
Package ‘MotifPeeker’
February 2, 2026

Type Package

Title Benchmarking Epigenomic Profiling Methods Using Motif Enrichment

Version 1.3.1

Description MotifPeeker is used to compare and analyse datasets from
epigenomic profiling methods with motif enrichment as the key
benchmark. The package outputs an HTML report consisting of three
sections: (1. General Metrics) Overview of peaks-related general
metrics for the datasets (FRiP scores, peak widths and motif-summit
distances). (2. Known Motif Enrichment Analysis) Statistics for the
frequency of user-provided motifs enriched in the datasets. (3.
Motif Discovery Enrichment Analysis) Statistics for the frequency of
ab-initio discovered motifs enriched in the datasets and compared with
known motifs.

License GPL (>= 3)

URL https://github.com/neurogenomics/MotifPeeker

BugReports https://github.com/neurogenomics/MotifPeeker/issues

Depends R (>= 4.4.0)

Imports BiocFileCache, BiocParallel, DT, ggplot2, plotly,
universalmotif, GenomicRanges, IRanges, rtracklayer, tools,
htmltools, rmarkdown, viridis, SummarizedExperiment,
htmlwidgets, Rsamtools, GenomicAlignments, Seqinfo, Biostrings,
BSgenome, memes, S4Vectors, dplyr, purrr, tidyr, heatmaply,
stats, utils

Suggests BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm10, BSgenome.Mmusculus.UCSC.mm39,
downloadthis, knitr, markdown, methods, remotes, rworkflows,
testthat (>= 3.0.0), withr, emoji, curl, jsonlite

VignetteBuilder knitr

biocViews Epigenetics, Genetics, QualityControl, ChIPSeq,
MultipleComparison, FunctionalGenomics, MotifDiscovery,
SequenceMatching, Software, Alignment

Config/testthat/edition 3

1

https://github.com/neurogenomics/MotifPeeker
https://github.com/neurogenomics/MotifPeeker/issues

2 Contents

Encoding UTF-8

LazyData FALSE

RoxygenNote 7.3.3

SystemRequirements MEME Suite (v5.3.3 or above)
<http://meme-suite.org/doc/download.html>

git_url https://git.bioconductor.org/packages/MotifPeeker

git_branch devel

git_last_commit d02958e

git_last_commit_date 2025-11-20

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Hiranyamaya Dash [cre, aut] (ORCID:
<https://orcid.org/0009-0005-5514-505X>),

Thomas Roberts [aut] (ORCID: <https://orcid.org/0009-0006-6244-8670>),
Maria Weinert [aut] (ORCID: <https://orcid.org/0000-0001-6187-1000>),
Nathan Skene [aut] (ORCID: <https://orcid.org/0000-0002-6807-3180>)

Maintainer Hiranyamaya Dash <hdash.work@gmail.com>

Contents
bootstrap_distances . 3
bpapply . 5
calc_frip . 6
check_dep . 7
check_duplicates . 7
check_ENCODE . 8
check_genome_build . 8
check_input . 9
check_JASPAR . 10
confirm_meme_install . 11
CTCF_ChIP_peaks . 11
CTCF_TIP_peaks . 12
denovo_motifs . 12
download_button . 14
dt_enrichment_individual . 15
filter_repeats . 16
find_motifs . 17
format_exptype . 18
get_df_distances . 19
get_df_distances_bootstrapped . 21
get_df_enrichment . 23
get_download_buttons . 26
get_JASPARCORE . 26
link_JASPAR . 27

https://orcid.org/0009-0005-5514-505X
https://orcid.org/0009-0006-6244-8670
https://orcid.org/0000-0001-6187-1000
https://orcid.org/0000-0002-6807-3180

bootstrap_distances 3

markov_background_model . 28
messager . 28
MotifPeeker . 29
motif_enrichment . 33
motif_MA1102.3 . 35
motif_MA1930.2 . 35
motif_similarity . 36
normalise_paths . 39
plot_enrichment_individual . 39
plot_enrichment_overall . 41
plot_motif_comparison . 42
pretty_number . 43
print_denovo_sections . 43
print_DT . 44
print_labels . 47
random_string . 48
read_motif_file . 48
read_peak_file . 49
read_peak_file_macs . 50
read_peak_file_seacr . 51
report_command . 51
report_header . 52
save_peak_file . 52
segregate_seqs . 53
summit_to_motif . 54
to_plotly . 56
trim_seqs . 57
use_cache . 58
%>% . 59

Index 60

bootstrap_distances Bootstrap motif-summit distances for one set of peaks and one motif

Description

This function performs bootstrapping to estimate the distribution of mean absolute distances be-
tween peak summits and motif positions for a given set of peaks and a specified motif.

Usage

bootstrap_distances(
peaks,
motif,
genome_build,
samples_n = NULL,
samples_len = NULL,

4 bootstrap_distances

out_dir = tempdir(),
meme_path = NULL,
verbose = FALSE

)

Arguments

peaks A GRanges object containing peak ranges.

motif A universalmotif object.

genome_build A BSgenome object representing the genome build.

samples_n An integer specifying the number of bootstrap samples to generate. If NULL, it
is set to 70% of the number of peaks.

samples_len An integer specifying the number of peaks to sample in each bootstrap iteration.
If NULL, it is set to 20 peaks.

out_dir Location to save the 0-order background file. By default, the background file
will be written to a temporary directory.

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A numeric vector of bootstrapped mean absolute distances between peak summits and motif posi-
tions with length equal to samples_n.

Examples

if (memes::meme_is_installed()) {
peak <- system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",

package = "MotifPeeker") |>
read_peak_file() |>
sample(20)

motif <- system.file("extdata", "motif_MA1102.3.jaspar",
package = "MotifPeeker") |> read_motif_file()

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

distances <- bootstrap_distances(
peak = peak,
motif = motif,
genome_build = genome_build,
samples_n = 2,
samples_len = NULL,
verbose = FALSE

)
print(distances)

bpapply 5

}
}

bpapply Use BiocParallel functions with appropriate parameters

Description

Light wrapper around BiocParallel functions that automatically applies appropriate parallel func-
tion.

Usage

bpapply(
X,
FUN,
apply_fun = BiocParallel::bplapply,
BPPARAM = BiocParallel::bpparam(),
progressbar = FALSE,
force_snowparam = FALSE,
verbose = FALSE,
...

)

Arguments

X Any object for which methods length, [, and [[are implemented.

FUN The function to be applied to each element of X.

apply_fun A BiocParallel function to use for parallel processing. (default = BiocParallel::bplapply)

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = bp-
param())

... Arguments passed on to BiocParallel::bplapply, BiocParallel::bpmapply

BPREDO A list of output from bplapply with one or more failed elements.
When a list is given in BPREDO, bpok is used to identify errors, tasks are
rerun and inserted into the original results.

BPOPTIONS Additional options to control the behavior of the parallel evaluation,
see bpoptions.

MoreArgs List of additional arguments to FUN.
SIMPLIFY If TRUE the result will be simplified using simplify2array.
USE.NAMES If TRUE the result will be named.

Value

Output relevant to the apply_fun specified.

6 calc_frip

Examples

half_it <- function(arg1) return(arg1 / 2)
x <- seq_len(10)

res <- MotifPeeker:::bpapply(x, half_it)
print(res)

calc_frip Calculate FRiP score

Description

Calculate the Fraction of Reads in Peak score from the read and peak file of an experiment.

Usage

calc_frip(read_file, peak_file, single_end = TRUE, total_reads = NULL)

Arguments

read_file A BamFile object.

peak_file A GRanges object.

single_end A logical value. If TRUE, the reads classified as single-ended. (default = TRUE)

total_reads (optional) The total number of reads in the experiment. Skips counting the total
number of reads if provided, saving computation.

Details

The FRiP score is calculated as follows:

FRiP =
(number of reads in peaks)

(total number of reads)

Value

A numeric value indicating the FRiP score.

Examples

read_file <- system.file("extdata", "CTCF_ChIP_alignment.bam",
package = "MotifPeeker")

read_file <- Rsamtools::BamFile(read_file)
data("CTCF_ChIP_peaks", package = "MotifPeeker")

calc_frip(read_file, CTCF_ChIP_peaks)

check_dep 7

check_dep Check attached dependency

Description

Stop execution if a package is not attached.

Usage

check_dep(pkg, fatal = TRUE, custom_msg = NULL)

Arguments

pkg a character string of the package name

fatal a logical value indicating whether to stop execution if the package is not at-
tached.

custom_msg a custom message to display if the package is not attached.

Value

TRUE if the package is available or else FALSE if fatal = FALSE.

check_duplicates Check for duplicates

Description

Checks for duplicated items in a vector or list and throw an error if found.

Usage

check_duplicates(x)

Arguments

x A vector or list.

Value

Null

8 check_genome_build

check_ENCODE Check for ENCODE input

Description

Check and get files from ENCODE project. Requires the input to be in ENCODE ID format. Uses
BiocFileCache to cache downloads. Only works for files.

