

Package ‘MethylMix’

February 2, 2026

Title MethylMix: Identifying methylation driven cancer genes

Version 2.41.0

Description MethylMix is an algorithm implemented to identify hyper and hypomethylated genes for a disease. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix uses a novel statistic, the Differential Methylation value or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data is used to identify, besides differential, functional methylation states by focusing on methylation changes that effect gene expression. References:

Gevaert O. MethylMix: an R package for identifying DNA methylation-driven genes. *Bioinformatics* (Oxford, England). 2015;31(11):1839-41. doi:10.1093/bioinformatics/btv020.

Gevaert O, Tibshirani R, Plevritis SK. Pancancer analysis of DNA methylation-driven genes using MethylMix. *Genome Biology*. 2015;16(1):17. doi:10.1186/s13059-014-0579-8.

Depends R (>= 3.2.0)

License GPL-2

Encoding UTF-8

LazyData true

Author Olivier Gevaert

Maintainer Olivier Gevaert <olivier.gevaert@gmail.com>

Type Package

Date 2018-07-13

Imports foreach, RPMM, RColorBrewer, ggplot2, RCurl, impute, data.table, limma, R.matlab, digest

Suggests BiocStyle, doParallel, testthat, knitr, rmarkdown

biocViews

DNAMethylation, StatisticalMethod, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, Differential

RoxygenNote 6.0.1

VignetteBuilder knitr
git_url <https://git.bioconductor.org/packages/MethylMix>
git_branch devel
git_last_commit 4e0a470
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Contents

BatchData	3
betaEst_2	3
blc_2	4
ClusterProbes	4
ComBat_NoFiles	5
combineForEachOutput	6
Download_DNAmethylation	7
Download_GeneExpression	8
GEcancer	9
GetData	10
get_firehoseData	11
METcancer	12
MethylMix	13
MethylMix_MixtureModel	14
MethylMix_ModelGeneExpression	15
MethylMix_ModelSingleGene	16
MethylMix_PlotModel	17
MethylMix_Predict	19
MethylMix_RemoveFlipOver	20
METnormal	20
predictOneGene	21
Preprocess_CancerSite_Methylation27k	22
Preprocess_CancerSite_Methylation450k	22
Preprocess_DNAmethylation	23
Preprocess_GeneExpression	24
Preprocess_MAdata_Cancer	25
Preprocess_MAdata_Normal	26
ProbeAnnotation	27
SNPprobes	27
TCGA_BatchCorrection_MolecularData	27
TCGA_GENERIC_BatchCorrection	28
TCGA_GENERIC_CheckBatchEffect	28
TCGA_GENERIC_CleanUpSampleNames	29
TCGA_GENERIC_GetSampleGroups	29
TCGA_GENERIC_LoadIlluminaMethylationData	30
TCGA_GENERIC_MergeData	30

<i>BatchData</i>	3
TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_with_hclust	31
TCGA_Load_MolecularData	31
TCGA_Process_EstimateMissingValues	32
Index	33

BatchData	<i>BatchData data set</i>
------------------	---------------------------

Description

Data set with batch number for TCGA samples.

betaEst_2	<i>The betaEst_2 function</i>
------------------	-------------------------------

Description

Internal. Estimates a beta distribution via Maximum Likelihood. Adapted from RPMM package.

Usage

```
betaEst_2(Y, w, weights)
```

Arguments

Y	data vector.
w	posterior weights.
weights	Case weights.

Value

(a,b) parameters.

blc_2*The blc_2 function*

Description

Internal. Fits a beta mixture model for any number of classes. Adapted from RPMM package.

Usage

```
blc_2(Y, w, maxiter = 25, tol = 1e-06, weights = NULL, verbose = TRUE)
```

Arguments

Y	Data matrix (n x j) on which to perform clustering.
w	Initial weight matrix (n x k) representing classification.
maxiter	Maximum number of EM iterations.
tol	Convergence tolerance.
weights	Case weights.
verbose	Verbose output.

Value

A list of parameters representing mixture model fit, including posterior weights and log-likelihood.

ClusterProbes*The ClusterProbes function*

Description

This function uses the annotation for Illumina methylation arrays to map each probe to a gene. Then, for each gene, it clusters all its CpG sites using hierarchical clustering and Pearson correlation as distance and complete linkage. If data for normal samples is provided, only overlapping probes between cancer and normal samples are used. Probes with SNPs are removed. This function is prepared to run in parallel if the user registers a parallel structure, otherwise it runs sequentially. This function also cleans up the sample names, converting them to the 12 digit format.

Usage

```
ClusterProbes(MET_Cancer, MET_Normal, CorThreshold = 0.4)
```

Arguments

MET_Cancer	data matrix for cancer samples.
MET_Normal	data matrix for normal samples.
CorThreshold	correlation threshold for cutting the clusters.

Value

List with the clustered data sets and the mapping between probes and genes.

