line", "y", ""),

1tyClone = 2:6,

lwdClone = 0.9,

ltyDrivers = 1,

lwdDrivers = 3,

xlab = "Time units”,

ylab = "Number of cells”,
plotClones = TRUE,
plotDrivers = TRUE,
addtot = FALSE,
addtotlwd = 0.5,

ylim = NULL,

xlim = NULL,

thinData = FALSE,
thinData.keep = 0.1,
thinData.min = 2,
plotDiversity = FALSE,
order.method = "as.is",
stream.center = TRUE,
stream.frac.rand = 0.01,
stream.spar = 0.2,
border = NULL,
lwdStackedStream = 1,
srange = c(0.4, 1),
vrange = c(0.8, 1),
breakSortColors = "oe",

50

plot.oncosimul

legend.ncols = "auto”, ...)

S3 method for class 'oncosimulpop'

plot(x,

Arguments

X

ask

show

ask = TRUE,

show = "drivers”,

type = ifelse(show == "genotypes”,
"stacked”, "line"),

col = "auto",

log = ifelse(type == "line", "y", ""),

1tyClone = 2:6,

lwdClone = 0.9,

ltyDrivers = 1,

lwdDrivers = 3,

xlab = "Time units”,

ylab = "Number of cells”,
plotClones = TRUE,
plotDrivers = TRUE,
addtot = FALSE,
addtotlwd = 0.5,

ylim = NULL,

xlim = NULL,

thinData = FALSE,
thinData.keep = 0.1,
thinData.min = 2,
plotDiversity = FALSE,
order.method = "as.is",
stream.center = TRUE,
stream.frac.rand = 0.01,
stream.spar = 0.2,
border = NULL,
lwdStackedStream = 1,
srange = c(0.4, 1),
vrange = c(0.8, 1),

breakSortColors = "oe",
legend.ncols = "auto"”,
L)

An object of class oncosimul (for plot.oncosimul) or oncosimulpop (for
plot.oncosimulpop).

Same meaning as in par.

One of "drivers" or "genotypes". If "drivers" the legend will reflect the number
of drivers. If "genotypes" you will be shown genotypes. You probably want
to limit "genotypes" to those cases where only a relatively small number of
genotypes exist (or the plot will be an unmanageable mess). The default is

plot.oncosimul

type

col

log

1tyClone

lwdClone
ltyDrivers
lwdDrivers
xlab

ylab
plotClones

plotDrivers

addtot
addtotlwd
ylim

51

"drivers".

non

One of "line", "stacked", "stream".

If "line", you are shown lines for each genotype or clone. This means that to get
an idea of the total population size you need to use plotDrivers = TRUE with
addtot = TRUE, or do the visual calculation in your head.

If "stacked" a stacked area plot. If "stream" a stream plot. Since these stack
areas, you immediately get the total population. But that also means you cannot
use log.

The default is to use "line" for show = "drivers” and "stacked" for show =
"genotypes”.

Colour of the lines/areas. For show = "drivers” each type of clone (where type

is defined by number of drivers) has a different color. For show = "genotypes”
color refers to genotypes. The vector is recycled as needed.

The default is "auto". If you have show == "genotypes” we start from the
"Dark2" palette from brewer.pal in the RColorBrewer package and extend the
palette via colorRampPalette. For show == "drivers"” and type == "line"

we use a vector of eight colors (that are, then recycled as needed). If you use
"stacked" or "stream", however, instead of "line", then we generate colors via a
HSYV specification that tries to: a) make it easy to differentiate between different
drivers (by not having like colors for adjacent numbers of drivers); b) make it
easy to have a "representative” driver color while using sligtly different colors
for different clones of a driver. See the code by doing OncoSimulR: : :myhsvcols.

You can specify your own vector of colors, but it will be ignored with show ==
"drivers”.

See

log in plot.default. The default is to have "y" for type == "1line", and that
will make the y axis logarithmic. Stacked and stream area plots do not allow for
logarithmic y axis (since those depend on the additivity of areas but log(a + b)
I=1og(a) + log(b)).

Line type for each clone. Recycled as needed. You probably do not want to use
Ity=1 for any clone, to differentiate from the clone type, unless you change the
setting for 1tyDrivers.

Line width for clones.

Line type for the driver type.
Line width for the driver type.
Same as xlab in plot.default.
Same as ylab in plot.default.
Should clones be plotted?

Should clone types (which are defined by number of drivers), be plotted? (Only
applies when using show = "drivers"”).

If TRUE, add a line with the total populatino size.
Line width for total population size.

If non NULL, limits of the y axis. Same as in plot.default. If NULL, the
limits are calculated automatically.

52 plot.oncosimul

xlim If non NULL, limits of the x axis. Same as in plot.default. If NULL, the
limits are calculated automatically. Using a non-NULL range smaller than the
range of observed values of time can also lead to speed ups of large figures (since
we trim the data).

thinData If TRUE, the data plotted is a subset of the original data. The original data are
"thinned" in such a way that the origin of each clone is not among the non-shown
data (i.e., so that we can see when each clone/driver originates).
Thinning is done to reduce the plot size and to speed up plotting.
Note that thinning is carried out before dealing with the plot axis, so the actual
number of points to be plotted could be a lot less (if you reduce the x-axis con-
siderably) than those returned from the thinning. (In extreme cases this could
lead to crashes when trying to use stream plots if, say, you end up plotting only
three values).

thinData.keep The fraction of the data to keep (actually, a lower bound on the fraction of data
to keep).

thinData.min Any time point for which a clone has a population size > thinData.min will be
kept (i.e., will not be removed from) in the data.

plotDiversity If TRUE, we also show, on top of the main figure, Shannon’s diversity index
(and we consider as distinct those genotypes with different order of mutations
when order matters).
If you set this to true, using par(mfrow =c(2, 2)) and similar will not work
(since we use par (fig =)) to display the diversity as the top plot).

order.method For stacked and stream plots. c("as.is"”, "max”, "first"”). "as.is": plotin
order of y column; "max”: plot in order of when each y series reaches maximum
value. "first": plot in order of when each y series first value > 0.

stream.center For stream plots. If TRUE, the stacked polygons will be centered so that the
middle, i.e. baseline ("g0"), of the stream is approximately equal to zero. Cen-
tering is done before the addition of random wiggle to the baseline.

stream.frac.rand
For stream plots. Fraction of the overall data "stream" range used to define the
range of random wiggle (uniform distribution) to be added to the baseline ’g0’.

stream.spar Setting for smooth.spline function to make a smoothed version of baseline "g0".
border For stacked and stream plots. Border colors for polygons corresponding to y
columns (will recycle) (see polygon for details).
lwdStackedStream
border line width for polygons corresponding to y columns (will recycle).
srange Range of values of s in the HSV specification of colors (see col for details. Only
applies when using "stacked" or "stream" plots and col == "auto".)
vrange Range of values of v in the HSV specification of colors (see col for details.Only
applies when using "stacked" or "stream" plots and col == "auto".)
breakSortColors

How to try to minimize that similar colors be used for contiguous or nearby
driver categories. The default is "oe" which resorts them in alternating way. The
other two options are "distave", where we alternate after folding from the mean
and "random" where the colors are randomly sorted. Only applies when using
"stacked" or "stream" plots and col == "auto".

plot.oncosimul 53

legend.ncols The number of columns of the legend. If "auto” (the default), will have one
column for six or less entries, and two for more than six.

Other arguments passed to plots. For instance, main.

Author(s)

Ramon Diaz-Uriarte. Marc Taylor for stacked and stream plots.

