Package ‘MOFA2’

February 2, 2026

Type Package

Title Multi-Omics Factor Analysis v2

Version 1.21.3

Maintainer Ricard Argelaguet <ricard.argelaguet@gmail.com>
Date 2023-01-12

License file LICENSE

Description The MOFA?2 package contains a collection of tools for training and analysing multi-
omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify princi-
pal axes of variation from data sets that can comprise multiple omic layers and/or groups of sam-
ples. Additional time or space information on the samples can be incorporated us-
ing the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to in-
spect molecular features underlying each factor, visualisation, imputation etc are available.

Encoding UTF-8
Depends R (>=4.0)

Imports rhdf5, dplyr, tidyr, reshape2, pheatmap, ggplot2, methods,
RColorBrewer, cowplot, ggrepel, reticulate, HDF5Array,
grDevices, stats, magrittr, forcats, utils, corrplot,
DelayedArray, Rtsne, uwot, basilisk, stringi

Suggests knitr, testthat, Seurat, SeuratObject, ggpubr, foreach,
psych, MultiAssayExperiment, SummarizedExperiment,
SingleCellExperiment, ggrastr, mvtnorm, GGally, rmarkdown,
data.table, tidyverse, BiocStyle, Matrix, markdown

biocViews DimensionReduction, Bayesian, Visualization
URL https://biofam.github.io/MOFA2/index.html

BugReports https://github.com/bioFAM/MOFA2
VignetteBuilder knitr

LazyData false

StagedInstall no

NeedsCompilation yes

RoxygenNote 7.3.3

https://biofam.github.io/MOFA2/index.html
https://github.com/bioFAM/MOFA2

SystemRequirements Python (>=3), numpy, pandas, h5py, scipy, argparse,
sklearn, mofapy?2

git_url https://git.bioconductor.org/packages/MOFA2
git_branch devel

git_last_commit 4cda961

git_last_commit_date 2026-01-21

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Ricard Argelaguet [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3199-3722>),
Damien Arnol [aut] (ORCID: <https://orcid.org/0000-0003-2462-534X>),
Danila Bredikhin [aut] (ORCID: <https://orcid.org/0000-0001-8089-6983>),
Britta Velten [aut] (ORCID: <https://orcid.org/0000-0002-8397-3515>)

Contents

add_mofa_factors_to_seurat
calculate_contribution_SCOres e
calculate_variance_explained L.
calculate_variance_explained_per_sample L.
cluster_samples e
compare_elbo L. e e
compare_factors e e e e
correlate_factors_with_covariates
covariateS_NAMES v v v v e e e e e e e e e e e
create_mofa e e
create_mofa_from_df
create_mofa_from_matrix e
create_mofa_from_MultiAssayExperiment
create_mofa_from_Seurat.
create_mofa_from_SingleCellExperiment
factors_names e e e
features_metadata
features_ names e e
GEL_COVAIALES v o v e i i e e e e e e e e
get_data
get_default_data_options
get_default_mefisto_options L
get_default_model_options oL
get_default_stochastic_options
get_default_training_options
get_dimensions L.
get_elbo e
GEt_eXPectations e e e
get_factors.
get_group_kernel

Contents

https://orcid.org/0000-0003-3199-3722
https://orcid.org/0000-0003-2462-534X
https://orcid.org/0000-0001-8089-6983
https://orcid.org/0000-0002-8397-3515

Contents

3
get_imputed_data e e e 32
get_interpolated_factors L 33
get_lengthscales L 34
get_scales e 35
get_variance_explained L L L 35
get_weights L e 36
GIOUPS_NAIMES . « « v v v v v e v e 37
IMPULE o o e e e e e e e e e e e e 38
interpolate_factors L. 39
load_model e 40
make_example_data. 41
MOFA . . e e e e e 43
plot_alignment 44
plot_ascii_data 44
plot_data_heatmap e e e 45
plot_data_overview e e e e e 47
plot_data_scatter 48
plot_data_vs_COV e e e e e e e e 50
plot_dimred e 52
plot_enrichment L 54
plot_enrichment_detailed L o 55
plot_enrichment_heatmap 56
plot_factor L e 56
plot_factors L 59
Plot_factors_VS_COV e e e e e e 61
plot_factor_cor e 63
plot_group_kernel 64
plot_interpolation_vs_covariate 65
plot_sharedness L. 66
plot_smoothness e e 66
plot_top_weights 67
plot_variance_explained e 68
plot_variance_explained_by_covariates L. 70
plot_variance_explained_per_feature L. 71
plot_weights 72
plot_weights_heatmap 74
plot_weights_scatter e 75
predict . . . Lo e e 77
prepare_mofa L e e e e 78
run_enrichment e 79
run_mofa 81
TUN_ESNE . . . v v v v e e e e e e e e e e e e e e 82
TUN_UIMAD .« v v v v e 83
samples_metadata L L e 84
samples_nameso e e 85
select_model e e 86
SEt_COVATIALES & v e e e e e e e e e e e e e e e 86