Examples

```
## Not run:

# Optional register cluster to run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)

# Methylation data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")

# Downloading methylation data
METdirectories <- Download_DNAmethylation(cancerSite, targetDirectory, TRUE)

# Processing methylation data
METProcessedData <- Preprocess_DNAmethylation(cancerSite, METdirectories)

# Saving methylation processed data
saveRDS(METProcessedData, file = paste0(targetDirectory, "MET_", cancerSite, "_Processed.rds"))

# Clustering methylation data
res <- ClusterProbes(METProcessedData[[1]], METProcessedData[[2]])

# Saving methylation clustered data
toSave <- list(METcancer = res[[1]], METnormal = res[[2]], ProbeMapping = res$ProbeMapping)
saveRDS(toSave, file = paste0(targetDirectory, "MET_", cancerSite, "_Clustered.rds"))

stopCluster(cl)

## End(Not run)
```

Description

Internal. Performs batch correction.

Usage

```
ComBat_NoFiles(dat, saminfo, type = "txt", write = F, covariates = "all",
  par.prior = F, filter = F, skip = 0, prior.plots = T)
```

Arguments

dat	dat
saminfo	saminfo
type	currently supports two data file types 'txt' for a tab-delimited text file and 'csv' for an Excel .csv file (sometimes R handles the .csv file better, so use this if you have problems with a .txt file!).
write	if 'T' ComBat writes adjusted data to a file, and if 'F' and ComBat outputs the adjusted data matrix if 'F' (so assign it to an object! i.e. NewData <- ComBat('my expression.xls','Sample info file.txt', write=F)).
covariates	'covariates=all' will use all of the columns in your sample info file in the modeling (except array/sample name), if you only want use a some of the columns in your sample info file, specify these columns here as a vector (you must include the Batch column in this list).
par.prior	if 'T' uses the parametric adjustments, if 'F' uses the nonparametric adjustments—if you are unsure what to use, try the parametric adjustments (they run faster) and check the plots to see if these priors are reasonable.
filter	'filter=value' filters the genes with absent calls in > 1-value of the samples. The default here (as well as in dchip) is .8. Filter if you can as the EB adjustments work better after filtering. Filter must be numeric if your expression index file contains presence/absence calls (but you can set it >1 if you don't want to filter any genes) and must be 'F' if your data doesn't have presence/absence calls;
skip	is the number of columns that contain probe names and gene information, so 'skip=5' implies the first expression values are in column 6
prior.plots	if true will give prior plots with black as a kernal estimate of the empirical batch effect density and red as the parametric estimate.

Value

Results.

combineForEachOutput *The combineForEachOutput function*

Description

Internal. Function to combine results from the foreach loop.

Usage

```
combineForEachOutput(out1, out2)
```

Arguments

out1	result from one foreach loop.
out2	result from another foreach loop.

Value

List with the combined results.

Download_DNAmethylation

The Download_DNAmethylation function

Description

Downloads DNA methylation data from TCGA.

Usage

```
Download_DNAmethylation(CancerSite, TargetDirectory, downloadData = TRUE)
```

Arguments

CancerSite	character of length 1 with TCGA cancer code.
TargetDirectory	character with directory where a folder for downloaded files will be created.
downloadData	logical indicating if data should be downloaded (default: TRUE). If false, the url of the desired data is returned.

Value

list with paths to downloaded files for both 27k and 450k methylation data.

Examples

```
## Not run:

# Optional register cluster to run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)

# Methylation data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")

# Downloading methylation data
METdirectories <- Download_DNAmethylation(cancerSite, targetDirectory, TRUE)

# Processing methylation data
METProcessedData <- Preprocess_DNAmethylation(cancerSite, METdirectories)

# Saving methylation processed data
saveRDS(METProcessedData, file = paste0(targetDirectory, "MET_", cancerSite, "_Processed.rds"))
```

```

# Clustering methylation data
res <- ClusterProbes(METProcessedData[[1]], METProcessedData[[2]])

# Saving methylation clustered data
toSave <- list(METcancer = res[[1]], METnormal = res[[2]], ProbeMapping = res$ProbeMapping)
saveRDS(toSave, file = paste0(targetDirectory, "MET_", cancerSite, "_Clustered.rds"))

stopCluster(cl)

## End(Not run)

```

Download_GeneExpression

The Download_GeneExpression function

Description

Downloads gene expression data from TCGA.

Usage

```
Download_GeneExpression(CancerSite, TargetDirectory, downloadData = TRUE)
```

Arguments

CancerSite	character of length 1 with TCGA cancer code.
TargetDirectory	character with directory where a folder for downloaded files will be created.
downloadData	logical indicating if data should be downloaded (default: TRUE). If false, the url of the desired data is returned.

Details

This function downloads RNAseq data (file tag "mRNAseq_Preprocess.Level_3"), with the exception for OV and GBM, for which micro array data is downloaded since there is not enough RNAseq data

Value

list with paths to downloaded files for both 27k and 450k methylation data.

Examples

```
## Not run:

# Optional register cluster to run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)

# Gene expression data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")

# Downloading gene expression data
GEdirectories <- Download_GeneExpression(cancerSite, targetDirectory, TRUE)

# Processing gene expression data
GEProcessedData <- Preprocess_GeneExpression(cancerSite, GEdirectories)

# Saving gene expression processed data
saveRDS(GEProcessedData, file = paste0(targetDirectory, "GE_", cancerSite, "_Processed.rds"))

stopCluster(cl)

## End(Not run)
```

GEcancer

Cancer Gene expression data of glioblastoma patients from the TCGA project

Description

Cancer Gene expression data of glioblastoma patients from the TCGA project. A set of 14 genes that have been shown in the literature to be involved in differential methylation in glioblastoma were selected as an example to try out MethylMix.