See Also

oncoSimulIndiv

Examples

Show individual genotypes and drivers for an
epistasis case with at most eight genotypes
set.seed(1)

sa <- 0.1
sb <- -0.2
sab <- 0.25
sac <- -0.1
sbc <- 0.25
sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,
"A : -B" = sa,
"A : C" = sac,
"A:B" = sab,
"-A:B:C" = sbc),
geneToModule = c(
"Root" = "Root",
"A" = "al, a2",
"B" = "b",
"c = "c"))
evalAllGenotypes(sv2, order = FALSE, addwt = TRUE)
el <- oncoSimulIndiv(sv2, model = "McFL",
mu = 5e-6,

sampleEvery = 0.02,
keepEvery = 1,
initSize = 2000,
finalTime = 2000,
seed = NULL,
onlyCancer = FALSE)

Drivers and clones
plot(el, show = "drivers")

Stack
plot(el, type = "stacked")

Make genotypes explicit
plot(el, show = "genotypes")

54

plotClonePhylog

Oh, but I want other colors

plot(el, show =

"genotypes”, col = rainbow(8))

and actually I want a line plot

plot(el, show =

"genotypes”, type = "line")

plotClonePhylog

Plot a parent-child relationship of the clones.

Description

Plot a parent-child relationship of the clones, controlling which clones are displayed, and whether
to shown number of times of appearance, and time of first appearance of a clone.

Usage

plotClonePhylog(x, N =1, t ="last"”, timeEvents = FALSE,

Arguments

X

timeEvents

keepEvents

fixOverlap

keepEvents = FALSE, fixOverlap = TRUE,
returnGraph = FALSE, ...)

The output from a simulation, as obtained from oncoSimulIndiv, oncoSimulPop,
or oncoSimulSample (see oncoSimulIndiv). This must be from v.2 and for-
ward (no phylogenetic information is stored for earlier objects).

Show in the plot all clones that have a population size of at least N at time time
and the parents of those clones (parents are shown regardless of population size
—i.e., you can see extinct parents). If you want to show everything that ever
appeared, set N = 0.

The time at which N should be satisfied. This can either be the string "last",
meaning the last time of the simulation, or a range of two values. In the sec-
ond case, all clones with population size of at least N in at least one time point
between time[1] and time[2] will be shown (togheter with their parents).

If TRUE, the vertical position of the nodes in the plot will be proportional to
their time of first appearance.

If TRUE, the graph will show all the birth events. Thus, the number of arrows
shows the number of times a clone give rise to another. For large graphs with
many events, this slows the graph considerably.

When using timeEvents = TRUE nodes can overlap (as we modify their vertical
location after igraph has done the initial layout). This attempts to fix that prob-
lem by randomly relocating, along the X axis, the nodes that have the same X
value.

plotClonePhylog 55

returnGraph If TRUE, the igraph object is returned. You can use this to plot the object how-
ever you want or obtain the adjacency matrix.

Additional arguments. Currently not used.

Value

A plot is produced. If returnGraph the igraph object is returned.

Note

These are not, technically, proper phylogenetic trees and we use "phylogeny" here in an abuse of
terminology. The plots we use, where we show parent child relationships are arguably more helpful
in this context. But you could draw proper phylogenies with the information provided.

If you want to obtain the adjacency matrix, this is trivial: just set returnGraph = TRUE and use
as_adjacency_matrix (formerly get.adjacency). See an example below.

Author(s)

Ramon Diaz-Uriarte

See Also

oncoSimulIndiv

Examples

data(examplesFitnessEffects)

tmp <- oncoSimulIndiv(examplesFitnessEffects[["03"]],
model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 3000,
onlyCancer = FALSE,
keepPhylog = TRUE)

Show only those with N > 10 at end
plotClonePhylog(tmp, N = 10)

Show only those with N > 1 between times 5 and 1000
plotClonePhylog(tmp, N = 1, t = c(5, 1000))

Show everything, even if teminal nodes are extinct
plotClonePhylog(tmp, N = @)

56 plotFitnessLandscape

Show time when first appeared
plotClonePhylog(tmp, N = 10, timeEvents = TRUE)

Not run:

Show each event

This can take a few seconds
plotClonePhylog(tmp, N = 10, keepEvents = TRUE)

End(Not run)
Adjacency matrix

require(igraph)
as_adjacency_matrix(plotClonePhylog(tmp, N = 10, returnGraph = TRUE))

plotFitnessLandscape Plot a fitness landscape.

Description

Show a plot of a fitness landscape. The plot is modeled after (actually, mostly a blatant copy of)
that of MAGELLAN.

Note: this is not a plot of the fitnessEffects object; for that, see plot.fitnessEffects.

Usage

plotFitnessLandscape(x, show_labels = TRUE,
col = c("greend4”, "red", "yellow"),
1ty = c(1, 2, 3),
use_ggrepel = FALSE,
log = FALSE, max_num_genotypes = 2000,
only_accessible = FALSE,
accessible_th = 0,

.2

S3 method for class 'genotype_fitness_matrix'
plot(x, show_labels = TRUE,

col = c("green4”, "red"”, "yellow"),
1ty = c(1, 2, 3),

use_ggrepel = FALSE,

log = FALSE, max_num_genotypes = 2000,
only_accessible = FALSE,

accessible_th = 0,

.2

S3 method for class 'evalAllGenotypes'
plot(x, show_labels = TRUE,
col = c("green4”, "red", "yellow"),

plotFitnessLandscape

57

1ty = c(1, 2, 3),

use_ggrepel = FALSE,

log = FALSE, max_num_genotypes = 2000,
only_accessible = FALSE,
accessible_th = 0,

.2

S3 method for class 'evalAllGenotypesMut'
plot(x, show_labels = TRUE,

Arguments

X

show_labels

col

1ty

use_ggrepel

log

col = c("green4”, "red", "yellow"),
1ty = c(1, 2, 3),

use_ggrepel = FALSE,

log = FALSE, max_num_genotypes = 2000,
only_accessible = FALSE,
accessible_th = 0,

.2

One of the following:

* A matrix (or data frame) with g + 1 columns. Each of the first g columns
contains a 1 or a 0 indicating that the gene of that column is mutated or not.
Column g+ 1 contains the fitness values. This is, for instance, the output
you will get from rfitness.

¢ A two column data frame. The second column is fitness, and the first col-
umn are genotypes, given as a character vector. For instance, a row "A, B"
would mean the genotype with both A and B mutated.

* The output from a call to evalAllGenotypes. Make sure you use order =
FALSE in that call.

* The output from a call to evalAllGenotypesMut. Make sure you use
order = FALSE.

* The output from a call to allFitnessEffects.

The first two are the same as the format for the genotFitness component in
allFitnessEffects.

If TRUE, show the genotype labels.

A three-element vector that gives the colors to use for increase, decreases and
no changes in fitness, respectively. The first two colours are also used for peaks
and sinks.

A three-element vector that gives the line types to use for increase, decreases
and no changes in fitness, respectively.

If TRUE, use geom_label_repel in the ggrepel package to avoid overlap of
labels.

Log-scale the y axis.

max_num_genotypes

Maximum allowed number of genotypes. For some types of input, we make a
call to evalAllGenotypes, and use this as the maximum.

58 plotFitnessLandscape

only_accessible
If TRUE, show only accessible paths. A path is considered accesible if, at each
mutational step (i.e., with the addition of each mutation) fitness increases by
at least accessible_th. If you set only_accessible = TRUE, the number of
genotypes displayed can be much smaller than the number of existing genotypes
if many of those genotypes are not accessible via any path.

accessible_th The threshold for the minimal change in fitness at each mutation step (i.e., be-
tween successive genotypes) to be used if only_accessible = TRUE.

Other arguments passed to plot. Not used for now.

Value

A fitness landscape plot: a plot showing paths between genotypes and peaks and sinks (local max-
ima and minima).