subset_factors L e e 87

4 add_mofa_factors_to_seurat

subset_features e e e 88
SUDSEL_GIOUPS . .« v v v v o v e e e e e e e e e e e e e e e e e e e 88
subset_sampleso L L e e 89
SUDSEL_VIEWS v o o e e e e e e 90
summarise_factors e e e e e 90
VIEWS_NAMES .+ v v v v v v v e e e e e e e e e e e 91
Do>% e e e e 92
Index 93

add_mofa_factors_to_seurat
Function to add the MOFA representation onto a Seurat object

Description

Function to add the MOFA latent representation to a Seurat object

Usage

add_mofa_factors_to_seurat(
mofa_object,
seurat_object,

views = "all",
factors = "all”
)
Arguments

mofa_object a trained MOFA object.
seurat_object a Seurat object

views character vector with the view names, or numeric vector with view indexes.
Default is ’all’
factors character vector with the factor names, or numeric vector with the factor indexes.

Default is ’all’

Details

This function calls the CreateDimReducObject function from Seurat to store the MOFA factors.

Value

Returns a Seurat object with the ’reductions’ slot filled with the MOFA factors. Also adds, if
calculated, the UMAP/TSNE obtained with the MOFA factors.

Examples

Generate a simulated data set
MOFAexample <- make_example_data()

calculate_contribution_scores 5

calculate_contribution_scores
Calculate contribution scores for each view in each sample

Description

This function calculates, *for each sample* how much each view contributes to its location in the
latent manifold, what we call contribution scores

Usage
calculate_contribution_scores(
object,
views = "all",
groups = "all",
factors = "all",
scale = TRUE
)
Arguments
object a trained MOFA object.
views character vector with the view names, or numeric vector with view indexes.
Default is "all’
groups character vector with the group names, or numeric vector with group indexes.
Default is ’all’
factors character vector with the factor names, or numeric vector with the factor indexes.
Default is ’all’
scale logical indicating whether to scale the sample-wise variance explained values by
the total amount of variance explained per view. This effectively normalises each
view by its total variance explained. It is important when different amounts of
variance is explained for each view (check with plot_variance_explained(.. .,
plot_total=TRUE))
Details

Contribution scores are calculated in three steps:

* Step 1: calculate variance explained for each cell i and each view m (R;,,), using all factors
* Step 2 (optional): scale values by the total variance explained for each view
* Step 3: calculate contribution score (C;,,) for cell i and view m as:
R2;,
Yo R2im
Note that contribution scores can be calculated using any number of data modalities, but it is easier

to interpret when you specify two.
Please note that this functionality is still experimental, contact the authors if you have questions.

Cim =

6 calculate_variance_explained

Value

adds the contribution scores to the metadata slot (samples_metadata(MOFAobject)) and to the
MOFAobject@cache slot

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

model <- calculate_contribution_scores(model)

calculate_variance_explained
Calculate variance explained by the model

Description

This function takes a trained MOFA model as input and calculates the proportion of variance ex-
plained (i.e. the coefficient of determinations (R"2)) by the MOFA factors across the different

views.
Usage
calculate_variance_explained(
object,
views = "all”,
groups = "all",
factors = "all”
)
Arguments
object a MOFA object.
views character vector with the view names, or numeric vector with view indexes.
Default is ’all’
groups character vector with the group names, or numeric vector with group indexes.
Default is ’all’
factors character vector with the factor names, or numeric vector with the factor indexes.
Default is ’all’
Value

a list with matrices with the amount of variation explained per factor and view.

calculate_variance_explained_per_sample 7

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Calculate variance explained (R2)
r2 <- calculate_variance_explained(model)

Plot variance explained values (view as x-axis, and factor as y-axis)
plot_variance_explained(model, x="view", y="factor")

Plot variance explained values (view as x-axis, and group as y-axis)
plot_variance_explained(model, x="view", y="group")

Plot variance explained values for factors 1 to 3
plot_variance_explained(model, x="view", y="group”, factors=1:3)

Scale R2 values
plot_variance_explained(model, max_r2 = 0.25)

calculate_variance_explained_per_sample
Calculate variance explained by the MOFA factors for each sample

Description

This function takes a trained MOFA model as input and calculates, **for each sample** the pro-
portion of variance explained (i.e. the coefficient of determinations (R*2)) by the MOFA factors
across the different views.