Usage

```
data(GEcancer)
```

Format

A numeric matrix with 14 rows (genes) and 251 columns (samples).

References

Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature*. 2008 Oct 23; 455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4. Erratum in: *Nature*. 2013 Feb 28;494(7438):506. PubMed PMID: 18772890; PubMed Central PMCID: PMC2671642.

See Also

TCGA: The Cancer Genome Atlas: <http://cancergenome.nih.gov/>

GetData

The GetData function

Description

This function wraps the functions for downloading and pre-processing DNA methylation and gene expression data, as well as for clustering CpG probes.

Usage

```
GetData(cancerSite, targetDirectory)
```

Arguments

cancerSite	character of length 1 with TCGA cancer code.
targetDirectory	character with directory where a folder for downloaded files will be created.

Details

Pre-process of DNA methylation data includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction. If there is both 27k and 450k data, and both data sets have more than 50 samples, we combine the data sets, by reducing the 450k data to the probes present in the 27k data, and batch correction is performed again to the combined data set. If there are samples with both 27k and 450k data, the 450k data is used and the 27k data is discarded, before the step mentioned above. If the 27k or the 450k data does not have more than 50 samples, we use the one with the greatest number of samples, we do not combine the data sets.

For gene expression, this function downloads RNAseq data (file tag "mRNaseq_Preprocess.Level_3"), with the exception for OV and GBM, for which micro array data is downloaded since there is not enough RNAseq data. Pre-process of gene expression data includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction.

For the clustering of the CpG probes, this function uses the annotation for Illumina methylation arrays to map each probe to a gene. Then, for each gene, it clusters all its CpG sites using hierarchical clustering and Pearson correlation as distance and complete linkage. If data for normal samples is provided, only overlapping probes between cancer and normal samples are used. Probes with SNPs are removed.

This function is prepared to run in parallel if the user registers a parallel structure, otherwise it runs sequentially.

This function also cleans up the sample names, converting them to the 12 digit format.

Value

The following files will be created in target directory:

- gdac: a folder with the raw data downloaded from TCGA.
- MET_CancerSite_Processed.rds: processed methylation data at the CpG sites level (not clustered).
- GE_CancerSite_Processed.rds: processed gene expression data.
- data_CancerSite.rds: list with both gene expression and methylation data. Methylation data is clustered and presented at the gene level. A matrix with the mapping from CpG sites to genes is included.

Examples

```
## Not run:
# Get data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")
GetData(cancerSite, targetDirectory)

# Optional register cluster to run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)

cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")
GetData(cancerSite, targetDirectory)

stopCluster(cl)

## End(Not run)
```

get_firehoseData *The get_firehoseData function*

Description

Gets data from TCGA's firehose.

Usage

```
get_firehoseData(downloadData = TRUE, saveDir = "./",
  TCGA_acronym_uppercase = "LUAD", dataType = "stddata",
  dataFileTag = "mRNAseq_Preprocess.Level_3", FFPE = FALSE,
  fileType = "tar.gz", gdacURL = "http://gdac.broadinstitute.org/runs/",
  untarUngzip = TRUE, printDisease_abbr = FALSE)
```

Arguments

downloadData	logical indicating if data should be downloaded (default: TRUE). If false, the url of the desired data is returned.
saveDir	path to directory to save downloaded files.
TCGA_acronym_uppercase	TCGA's cancer site code.
dataType	type of data in TCGA (default: "stddata").
dataFileTag	name of the file to be downloaded (the default is to download RNAseq data, but this can be changed to download other data).
FFPE	logical indicating if FFPE data should be downloaded (default: FALSE).
fileType	type of downloaded file (default: "fileType", other type not admitted at the moment).
gdacURL	gdac url.
untarUngzip	logical indicating if the gzip file downloaded should be untarred (default: TRUE).
printDisease_abbr	if TRUE data is not downloaded but all the possible cancer sites codes are shown (default: FALSE).

Value

DownloadedFile path to directory with downloaded files.

METcancer

DNA methylation data from cancer tissue from glioblastoma patients from the TCGA project

Description

Cancer Gene expression data of glioblastoma patients from the TCGA project. A set of 14 genes that have been shown in the literature to be involved in differential methylation in glioblastoma were selected as an example to try out MethylMix.

Usage

```
data(METcancer)
```

Format

A numeric matrix with 14 rows (genes) and 251 columns (samples).

References

Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. *Nature*. 2008 Oct 23; 455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4. Erratum in: *Nature*. 2013 Feb 28;494(7438):506. PubMed PMID: 18772890; PubMed Central PMCID: PMC2671642.

See Also

TCGA: The Cancer Genome Atlas: <http://cancergenome.nih.gov/>

MethylMix

MethylMix: Mixture model for DNA methylation data in cancer.

Description

MethylMix identifies DNA methylation driven genes by modeling DNA methylation data in cancer vs. normal and looking for homogeneous subpopulations. In addition matched gene expression data (e.g. from microarray technology or RNA sequencing) is used to identify functional DNA methylation events by requiring a negative correlation between methylation and gene expression of a particular gene. See references below.