Note

I have copied most of the ideas (and colors, and labels) of this plot from MAGELLAN but MAG-
ELLAN has other functionality that is not provided here such as epistasis stats for the landscape,
and several visual manipulation options.

One feature of this function that is not available in MAGELLAN is showing genotype labels (i.e.,
annotated by gene names), which can be helpful if the different genotypes mean something to you.

In addition to the above differences, another difference between this plot and those of MAGELLAN
is how sinks/peaks of more than one genotype are dealt with. This plot will show as sinks or
peaks sets of one or more genotypes that are of identical fitness (and separated by a Haming distance
of one). So a sink or a peak might actually be made of more than one genotype. In MAGELLAN,
as far as I can tell, peaks and sinks are always made of a single isolated genotype.

Does this matter? In most realistic cases where not two genotypes can have exactly the same
fittnes it does not. In some cases, though, it might matter. Are multi-genotype sinks/peaks really
sinks/peaks? Arguably yes: suppose genotypes "AB" and "ABC" both have fitness 0, which is
minimal among the fitness in the set of genotypes, and genotypes "A" and "ABCD" have fitness
0.1. To go from "A" to "ABCD", if you want to travel through "AB", you have to go through the
valley of "AB" and "ABC"; once in "ABC" you can climb up to "ABCD"; and once in "AB" you
can move to "ABC" since it has identical fitness to "AB". Mutatis mutandis for multi-genotype
peaks. Ignoring the possibility of peaks/sinks made of more than one genotype actually makes code
much simpler.

Sometimes not showing the any links that involve a decrease in fitness can help see non-accessible
pathways (in strong selection, no multiple mutations, etc); do this by passing, for instance, an NA
for the second element of col.

Finally, use common sense: for instance, if you pass a allFitnessEffects that specifies for, say,
the fitness of a total of 5000 genotypes you’ll have to wait a while for the plot to finish.

Author(s)

Ramon Diaz-Uriarte

plotPoset 59

References

MAGELLAN web site: (it seems this site is no longer available)
Brouillet, S. et al. (2015). MAGELLAN: a tool to explore small fitness landscapes. bioRxiv, 31583.

doi:10.1101/031583
See Also

allFitnessEffects, evalAllGenotypes, allFitnessEffects, rfitness, plot.fitnessEffects

Examples

Generate random fitness for four genes-genotypes
and plot landscape.

r1 <- rfitness(4)

plot(rl)

Specify fitness in a matrix, and plot it
m5 <- cbind(A = c(@, 1, @, 1), B =c(0, @, 1, 1), F =c(1, 2, 3, 5.5))
plotFitnessLandscape(m5)

Specify fitness with allFitnessEffects, and plot it

fe <- allFitnessEffects(epistasis = c("a : b" = 0.3,

Ilb : CIV
nolntGenes = c("e" =

0.5),
0.1))

plot(evalAllGenotypes(fe, order = FALSE))

same as
plotFitnessLandscape(evalAllGenotypes(fe, order = FALSE))

plotPoset Plot a poset.

Description

Plot a poset. Optionally add a root and change names of nodes.

Usage

plotPoset(x, names = NULL, addroot = FALSE, box = FALSE, ...)

https://doi.org/10.1101/031583

60 plotPoset
Arguments
X A poset. A matrix with two columns where, in each row, the first column is
the ancestor and the second the descendant. Note that there might be multiple
rows with the same ancestor, and multiple rows with the same descendant. See
poset.
names If not NULL, a vector of names for the nodes, with the same length as the total
number of nodes in a poset (which need not be the same as the number of rows;
see poset). If addroot = TRUE, then 1 + the number of nodes in the poset.
addroot Add a "Root" node to the graph?
box Should the graph be placed inside a box?
Additional arguments to plot (actually, plot. graphNEL in the Rgraphviz pack-
age
).
Details
The poset is converted to a graphNEL object.
Value
A plot is produced.
Author(s)
Ramon Diaz-Uriarte
See Also
examplePosets, poset
Examples
data(examplePosets)

plotPoset(examplePosets[["p1101"]11)

If you will be using that poset a lot, maybe simpler if

poset701 <- examplePosets[["p701"]]
plotPoset(poset701, addroot = TRUE)

Compare to Pancreatic cancer figure in Gerstung et al., 2011

plotPoset(poset701,
names = c("KRAS"”, "SMAD4", "CDNK2A", "TP53",

"MLL3","PXDN", "TGFBR2"))

If you want to show Root explicitly do

plotPoset(poset701, addroot = TRUE,

POM 61

names = c("Root"”, "KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3","PXDN", "TGFBR2"))

Of course, names are in the order of nodes, so KRAS is for node 1,
etc, but the order of entries in the poset does not matter:
poset701b <- poset701[nrow(poset701):1,]

plotPoset (poset701b,

names = c("KRAS”, "SMAD4"”, "CDNK2A", "TP53",
"MLL3","PXDN", "TGFBR2"))

POM Obtain Lines of Descent and Paths of the Maximum and their diversity
from simulations.

Description
Compute Lines of Descent (LOD) and Path of the Maximum (POM) for a single simulation or a set
of simulations (from oncoSimulPop).

diversityPOM and diversityLOD return the Shannon’s diversity (entropy) of the POM and LOD,
respectively, of a set of simulations (it makes no sense to compute those from a single simulation).

Usage
POM(x)
LOD(x)
diversityPOM(1pom)
diversityLOD(1lod)
Arguments
X An object of class oncosimulpop (version >= 2, so simulations with the old
poset specification will not work) or class oncosimul2 (a single simulation).
lpom A list of POMs, as returned from POM on an object of class oncosimulpop.
llod A list of LODs, as returned from LOD on an object of class oncosimulpop.
Details

Lines of Descent (LOD) and Path of the Maximum (POM) were defined in Szendro et al. (2013)
and I follow those definitions here, as applied to a process in continuous time with sampling at
user-specified periods.

For POM, the results can depend strongly on how often we sample (i.e., the sampleEvery argument
to oncoSimulIndiv and oncoSimulPop), since the POM is computed by finding the clone with
largest population size whenever we sample. This also explains why it is generally meaningless to
use POM on oncoSimulSample runs: these only keep the very last sample.

62

POM

For LOD, a single LOD per simulation is returned, with the same meaning as that in p. 572 of Szen-
dro et al. (2013). "A given genotype may undergo several episodes of colonization and extinction
that are stored by the algorithm, and the last episode before the colonization of the final state is used
to construct the step.", and I check that this genotype (which is the one that will become the most
populated at final time) does not become extinct before the final colonization.

Note breaking changes: for LOD we used to return all lines of descent in a given simulation. In v.
2.9.1 we also returned the LOD as explained above. Now we only return the LOD as defined above.

Beware, however, that if you use multiple initial mutants the LOD function will probably not do
what you want. It is not even clear that the LOD is well defined in this case. We are working on
this.

Value

For POM either a character vector (if x is a single simulation) or a list of character vectors. Each
character vector is the ordered set of genotypes that contain the largest subpopulation at the times
of sampling.

For LOD, if x is a single simulation, the line of descent as defined above (either an object of class
"igraph.vs" (an igraph vertex sequence: see vertex_attr) or a character vector if there were no
descendants). If x is a list (population) of simulations, then a list where each element is a list as just
explained.

For diversitylLOD and diversityPOM a single element vector with the Shannon’s diversity (en-
tropy) of the LODs (for diversityLOD) or of the POMs (for diversityPOM).