Usage

check_ENCODE(encode_id, expect_format, verbose = FALSE)

Arguments

encode_id A character string specifying the ENCODE ID.

expect_format A character string (or a vector) specifying the expected format(s) of the file. If
the file is not in the expected format, an error is thrown.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file.

Examples

if (requireNamespace("curl", quietly = TRUE) &&
requireNamespace("jsonlite", quietly = TRUE)) {
check_ENCODE("ENCFF920TXI", expect_format = c("bed", "gz"))

}

check_genome_build Check genome build

Description

Check if the genome build is valid and return an appropriate BSgenome-class object.

Usage

check_genome_build(genome_build)

check_input 9

Arguments

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. Check check_genome_build details for genome builds which can be
imported as abbreviated names.

Details

Currently, the following genome builds can be specified to ‘genome_build‘ as abbreviated names:

• hg38: Human genome build GRCh38 (BSgenome.Hsapiens.UCSC.hg38)

• hg19: Human genome build GRCh37 (BSgenome.Hsapiens.UCSC.hg19)

• mm10: Mouse genome build GRCm38 (BSgenome.Mmusculus.UCSC.mm10)

• mm39: Mouse genome build GRCm39 (BSgenome.Mmusculus.UCSC.mm39)

If the genome build you wish to use is not listed here, please pass a BSgenome-class data object
directly.

Value

A BSGenome object.

See Also

BSgenome-class for more information on BSGenome objects.

Examples

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {
check_genome_build("hg38")

}

check_input Check for input validity and pass to appropriate function

Description

Check for input validity and pass to appropriate function

Usage

check_input(x, type, FUN, inverse = FALSE, ...)

10 check_JASPAR

Arguments

x The input to check.

type The type of input to check for. Supported types are:

• jaspar_id: JASPAR identifier.
• motif: ‘universalmotif‘ motif object.
• encode_id: ENCODE identifier.

FUN The function to pass the input to.

inverse Logical indicating whether to return the input if it is invalid for the specified
‘type‘.

... Additional arguments to pass to the ‘FUN‘ function.

Value

‘x‘ if the input is invalid for the specified ‘type‘, or else the output of the ‘FUN‘ function. If ‘inverse
= TRUE‘, the function returns the output of the ‘FUN‘ function if the input is valid, or else ‘x‘.

check_JASPAR Check for JASPAR input

Description

Check and get files from JASPAR. Requires the input to be in JASPAR ID format. Uses BiocFile-
Cache to cache downloads.

Usage

check_JASPAR(motif_id, verbose = FALSE)

Arguments

motif_id A character string specifying the JASPAR motif ID.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file.

Examples

check_JASPAR("MA1930.2")

confirm_meme_install 11

confirm_meme_install Stop if MEME suite is not installed

Description

Stop if MEME suite is not installed

Usage

confirm_meme_install(meme_path = NULL, continue = FALSE)

Arguments

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

continue Continue code execution if MEME suite is not installed.

Value

Null

See Also

check_meme_install

CTCF_ChIP_peaks Example ChIP-seq peak file

Description

Human CTCF peak file generated with ChIP-seq using HCT116 cell-line. No control files were
used to generate the peak file.

Usage

data("CTCF_ChIP_peaks")

Format

An object of class GRanges of length 209.

Note

To reduce the size of the package, the included peak file focuses on specific genomic regions. The
subset region included is chr10:65,654,529-74,841,155.

12 denovo_motifs

Source

ENCODE Accession: ENCFF091ODJ

CTCF_TIP_peaks Example TIP-seq peak file

Description

Human CTCF peak file generated with TIP-seq using HCT116 cell-line. The peak file was gener-
ated using the nf-core/cutandrun pipeline. Raw read files were sourced from NIH Sequence Read
Archives (ID: SRR16963166).

Usage

data("CTCF_TIP_peaks")

Format

An object of class GRanges of length 182.

Note

To reduce the size of the package, the included peak file focuses on specific genomic regions. The
subset region included is chr10:65,654,529-74,841,155.

denovo_motifs Discover motifs in sequences

Description

Use STREME from MEME suite to find motifs in the provided sequences. To speed up the process,
the sequences can be optionally trimmed to reduce the search space. The result is then optionally
filtered to remove motifs with a high number of nucleotide repeats

Usage

denovo_motifs(
seqs,
trim_seq_width,
genome_build,
discover_motifs_count = 3,
minw = 8,
maxw = 25,
filter_n = 6,
out_dir = tempdir(),

https://www.encodeproject.org/files/ENCFF091ODJ/
https://nf-co.re/cutandrun/3.2.2
https://trace.ncbi.nlm.nih.gov/Traces/index.html?view=run_browser&acc=SRR16963166

denovo_motifs 13

meme_path = NULL,
BPPARAM = BiocParallel::SerialParam(),
verbose = FALSE,
debug = FALSE,
...

)

Arguments

seqs A list of GRanges objects containing sequences to search for motifs.

trim_seq_width An integer specifying the width of the sequence to extract around the summit
(default = NULL). This sequence is used to search for discovered motifs. If
not provided, the entire peak region will be used. This parameter is intended
to reduce the search space and speed up motif discovery; therefore, a value less
than the average peak width is recommended. Peaks are trimmed symmetrically
around the summit while respecting the peak bounds.

genome_build The genome build that the peak sequences should be derived from.
discover_motifs_count

An integer specifying the number of motifs to discover. (default = 3) Note that
higher values take longer to compute.

minw An integer specifying the minimum width of the motif. (default = 8)

maxw An integer specifying the maximum width of the motif. (default = 25)

filter_n An integer specifying the number of consecutive nucleotide repeats a discovered
motif must contain to be filtered out. (default = 6)

out_dir A character vector of output directory to save STREME results to. (default =
tempdir())

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = Se-
rialParam(), single core run)

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

debug A logical indicating whether to print debug messages while running the function.
(default = FALSE)

... Additional arguments to pass to STREME. For more information, refer to the offi-
cial MEME Suite documentation on STREME.

Value

A list of universalmotif objects and associated metadata.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {

https://meme-suite.org/meme/doc/streme.html

14 download_button

genome_build <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

res <- denovo_motifs(list(CTCF_TIP_peaks),
trim_seq_width = 50,
genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 6,
minw = 8,
maxw = 8,
out_dir = tempdir())

print(res[[1]]$consensus)
}
}

download_button Create a download button

Description

Creates a download button for a file or directory, suitable to embed into an HTML report.

Usage

download_button(
path,
type,
button_label,
output_name = NULL,
button_type = "success",
has_icon = TRUE,
icon = "fa fa-save",
add_button = TRUE,
...

)

Arguments

path A character string specifying the path to the file or directory.

type A character string specifying the type of download. Either "file" or "dir".

button_label Character (HTML), button label

output_name Name of of the output file. If not specified, it will take the source file’s name if
one file is specified. In case of multiple files, the output_name must be speci-
fied.

button_type Character, one of the standard Bootstrap types

has_icon Specify whether to include fontawesome icons in the button label

icon Fontawesome tag e.g.: "fa fa-save"

dt_enrichment_individual 15

add_button A logical indicating whether to add the download button to the HTML report.
(default = TRUE)

... Arguments passed on to downloadthis::download_file

self_contained A boolean to specify whether your HTML output is self-
contained. Default to FALSE.

Value

htmltools::tag, <button>

See Also

download_file

dt_enrichment_individual

Get datatable for motif-enrichment of individual experiments.

Description

Get datatable for motif-enrichment of individual experiments.

Usage

dt_enrichment_individual(
result,
enrichment_df,
comparison_i,
motif_i,
reference_index = 1

)

Arguments

result A list with the following elements:
peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

enrichment_df A data frame containing the motif enrichment results, produced using get_df_enrichment.
comparison_i The index of the comparison dataset to plot.
motif_i The index of the motif to plot.
reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

16 filter_repeats

Value

A DT::datatable object with the peak motif enrichment data for the specified comparison_i and
motif_i.

See Also

Other datatable functions: print_denovo_sections()

filter_repeats Filter motifs with nucleotide repeats

Description

Filter out motifs which contain filter_n or more consecutive nucleotide repeats. This includes
unambiguous bases such as ’Y’, ’N, ’R’, etc.

Usage

filter_repeats(motifs, filter_n = 6)

Arguments

motifs Output from runStreme.

filter_n Minimum number of consecutive nucleotide repeats to filter.

Value

A list object with same structure as motifs but with motifs containing filter_n or more consecu-
tive nucleotide repeats removed.

See Also

runStreme

find_motifs 17

find_motifs Find similar motifs

Description

Search through provided motif database to find similar motifs to the input. Light wrapper around
TOMTOM from MEME Suite.

Usage

find_motifs(
streme_out,
motif_db,
out_dir = tempdir(),
meme_path = NULL,
BPPARAM = BiocParallel::bpparam(),
verbose = FALSE,
debug = FALSE,
...