Usage

```
MethylMix(METcancer, GEcancer, METnormal = NULL, listOfGenes = NULL,  
filter = TRUE, NoNormalMode = FALSE, OutputRoot = "")
```

Arguments

METcancer	Matrix with the methylation data of cancer tissue with genes in rows and samples in columns.
GEcancer	Gene expression data for cancer tissue with genes in rows and samples in columns.
METnormal	Matrix with the normal methylation data of the same genes as in METcancer. Again genes in rows and samples in columns. The samples do not have to match with the cancer data. If this argument is NULL, MethylMix will run without comparing to normal samples.
listOfGenes	Vector with genes names to be evaluated, names must coincide with the names of the rows of METcancer.
filter	Logical indicating if the linear regression to select genes with significative linear negative relation between methylation and gene expression should be performed (default: TRUE).
NoNormalMode	Logical indicating if the methylation states found in the cancer samples should be compared to the normal samples (default: FALSE).
OutputRoot	Path to store the MethylMix results object.

Value

MethylMixResults is a list with the following components:

MethylationDrivers

Genes identified as transcriptionally predictive and differentially methylated by MethylMix.

NrComponents The number of methylation states found for each driver gene.

MixtureStates	A list with the DM-values for each driver gene. Differential Methylation values (DM-values) are defined as the difference between the methylation mean in one mixture component of cancer samples and the methylation mean in the normal samples, for a given gene.
MethylationStates	Matrix with DM-values for all driver genes (rows) and all samples (columns).
Classifications	Matrix with integers indicating to which mixture component each cancer sample was assigned to, for each gene.
Models	Beta mixture model parameters for each driver gene.

References

Gevaert O. **MethylMix: an R package for identifying DNA methylation-driven genes**. Bioinformatics (Oxford, England). 2015;31(11):1839-41. doi:10.1093/bioinformatics/btv020.

Gevaert O, Tibshirani R, Plevritis SK. **Pancancer analysis of DNA methylation-driven genes using MethylMix**. Genome Biology. 2015;16(1):17. doi:10.1186/s13059-014-0579-8.

Pierre-Louis Cedoz, Marcos Prunello, Kevin Brennan, Olivier Gevaert; MethylMix 2.0: an R package for identifying DNA methylation genes. Bioinformatics. doi:10.1093/bioinformatics/bty156.

Examples

```
# load the three data sets needed for MethylMix
data(METcancer)
data(METnormal)
data(GEcancer)

# run MethylMix on a small set of example data
MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)

## Not run:
# run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)
MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)
stopCluster(cl)

## End(Not run)
```

Description

Internal. Prepares all the structures to store the results and calls in a foreach loop a function that fits the mixture model in each gene.

Usage

```
MethylMix_MixtureModel(METcancer, METnormal = NULL, FunctionalGenes,
NoNormalMode = FALSE)
```

Arguments

METcancer	matrix with methylation data for cancer samples (genes in rows, samples in columns).
METnormal	matrix with methylation data for normal samples (genes in rows, samples in columns). If NULL no comparison to normal samples will be done.
FunctionalGenes	vector with genes names to be considered for the mixture models.
NoNormalMode	logical, if TRUE no comparison to normal samples is performed. Defaults to FALSE.

Value

MethylationStates matrix of DM values, with driver genes in the rows and samples in the columns.
NrComponents matrix with the number of components identified for each driver gene.
Models list with the mixture model fitted for each driver gene.
MethylationDrivers character vector with the genes found by MethylMix as differentially methylated and transcriptionally predictive (driver genes).
MixtureStates a list with a matrix for each driver gene containing the DM values.
Classifications a vector indicating to which component each sample was assigned.

Description

Model gene expression as a function of gene expression with a simple linear regression model. Genes with a significant negative linear association between DNA methylation and gene expression are returned.

Usage

```
MethylMix_ModelGeneExpression(METcancer, GEcancer, CovariateData = NULL)
```

Arguments

METcancer	matrix with methylation data for cancer samples (genes in rows, samples in columns).
GEcancer	matrix with gene expression data for cancer samples (genes in rows, samples in columns).
CovariateData	vector (numeric or character) indicating a covariate to be included in the model to adjust for it. Not used in an standard run of MethylMix. It can be used if samples can from different tissue type, for example.

Value

vector with the names of the genes for which there is a significant linear and negative association between methylation and gene expression.

Examples

```
# load data sets
data(METcancer)
data(GEcancer)

# model gene expression
MethylMixResults <- MethylMix_ModelGeneExpression(METcancer, GEcancer)
```

MethylMix_ModelSingleGene

The MethylMix_ModelSingleGene function

Description

Internal. For a given gene, this function fits the mixture model, selects the number of components and defines the respective methylation states.

Usage

```
MethylMix_ModelSingleGene(GeneName, METdataVector, METdataNormalVector = NULL,
  NoNormalMode = FALSE, maxComp = 3, PvalueThreshold = 0.01,
  MeanDifferenceThreshold = 0.1, minSamplesPerGroup = 1)
```

Arguments

GeneName	character string with the name of the gene to model
METdataVector	vector with methylation data for cancer samples.
METdataNormalVector	vector with methylation data for normal samples. It can be NULL and then no normal mode will be used.