Author(s)

Ramon Diaz-Uriarte

References

Szendro, 1. G., Franke, J., Visser, J. A. G. M. de, & Krug, J. (2013). Predictability of evolution
depends nonmonotonically on population size. Proceedings of the National Academy of Sciences,
110(2), 571-576. doi:10.1073/pnas.1213613110

See Also

oncoSimulPop, oncoSimulIndiv

Examples

#i#HHHH#H Using a poset for pancreatic cancer from Gerstung et al.
#iHt (s and sh are made up for the example; only the structure
H#iH# and names come from Gerstung et al.)

pancr <- allFitnessEffects(data.frame(parent = c("Root"”, rep("KRAS", 4), "SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS”,"SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),
s = 0.05,

https://doi.org/10.1073/pnas.1213613110

poset 63

sh = -0.3,
typeDep = "MN"))

pancr1 <- oncoSimulIndiv(pancr, model = "Exp")

RNGkind("L'Ecuyer-CMRG")

set.seed(3)

pancr8 <- oncoSimulPop(3, pancr, model = "Exp”,
finalTime = 600,
onlyCancer = TRUE,
seed = NULL,
mc.cores = 2)

POM(pancr1)
LOD(pancr1)

POM(pancr8)
LOD(pancrs8)

diversityPOM(POM(pancr8))
diversityLOD(LOD(pancr8))

poset Poset

Description

Poset: explanation.

Arguments

X The poset. See details.

Details

A poset is a two column matrix. In each row, the first column is the ancestor (or the restriction)
and the second column the descendant (or the node that depends on the restriction). Each node is
identified by a positive integer. The graph includes all nodes with integers between 1 and the largest
integer in the poset.

Each node can be necessary for several nodes: in this case, the same node would appear in the first
column in several rows.

A node can depend on two or more nodes (conjunctions): in this case, the same node would appear
in the second column in several rows.

There can be nodes that do not depend on anything (except the Root node) and on which no other
nodes depend. The simplest and safest way to deal with all possible cases, including these cases,

64

poset

is to have all nodes with at least one entry in the poset, and nodes that depend on no one, and on
which no one depends should be placed on the second column (with a 0 on the first column).

Alternatively, any node not named explicitly in the poset, but with a number smaller than the largest
number in the poset, is taken to be a node that depends on no one and on which no one depends.
See examples below.

This specification of restrictions is for version 1. See allFitnessEffects for a much more flexible
one for version 2. Both can be used with oncoSimulIndiv.

Note that simulating using posets directly is no longer supported. This function is left here only for
historical purposes.

Author(s)

Ramon Diaz-Uriarte

References

Posets and similar structures appear in several places. The following two papers use them exten-
sively.

Gerstung et al., 2009. Quantifying cancer progression with conjunctive Bayesian networks. Bioin-
formatics, 21: 2809-2815.

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

See Also

examplePosets, plotPoset, oncoSimulIndiv

Examples

Node 2 and 3 depend on 1, and 4 depends on no one
p1 <- cbind(c(1L, 1L, @L), c(2L, 3L, 4L))
plotPoset(p1, addroot = TRUE)

Node 2 and 3 depend on 1, and 4 to 7 depend on no one.
We do not have nodes 4 to 6 explicitly in the poset.
p2 <- cbind(c(1L, 1L, @L), c(2L, 3L, 7L))

plotPoset(p2, addroot = TRUE)

But this is arguably cleaner
p3 <- cbind(c(1L, 1L, rep(@L, 4)), c(2L, 3L, 4:7))
plotPoset(p3, addroot = TRUE)

A simple way to create a poset where no gene (in a set of 15) depends
on any other.

p4 <- cbind(@L, 15L)
plotPoset(p4, addroot = TRUE)

rfitness 65

Specifying the pancreatic cancer poset in Gerstung et al., 2011
(their figure 2B, left). We use numbers, but for nicer plotting we
will use names: KRAS is 1, SMAD4 is 2, etc.

5

pancreaticCancerPoset <- cbind(c(1, 1, 1, 1, 2, 3, 4, 4,
6, 7, 7

3
C(ZY 37 47 57 67 67
storage.mode(pancreaticCancerPoset) <- "integer"

)Y
’ ’))

plotPoset(pancreaticCancerPoset,
names = c("KRAS"”, "SMAD4", "CDNK2A", "TP53",
"MLL3","PXDN", "TGFBR2"))

Specifying poset 2 in Figure 2A of Gerstung et al., 2009:

poset2 <- cbind(c(1, 1, 3, 3, 3, 7, 7, 8, 9, 10),
c(2, 3, 4, 5, 6, 8, 9, 10, 10, 11))

storage.mode(poset2) <- "integer"
plotPoset(poset2)

rfitness Generate random fitness.

Description

Generate random fitness landscapes under a House of Cards, Rough Mount Fuji (RMF), additive
(multiplicative) model, Kauffman’s NK model, Ising model, Eggbox model and Full model

Usage
rfitness(g, ¢ = 0.5, sd =1, mu = 1, reference = "random”, scale = NULL,
wt_is_1 = c("subtract”, "divide”, "force"”, "no"),
log = FALSE, min_accessible_genotypes = NULL,
accessible_th = @, truncate_at_0 = TRUE,
K=1, r=TRUE, i =0, I =-1, circular = FALSE, e = @, E = -1,
H=-1,s=01,5=-1,d=0,0=0,0=-1,p=0, P=-1,
model = c("RMF", "Additive"”, "NK", "Ising”, "Eggbox", "Full"),
seed_magellan = -1)
Arguments
g Number of genes.
c The decrease in fitness of a genotype per each unit increase in Hamming distance
from the reference genotype for the RMF model (see reference).
sd The standard deviation of the random component (a normal distribution of mean

mu and standard deviation sd) for the RMF and additive models .

66

mu

reference

scale

wt_is_1

rfitness

The mean of the random component (a normal distribution of mean mu and stan-
dard deviation sd) for the RMF and additive models.

The reference genotype: in the RMF model, for the deterministic, additive part,
this is the genotype with maximal fitness, and all other genotypes decrease their
fitness by c for every unit of Hamming distance from this reference. If "random"
a genotype will be randomly chosen as the reference. If "max" the genotype with
all positions mutated will be chosen as the reference. If you pass a vector (e.g.,
reference =c(1, @, 1, 0)) that will be the reference genotype. If "random2"
a genotype will be randomly chosen as the reference. In contrast to "random",
however, not all genotypes have the same probability of being chosen; here, what
is equal is the probability that the reference genotype has 1, 2, ..., g, mutations
(and, once a number mutations is chosen, all genotypes with that number of
mutations have equal probability of being the reference).

Either NULL (nothing is done) or a two- or three-element vector.

If a two-element vector, fitness is re-scaled between scale[1] (the minimum)
and scale[2] (the maximum) and, later, if you have selected it, wt_is_1 will
be enforced.

If you pass a three element vector, fitness is re-scaled so that the new maximum
fitness is scale[1], the new minimum is scale[2] and the new wildtype is
scale[3]. If you pass a three element vector, none of the wt_is_1 options
apply in this case, to ensure you obtain the range you want. If you want the
wildtype to be one, pass it as the third element of the vector.

As a consequence of using a three element vector, the amount of stretching/compressing

(i.e., scaling) of fitness values larger than that of the wildtype will likely be dif-
ferent from the scaling of fitness values smaller than that of the wildtype. In
other words, this argument allows you to change the spread of the positive and
negative fitness values (and you can make this difference extreme and make most
fitness values less than wildtype be 0 by using a huge negative number —huge in
absolute value— for scale[2] if you then truncate at 0 —see truncate_at_9).
Using a three element vector is probably the most natural way of changing the
scale and range of fitness.

See also log if you want the log-transformed values to respect the scale.

If "divide" the fitness of all genotypes is divided by the fitness of the wildtype
(after possibly adding a value to ensure no negative fitness) so that the wildtype
(the genotype with no mutations) has fitness 1. This is a case of scaling, and
it is applied after scale, so if you specify both "wt_is_1 = ’divide’" and use
an argument for scale it is most likely that the final fitness will not respect the
limits in scale.