)

Arguments

streme_out Output from denovo_motifs.

motif_db Path to .meme format file to use as reference database, or a list of universalmotif-class
objects. (optional) Results from de-novo motif discovery are searched against
this database to find similar motifs. If not provided, JASPAR CORE database
will be used. NOTE: p-value estimates are inaccurate when the database has
fewer than 50 entries.

out_dir A character vector of output directory to save STREME results to. (default =
tempdir())

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = bp-
param())

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

debug A logical indicating whether to print debug messages while running the function.
(default = FALSE)

... Additional arguments to pass to TOMTOM. For more information, refer to the offi-
cial MEME Suite documentation on TOMTOM.

https://meme-suite.org/meme/doc/tomtom.html

18 format_exptype

Value

data.frame of match results. Contains best_match_motif column of universalmotif objects with
the matched PWM from the database, a series of best_match_* columns describing the TomTom
results of the match, and a tomtom list column storing the ranked list of possible matches to each
motif. If a universalmotif data.frame is used as input, these columns are appended to the data.frame.
If no matches are returned, tomtom and best_match_motif columns will be set to NA and a message
indicating this will print.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

res <- denovo_motifs(list(CTCF_TIP_peaks),
trim_seq_width = 50,
genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 10,
out_dir = tempdir())

res2 <- find_motifs(res, motif_db = get_JASPARCORE(),
out_dir = tempdir())

print(res2)
}

}

format_exptype Format exp_type

Description

Format input exp_type to look pretty.

Usage

format_exptype(exp_type)

Arguments

exp_type A character depicting the type of experiment. Supported experimental types are:

• chipseq: ChIP-seq data
• tipseq: TIP-seq data
• cuttag: CUT&Tag data
• cutrun: CUT&Run data

get_df_distances 19

• other: Other experiment type data
• unknown: Unknown experiment type data

Any item not mentioned above will be returned as-is.

Value

A character vector of formatted exp_type.

Examples

MotifPeeker:::format_exptype("chipseq")

get_df_distances Get dataframe with motif-summit distances

Description

Wrapper for ‘MotifPeeker::summit_to_motif‘ to get motif-summit distances for all peaks and mo-
tifs, generating a data.frame suitable for plots.

Usage

get_df_distances(
result,
user_motifs,
genome_build,
out_dir = tempdir(),
BPPARAM = BiocParallel::bpparam(),
meme_path = NULL,
verbose = FALSE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

user_motifs A list with the following elements:

motifs A list of motif files.
motif_labels A character vector of motif labels.

20 get_df_distances

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. Check check_genome_build details for genome builds which can be
imported as abbreviated names.

out_dir A character vector of output directory.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A data.frame with the following columns:

exp_label Experiment labels.

exp_type Experiment types.

motif_indice Motif indices.

distance Distances between peak summit and motif.

See Also

Other generate data.frames: get_df_distances_bootstrapped(), get_df_enrichment()

Examples

if (memes::meme_is_installed()) {
data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")
data("motif_MA1930.2", package = "MotifPeeker")
input <- list(

peaks = CTCF_ChIP_peaks,
exp_type = "ChIP",
exp_labels = "CTCF",
read_count = 150,
peak_count = 100

)
motifs <- list(

motifs = list(motif_MA1930.2, motif_MA1102.3),

get_df_distances_bootstrapped 21

motif_labels = list("MA1930.2", "MA1102.3")
)

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
distances_df <- get_df_distances(input, motifs, genome_build)
print(distances_df)

}
}

get_df_distances_bootstrapped

Get dataframe with bootstrapped motif-summit distances

Description

Wrapper for ‘MotifPeeker::bootstrap_distances‘ to get bootstrapped motif-summit distances for
given peaks and motifs, generating a data.frame suitable for plots.

Usage

get_df_distances_bootstrapped(
result,
user_motifs,
genome_build,
samples_n = NULL,
samples_len = NULL,
out_dir = tempdir(),
BPPARAM = BiocParallel::bpparam(),
meme_path = NULL,
verbose = FALSE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

user_motifs A list with the following elements:

motifs A list of motif files.
motif_labels A character vector of motif labels.

22 get_df_distances_bootstrapped

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. Check check_genome_build details for genome builds which can be
imported as abbreviated names.

samples_n An integer specifying the number of bootstrap samples to generate. If NULL, it
is set to 70% of the number of peaks.

samples_len An integer specifying the number of peaks to sample in each bootstrap iteration.
If NULL, it is set to 20 peaks.

out_dir A character vector of output directory.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A data.frame with the following columns:

exp_label Experiment labels.

exp_type Experiment types.

motif_indice Motif indices.

bootstrap_iteration Bootstrap iteration number.

distance Mean of absolute distances between peak summit and motif.

See Also

Other generate data.frames: get_df_distances(), get_df_enrichment()

Examples

if (memes::meme_is_installed()) {
peak <- system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",

package = "MotifPeeker") |>
read_peak_file() |>
sample(20)

motif_MA1102.3 <- system.file("extdata", "motif_MA1102.3.jaspar",

get_df_enrichment 23

package = "MotifPeeker") |> read_motif_file()
motif_MA1930.2 <- system.file("extdata", "motif_MA1930.2.jaspar",

package = "MotifPeeker") |> read_motif_file()

input <- list(
peaks = peak,
exp_type = "ChIP",
exp_labels = "CTCF",
read_count = 150,
peak_count = 100

)
motifs <- list(

motifs = list(motif_MA1930.2, motif_MA1102.3),
motif_labels = list("MA1930.2", "MA1102.3")

)

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

distances_df_bootstrapped <- get_df_distances_bootstrapped(
input,
user_motifs = motifs,
genome_build = genome_build,
samples_n = NULL,
samples_len = NULL,
verbose = FALSE

)
print(distances_df_bootstrapped)

}
}

get_df_enrichment Get dataframe with motif enrichment values

Description

Wrapper for ‘MotifPeeker::motif_enrichment‘ to get motif enrichment counts and percentages for
all peaks and motifs, generating a data.frame suitable for plots. The data.frame contains values
for all and segregated peaks.

Usage

get_df_enrichment(
result,
segregated_peaks,
user_motifs,
genome_build,
reference_index = 1,

24 get_df_enrichment

out_dir = tempdir(),
BPPARAM = BiocParallel::bpparam(),
meme_path = NULL,
verbose = FALSE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

segregated_peaks

A list object generated using segregate_seqs.

user_motifs A list with the following elements:

motifs A list of motif files.
motif_labels A character vector of motif labels.

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. Check check_genome_build details for genome builds which can be
imported as abbreviated names.

reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

out_dir A character vector of output directory.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

get_df_enrichment 25

Value

A data.frame with the following columns:

exp_label Experiment labels.

exp_type Experiment types.

motif_indice Motif indices.

group1 Segregated group- "all", "Common" or "Unique".

group2 "reference" or "comparison" group.

count_enriched Number of peaks with motif.

count_nonenriched Number of peaks without motif.

perc_enriched Percentage of peaks with motif.

perc_nonenriched Percentage of peaks without motif.

See Also

Other generate data.frames: get_df_distances(), get_df_distances_bootstrapped()

Examples

if (memes::meme_is_installed()) {
data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")
data("motif_MA1930.2", package = "MotifPeeker")
input <- list(

peaks = list(CTCF_ChIP_peaks, CTCF_TIP_peaks),
exp_type = c("ChIP", "TIP"),
exp_labels = c("CTCF_ChIP", "CTCF_TIP"),
read_count = c(150, 200),
peak_count = c(100, 120)

)
segregated_input <- segregate_seqs(input$peaks[[1]], input$peaks[[2]])
motifs <- list(

motifs = list(motif_MA1930.2, motif_MA1102.3),
motif_labels = list("MA1930.2", "MA1102.3")

)
reference_index <- 1

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

enrichment_df <- get_df_enrichment(
input, segregated_input, motifs, genome_build,
reference_index = 1

)
}

}

26 get_JASPARCORE

get_download_buttons Get download buttons for peak file, STREME and TOMOTM output

Description

Get download buttons for peak file, STREME and TOMOTM output

Usage

get_download_buttons(
comparison_i,
start_i,
segregated_peaks,
out_dir,
add_buttons = TRUE,
verbose = FALSE

)

Arguments

comparison_i Index of the comparison pair group.

start_i Index of the first comparison pair.
segregated_peaks

A list of peak files generated from segregate_seqs.

out_dir A character vector of the directory with STREME and TOMTOM output.

add_buttons A logical indicating whether to prepare download buttons.

verbose A logical indicating whether to print messages.

Value

A list of download buttons for peak file, STREME and TOMTOM output.

get_JASPARCORE Download JASPAR CORE database

Description

Downloads JASPAR CORE database in meme format for all available taxonomic groups. Uses
BiocFileCache to cache downloads.

Usage

get_JASPARCORE(verbose = FALSE)

link_JASPAR 27

Arguments

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file (meme format).

Examples

get_JASPARCORE()

link_JASPAR Get JASPAR link for motifs

Description

Get JASPAR link for motifs

Usage

link_JASPAR(motif_id, download = FALSE)

Arguments

motif_id A character string specifying the JASPAR motif ID.

download A logical specifying whether to return a download link or an HTML embeddable
matrix profile link. (default = FALSE)

Value

A character string containing the JASPAR motif link.

28 messager

markov_background_model

Generate a 0-order Markov background model

Description

markov_background_model() generates a 0-order background model for use with FIMO or AME.
The function uses the letter frequencies in the input sequences to generate the background model.