Usage
calculate_variance_explained_per_sample(
object,
views = "all"”,
groups = "all”,
factors = "all”
)
Arguments
object a MOFA object.
views character vector with the view names, or numeric vector with view indexes.
Default is ’all’
groups character vector with the group names, or numeric vector with group indexes.
Default is ’all’
factors character vector with the factor names, or numeric vector with the factor indexes.

Default is ’all’

8 cluster_samples

Value

a list with matrices with the amount of variation explained per sample and view.

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Calculate variance explained (R2)
r2 <- calculate_variance_explained_per_sample(model)

cluster_samples K-means clustering on samples based on latent factors

Description

MOFA factors are continuous in nature but they can be used to predict discrete clusters of samples.
The clustering can be performed in a single factor, which is equivalent to setting a manual threshold.
More interestingly, it can be done using multiple factors, where multiple sources of variation are
aggregated.

Importantly, this type of clustering is not weighted and does not take into account the different
importance of the latent factors.

Usage
cluster_samples(object, k, factors = "all”, ...)
Arguments
object a trained MOFA object.
k number of clusters (integer).
factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’
extra arguments passed to kmeans
Details

In some cases, due to model technicalities, samples can have missing values in the latent factor
space. In such a case, these samples are currently ignored in the clustering procedure.

Value

output from kmeans function

compare_elbo 9

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Cluster samples in the factor space using factors 1 to 3 and K=2 clusters
clusters <- cluster_samples(model, k=2, factors=1:3)

compare_elbo Compare different trained MOFA objects in terms of the final value of
the ELBO statistics and number of inferred factors

Description

Different objects of MOFA are compared in terms of the final value of the ELBO statistics. For model
selection the model with the highest ELBO value is selected.

Usage

compare_elbo(models, log = FALSE, return_data = FALSE)

Arguments
models a list containing MOFA objects.
log logical indicating whether to plot the log of the ELBO.
return_data logical indicating whether to return a data.frame with the ELBO values per
model
Value

A ggplot object or the underlying data.frame if return_data is TRUE

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model1 <- load_model(file)

model2 <- load_model(file)

Compare ELBO between models
Not run: compare_elbo(list(modell,model2))

10 correlate_factors_with_covariates

compare_factors Plot the correlation of factors between different models

Description

Different MOFA objects are compared in terms of correlation between their factors.

Usage
compare_factors(models, ...)
Arguments
models a list with MOFA objects.
extra arguments passed to pheatmap
Details

If assessing model robustness across trials, the output should look like a block diagonal matrix,
suggesting that all factors are robustly detected in all model instances.

Value

Plots a heatmap of the Pearson correlation between latent factors across all input models.

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model1 <- load_model(file)

model2 <- load_model(file)

Compare factors between models
compare_factors(list(modell,model2))

correlate_factors_with_covariates
Plot correlation of factors with external covariates

Description

Function to correlate factor values with external covariates.

correlate_factors_with_covariates 11

Usage

correlate_factors_with_covariates(
object,
covariates,
factors = "all",
groups = "all",
abs = FALSE,
plot = c("log_pval”, "r"),
alpha = 0.05,
return_data = FALSE,
transpose = FALSE,

)
Arguments
object a trained MOFA object.
covariates * data.frame: a data.frame where the samples are stored in the rows and the
covariates are stored in the columns. Use row names for sample names and
column names for covariate names. Columns values must be numeric.
* character vector: character vector with names of columns that are present
in the sample metadata (samples_metadata(model)
factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’.
groups character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.
abs logical indicating whether to take the absolute value of the correlation coefficient
(default is TRUE).
plot character indicating whether to plot Pearson correlation coefficients (plot="r")
or log10 adjusted p-values (plot="1og_pval").
alpha p-value threshold
return_data logical indicating whether to return the correlation results instead of plotting
transpose logical indicating whether to transpose the plot
extra arguments passed to corrplot (if plot=="r") or pheatmap (if plot=="1og_pval").
Value

A corrplot (if plot=="r") or pheatmap (if plot=="1og_pval") or the underlying data.frame if
return_data is TRUE

12

create_mofta

covariates_names covariates_names: set and retrieve covariate names

Description

covariates_names: set and retrieve covariate names
Usage

covariates_names(object)

covariates_names(object) <- value

S4 method for signature 'MOFA'
covariates_names(object)