If "subtract" (the default) we shift all the fitness values (subtracting fitness of the
wildtype and adding 1) so that the wildtype ends up with a fitness of 1. This is
also applied after scale, so if you specify both "wt_is_1 = ’subtract’" and use
an argument for scale it is most likely that the final fitness will not respect the
limits in scale (though the distorsion might be simpler to see as just a shift up
or down).

If "force" we simply set the fitness of the wildtype to 1, without any divisions.
This means that the scale argument would work (but it is up to you to make
sure that the range of the scale argument includes 1 or you might not get what

rfitness 67

you want). Note that using this option can easily lead to landscapes with no
accessible genotypes (even if you also use scale).

If "no", the fitness of the wildtype is not modified.

This option has no effect if you pass a three-element vector for scale. Using a
three-element vector for scale is probably the most natural way of changing the
scale and range of fitness while setting the wildtype to a value of your choice.

log If TRUE, log-transform fitness. Actually, there are two cases: if wt_is_1 = "no"
we simply log the fitness values; otherwise, we log the fitness values and add a
1, thus shifting all fitness values, because by decree the fitness (birth rate) of the
wildtype must be 1.

If you pass a three-element vector for scale, you will want to pass exp(desired_max),
exp(desired_min), and exp(desired_wildtype) to the scale argument. (We
first scale values in the original scale and then log them). In this case, we ignore
whatever you passed as wt_is_1, setting wt_is_1 = "no"” to avoid modifying
your requested value for the wildtype.

min_accessible_genotypes
If not NULL, the minimum number of accessible genotypes in the fitness land-
scape. A genotype is considered accessible if you can reach if from the wildtype
by going through at least one path where all changes in fitness are larger or
equal to accessible_th. The changes in fitness are considered at each mu-
tational step, i.e., at each addition of one mutation we compute the difference
between the genotype with k + 1 mutations minus the ancestor genotype with k
mutations. Thus, a genotype is considered accessible if there is at least one path
where fitness increases at each mutational step by at least accessible_th.

If the condition is not satisfied, we continue generating random fitness land-
scapes with the specified parameters until the condition is satisfied.

(Why check against NULL and not against zero? Because this allows you to
count accessible genotypes even if you do not want to ensure a minimum number
of accessible genotypes.)

accessible_th The threshold for the minimal change in fitness at each mutation step (i.e., be-
tween successive genotypes) that allows a genotype to be regarded as accessible.
This only applies if min_accessible_genotypes is larger than 0. So if you
want to allow small decreases in fitness in successive steps, use a small negative
value for accessible_th.

truncate_at_@ If TRUE (the default) any fitness <= 0 is substituted by a small positive constant
(a random uniform number between le-10 and 1e-9). Why? Because MAG-
ELLAN and some plotting routines can have trouble (specially if you log) with
values <=0. Or we might have trouble if we want to log the fitness. This is
done after possibly taking logs. Noise is added to prevent creating several iden-
tical minimal fitness values. Note that allFitnessEffects will remove from
the table of genotypes any genotype with a fitness <= 1e-9, thus making it a
non-viable genotype during simulations.

K K for NK model; K is the number of loci with which each locus interacts, and
the larger the K the larger the ruggedness of the landscape.

r For the NK model, whether interacting loci are chosen at random (r = TRUE) or
are neighbors (r = FALSE).

68

I

circular

w »w T m o

model

seed_magellan

Details

rfitness

For de Ising model, i is the mean cost for incompatibility with which the geno-
type’s fitness is penalized when in two adjacent genes, only one of them is mu-
tated.

For the Ising model, I is the standard deviation for the cost incompatibility (i).

For the Ising model, whether there is a circular arrangement, where the last and
the first genes are adjacent to each other.

For the Eggbox model, mean effect in fitness for the neighbor locus +/- e.
For the Eggbox model, noise added to the mean effect in fitness (e).

For Full models, standard deviation for the House of Cards model.

For Full models, mean of the fitness for the Multiplicative model.

For Full models, standard deviation for the Multiplicative model.

For Full models, a disminishing (negative) or increasing (positive) return as the
peak is approached for multiplicative model.

For Full models, mean value for the optimum model.
For Full models, standard deviation for the optimum model.

For Full models, the mean production value for each non 0 allele in the Optimum
model component.

For Full models, the associated stdev (of non 0 alleles) in the Optimum model
component.

One of "RMF" (default) for Rough Mount Fuji, "Additive" for Additive model,
"NK", for Kauffman’s NK model, "Ising" for Ising model, "Eggbox" for Eggbox
model or "Full" for Full models.

The seed for the random number generator in models generated from MAG-
ELLAN. If -1, the clock is used by MAGELLAN to generate a seed, but you
probably want to pass a seed: see Details.

When using model = "RMF", the model used here follows the Rough Mount Fuji model in Szendro
et al., 2013 or Franke et al., 2011. Fitness is given as

f@) = —cd(i,reference) + x;

where d(i,7) is the Hamming distance between genotypes ¢ and j (the number of positions that
differ) and x; is a random variable (in this case, a normal deviate of mean mu and standard deviation

sd).

When using model = "RMF", setting ¢ = 0 we obtain a House of Cards model. Setting sd = 0 fitness
is given by the distance from the reference and if the reference is the genotype with all positions
mutated, then we have a fully additive model (fitness increases linearly with the number of positions
mutated), where all mutations have the same effect.

More flexible additive models can be used using model = "Additive”. This model is like the Rough
Mount Fuji model in Szendro et al., 2013 or Franke et al., 2011, but in this case, each locus can have
different contributions to the fitness evaluation. This model is also referred to as the "multiplicative"
model in the literature as it is additive in the log-scale (e.g., see Brouillet et al., 2015 or Ferretti et al.,

rfitness 69

2016). The contribution of each mutated allele to the log-fitness is a random deviate from a Normal
distribution with specified mean mu and standard deviation sd, and the log-fitness of a genotype is
the sum of the contributions of each mutated allele. There is no "reference" genotype in the Additive
model. There is no epistasis in the additve model because the effect of a mutation in a locus does
not depend on the genetic background, or whether the rest of the loci are mutated or not.

When using model = "NK" fitness is drawn from a uniform (0, 1) distribution.

When using model = "Ising” for each pair of interacting loci, there is an associated cost if both
alleles are not identical (and therefore *compatible’).

When using model = "Eggbox" each locus is either high or low fitness, with a systematic change
between each neighbor.

When using model = "Full”, the fitness is computed with different parts of the previous models
depending on the choosen parameters described above.

For model = "NK" | "Ising” | "Eggbox" | "Full" the fitness landscape is generated by directly
calling the f1_generate function of MAGELLAN . See details in Ferretti et al. 2016, or Brouillet
et al., 2015.

For OncoSimulR, we often want the wildtype to have a mean of 1. Reasonable settings when using
RMF are mu =1 and wt_is_1 = 'subtract' so that we simulate from a distribution centered in 1,
and we make sure afterwards (via a simple shift) that the wildtype is actuall 1. The sd controls
the standard deviation, with the usual working and meaning as in a normal distribution, unless c is
different from zero. In this case, with c large, the range of the data can be large, specially if g (the
number of genes) is large.