Usage

markov_background_model(sequences, out_dir, verbose = FALSE)

Arguments

sequences A DNAStringSet object.

out_dir Location to save the 0-order background file.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

The path to the 0-order background file.

messager Print messages

Description

Conditionally print messages. Allows developers to easily control verbosity of functions, and meet
Bioconductor requirements that dictate the message must first be stored to a variable before passing
to message.

Usage

messager(..., v = Sys.getenv("VERBOSE") != "FALSE")

Arguments

v Whether to print messages or not.

Value

Null

MotifPeeker 29

MotifPeeker Benchmark epigenomic profiling methods using motif enrichment

Description

This function compares different epigenomic datasets using motif enrichment as the key metric.
The output is an easy-to-interpret HTML document with the results. The report contains three
main sections: (1) General Metrics on peak and alignment files (if provided), (2) Known Motif
Enrichment Analysis and (3) Discovered Motif Enrichment Analysis.

Usage

MotifPeeker(
peak_files,
reference_index = 1,
alignment_files = NULL,
exp_labels = NULL,
exp_type = NULL,
genome_build,
motif_files = NULL,
motif_labels = NULL,
cell_counts = NULL,
distance_bootstrap = TRUE,
bootstrap_n = 500,
bootstrap_len = NULL,
motif_discovery = TRUE,
motif_discovery_count = 3,
filter_n = 6,
trim_seq_width = NULL,
motif_db = NULL,
download_buttons = TRUE,
meme_path = NULL,
out_dir = tempdir(),
save_runfiles = FALSE,
display = if (interactive()) "browser",
BPPARAM = BiocParallel::SerialParam(),
quiet = TRUE,
debug = FALSE,
verbose = FALSE

)

Arguments

peak_files A character vector of path to peak files, or a vector of GRanges objects generated
using read_peak_file. Currently, peak files from the following peak-calling
tools are supported:

• MACS2: .narrowPeak files

30 MotifPeeker

• SEACR: .bed files

ENCODE file IDs can also be provided to automatically fetch peak file(s) from
the ENCODE database.

reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

alignment_files

A character vector of path to alignment files, or a vector of BamFile objects.
(optional) Alignment files are used to calculate read-related metrics like FRiP
score. ENCODE file IDs can also be provided to automatically fetch alignment
file(s) from the ENCODE database.

exp_labels A character vector of labels for each peak file. (optional) If not provided, capital
letters will be used as labels in the report.

exp_type A character vector of experimental types for each peak file. (optional) Useful for
comparison of different methods. If not provided, all datasets will be classified
as "unknown" experiment types in the report. Supported experimental types are:

• chipseq: ChIP-seq data
• tipseq: TIP-seq data
• cuttag: CUT&Tag data
• cutrun: CUT&Run data

exp_type is used only for labelling. It does not affect the analysis. You can
also input custom strings. Datasets will be grouped as long as they match their
respective exp_type.

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. Check check_genome_build details for genome builds which can be
imported as abbreviated names.

motif_files A character vector of path to motif files, or a vector of universalmotif-class
objects. (optional) Required to run Known Motif Enrichment Analysis. JASPAR
matrix IDs can also be provided to automatically fetch motifs from the JASPAR.

motif_labels A character vector of labels for each motif file. (optional) Only used if path to
file names are passed in motif_files. If not provided, the motif file names will
be used as labels.

cell_counts An integer vector of experiment cell counts for each peak file. (optional) Creates
additional comparisons based on cell counts.

distance_bootstrap

A logical indicating whether to perform bootstrap analysis for motif-peak sum-
mit distances. (default = TRUE) If FALSE, a single distribution of distances will
be calculated for each experiment-motif pair without bootstrapping.

bootstrap_n An integer specifying the number of bootstrap samples to generate. (default =
500) If NULL, a value of 0.7 x number of peaks in the smallest peakset will
be used (or if this value is less than 100, use 100).

bootstrap_len An integer specifying the length of sequences to sample in each bootstrap it-
eration. (default = NULL) If NULL, a value of 0.2 x number of peaks in the
smallest peakset will be used (or if this value is less than 10, use 10).

MotifPeeker 31

motif_discovery

A logical indicating whether to perform motif discovery for the third section of
the report. (default = TRUE)

motif_discovery_count

An integer specifying the number of motifs to discover. (default = 3) Note that
higher values take longer to compute.

filter_n An integer specifying the number of consecutive nucleotide repeats a discovered
motif must contain to be filtered out. (default = 6)

trim_seq_width An integer specifying the width of the sequence to extract around the summit
(default = NULL). This sequence is used to search for discovered motifs. If
not provided, the entire peak region will be used. This parameter is intended
to reduce the search space and speed up motif discovery; therefore, a value less
than the average peak width is recommended. Peaks are trimmed symmetrically
around the summit while respecting the peak bounds.

motif_db Path to .meme format file to use as reference database, or a list of universalmotif-class
objects. (optional) Results from de-novo motif discovery are searched against
this database to find similar motifs. If not provided, JASPAR CORE database
will be used. NOTE: p-value estimates are inaccurate when the database has
fewer than 50 entries.

download_buttons

A logical indicating whether to include download buttons for various files within
the HTML report. (default = TRUE)

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

out_dir A character string specifying the directory to save the output files. (default =
tempdir()) A sub-directory with the output files will be created in this directory.

save_runfiles A logical indicating whether to save intermediate files generated during the run,
such as those from FIMO and AME. (default = FALSE)

display A character vector specifying the display mode for the HTML report once it is
generated. (default = NULL) Options are:

• "browser": Open the report in the default web browser.
• "rstudio": Open the report in the RStudio Viewer.
• NULL: Do not open the report.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

32 MotifPeeker

quiet A logical indicating whether to print markdown knit messages. (default = FALSE)

debug A logical indicating whether to print debug/error messages in the HTML report.
(default = FALSE)

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Details

Runtime guidance: For 4 datasets, the runtime is approximately 3 minutes with motif_discovery
disabled. However, motif discovery can take hours to complete. To make computation faster, we
highly recommend tuning the following arguments:

BPPARAM=MulticoreParam(x) Running motif discovery in parallel can significantly reduce run-
time, but it is very memory-intensive, consuming 10+GB of RAM per thread. Memory star-
vation can greatly slow the process, so set the number of cores with caution.

motif_discovery_count The number of motifs to discover per sequence group exponentially in-
creases runtime. We recommend no more than 5 motifs to make a meaningful inference.

trim_seq_width Trimming sequences before running motif discovery can significantly reduce the
search space. Sequence length can exponentially increase runtime. We recommend running
the script with motif_discovery = FALSE and studying the motif-summit distance distribu-
tion under general metrics to find the sequence length that captures most motifs. A good
starting point is 150 but it can be reduced further if appropriate.

Value

Path to the output directory.

Note

Running motif discovery is computationally expensive and can require from minutes to hours.
denovo_motifs can widely affect the runtime (higher values take longer). Setting trim_seq_width
to a lower value can also reduce the runtime significantly.

Examples

peaks <- list(
system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",

package = "MotifPeeker"),
system.file("extdata", "CTCF_TIP_peaks.narrowPeak",

package = "MotifPeeker")
)

alignments <- list(
system.file("extdata", "CTCF_ChIP_alignment.bam",

package = "MotifPeeker"),
system.file("extdata", "CTCF_TIP_alignment.bam",

package = "MotifPeeker")
)

motifs <- list(

motif_enrichment 33

system.file("extdata", "motif_MA1930.2.jaspar",
package = "MotifPeeker"),

system.file("extdata", "motif_MA1102.3.jaspar",
package = "MotifPeeker")

)

if (memes::meme_is_installed()) {
MotifPeeker(

peak_files = peaks,
reference_index = 2,
alignment_files = alignments,
exp_labels = c("ChIP", "TIP"),
exp_type = c("chipseq", "tipseq"),
genome_build = "hg38",
motif_files = motifs,
motif_labels = NULL,
cell_counts = NULL,
distance_bootstrap = TRUE,
bootstrap_n = 2,
bootstrap_len = 40,
motif_discovery = TRUE,
motif_discovery_count = 2,
motif_db = NULL,
download_buttons = TRUE,
out_dir = tempdir(),
debug = FALSE,
quiet = TRUE,
verbose = FALSE

)
}

motif_enrichment Calculate motif enrichment in a set of sequences

Description

motif_enrichment() calculates motif enrichment relative to a set of background sequences using
Analysis of Motif Enrichment (AME) from memes-package.

Usage

motif_enrichment(
peak_input,
motif,
genome_build,
out_dir = tempdir(),
verbose = FALSE,
meme_path = NULL,
...

)

34 motif_enrichment

Arguments

peak_input Either a path to the narrowPeak file or a GRanges peak object generated by
read_peak_file().

motif An object of class universalmotif.

genome_build The genome build that the peak sequences should be derived from.

out_dir Location to save the 0-order background file along with the AME output files.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

... Arguments passed on to memes::runAme

method default: fisher (allowed values: fisher, ranksum, pearson, spearman,
3dmhg, 4dmhg)

sequences logical(1) add results from sequences.tsv to sequences list
column to returned data.frame. Valid only if method = "fisher". See AME
outputs webpage for more information (Default: FALSE).

silent whether to suppress stdout (default: TRUE), useful for debugging.