S4 replacement method for signature 'MOFA,vector'
covariates_names(object) <- value

Arguments

object a MOFA object.

value a character vector of covariate names
Value

character vector with the covariate names

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

covariates_names(model)

create_mofa create a MOFA object

Description

Method to create a MOFA object. Depending on the input data format, this method calls one of the

following functions:

* long data.frame: create_mofa_from_df

¢ List of matrices: create_mofa_from_matrix

create_mofta_tfrom_df 13

* MultiAssayExperiment: create_mofa_from_MultiAssayExperiment
* Seurat: create_mofa_from_Seurat

* SingleCellExperiment: create_mofa_from_SingleCellExperiment

Please read the documentation of the corresponding function for more details on your specific data

format.
Usage
create_mofa(data, groups = NULL, extract_metadata = TRUE, ...)
Arguments
data one of the formats above
groups group information, only relevant when using the multi-group framework.

extract_metadata

logical indicating whether to incorporate the sample metadata from the input
object into the MOFA object (not relevant when the input is a list of matrices).
Default is TRUE.

further arguments that can be passed to the function depending on the input data
format. See the documentation of above functions for details.

Value

Returns an untrained MOFA object

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata"”, "test_data.RData”, package = "MOFA2")

Load data (in long data.frame format)
load(file)
MOFAmodel <- create_mofa(dt)

create_mofa_from_df create a MOFA object from a data.frame object

Description

Method to create a MOFA object from a data.frame object

Usage

create_mofa_from_df (df, extract_metadata = TRUE)

14 create_mofa_from_matrix

Arguments

df data.frame object with at most 5 columns: sample, group, feature, view,
value. The group column (optional) indicates the group of each sample when
using the multi-group framework. The view column (optional) indicates the
view of each feature when having multi-view data.

extract_metadata

logical indicating whether to incorporate the extra columns as sample metadata
into the MOFA object

Value

Returns an untrained MOFA object

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata”, "test_data.RData”, package = "MOFA2")

Load data (in long data.frame format)
load(file)
MOFAmodel <- create_mofa_from_df(dt)

create_mofa_from_matrix
create a MOFA object from a a list of matrices

Description

Method to create a MOFA object from a list of matrices

Usage

create_mofa_from_matrix(data, groups = NULL)

Arguments
data A list of matrices, where each entry corresponds to one view. Samples are stored
in columns and features in rows. Missing values must be filled in prior to creat-
ing the MOFA object (see for example the CLL tutorial)
groups A character vector with group assignment for every sample. Default is NULL, no
group structure.
Value

Returns an untrained MOFA object

create_mofa_from_MultiAssayExperiment 15

Examples

m <- make_example_data()
create_mofa_from_matrix(m$data)

create_mofa_from_MultiAssayExperiment
create a MOFA object from a MultiAssayExperiment object

Description

Method to create a MOFA object from a MultiAssayExperiment object

Usage

create_mofa_from_MultiAssayExperiment(
mae,
groups = NULL,
extract_metadata = FALSE

)
Arguments
mae a MultiAssayExperiment object
groups a string specifying column name of the colData to use it as a group variable. Al-

ternatively, a character vector with group assignment for every sample. Default
is NULL (no group structure).

extract_metadata
logical indicating whether to incorporate the metadata from the MultiAssayEx-
periment object into the MOFA object

Value

Returns an untrained MOFA object

create_mofa_from_Seurat
create a MOFA object from a Seurat object

Description

Method to create a MOFA object from a Seurat object

16 create_mofa_from_SingleCellExperiment

Usage

create_mofa_from_Seurat(
seurat,
groups = NULL,
assays = NULL,
layer = "data",
features = NULL,
extract_metadata = FALSE

)
Arguments

seurat Seurat object

groups a string specifying column name of the samples metadata to use it as a group
variable. Alternatively, a character vector with group assignment for every sam-
ple. Default is NULL (no group structure).

assays assays to use, default is NULL, it fetched all assays available

layer layer to be used (default is data).

features a list with vectors, which are used to subset features, with names corresponding

to assays; a vector can be provided when only one assay is used
extract_metadata

logical indicating whether to incorporate the metadata from the Seurat object
into the MOFA object

Value

Returns an untrained MOFA object

create_mofa_from_SingleCellExperiment
create a MOFA object from a SingleCellExperiment object