Note that al1FitnessEffects will remove from the table of genotypes any genotype with a fitness
<= le-9, thus making it a non-viable genotype during simulations.

seed_magellan: if you run code in parallel or you use sequential code where you generate random
fitness landscapes generated by MAGELLAN (model = "NK" | "Ising"” | "Eggbox” | "Full") in
a short time, MAGELLAN would likely end up using the same seed as the different calls would
be done within the same time (within second resolution). Thus, especially if you are generat-
ing the same kind of fitness landscape, you probably want to pass different seeds. The seed
is read as a C long, so you should be able to use integers going from at least -2,147,483,647
to +2,147,483,647, in 32-bits, but probably a much larger range (-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807) in 64-bits. Note, though, that some values can crash MAGELLAN
(for example -9223372036854775806 or -2147483647). You do not want to pass numbers in sci-
entific notation; for example, you could instead do seed_magellan = format(2*40, scientific
= FALSE).

Value

An matrix with g + 1 columns. Each column corresponds to a gene, except the last one that corre-
sponds to fitness. 1/0 in a gene column denotes gene mutated/not-mutated. (For ease of use in other
functions, this matrix has class "genotype_fitness_matrix".)

If you have specified min_accessible_genotypes > @, the return object has added attributes accessible_genotypes
and accessible_th that show the number of accessible genotypes under the specified threshold.

Note

MAGELLAN uses its own random number generating functions; using set . seed does not allow to
obtain the same fitness landscape repeatedly.

70 rfitness

Author(s)

Ramon Diaz-Uriarte for the RMF and general wrapping code. S. Brouillet, G. Achaz, S. Ma-
tuszewski, H. Annoni, and L. Ferreti for the MAGELLAN code. Further contributions to the
additive model and to wrapping MAGELLAN code and documentation from Guillermo Gorines
Cordero, Ivan Lorca Alonso, Francisco Mufioz Lopez, David Roncero Morofo, Alvaro Quevedo,
Pablo Perez, Cristina Devesa, Alejandro Herrador.

References

Szendro 1.~G. et al. (2013). Quantitative analyses of empirical fitness landscapes. Journal of
Statistical Mehcanics: Theory and ExperimentV, 01, P01005.

Franke, J. et al. (2011). Evolutionary accessibility of mutational pathways. PLoS Computational
BiologyV, 7(8), 1-9.

Brouillet, S. et al. (2015). MAGELLAN: a tool to explore small fitness landscapes. bioRxiv, 31583.
doi:10.1101/031583

Ferretti, L., Schmiegelt, B., Weinreich, D., Yamauchi, A., Kobayashi, Y., Tajima, F., & Achaz, G.
(2016). Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
Journal of Theoretical BiologyV, 396, 132—-143. doi:10.1016/].jtbi.2016.01.037

MAGELLAN web site: (it seems this site is no longer available)

See Also

oncoSimulIndiv, plot.genotype_fitness_matrix, evalAllGenotypes allFitnessEffects plotFitnessLandscape
Magellan_stats

Examples

Random fitness for four genes-genotypes,
plotting and simulating an oncogenetic trajectory

NK model

rnk <- rfitness(5, K = 3, model = "NK")

plot(rnk)
oncoSimulIndiv(allFitnessEffects(genotFitness = rnk))

Additive model
radd <- rfitness(4, model = "Additive”, mu = 0.2, sd = 0.5)
plot(radd)

Not run:

Eggbox model

regg = rfitness(g=4,model="Eggbox", e = 2, E=2.4)
plot(regg)

Ising model
ris = rfitness(g=4,model="Ising"”, i = 0.002, I=2)

https://doi.org/10.1101/031583
https://doi.org/10.1016/j.jtbi.2016.01.037

samplePop 71

plot(ris)

Full model
rfull = rfitness(g=4, model="Full”, i = 0.002, I=2,
K =12, r = TRUE,
p=290.2,P=0.3,0=0.3,0=1)
plot(rfull)

End(Not run)

samplePop Obtain a sample from a population of simulations.

Description

Obtain a sample (a matrix of individuals/samples by genes or, equivalently, a vector of "genotypes")
from an oncosimulpop object (i.e., a simulation of multiple individuals) or a single oncosimul ob-
ject. Sampling schemes include whole tumor and single cell sampling, and sampling at the end of
the tumor progression or during the progression of the disease.

sampledGenotypes shows the genotype frequencies from that sample; Shannon’s diversity —
entropy— of the genotypes is also returned. Order effects are ignored.
Usage

samplePop(x, timeSample = "last", typeSample = "whole”,
thresholdWhole = 0.5, geneNames = NULL, popSizeSample = NULL,
propError = @)

sampledGenotypes(y, genes = NULL)

Arguments
X An object of class oncosimulpop or class oncosimul? (a single simulation).
y The output from a call to samplePop.
timeSample "last" means to sample each individual in the very last time period of the simu-

lation. "unif" (or "uniform") means sampling each individual at a time choosen
uniformly from all the times recorded in the simulation with at least one driver
between the time when the first driver appeared and the final time period. "unif"
means that it is almost sure that different individuals will be sampled at differ-
ent times. "last" does not guarantee that different individuals will be sampled
at the same time unit, only that all will be sampled in the last time unit of their
simulation.

You can, alternatively, specify the population size at which you want the sample
to be taken. See argument popSizeSample.

72

typeSample

thresholdWhole

geneNames

popSizeSample

propError

genes

Details

samplePop

Further clarification about "unif": suppose in a given simulation we have recorded
times 1, 2, 3, 4, 5. And at times 2, 4, 5, there were clones with at least a mu-
tant but at time 3 there were none (maybe they went extinct); the set of times to
consider for sampling are 2, 4, 5, and time 3 is not considered. This might not
always be what you want.

"singleCell" (or "single") for single cell sampling, where the probability of sam-
pling a cell (a clone) is directly proportional to its population size. "wholeTu-
mor" (or "whole") for whole tumor sampling (i.e., this is similar to a biopsy
being the entire tumor). "singleCell-noWT" or "single-nowt" is single cell sam-
pling, but excluding the wild type.

In whole tumor sampling, whether a gene is detected as mutated depends on
thresholdWhole: a gene is considered mutated if it is altered in at least thresh-
oldWhole proportion of the cells in that individual.

An optional vector of gene names so as to label the column names of the output.

An optional vector of total population sizes at which you want the samples to
be taken. If you pass this vector, timeSample has no effect. The samples will
be taken at the first time at which the population size gets as large as (or larger
than) the size specified in popSizeSample.

This allows you to specify arbitrary sampling schemes with respect to total pop-
ulation size.

The proportion of observations with error (for instance, genotyping error). If
larger than 0, this proportion of entries in the sampled matrix will be flipped
(i.e., Os turned to 1s and 1s turned to Os).

If non-NULL, use only the genes in genes to create the table of genotypes. This
can be useful if you only care about the genotypes with respect to a subset of
genes (say, X), and want to collapse with respect to another subset of genes (say,
Y), for instance if Y is a large set of passenger genes. For example, suppose the
complete set of genes is ’a’, ’b’, °’c’, ’d’, and you specify genes =c('a’, 'b');
then, genotypes ’a, b, ¢’ and genotypes ’a, b, d’ will not be shown as different
rows in the table of frequencies. Likewise, genotypes ’a, ¢’ and genotypes ’a,
d’” will not be shown as different rows. Of course, if what are actually different
genotypes are not regarded as different, this will affect the calculation of the
diversity.

samplePop simply repeats the sampling process in each individual of the oncosimulpop object.

Please see oncoSimulSample for a much more efficient way of sampling when you are sure what
you want to sample.

Note that if you have set onlyCancer = FALSE in the call to oncoSimulSample, you can end up
trying to sample from simulations where the population size is 0. In this case, you will get a
vector/matrix of NAs and a warning.

Similarly, when using timeSample = "last"” you might end up with a vector of 0 (not NAs) be-
cause you are sampling from a population that contains no clones with mutated genes. This event
(sampling from a population that contains no clones with mutated genes), by construction, cannot
happen when timeSample = "unif” as "uniform" sampling is taken here to mean sampling at a

samplePop 73

time choosen uniformly from all the times recorded in the simulation between the time when the
first driver appeared and the final time period. However, you might still get a vector of 0, with
uniform sampling, if you sample from a population that contains only a few cells with any mutated
genes, and most cells with no mutated genes.