Value

A list containing a AME results data frame and a numeric referring to the proportion of peaks with
a motif.

See Also

runAme

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")

res <- motif_enrichment(
peak_input = CTCF_TIP_peaks,
motif = motif_MA1102.3,
genome_build =

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38,

)
print(res)

}

http://alternate.meme-suite.org/doc/ame-output-format.html
http://alternate.meme-suite.org/doc/ame-output-format.html

motif_MA1102.3 35

motif_MA1102.3 Example CTCFL JASPAR motif file

Description

The motif file contains the JASPAR motif for CTCFL (MA1102.3) for Homo Sapiens. This is one
of the two motif files used to demonstrate MotifPeeker’s known-motif analysis functionality.

Usage

data("motif_MA1102.3")

Format

An object of class universalmotif of length 1.

Source

JASPAR Matrix ID: MA1102.3

motif_MA1930.2 Example CTCF JASPAR motif file

Description

The motif file contains the JASPAR motif for CTCF (MA1930.2) for Homo Sapiens. This is one of
the two motif files used to demonstrate MotifPeeker’s known-motif analysis functionality.

Usage

data("motif_MA1930.2")

Format

An object of class universalmotif of length 1.

Source

JASPAR Matrix ID: MA1930.2

https://jaspar.elixir.no/matrix/MA1102.3/
https://jaspar.elixir.no/matrix/MA1930.2/

36 motif_similarity

motif_similarity Compare motifs from segregated sequences

Description

Compute motif similarity scores between motifs discovered from segregated sequences. Wrapper
around compare_motifs to compare motifs from different groups of sequences. To see the possible
similarity measures available, refer to details.

Usage

motif_similarity(
streme_out,
method = "PCC",
normalise.scores = TRUE,
BPPARAM = BiocParallel::bpparam(),
...

)

Arguments

streme_out Output from denovo_motifs.
method character(1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,

MAN, ALLR_LL, WEUCL, WPCC. See details.
normalise.scores

logical(1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = bp-
param())

... Arguments passed on to universalmotif::compare_motifs

motifs See convert_motifs() for acceptable motif formats.
compare.to numeric If missing, compares all motifs to all other motifs. Oth-

erwise compares all motifs to the specified motif(s).
db.scores data.frame or DataFrame. See details.
use.freq numeric(1). For comparing the multifreq slot.
use.type character(1) One of 'PPM' and 'ICM'. The latter allows for tak-

ing into account the background frequencies if relative_entropy = TRUE.
Note that 'ICM' is not allowed when method = c("ALLR", "ALLR_LL").

tryRC logical(1) Try the reverse complement of the motifs as well, report the
best score.

min.overlap numeric(1) Minimum overlap required when aligning the mo-
tifs. Setting this to a number higher then the width of the motifs will not
allow any overhangs. Can also be a number between 0 and 1, representing
the minimum fraction that the motifs must overlap.

motif_similarity 37

min.mean.ic numeric(1) Minimum mean information content between the
two motifs for an alignment to be scored. This helps prevent scoring align-
ments between low information content regions of two motifs. Note that
this can result in some comparisons failing if no alignment passes the mean
IC threshold. Use average_ic() to filter out low IC motifs to get around
this if you want to avoid getting NAs in your output.

min.position.ic numeric(1) Minimum information content required between
individual alignment positions for it to be counted in the final alignment
score. It is recommended to use this together with normalise.scores =
TRUE, as this will help punish scores resulting from only a fraction of an
alignment.

relative_entropy logical(1) Change the ICM calculation affecting min.position.ic
and min.mean.ic. See convert_type().

max.p numeric(1) Maximum P-value allowed in reporting matches. Only used
if compare.to is set.

max.e numeric(1) Maximum E-value allowed in reporting matches. Only
used if compare.to is set. The E-value is the P-value multiplied by the
number of input motifs times two.

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads.
nthreads = 0 uses all available threads.

score.strat character(1) How to handle column scores calculated from
motif alignments. "sum": add up all scores. "a.mean": take the arith-
metic mean. "g.mean": take the geometric mean. "median": take the me-
dian. "wa.mean", "wg.mean": weighted arithmetic/geometric mean. "fzt":
Fisher Z-transform. Weights are the total information content shared be-
tween aligned columns.

output.report character(1) Provide a filename for compare_motifs() to
write an html ouput report to. The top matches are shown alongside figures
of the match alignments. This requires the knitr and rmarkdown packages.
(Note: still in development.)

output.report.max.print numeric(1) Maximum number of top matches to
print.

Details

Available metrics:
The following metrics are available:

• Euclidean distance (EUCL) (Choi et al. 2004)
• Weighted Euclidean distance (WEUCL)
• Kullback-Leibler divergence (KL) (Kullback and Leibler 1951; Roepcke et al. 2005)
• Hellinger distance (HELL) (Hellinger 1909)
• Squared Euclidean distance (SEUCL)
• Manhattan distance (MAN)
• Pearson correlation coefficient (PCC)
• Weighted Pearson correlation coefficient (WPCC)

38 motif_similarity

• Sandelin-Wasserman similarity (SW), or sum of squared distances (Sandelin and Wasserman
2004)

• Average log-likelihood ratio (ALLR) (Wang and Stormo 2003)
• Lower limit ALLR (ALLR_LL) (Mahony et al. 2007)
• Bhattacharyya coefficient (BHAT) (Bhattacharyya 1943)

Comparisons are calculated between two motifs at a time. All possible alignments are scored, and
the best score is reported. In an alignment scores are calculated individually between columns.
How those scores are combined to generate the final alignment scores depends on score.strat.
See the "Motif comparisons and P-values" vignette for a description of the various metrics. Note
that PCC, WPCC, SW, ALLR, ALLR_LL and BHAT are similarities; higher values mean more similar
motifs. For the remaining metrics, values closer to zero represent more similar motifs.
Small pseudocounts are automatically added when one of the following methods is used: KL,
ALLR, ALLR_LL, IS. This is avoid zeros in the calculations.

Calculating P-values:
To note regarding p-values: P-values are pre-computed using the make_DBscores() function. If
not given, then uses a set of internal precomputed P-values from the JASPAR2018 CORE motifs.
These precalculated scores are dependent on the length of the motifs being compared. This takes
into account that comparing small motifs with larger motifs leads to higher scores, since the
probability of finding a higher scoring alignment is higher.
The default P-values have been precalculated for regular DNA motifs. They are of little use for
motifs with a different number of alphabet letters (or even the multifreq slot).

Value

A list of matrices containing the similarity scores between motifs from different groups of se-
quences. The order of comparison is as follows, with first element representing the rows and second
element representing the columns of the matrix:

• 1. Common motifs comparison: Common seqs from reference (1) <-> comparison (2)

• 2. Unique motifs comparison: Unique seqs from reference (1) <-> comparison (2)

• 3. Cross motifs comparison 1: Unique seqs from reference (1) <-> comparison (1)

• 4. Cross motifs comparison 2: Unique seqs from comparison (2) <-> reference (1)

The list is repeated for each set of comparison groups in input.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("CTCF_ChIP_peaks", package = "MotifPeeker")

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
segregated_peaks <- segregate_seqs(CTCF_TIP_peaks, CTCF_ChIP_peaks)
denovo_motifs <- denovo_motifs(unlist(segregated_peaks),

trim_seq_width = 50,

normalise_paths 39

genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 6,
maxw = 8,
minw = 8,
out_dir = tempdir())

similarity_matrices <- motif_similarity(denovo_motifs)
print(similarity_matrices)

}
}

normalise_paths Apply normalizePath to a list of paths

Description

Apply normalizePath to a list of paths

Usage

normalise_paths(path_list)

Arguments

path_list A list of paths.

Value

A list of normalised paths or the input as is if contents are not a character.

plot_enrichment_individual

Plot motif-enrichment for individual experiments

Description

Visualises the result from get_df_enrichment for a single motif by producing a plotly bar plot
with the motif enrichment comparisons for one comparison dataset pair.

40 plot_enrichment_individual

Usage

plot_enrichment_individual(
result,
enrichment_df,
comparison_i,
motif_i,
label_colours,
reference_index = 1,
html_tags = TRUE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.

alignments A list of alignment files.

exp_type A character vector of experiment types.

exp_labels A character vector of experiment labels.

read_count A numeric vector of read counts.

peak_count A numeric vector of peak counts.

enrichment_df A data frame containing the motif enrichment results, produced using get_df_enrichment.

comparison_i The index of the comparison dataset to plot.

motif_i The index of the motif to plot.

label_colours A vector with colours (valid names or hex codes) to use for "No" and "Yes" bar
segments.

reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

html_tags Logical. If TRUE, returns the plot as a tagList object.

Value

A plotly object with the peak motif enrichment data. If html_tags is TRUE, the function returns a
tagList object instead.