NoNormalMode logical, if TRUE no comparison to normal samples is performed. Defaults to FALSE.

maxComp maximum number of mixture components admitted in the model (3 by default).

PvalueThreshold threshold to consider results significant.

MeanDifferenceThreshold threshold in beta value scale from which two methylation means are considered different.

minSamplesPerGroup minimum number of samples required to belong to a new mixture component in order to accept it. Default is 1 (not used). If -1, each component has to have at least 5% of all cancer samples.

Details

maxComp, PvalueThreshold, METDiffThreshold, minSamplesPerGroup are arguments for this function but are fixed in their default values for the user because they are not available in the main MethylMix function, to keep it simple. It would be easy to make them available to the user if we want to.

Value

NrComponents number of components identified.
 Models an object with the parameters of the model fitted.
 MethylationStates vector with DM values for each sample.
 MixtureStates vector with DMvalues for each component.
 Classifications a vector indicating to which component each sample was assigned.
 FlipOverState FlipOverState

MethylMix_PlotModel *The MethylMix_PlotModel function.*

Description

Produces plots to represent MethylMix's output.

Usage

```
MethylMix_PlotModel(GeneName, MixtureModelResults, METcancer, GEcancer = NULL,
                     METnormal = NULL)
```

Arguments

GeneName	Name of the gene for which to create a MethylMix plot.
MixtureModelResults	List returned by MethylMix function.
METcancer	Matrix with the methylation data of cancer tissue with genes in rows and samples in columns.
GEcancer	Gene expression data for cancer tissue with genes in rows and samples in columns (optional).
METnormal	Matrix with the normal methylation data of the same genes as in METcancer (optional). Again genes in rows and samples in columns.

Value

a list with MethylMix plots, a histogram of the methylation data (MixtureModelPlot) and a scatterplot between DNA methylation and gene expression (CorrelationPlot, is NULL if gene expression data is not provided). Both plots show the different mixture components identified.

Examples

```
# Load the three data sets needed for MethylMix
data(METcancer)
data(METnormal)
data(GEcancer)

# Run methylmix on a small set of example data
MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)

# Plot the most famous methylated gene for glioblastoma
MethylMix_PlotModel("MGMT", MethylMixResults, METcancer)

# Plot MGMT also with its normal methylation variation
MethylMix_PlotModel("MGMT", MethylMixResults, METcancer, METnormal = METnormal)

# Plot a MethylMix model for another gene
MethylMix_PlotModel("ZNF217", MethylMixResults, METcancer, METnormal = METnormal)

# Also plot the inverse correlation with gene expression (creates two separate plots)
MethylMix_PlotModel("MGMT", MethylMixResults, METcancer, GEcancer, METnormal)

# Plot all functional and differential genes
for (gene in MethylMixResults$MethylationDrivers) {
  MethylMix_PlotModel(gene, MethylMixResults, METcancer, METnormal = METnormal)
}
```

MethylMix_Predict *The MethylMix_Predict function*

Description

Given a new data set with methylation data, this function predicts the mixture component for each new sample and driver gene. Predictions are based on posterior probabilities calculated with MethylMix's fitted mixture model.

Usage

```
MethylMix_Predict(newBetaValuesMatrix, MethylMixResult)
```

Arguments

newBetaValuesMatrix
Matrix with new observations for prediction, genes/cpg sites in rows, samples in columns. Although this new matrix can have a different number of genes/cpg sites than the one provided as METcancer when running MethylMix, naming of genes/cpg sites should be the same.

MethylMixResult
Output object from MethylMix

Value

A matrix with predictions (indices of mixture component), driver genes in rows, new samples in columns

Examples

```
# load the three data sets needed for MethylMix
data(METcancer)
data(METnormal)
data(GEcancer)

# run MethylMix on a small set of example data
MethylMixResults <- MethylMix(METcancer, GEcancer, METnormal)
# toy example new data, of same dimension of original METcancer data
newMETData <- matrix(runif(length(METcancer)), nrow = nrow(METcancer))
rownames(newMETData) <- rownames(METcancer)
colnames(newMETData) <- paste0("sample", 1:ncol(METcancer))
predictions <- MethylMix_Predict(newMETData, MethylMixResults)
```

MethylMix_RemoveFlipOver*The MethylMix_RemoveFlipOver function*

Description

Internal. The estimated densities for each beta component can overlap, generating samples that look like being separated from their group. This function re classifies such samples.

Usage

```
MethylMix_RemoveFlipOver(OrigOrder, MethylationState, classification,
  METdataVector, NrComponents, UseTrainedFlipOver = FALSE,
  FlipOverState = 0)
```

Arguments

OrigOrder order of sorted values in the methylation vector.
 MethylationState methylation states for this gene.
 classification vector with integers indicating to which component each sample was classified into.
 METdataVector vector with methylation values from the cancer samples.
 NrComponents number of components in this gene.
 UseTrainedFlipOver
 .
 FlipOverState .

Value

Corrected vectors with methylation states and classification.