Value

A matrix. Each row is a "sample genotype", where 0 denotes no alteration and 1 alteration. When
using v.2, columns are named with the gene names.

We quote "sample genotype" because when not using single cell, a row (a sample genotype) need
not be, of course, any really existing genotype in a population as we are genotyping a whole tumor.
Suppose there are really two genotypes present in the population, genotype A, which has gene A
mutated and genotype B, which has gene B mutated. Genotype A has a frequency of 60% (so B’s
frequency is 40%). If you use whole tumor sampling with thresholdWhole = @.4 you will obtain
a genotype with A and B mutated.

For sampledGenotypes a data frame with two columns: genotypes and frequencies. This data
frame has an additional attribute, "Shannonl", where Shannon’s index of diversity (entropy) is
stored. This is an object of class "sampledGenotypes" with an S3 print method.

Author(s)

Ramon Diaz-Uriarte

References

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations during
tumor progression: effects of passengers, evolutionary models, and sampling doi:10.1186/s12859-
01504667

See Also

oncoSimulPop, oncoSimulSample

Examples

#iHHHHHH Using an extended poset for pancreatic cancer from Gerstung et al.
#iH# (s and sh are made up for the example; only the structure
H#iH and names come from Gerstung et al.)

pancr <- allFitnessEffects(data.frame(parent = c("Root”, rep("KRAS", 4), "SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4", "CDNK2A",

"TP53", "MLL3",

rep("PXDN", 3), rep("TGFBR2", 2)),
s = 0.15,
sh = -0.3,

typeDep = "MN"))

https://doi.org/10.1186/s12859-015-0466-7
https://doi.org/10.1186/s12859-015-0466-7

74

simOGraph

(I set mc.cores = 2 to comply with --as-cran checks, but you
should either use a reasonable number for your hardware or
leave it at its default value).

p1 <- oncoSimulPop(4, pancr, mc.cores = 2)
(sp1 <- samplePop(p1))
sampledGenotypes(sp1)

Sample at fixed sizes. Notice the requested size
for the last population is larger than the any population size
so we get NAs

(sp2 <- samplePop(p1, popSizeSample = c(1e7, 1e6, 4e5, 1el13)))
sampledGenotypes(sp2)

Now single cell sampling

r1 <- oncoSimulIndiv(pancr)

samplePop(ri,

typeSample = "single")

sampledGenotypes(samplePop(r1, typeSample = "single"))

simOGraph

Simulate oncogenetic/CBN/XMPN DAGs.

Description

Simulate DAGs that represent restrictions in the accumulation of mutations.

Usage
simOGraph(n, h = ifelse(n >= 4, 4, n), conjunction = TRUE, nparents = 3,
multilevelParent = TRUE, removeDirectIndirect = TRUE, rootName = "Root",
geneNames = seq.int(n), out = c("adjmat”, "rT"),
s =0.1, sh = -0.1, typeDep = "AND")

Arguments
n Number of nodes, or edges, in the graph. Like the number of genes.
h Approximate height of the graph. See details.
conjunction If TRUE, conjunctions (i.e., multiple parents for a node) are allowed.
nparents Maximum number of parents of a node, when conjunction is TRUE.
multilevelParent

Can a node have parents at different heights (i.e., parents that are at different
distance from the root node)?

simOGraph 75

removeDirectIndirect
Ensure that no two nodes are connected both directly (i.e., with an edge be-
tween them) and indirectly, through intermediate nodes. If TRUE, we return the
transitive reduction of the DAG.

rootName The name you want to give the "Root" node.
geneNames The names you want to give the the non-root nodes.
out Whether the ouptut should be an adjacency matrix or a "restriction table", as

used in allFitnessEffects.

s If using as output a restriction, the default value for s. See allFitnessEffects.

sh If using as output a restriction, the default value for sh. See allFitnessEffects

typeDep If using as output a restriction, the default value for "typeDep". See allFitnessEffects
Details

This is a simple, heuristic procedure for generating graphs of restrictions that seem compatible with
published trees in the oncogenetic literature.

The basic procedure is as follows: nodes (argument n) are split into approximately equally sized
h groups, and then each node from a level is connected to nodes chosen randomly from nodes of
the remaing superior (i.e., closer to the Root) levels. The number of edges comes from a uniform
distribution between 1 and nparents.

The actual depth of the graph can be smaller than h because nodes from a level might be connected
to superior levels skipping intermediate ones.

See the vignette for further discussion about arguments.

Value

An adjacency matrix for a directed graph or a data frame to be used as input, as "restriction table"
in allFitnessEffects.

Author(s)

Ramon Diaz-Uriarte. Code for transitive closure taken from the nem package, whose authors
are Holger Froehlich, Florian Markowetz, Achim Tresch, Theresa Niederberger, Christian Bender,
Matthias Maneck, Claudio Lottaz, Tim Beissbarth

Examples

(al <- simOGraph(10))
library(graph) ## for simple plotting
plot(as(al, "graphNEL"))

simOGraph(3, geneNames = LETTERS[1:3])

76

to_Magellan

to_Magellan

Create output for MAGELLAN and obtain MAGELLAN statistics.

Description

Export a fitness landscape in a format that is understood by MAGELLAN and obtain fitness land-
scape statistics from MAGELLAN.

Usage

to_Magellan(x, file,

max_num_genotypes = 2000)

Magellan_stats(x, max_num_genotypes = 2000,

Arguments

X

file

verbose

use_log

verbose = FALSE,

use_log = FALSE,

short = TRUE,
replace_missing = FALSE)

One of the following:

* A matrix (or data frame) with g + 1 columns. Each of the first g columns
contains a 1 or a 0 indicating that the gene of that column is mutated or not.
Column g+ 1 contains the fitness values. This is, for instance, the output
you will get from rfitness.

¢ A two column data frame. The second column is fitness, and the first col-
umn are genotypes, given as a character vector. For instance, a row "A, B"
would mean the genotype with both A and B mutated.

* The output from a call to evalAllGenotypes. Make sure you use order =
FALSE in that call.

* The output from a call to evalAllGenotypesMut. Make sure you use
order = FALSE.

* The output from a call to allFitnessEffects (with no order effects in the
specification).

The first two are the same as the format for the genotFitness component in
allFitnessEffects.

The name of the output file. If NULL, a name will be created using tempfile.
max_num_genotypes

Maximum allowed number of genotypes. For some types of input, we make a
call to evalAllGenotypes, and use this as the maximum.

If TRUE provide additional information about names of intermediate files.

Use log fitness when computing statistics. Note that the rfitness function
outputs what should be interpreted as log-fitness values, and thus we set this
option by default to FALSE.

to_Magellan 77

short Give short output when computing statistics.

replace_missing
From MAGELLAN’s fl_statistics: replace missing fitness values with 0
(otherwise check that all values are specified).

Value

to_Magellan: A file is written to disk. You can then plot and/or show summary statistics using
MAGELLAN.

Magellan_stats: MAGELLAN’s statistics for fitness landscapes. If you use short = TRUE a vector
of statistics is returned. If short = FALSE, MAGELLAN returns a file with detailed statistics that
cannot be turned into a simple vector of statistics. The returned object uses readLines and, as a
message, you are also shown the path of the file, in case you want to process it yourself.

Note
If you try to pass a fitness specification with order effects you will receive an error, since that cannot
be plotted with MAGELLAN.