See Also

Other plot functions: plot_enrichment_overall(), plot_motif_comparison()

plot_enrichment_overall 41

plot_enrichment_overall

Plot motif-enrichment for all experiments

Description

Visualises the result from get_df_enrichment for a single motif by producing a plotly bar plot
with the motif enrichment comparisons for all the comparison dataset pair.

Usage

plot_enrichment_overall(
enrichment_df,
motif_i,
label_colours,
reference_label,
html_tags = TRUE

)

Arguments

enrichment_df A data frame containing the motif enrichment results, produced using get_df_enrichment.

motif_i The index of the motif to plot.

label_colours A vector with colours (valid names or hex codes) to use for "No" and "Yes" bar
segments.

reference_label

The label of the reference experiment.

html_tags Logical. If TRUE, returns the plot as a tagList object.

Value

A list of plotly objects with the peak motif enrichment data. If html_tags is TRUE, the function
returns a list of tagList objects instead. The two plots in the list are named as follows:

$count_plt y-axis represents the number of peaks.

$perc_plt y-axis represents the percentage of peaks.

See Also

Other plot functions: plot_enrichment_individual(), plot_motif_comparison()

42 plot_motif_comparison

plot_motif_comparison Produce heat maps of motif similarity matrices

Description

Produce heat maps of motif similarity matrices

Usage

plot_motif_comparison(
comparison_matrices,
exp_labels,
height = NULL,
width = NULL,
html_tags = TRUE

)

Arguments

comparison_matrices

Output from compare_motifs for one comparison pair (Four matrices).

exp_labels Labels for the reference and comparison experiments respectively.

width, height The width and height of the output htmlwidget, or the output file if exporting to
png/pdf/etc. Presumed to be in pixels, but if a plotly internal function decides
it’s in other units you may end up with a huge file! Default is 800x500 when
exporting to a file, and 100 as a htmlwidget.

html_tags Logical. If TRUE, returns the plot as a tagList object.

Value

A list of individual heat maps for the four matrices. If html_tags is TRUE, the output will be
wrapped in HTML tags.

See Also

Other plot functions: plot_enrichment_individual(), plot_enrichment_overall()

pretty_number 43

pretty_number Convert numbers to more readable strings

Description

Format raw numbers to more readable strings. For example, 1000 will be converted to "1K". Sup-
ported suffixes are "K", "M", and "B".

Usage

pretty_number(x, decimal_digits = 2)

Arguments

x A number.

decimal_digits Number of decimal digits to round to.

Value

A character string of the formatted number. NA is returned as "NA".

Examples

print(MotifPeeker:::pretty_number(134999))

print_denovo_sections Print denovo motif enrichment datatable and download buttons for
related files.

Description

Print denovo motif enrichment datatable and download buttons for related files.

Usage

print_denovo_sections(
motif_list,
similar_motifs,
segregated_peaks,
indices,
jaspar_link = FALSE,
download_buttons = NULL

)

44 print_DT

Arguments

motif_list A list of motifs discovered by find_motifs, for one comparison pair.

similar_motifs A list of similar motifs discovered using motif_similarity, for one compari-
son pair.

segregated_peaks

A list of peaks segregated by common and unique groups, for one comparison
pair.

indices A list of indices to print the datatable and download buttons for.

jaspar_link A logical indicating whether to include a link to the JASPAR database for the
motifs. Only set to TRUE if the motifs are in JASPAR format (example: "MA1930.1").

download_buttons

Embed download buttons generated using get_download_buttons. If set to
NULL, no download buttons will be added.

Value

Null

See Also

Other datatable functions: dt_enrichment_individual()

print_DT Print DT table

Description

Print DT table

Usage

print_DT(df, ..., html_tags = FALSE, extra = FALSE)

Arguments

df Dataframe/tibble to be printed.

... Arguments passed on to DT::datatable

data a data object (either a matrix or a data frame)
options a list of initialization options (see https://datatables.net/reference/

option/); the character options wrapped in htmlwidgets::JS() will be
treated as literal JavaScript code instead of normal character strings; you
can also set options globally via [options](DT.options = list(...)),
and global options will be merged into this options argument if set

class the CSS class(es) of the table; see https://datatables.net/manual/
styling/classes

https://datatables.net/reference/option/
https://datatables.net/reference/option/
https://datatables.net/manual/styling/classes
https://datatables.net/manual/styling/classes

print_DT 45

callback the body of a JavaScript callback function with the argument table
to be applied to the DataTables instance (i.e. table)

rownames TRUE (show row names) or FALSE (hide row names) or a character
vector of row names; by default, the row names are displayed in the first
column of the table if exist (not NULL)

colnames if missing, the column names of the data; otherwise it can be an
unnamed character vector of names you want to show in the table header
instead of the default data column names; alternatively, you can provide a
named numeric or character vector of the form 'newName1' = i1, 'newName2' = i2
or c('newName1' = 'oldName1', 'newName2' = 'oldName2', ...), where
newName is the new name you want to show in the table, and i or oldName
is the index of the current column name

container a sketch of the HTML table to be filled with data cells; by default,
it is generated from htmltools::tags$table() with a table header con-
sisting of the column names of the data

caption the table caption; a character vector or a tag object generated from
htmltools::tags$caption()

filter whether/where to use column filters; none: no filters; bottom/top: put
column filters at the bottom/top of the table; range sliders are used to filter
numeric/date/time columns, select lists are used for factor columns, and
text input boxes are used for character columns; if you want more control
over the styles of filters, you can provide a named list to this argument; see
Details for more

escape whether to escape HTML entities in the table: TRUE means to escape the
whole table, and FALSE means not to escape it; alternatively, you can spec-
ify numeric column indices or column names to indicate which columns
to escape, e.g. 1:5 (the first 5 columns), c(1, 3, 4), or c(-1, -3) (all
columns except the first and third), or c('Species', 'Sepal.Length');
since the row names take the first column to display, you should add the
numeric column indices by one when using rownames

style either 'auto', 'default', 'bootstrap', or 'bootstrap4'. If 'auto',
and a bslib theme is currently active, then bootstrap styling is used in a way
that "just works" for the active theme. Otherwise, DataTables ’default’
styling is used. If set explicitly to 'bootstrap' or 'bootstrap4', one
must take care to ensure Bootstrap’s HTML dependencies (as well as Bootswatch
themes, if desired) are included on the page. Note, when set explicitly, it’s
the user’s responsibility to ensure that only one unique style value is used
on the same page, if multiple DT tables exist, as different styling resources
may conflict with each other.

width,height Width/Height in pixels (optional, defaults to automatic sizing)

elementId An id for the widget (a random string by default).

fillContainer TRUE to configure the table to automatically fill it’s containing
element. If the table can’t fit fully into it’s container then vertical and/or
horizontal scrolling of the table cells will occur.

autoHideNavigation TRUE to automatically hide navigational UI (only display
the table body) when the number of total records is less than the page size.

https://datatables.net/manual/styling/classes
https://datatables.net/manual/styling/classes

46 print_DT

Note, it only works on the client-side processing mode and the pageLength
option should be provided explicitly.

lazyRender FALSE to render the table immediately on page load, otherwise
delay rendering until the table becomes visible.

selection the row/column selection mode (single or multiple selection or dis-
able selection) when a table widget is rendered in a Shiny app; alternatively,
you can use a list of the form list(mode = 'multiple', selected = c(1,
3, 8), target = 'row', selectable = c(-2, -3)) to pre-select rows and
control the selectable range; the element target in the list can be 'column'
to enable column selection, or 'row+column' to make it possible to select
both rows and columns (click on the footer to select columns), or 'cell'
to select cells. See details section for more info.

extensions a character vector of the names of the DataTables extensions (https:
//datatables.net/extensions/index)

plugins a character vector of the names of DataTables plug-ins (https://
rstudio.github.io/DT/plugins.html). Note that only those plugins
supported by the DT package can be used here. You can see the available
plugins by calling DT:::available_plugins()

editable FALSE to disable the table editor, or TRUE (or "cell") to enable
editing a single cell. Alternatively, you can set it to "row" to be able to
edit a row, or "column" to edit a column, or "all" to edit all cells on
the current page of the table. In all modes, start editing by doubleclick-
ing on a cell. This argument can also be a list of the form list(target
= TARGET, disable = list(columns = INDICES)), where TARGET can be
"cell", "row", "column", or "all", and INDICES is an integer vector of
column indices. Use the list form if you want to disable editing certain
columns. You can also restrict the editing to accept only numbers by set-
ting this argument to a list of the form list(target = TARGET, numeric =
INDICES) where INDICES can be the vector of the indices of the columns
for which you want to restrict the editing to numbers or "all" to restrict
the editing to numbers for all columns. If you don’t set numeric, then
the editing is restricted to numbers for all numeric columns; set numeric =
"none" to disable this behavior. It is also possible to edit the cells in text
areas, which are useful for large contents. For that, set the editable argu-
ment to a list of the form list(target = TARGET, area = INDICES) where
INDICES can be the vector of the indices of the columns for which you want
the text areas, or "all" if you want the text areas for all columns. Of course,
you can request the numeric editing for some columns and the text areas for
some other columns by setting editable to a list of the form list(target
= TARGET, numeric = INDICES1, area = INDICES2). Finally, you can edit
date cells with a calendar with list(target = TARGET, date = INDICES);
the target columns must have the Date type. If you don’t set date in the
editable list, the editing with the calendar is automatically set for all Date
columns.

html_tags Logical. If TRUE, returns the table as a tagList object.

extra Logical. If TRUE, adds extra options like search to the datatable.

https://datatables.net/extensions/index
https://datatables.net/extensions/index
https://rstudio.github.io/DT/plugins.html
https://rstudio.github.io/DT/plugins.html

print_labels 47

Value

A DT object suitable to be used with print().

print_labels Print the labels of the reference and comparison experiments

Description

Print the labels of the reference and comparison experiments

Usage

print_labels(
exp_labels,
reference_index,
comparison_index,
header_type,
read_counts = NULL

)

Arguments

exp_labels A character vector of experiment labels.

reference_index

The index of the reference experiment.

comparison_index

The index of the comparison experiment.

header_type Label for the section to print the header for. Options are: "known_motif" and
"denovo_motif".

read_counts A numeric vector of read counts for each experiment. (optional)

Value

String with the labels of the reference and comparison experiments.