METnormal*DNA methylation data from normal tissue from glioblastoma patients*

Description

Normal tissue DNA methylation data of glioblastoma patients. These normal tissue samples were run on the same platform and are described in the publication referenced below.

Usage

```
data(METnormal)
```

Format

A numeric matrix with 14 rows (genes) and 4 columns (samples).

References

Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. *Cancer Cell*. 2010 May 18;17(5):510-22. doi: 10.1016/j.ccr.2010.03.017. Epub 2010 Apr 15. PubMed PMID: 20399149; PubMed Central PMCID: PMC2872684

`predictOneGene`

The predictOneGene function

Description

Auxiliar function. Given a new vector of beta values, this function calculates a matrix with posterior prob of belonging to each mixture component (columns) for each new beta value (rows), and return the number of the mixture component with highest posterior probabilit

Usage

```
predictOneGene(newVector, mixtureModel)
```

Arguments

<code>newVector</code>	vector with new beta values
<code>mixtureModel</code>	beta mixture model object for the gene being evaluated.

Value

A matrix with predictions (indices of mixture component), driver genes in rows, new samples in columns

Preprocess_CancerSite_Methylation27k

The Preprocess_CancerSite_Methylation27k function

Description

Internal. Pre-processes DNA methylation data from TCGA from Illymina 27k arrays.

Usage

```
Preprocess_CancerSite_Methylation27k(CancerSite, METdirectory,  
MissingValueThreshold = 0.2)
```

Arguments

CancerSite character of length 1 with TCGA cancer code.
METdirectory character with directory where a folder for downloaded files will be created. Can be the object returned by the Download_DNAmethylation function.
MissingValueThreshold threshold for removing samples or genes with missing values.

Value

List with pre processed methylation data for cancer and normal samples.

Preprocess_CancerSite_Methylation450k

The Preprocess_CancerSite_Methylation450k function

Description

Internal. Pre-processes DNA methylation data from TCGA from Illymina 450k arrays.

Usage

```
Preprocess_CancerSite_Methylation450k(CancerSite, METdirectory,  
MissingValueThreshold = 0.2)
```

Arguments

CancerSite character of length 1 with TCGA cancer code.
METdirectory character with directory where a folder for downloaded files will be created. Can be the object returned by the Download_DNAmethylation function.
MissingValueThreshold threshold for removing samples or genes with missing values.

Value

List with pre processed methylation data for cancer and normal samples.

Preprocess_DNAmethylation

The Preprocess_DNAmethylation function

Description

Pre-processes DNA methylation data from TCGA.

Usage

```
Preprocess_DNAmethylation(CancerSite, METdirectories,  
                           MissingValueThreshold = 0.2)
```

Arguments

CancerSite character of length 1 with TCGA cancer code.
METdirectories character vector with directories with the downloaded data. It can be the object returned by the Download_DNAmethylation function.
MissingValueThreshold threshold for removing samples or genes with missing values.

Details

Pre-process includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction. If there is both 27k and 450k data, and both data sets have more than 50 samples, we combine the data sets, by reducing the 450k data to the probes present in the 27k data, and batch correction is performed again to the combined data set. If there are samples with both 27k and 450k data, the 450k data is used and the 27k data is discarded, before the step mentioned above. If the 27k or the 450k data does not have more than 50 samples, we use the one with the greatest number of samples, we do not combine the data sets.

Value

List with the pre-processed data matrix for cancer and normal samples.

Examples

```
## Not run:  
  
# Optional register cluster to run in parallel  
library(doParallel)  
cl <- makeCluster(5)  
registerDoParallel(cl)
```

```

# Methylation data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")

# Downloading methylation data
METdirectories <- Download_DNAmethylation(cancerSite, targetDirectory, TRUE)

# Processing methylation data
METProcessedData <- Preprocess_DNAmethylation(cancerSite, METdirectories)

# Saving methylation processed data
saveRDS(METProcessedData, file = paste0(targetDirectory, "MET_", cancerSite, "_Processed.rds"))

# Clustering methylation data
res <- ClusterProbes(METProcessedData[[1]], METProcessedData[[2]])

# Saving methylation clustered data
toSave <- list(METcancer = res[[1]], METnormal = res[[2]], ProbeMapping = res$ProbeMapping)
saveRDS(toSave, file = paste0(targetDirectory, "MET_", cancerSite, "_Clustered.rds"))

stopCluster(cl)

## End(Not run)

```

Preprocess_GeneExpression

The Preprocess_GeneExpression function

Description

Pre-processes gene expression data from TCGA.

Usage

```
Preprocess_GeneExpression(CancerSite, MAdirectories,
  MissingValueThresholdGene = 0.3, MissingValueThresholdSample = 0.1)
```

Arguments

CancerSite	character of length 1 with TCGA cancer code.
MAdirectories	character vector with directories with the downloaded data. It can be the object returned by the Download_DNAmethylation function.
MissingValueThresholdGene	threshold for missing values per gene. Genes with a percentage of NAs greater than this threshold are removed. Default is 0.3.
MissingValueThresholdSample	threshold for missing values per sample. Samples with a percentage of NAs greater than this threshold are removed. Default is 0.1.

Details

Pre-process includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction.