Author(s)

Ramon Diaz-Uriarte

References

MAGELLAN web site: (it seems no longer available)

Brouillet, S. et al. (2015). MAGELLAN: a tool to explore small fitness landscapes. bioRxiv, 31583.
doi:10.1101/031583

See Also

allFitnessEffects, evalAllGenotypes, allFitnessEffects, rfitness

Examples

Generate random fitness for four-genes genotype
and export landscape.

ri <- rfitness(4)
to_Magellan(r1l, NULL)

Specify fitness using a DAG and export it

cs <- data.frame(parent = c(rep(”"Root”, 3), "a", "d", "c"),
child = c("a", "b", "d", "e", "c", "f"),
s =0.1,
sh = -0.9,
typeDep = "MN")

to_Magellan(allFitnessEffects(cs), NULL)

https://doi.org/10.1101/031583

78 vignette_pre_computed

Default, short output
Magellan_stats(allFitnessEffects(cs))

Long output; since it is a > 200 lines file,
place in an object. Name of output file is given as message
statslong <- Magellan_stats(allFitnessEffects(cs), short = FALSE)

Default, short output of two NK fitness landscapes
rnk1 <- rfitness(6, K = 1, model = "NK")
Magellan_stats(rnk1)

rnk2 <- rfitness(6, K = 4, model = "NK")
Magellan_stats(rnk2)

vignette_pre_computed Runs from simulations of interventions examples shown in the vignette.
Most, but not all, are from intervention examples.

Description

Simulations shown in the vignette. Since running them can take a few seconds, we have pre-run
them, and stored the results.

They are here mainly to facilitate creation of table from the vignette itself. The script is available
under "inst/miscell".

Usage

data(osi)
data(osi_with_ints)
data(atex4)
data(atexb)
data(atex2b)
data(uvex3)
data(smyelo3v57)
data(s_3_b)
data(uvex2)
data(simT2)
data(simul_period_1)
data(simT3)
data(s_3_a)

Format

Output from runs of oncoSimullndiv, with some components removed to minimize size.

vignette_pre_computed

Examples

data(atex2b)
plot(atex2b)

79

Index

x datagen
rfitness, 65
simOGraph, 74

x datasets
benchmarks, 13
example-missing-drivers, 24
examplePosets, 25
examplesFitnessEffects, 26
freg-dep-simul-examples, 27
mcfls, 28
vignette_pre_computed, 78

* graphs
simOGraph, 74

* hplot
plot.fitnessEffects, 46
plot.oncosimul, 49
plotClonePhylog, 54
plotFitnesslLandscape, 56
plotPoset, 59

x iteration
oncoSimulIndiv, 28

* list
allFitnessEffects, 4

* manip
allFitnessEffects, 4
OncoSimulWide2Long, 45
POM, 61
poset, 63
samplePop, 71
to_Magellan, 76

* misc
evalAllGenotypes, 19
oncoSimulIndiv, 28

* univar
POM, 61

adapt_interventions_to_cpp
(createlnterventions), 13
adapt_rules_to_cpp (createUserVars), 16

80

allFitnessEffects, 4, 20, 21, 26, 27, 31, 32,
41,46, 47, 57-59, 64, 67, 69, 70,
75-77

allMutatorEffects, 20, 32

allMutatorEffects (allFitnessEffects), 4

as_adjacency_matrix, 55

atex2b (vignette_pre_computed), 78

atex4 (vignette_pre_computed), 78

atex5 (vignette_pre_computed), 78

benchmark_1 (benchmarks), 13
benchmark_1_0.05 (benchmarks), 13
benchmark_2 (benchmarks), 13
benchmark_3 (benchmarks), 13
benchmarks, 13

brewer.pal, 51

check_acttion (createUserVars), 16

check_double_id (createlnterventions),
13

check_double_rule_id (createUserVars),
16

check_same_name (createUserVars), 16

check_what_happens
(createlnterventions), 13

colorRampPalette, 57

createlnterventions, 13

createRules (createUserVars), 16

createUserVars, 16

diversityLOD (POM), 61
diversityPOM (POM), 61

evalAllGenotypes, 9, 19, 20, 57, 59, 70, 76,
77

evalAllGenotypesFitAndMut
(evalAllGenotypes), 19

evalAllGenotypesMut, 57, 76

evalAllGenotypesMut (evalAllGenotypes),
19

INDEX

evalGenotype, 9, 20, 34, 35
evalGenotype (evalAllGenotypes), 19
evalGenotypeFitAndMut, 9
evalGenotypeFitAndMut
(evalAllGenotypes), 19
evalGenotypeMut (evalAllGenotypes), 19
ex_missing_drivers_b11
(example-missing-drivers), 24
ex_missing_drivers_b12
(example-missing-drivers), 24
example-missing-drivers, 24
examplePosets, 25, 60, 64
examplesFitnessEffects, 26

freg-dep-simul-examples, 27

geom_label_repel, 57
get.adjacency, 55

LOD (POM), 61

Magellan_stats, 70
Magellan_stats (to_Magellan), 76
mcfls, 28

mclapply, 36

oncoSimulIndiv, 5,7, 9, 27, 28, 46, 53-55,
62, 64,70

oncoSimulPop, 62, 73

oncoSimulPop (oncoSimulIndiv), 28

oncoSimulSample, 72, 73

oncoSimulSample (oncoSimullIndiv), 28

OncoSimulWide2Long, 45

osi (vignette_pre_computed), 78

osi_with_ints (vignette_pre_computed),
78

par, 50
plot.default, 51, 52
plot.evalAllGenotypes
(plotFitnesslLandscape), 56
plot.evalAllGenotypesMut
(plotFitnesslLandscape), 56
plot.fitnessEffects, 9, 46, 56, 59
plot.genotype_fitness_matrix, 70
plot.genotype_fitness_matrix
(plotFitnesslLandscape), 56
plot.oncosimul, 25, 28, 41, 49
plot.oncosimulpop (plot.oncosimul), 49
plotClonePhylog, 34, 54

81

plotFitnessLandscape, 9, 46, 47, 56, 70
plotPoset, 59, 64

polygon, 52

POM, 61

poset, 4, 25, 26, 31, 60, 63
print.oncosimul (oncoSimulIndiv), 28
print.oncosimulpop (oncoSimulIndiv), 28
print.sampledGenotypes (samplePop), 71

rfitness, 6,9, 57,59, 65, 76, 77

s_3_a(vignette_pre_computed), 78

s_3_b (vignette_pre_computed), 78

sampledGenotypes (samplePop), 71

samplePop, 35,41, 71

simOGraph, 74

simT2 (vignette_pre_computed), 78

simT3 (vignette_pre_computed), 78

simul_period_1 (vignette_pre_computed),
78

smyelo3v57 (vignette_pre_computed), 78

summary.oncosimul (oncoSimulIndiv), 28

summary.oncosimulpop (oncoSimulIndiv),
28

tempfile, 76

to_Magellan, 76

transform_intervention
(createlnterventions), 13

transform_rule (createUserVars), 16

uvex2 (vignette_pre_computed), 78
uvex3 (vignette_pre_computed), 78

verify_interventions
(createlnterventions), 13
verify_rules (createUserVars), 16
verify_user_vars (createUserVars), 16
vertex_attr, 62
vignette_pre_computed, 78

woANntibS (freq-dep-simul-examples), 27

	allFitnessEffects
	benchmarks
	createInterventions
	createUserVars
	evalAllGenotypes
	example-missing-drivers
	examplePosets
	examplesFitnessEffects
	freq-dep-simul-examples
	mcfLs
	oncoSimulIndiv
	OncoSimulWide2Long
	plot.fitnessEffects
	plot.oncosimul
	plotClonePhylog
	plotFitnessLandscape
	plotPoset
	POM
	poset
	rfitness
	samplePop
	simOGraph
	to_Magellan
	vignette_pre_computed
	Index