48 read_motif_file

random_string Generate a random string

Description

Generate a random string

Usage

random_string(length)

Arguments

length The length of the random string to generate.

Value

A random string of the specified length.

read_motif_file Read a motif file

Description

read_motif_file() reads a motif file and converts to a PWM. The function supports multiple
motif formats, including "homer", "jaspar", "meme", "transfac" and "uniprobe".

Usage

read_motif_file(motif_file, file_format = "auto", verbose = FALSE)

Arguments

motif_file Path to a motif file or a universalmotif-class object.

file_format Character string specifying the format of the motif file. The options are "homer",
"jaspar", "meme", "transfac" and "uniprobe"

verbose A logical indicating whether to print messages.

Value

A universalmotif motif object.

read_peak_file 49

Examples

motif_file <- system.file("extdata",
"motif_MA1930.2.jaspar",
package = "MotifPeeker")

res <- read_motif_file(motif_file = motif_file,
file_format = "jaspar")

print(res)

read_peak_file Read MACS2/3 narrowPeak or SEACR BED peak file

Description

This function reads a MACS2/3 narrowPeak or SEACR BED peak file and returns a GRanges object
with the peak coordinates and summit.

Usage

read_peak_file(peak_file, file_format = "auto", verbose = FALSE)

Arguments

peak_file A character string with the path to the peak file, or a GRanges object created
using read_peak_file().

file_format A character string specifying the format of the peak file.

• "narrowpeak": MACS2/3 narrowPeak format.
• "bed": SEACR BED format.

verbose A logical indicating whether to print messages.

Details

The summit column is the absolute genomic position of the peak, which is relative to the start
position of the sequence range. For SEACR BED files, the summit column is calculated as the
midpoint of the max signal region.

Value

A GRanges-class object with the peak coordinates and summit.

See Also

GRanges-class for more information on GRanges objects.

50 read_peak_file_macs

Examples

macs3_peak_file <- system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",
package = "MotifPeeker")
macs3_peak_read <- read_peak_file(macs3_peak_file)
macs3_peak_read

read_peak_file_macs Read MACS2/3 narrowPeak peak file

Description

This function reads a MACS2/3 narrowPeak peak file and returns a GRanges object with the peak
coordinates and summit.

Usage

read_peak_file_macs(peak_file)

Arguments

peak_file A character string with the path to the peak file, or a GRanges object created
using read_peak_file().

Details

The summit column is the absolute genomic position of the peak, which is relative to the start
position of the sequence range. For SEACR BED files, the summit column is calculated as the
midpoint of the max signal region.

Value

A GRanges-class object with the peak coordinates and summit.

See Also

GRanges-class for more information on GRanges objects.

Examples

macs3_peak_file <- system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",
package = "MotifPeeker")
macs3_peak_read <- read_peak_file(macs3_peak_file)
macs3_peak_read

read_peak_file_seacr 51

read_peak_file_seacr Read SEACR BED peak file

Description

This function reads a SEACR BED peak file and returns a GRanges object with the peak coordinates
and summit.

Usage

read_peak_file_seacr(peak_file)

Arguments

peak_file A character string with the path to the peak file, or a GRanges object created
using read_peak_file().

Details

The summit column is the absolute genomic position of the peak, which is relative to the start
position of the sequence range. For SEACR BED files, the summit column is calculated as the
midpoint of the max signal region.

Value

A GRanges-class object with the peak coordinates and summit.

See Also

GRanges-class for more information on GRanges objects.

report_command Report command

Description

Reconstruct the MotifPeeker command from the parameters used to generate the HTML report.

Usage

report_command(params)

Arguments

params A list of parameters used to generate the HTML report.

52 save_peak_file

Value

A character string containing the reconstructed MotifPeeker command.

Examples

MotifPeeker:::report_command(params = list(
alignment_files = c("file1.bam", "file2.bam"),
exp_labels = c("exp1", "exp2"),
genome_build = "hg19"))

report_header Report header

Description

Credit: This function was adapted from the EpiCompare package.

Usage

report_header()

Details

Generate a header for MotifPeeker reports generated using the MotifPeeker.Rmd template.

Value

Header string to be rendering within Rmarkdown file.

Examples

MotifPeeker:::report_header()

save_peak_file Minimally save a peak object to a file (BED4)

Description

This function saves a peak object to a file in BED4 format. The included columns are: chr, start,
end, and name. Since no strand data is being included, it is recommended to use this function only
for peak objects that do not have strand information.

segregate_seqs 53

Usage

save_peak_file(
peak_obj,
save = TRUE,
filename = random_string(10),
out_dir = tempdir()

)

Arguments

peak_obj A GRanges object with the peak coordinates. Must include columns: seqnames,
start, end, and name.

save A logical indicating whether to save the peak object to a file.

filename A character string of the file name. If the file extension is not .bed, a warning
is issued and the extension is appended. Alternatively, if the file name does not
have an extension, .bed is appended. (default = random string)

out_dir A character string of the output directory. (default = tempdir())

Value

If save = FALSE, a data frame with the peak coordinates. If save = TRUE, the path to the saved file.

Examples

data("CTCF_ChIP_peaks", package = "MotifPeeker")

out <- save_peak_file(CTCF_ChIP_peaks, save = TRUE, "test_peak_file.bed")
print(out)

segregate_seqs Segregate input sequences into common and unique groups

Description

This function takes two sets of sequences and segregates them into common and unique sequences.
The common sequences are sequences that are present in both sets of sequences. The unique se-
quences are sequences that are present in only one of the sets of sequences.

Usage

segregate_seqs(seqs1, seqs2)

Arguments

seqs1 A set of sequences (GRanges object)

seqs2 A set of sequences (GRanges object)

54 summit_to_motif

Details

Sequences are considered common if their base pairs align in any position, even if they vary in
length. Consequently, while the number of common sequences remains consistent between both
sets, but the length and composition of these sequences may differ. As a result, the function returns
distinct sets of common sequences for each input set of sequences.

Value

A list containing the common sequences and unique sequences for each set of sequences. The list
contains the following GRanges objects:

• common_seqs1: Common sequences in seqs1

• common_seqs2: Common sequences in seqs2

• unique_seqs1: Unique sequences in seqs1

• unique_seqs2: Unique sequences in seqs2

See Also

findOverlaps

Examples

data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("CTCF_TIP_peaks", package = "MotifPeeker")

seqs1 <- CTCF_ChIP_peaks
seqs2 <- CTCF_TIP_peaks
res <- segregate_seqs(seqs1, seqs2)
print(res)

summit_to_motif Calculate the distance between peak summits and motifs

Description

summit_to_motif() calculates the distance between each motif and its nearest peak summit. runFimo
from the memes package is used to recover the locations of each motif.

Usage

summit_to_motif(
peak_input,
motif,
fp_rate = 0.05,
genome_build,
out_dir = tempdir(),

summit_to_motif 55

meme_path = NULL,
verbose = FALSE,
...

)

Arguments

peak_input Either a path to the narrowPeak file or a GRanges peak object generated by
read_peak_file().

motif An object of class universalmotif.

fp_rate The desired false-positive rate. A p-value threshold will be selected based on
this value. The default false-positive rate is 0.05.

genome_build The genome build that the peak sequences should be derived from.

out_dir Location to save the 0-order background file. By default, the background file
will be written to a temporary directory.