Value

List with the pre-processed data matrix for cancer and normal samples.

Examples

```
## Not run:

# Optional register cluster to run in parallel
library(doParallel)
cl <- makeCluster(5)
registerDoParallel(cl)

# Gene expression data for ovarian cancer
cancerSite <- "OV"
targetDirectory <- paste0(getwd(), "/")

# Downloading gene expression data
GEdirectories <- Download_GeneExpression(cancerSite, targetDirectory, TRUE)

# Processing gene expression data
GEProcessedData <- Preprocess_GeneExpression(cancerSite, GEdirectories)

# Saving gene expression processed data
saveRDS(GEProcessedData, file = paste0(targetDirectory, "GE_", cancerSite, "_Processed.rds"))

stopCluster(cl)

## End(Not run)
```

Preprocess_MAdat_Cancer

The Preprocess_MAdat_Cancer function

Description

Internal. Pre-process gene expression data for cancer samples.

Usage

```
Preprocess_MAdat_Cancer(CancerSite, Directory, File,
                         MissingValueThresholdGene = 0.3, MissingValueThresholdSample = 0.1)
```

Arguments

CancerSite TCGA code for the cancer site.
 Directory Directory.
 File File.
 MissingValueThresholdGene
 threshold for missing values per gene. Genes with a percentage of NAs greater than this threshold are removed. Default is 0.3.
 MissingValueThresholdSample
 threshold for missing values per sample. Samples with a percentage of NAs greater than this threshold are removed. Default is 0.1.

Value

The data matrix.

Preprocess_MAdata_Normal

The Preprocess_MAdata_Normal function

Description

Internal. Pre-process gene expression data for normal samples.

Usage

```
Preprocess_MAdata_Normal(CancerSite, Directory, File,
  MissingValueThresholdGene = 0.3, MissingValueThresholdSample = 0.1)
```

Arguments

CancerSite TCGA code for the cancer site.
 Directory Directory.
 File File.
 MissingValueThresholdGene
 threshold for missing values per gene. Genes with a percentage of NAs greater than this threshold are removed. Default is 0.3.
 MissingValueThresholdSample
 threshold for missing values per sample. Samples with a percentage of NAs greater than this threshold are removed. Default is 0.1.

Value

The data matrix.

ProbeAnnotation	<i>ProbeAnnotation data set</i>
-----------------	---------------------------------

Description

Data set with annotation from Illumina methylatin arrays mapping CpG sites to genes.

SNPprobes	<i>SNPprobes data set</i>
-----------	---------------------------

Description

Vector with probes with SNPs.

TCGA_BatchCorrection_MolecularData	<i>The TCGA_BatchCorrection_MolecularData function</i>
------------------------------------	--

Description

Internal. Wrapper to perform batch correction.

Usage

```
TCGA_BatchCorrection_MolecularData(GEN_Data, BatchData, MinInBatch)
```

Arguments

GEN_Data	matrix with data to be corrected for batch effects.
BatchData	Batch data.
MinInBatch	minimum number of samples per batch.

Value

The corrected data matrix.

TCGA_GENERIC_BatchCorrection

The TCGA_GENERIC_BatchCorrection function

Description

Internal. Performs batch correction.

Usage

```
TCGA_GENERIC_BatchCorrection(GEN_Data, BatchData)
```

Arguments

GEN_Data	matrix with data to be corrected for batch effects.
BatchData	Batch data.

Value

The corrected data matrix.

TCGA_GENERIC_CheckBatchEffect

The TCGA_GENERIC_CheckBatchEffect function

Description

Internal. Checks if batch correction is needed.

Usage

```
TCGA_GENERIC_CheckBatchEffect(GEN_Data, BatchData)
```

Arguments

GEN_Data	matrix with data to be corrected for batch effects.
BatchData	Batch data.

Value

list with results.

TCGA_GENERIC_CleanUpSampleNames

The TCGA_GENERIC_CleanUpSampleNames function

Description

Internal. Cleans the samples IDs into the 12 digit format and removes doubles.

Usage

```
TCGA_GENERIC_CleanUpSampleNames(GEN_Data, IDlength = 12)
```

Arguments

GEN_Data	data matrix.
IDlength	length of samples ID.

Value

data matrix with cleaned sample names.

TCGA_GENERIC_GetSampleGroups

The TCGA_GENERIC_GetSampleGroups function

Description

Internal. Looks for the group of the samples (normal/cancer).

Usage

```
TCGA_GENERIC_GetSampleGroups(SampleNames)
```

Arguments

SampleNames	vector with sample names.
-------------	---------------------------

Value

a list.

TCGA_GENERIC_LoadIlluminaMethylationData

The TCGA_GENERIC_LoadIlluminaMethylationData function

Description

Internal. Read in an illumina methylation file with the following format: header row with sample labels, 2nd header row with 4 columns per sample: beta-value, geneSymbol, chromosome and GenomicCoordinate. The first column has the probe names.

Usage

```
TCGA_GENERIC_LoadIlluminaMethylationData(Filename)
```

Arguments

Filename name of the file with the data.

Value

methylation data.

TCGA_GENERIC_MergeData

The TCGA_GENERIC_MergeData function

Description

Internal.