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

... Arguments passed on to memes::runFimo

parse_genomic_coord logical(1) whether to parse genomic position from
fasta headers. Fasta headers must be UCSC format positions (ie "chr:start-
end"), but base 1 indexed (GRanges format). If names of fasta entries are
genomic coordinates and parse_genomic_coord == TRUE, results will con-
tain genomic coordinates of motif matches, otherwise FIMO will return
relative coordinates (i.e. positions from 1 to length of the fasta entry).

skip_matched_sequence logical(1) whether or not to include the DNA se-
quence of the match. Default: FALSE. Note: jobs will complete faster if set
to TRUE. add_sequence() can be used to lookup the sequence after data
import if parse_genomic_coord is TRUE, so setting this flag is not strictly
needed.

max_strand if match is found on both strands, only report strand with best
match (default: TRUE).

text logical(1) (default: TRUE). No output files will be created on the filesys-
tem. The results are unsorted and no q-values are computed. This setting
allows fast searches on very large inputs. When set to FALSE FIMO will
discard 50% of the lower significance matches if >100,000 matches are de-
tected. text = FALSE will also incur a performance penalty because it must
first read a file to disk, then read it into memory. For these reasons, I suggest
keeping text = TRUE.

silent logical(1) whether to suppress stdout/stderr printing to console (de-
fault: TRUE). If the command is failing or giving unexpected output, setting
silent = FALSE can aid troubleshooting.

56 to_plotly

Details

To calculate the p-value threshold for a desired false-positive rate, we use the approximate formula:

p ≈ fp_rate
2× average peak width

(Dervied from FIMO documentation)

Value

A list containing an expanded GRanges peak object with metadata columns relating to motif posi-
tions along with a vector of summit-to-motif distances for each valid peak.

See Also

runAme

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")

res <- summit_to_motif(
peak_input = CTCF_TIP_peaks,
motif = motif_MA1102.3,
fp_rate = 5e-02,
genome_build = BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

)
print(res)
}

to_plotly Convert ggplot2 objects to plotly

Description

Convert ggplot2 objects to plotly

Usage

to_plotly(p, html_tags = TRUE, tooltip = "text", ...)

https://meme-suite.org/meme/doc/fimo-tutorial.html

trim_seqs 57

Arguments

p ggplot2 object

html_tags Logical. If TRUE, returns the plot as a tagList object.

tooltip Character. The tooltip to display. Default is "text".

... Arguments passed on to plotly::ggplotly

width Width of the plot in pixels (optional, defaults to automatic sizing).
height Height of the plot in pixels (optional, defaults to automatic sizing).
dynamicTicks should plotly.js dynamically generate axis tick labels? Dynamic

ticks are useful for updating ticks in response to zoom/pan interactions;
however, they can not always reproduce labels as they would appear in the
static ggplot2 image.

layerData data from which layer should be returned?
originalData should the "original" or "scaled" data be returned?
source a character string of length 1. Match the value of this string with the

source argument in event_data() to retrieve the event data corresponding
to a specific plot (shiny apps can have multiple plots).

Value

A plotly object.

See Also

ggplotly

Examples

x <- data.frame(a = c(1,2,3), b = c(2,3,4))
p <- ggplot2::ggplot(x, ggplot2::aes(x = a, y = b)) + ggplot2::geom_point()
MotifPeeker:::to_plotly(p, html_tags = FALSE)

trim_seqs Trim sequences to a specified width around the summit

Description

Trim sequences to a specified width around the summit

Usage

trim_seqs(peaks, peak_width, genome_build, respect_bounds = TRUE)

58 use_cache

Arguments

peaks A GRanges object created using read_peak_file().

peak_width Total expected width of the peak.

genome_build The genome build that the peak sequences should be derived from.

respect_bounds Logical indicating whether the peak width should be respected when trimming
sequences. (default = TRUE) If TRUE, the trimmed sequences will not extend
beyond the peak boundaries.

Value

A GRanges object with the trimmed sequences. The sequences are guaranteed to not exceed the
peak width + 1 (peak width + the summit base).

Examples

data("CTCF_TIP_peaks", package = "MotifPeeker")
peaks <- CTCF_TIP_peaks
genome_build <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

trimmed_seqs <- MotifPeeker:::trim_seqs(peaks, peak_width = 100,
genome_build = genome_build)

summary(GenomicRanges::width(trimmed_seqs))

use_cache Check, add and access files in cache

Description

Query local BiocFileCache to get cached version of a file and add them if they do not exist.

Usage

use_cache(url, verbose = FALSE)

Arguments

url A character string specifying the URL of the file to check for.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the cached file.

%>% 59

%>% Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

Details

Generated by use_pipe. Modified to import from dplyr instead of magrittr.

Value

The result of calling ‘rhs(lhs)‘.

Examples

seq_len(10) %>% sum

Index

∗ datasets
CTCF_ChIP_peaks, 11
CTCF_TIP_peaks, 12
motif_MA1102.3, 35
motif_MA1930.2, 35

∗ datatable functions
dt_enrichment_individual, 15
print_denovo_sections, 43

∗ generate data.frames
get_df_distances, 19
get_df_distances_bootstrapped, 21
get_df_enrichment, 23

∗ internal
%>%, 59
bpapply, 5
check_dep, 7
check_duplicates, 7
check_input, 9
confirm_meme_install, 11
download_button, 14
dt_enrichment_individual, 15
filter_repeats, 16
format_exptype, 18
get_download_buttons, 26
link_JASPAR, 27
markov_background_model, 28
messager, 28
normalise_paths, 39
plot_enrichment_individual, 39
plot_enrichment_overall, 41
plot_motif_comparison, 42
pretty_number, 43
print_denovo_sections, 43
print_DT, 44
print_labels, 47
random_string, 48
read_peak_file_macs, 50
read_peak_file_seacr, 51
report_command, 51

report_header, 52
to_plotly, 56
trim_seqs, 57
use_cache, 58

∗ plot functions
plot_enrichment_individual, 39
plot_enrichment_overall, 41
plot_motif_comparison, 42

%>%, 59, 59

average_ic(), 37

BamFile, 30
BiocParallel, 5
BiocParallel::bplapply, 5
BiocParallel::bpmapply, 5
bootstrap_distances, 3
bpapply, 5
bpoptions, 5
BSgenome-class, 8, 9

calc_frip, 6
check_dep, 7
check_duplicates, 7
check_ENCODE, 8
check_genome_build, 8, 9, 20, 22, 24, 30
check_input, 9
check_JASPAR, 10
check_meme_install, 11
compare_motifs, 36, 42
compare_motifs(), 37
confirm_meme_install, 11
convert_motifs(), 36
convert_type(), 37
CTCF_ChIP_peaks, 11
CTCF_TIP_peaks, 12

datatable, 15, 43
denovo_motifs, 12, 17, 36
download_button, 14

60

INDEX 61

download_file, 15
downloadthis::download_file, 15
DT::datatable, 44
dt_enrichment_individual, 15, 44

event_data(), 57

filter_repeats, 16
find_motifs, 17, 44
findOverlaps, 54
format_exptype, 18

get_df_distances, 19, 22, 25
get_df_distances_bootstrapped, 20, 21,

25
get_df_enrichment, 15, 20, 22, 23, 39–41
get_download_buttons, 26, 44
get_JASPARCORE, 26
ggplotly, 57
GRanges, 13
GRanges-class, 49–51

htmlwidgets::JS(), 44

link_JASPAR, 27

make_DBscores(), 38
markov_background_model, 28
memes-package, 33
memes::runAme, 34
memes::runFimo, 55
message, 28
messager, 28
motif_enrichment, 33
motif_MA1102.3, 35
motif_MA1930.2, 35
motif_similarity, 36, 44
MotifPeeker, 29, 35, 51, 52

normalise_paths, 39
normalizePath, 39

plot_enrichment_individual, 39, 41, 42
plot_enrichment_overall, 40, 41, 42
plot_motif_comparison, 40, 41, 42
plotly::ggplotly, 57
pretty_number, 43
print_denovo_sections, 16, 43
print_DT, 44
print_labels, 47

random_string, 48
read_motif_file, 48
read_peak_file, 15, 19, 21, 24, 29, 40, 49
read_peak_file(), 49–51, 58
read_peak_file_macs, 50
read_peak_file_seacr, 51
report_command, 51
report_header, 52
runAme, 34, 56
runStreme, 16

save_peak_file, 52
segregate_seqs, 24, 26, 53
simplify2array, 5
summit_to_motif, 54

tag, 15
to_plotly, 56
trim_seqs, 57

universalmotif, 13
universalmotif::compare_motifs, 36
use_cache, 58
use_pipe, 59

	bootstrap_distances
	bpapply
	calc_frip
	check_dep
	check_duplicates
	check_ENCODE
	check_genome_build
	check_input
	check_JASPAR
	confirm_meme_install
	CTCF_ChIP_peaks
	CTCF_TIP_peaks
	denovo_motifs
	download_button
	dt_enrichment_individual
	filter_repeats
	find_motifs
	format_exptype
	get_df_distances
	get_df_distances_bootstrapped
	get_df_enrichment
	get_download_buttons
	get_JASPARCORE
	link_JASPAR
	markov_background_model
	messager
	MotifPeeker
	motif_enrichment
	motif_MA1102.3
	motif_MA1930.2
	motif_similarity
	normalise_paths
	plot_enrichment_individual
	plot_enrichment_overall
	plot_motif_comparison
	pretty_number
	print_denovo_sections
	print_DT
	print_labels
	random_string
	read_motif_file
	read_peak_file
	read_peak_file_macs
	read_peak_file_seacr
	report_command
	report_header
	save_peak_file
	segregate_seqs
	summit_to_motif
	to_plotly
	trim_seqs
	use_cache
	>
	Index