Usage

```
TCGA_GENERIC_MergeData(NewIDListUnique, DataMatrix)
```

Arguments

NewIDListUnique unique rownames of data.
DataMatrix data matrix.

Value

data matrix.

TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_with_hclust

The TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_with_hclust function

Description

Internal. Cluster probes into genes.

Usage

```
TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_with_hclust(Gene,  
ProbeAnnotation, MET_Cancer, MET_Normal = NULL, CorThreshold = 0.4)
```

Arguments

Gene	gene.
ProbeAnnotation	data set matching probes to genes.
MET_Cancer	data matrix for cancer samples.
MET_Normal	data matrix for normal samples.
CorThreshold	correlation threshold for cutting the clusters.

Value

List with the clustered data sets and the mapping between probes and genes.

TCGA_Load_MolecularData

The TCGA_Load_MolecularData function

Description

Internal. Reads in gene expressiondata. Deletes samples and genes with more NAs than the respective thresholds. Imputes other NAs values.

Usage

```
TCGA_Load_MolecularData(Filename, MissingValueThresholdGene = 0.3,  
MissingValueThresholdSample = 0.1)
```

Arguments

Filename name of the file with the data.
 MissingValueThresholdGene threshold for missing values per gene. Genes with a percentage of NAs greater than this threshold are removed. Default is 0.3.
 MissingValueThresholdSample threshold for missing values per sample. Samples with a percentage of NAs greater than this threshold are removed. Default is 0.1.

Value

gene expression data.

TCGA_Process_EstimateMissingValues

The TCGA_Process_EstimateMissingValues function

Description

Internal. Removes patients and genes with more missing values than the MissingValueThreshold, and imputes remaining missing values using Tibshirani's KNN method.

Usage

```
TCGA_Process_EstimateMissingValues(MET_Data, MissingValueThreshold = 0.2)
```

Arguments

MET_Data data matrix.
 MissingValueThreshold threshold for removing samples and genes with too many missing values.

Value

the data set with imputed values and possibly some genes or samples deleted.

Index

* **cluster**
 GetData, 10

* **cluter_probes**
 ClusterProbes, 4

* **datasets**
 BatchData, 3
 GEcancer, 9
 METcancer, 12
 METnormal, 20
 ProbeAnnotation, 27
 SNPprobes, 27

* **download**
 Download_DNAmethylation, 7
 Download_GeneExpression, 8
 GetData, 10

* **internal**
 betaEst_2, 3
 blc_2, 4
 ComBat_NoFiles, 5
 combineForEachOutput, 6
 get_firehoseData, 11
 MethylMix_MixtureModel, 14
 MethylMix_ModelSingleGene, 16
 MethylMix_RemoveFlipOver, 20
 Preprocess_CancerSite_Methylation27k,
 22
 Preprocess_CancerSite_Methylation450k,
 22
 Preprocess_MAdata_Cancer, 25
 Preprocess_MAdata_Normal, 26
 TCGA_BatchCorrection_MolecularData,
 27
 TCGA_GENERIC_BatchCorrection, 28
 TCGA_GENERIC_CheckBatchEffect, 28
 TCGA_GENERIC_CleanUpSampleNames,
 29
 TCGA_GENERIC_GetSampleGroups, 29
 TCGA_GENERIC_LoadIlluminaMethylationData, Preprocess_CancerSite_Methylation450k,
 22

 TCGA_GENERIC_MergeData, 30
 TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_wit
 31
 TCGA_Load_MolecularData, 31
 TCGA_Process_EstimateMissingValues,
 32

* **preprocess**
 GetData, 10
 Preprocess_DNAmethylation, 23
 Preprocess_GeneExpression, 24

 BatchData, 3
 betaEst_2, 3
 blc_2, 4

 ClusterProbes, 4
 ComBat_NoFiles, 5
 combineForEachOutput, 6

 Download_DNAmethylation, 7
 Download_GeneExpression, 8

 GEcancer, 9
 get_firehoseData, 11
 GetData, 10

 METcancer, 12
 MethylMix, 13
 MethylMix_MixtureModel, 14
 MethylMix_ModelGeneExpression, 15
 MethylMix_ModelSingleGene, 16
 MethylMix_PlotModel, 17
 MethylMix_Predict, 19
 MethylMix_RemoveFlipOver, 20
 METnormal, 20

 predictOneGene, 21
 Preprocess_CancerSite_Methylation27k,
 22

Preprocess_DNAmethylation, 23
Preprocess_GeneExpression, 24
Preprocess_MData_Cancer, 25
Preprocess_MData_Normal, 26
ProbeAnnotation, 27

SNPprobes, 27

TCGA_BatchCorrection_MolecularData, 27
TCGA_GENERIC_BatchCorrection, 28
TCGA_GENERIC_CheckBatchEffect, 28
TCGA_GENERIC_CleanUpSampleNames, 29
TCGA_GENERIC_GetSampleGroups, 29
TCGA_GENERIC_LoadIlluminaMethylationData,
 30
TCGA_GENERIC_MergeData, 30
TCGA_GENERIC_MET_ClusterProbes_Helper_ClusterGenes_with_hclust,
 31
TCGA_Load_MolecularData, 31
TCGA_Process_EstimateMissingValues, 32