Description

Method to create a MOFA object from a SingleCellExperiment object

Usage
create_mofa_from_SingleCellExperiment(
sce,
groups = NULL,
assay = "logcounts”,

extract_metadata = FALSE

factors_names 17

Arguments
sce SingleCellExperiment object
groups a string specifying column name of the colData to use it as a group variable. Al-
ternatively, a character vector with group assignment for every sample. Default
is NULL (no group structure).
assay assay to use, default is logcounts.

extract_metadata
logical indicating whether to incorporate the metadata from the SingleCellEx-
periment object into the MOFA object

Value

Returns an untrained MOFA object

factors_names factors_names: set and retrieve factor names

Description

factors_names: set and retrieve factor names

Usage

factors_names(object)
factors_names(object) <- value

S4 method for signature 'MOFA'
factors_names(object)

S4 replacement method for signature 'MOFA,vector
factors_names(object) <- value

Arguments

object a MOFA object.

value a character vector of factor names
Value

character vector with the factor names

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

factors_names(model)

18 features_names

features_metadata features_metadata: set and retrieve feature metadata

Description

features_metadata: set and retrieve feature metadata

Usage

features_metadata(object)
features_metadata(object) <- value

S4 method for signature 'MOFA'
features_metadata(object)

S4 replacement method for signature 'MOFA,data.frame'’
features_metadata(object) <- value

Arguments
object a MOFA object.
value data frame with feature information, it at least must contain the columns feature
and view
Value

a data frame with sample metadata

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

features_metadata(model)

features_names features_names: set and retrieve feature names

Description

features_names: set and retrieve feature names

get_covariates 19
Usage

features_names(object)

features_names(object) <- value

S4 method for signature 'MOFA'
features_names(object)

S4 replacement method for signature 'MOFA,list'
features_names(object) <- value

Arguments

object a MOFA object.

value list of character vectors with the feature names for every view
Value

list of character vectors with the feature names for each view

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

features_names(model)

get_covariates Get sample covariates

Description

Function to extract the covariates from a MOFA object using MEFISTO.

Usage

get_covariates(
object,
covariates = "all"”,
as.data.frame = FALSE,
warped = FALSE

20 get_data

Arguments
object a MOFA object.
covariates character vector with the covariate name(s), or numeric vector with the covariate

index(es).

as.data.frame logical indicating whether to output the result as a long data frame, default is
FALSE.

warped logical indicating whether to extract the aligned covariates

Value

a matrix with dimensions (samples,covariates). If as.data.frame is TRUE, a long-formatted data
frame with columns (sample,factor,value)

Examples

Using an existing trained model

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

covariates <- get_covariates(model)

get_data Get data

Description

Fetch the input data

Usage
get_data(
object,
views = "all"”,
groups = "all",
features = "all”,

as.data.frame = FALSE,
add_intercept = TRUE,
denoise = FALSE,

na.rm = TRUE
)
Arguments
object a MOFA object.
views character vector with the view name(s), or numeric vector with the view in-

dex(es). Default is "all".

get_data 21

groups character vector with the group name(s), or numeric vector with the group in-
dex(es). Default is "all".

features a *named* list of character vectors. Example: list("view1"=c("feature_1","feature_2"),
"view2"=c("feature_3","feature_4")) Default is "all".

as.data.frame logical indicating whether to return a long data frame instead of a list of matrices.
Default is FALSE.

add_intercept logical indicating whether to add feature intercepts to the data. Default is TRUE.

denoise logical indicating whether to return the denoised data (i.e. the model predic-
tions). Default is FALSE.

na.rm remove NAs from the data.frame (only if as.data.frame is TRUE).

Details

By default this function returns a list where each element is a data matrix with dimensionality (D,N)
where D is the number of features and N is the number of samples.
Alternatively, if as.data.frame is TRUE, the function returns a long-formatted data frame with
columns (view,feature,sample,value). Missing values are not included in the the long data.frame
format by default. To include them use the argument na. rm=FALSE.

Value

A list of data matrices with dimensionality (D,N) or a data. frame (if as.data. frame is TRUE)

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch data
data <- get_data(model)

Fetch a specific view
data <- get_data(model, views = "view_0")

Fetch data in data.frame format instead of matrix format
data <- get_data(model, as.data.frame = TRUE)

Fetch centered data (do not add the feature intercepts)
data <- get_data(model, as.data.frame = FALSE)

Fetch denoised data (do not add the feature intercepts)
data <- get_data(model, denoise = TRUE)

22 get_default_data_options

get_default_data_options
Get default data options

Description

Function to obtain the default data options.

Usage

get_default_data_options(object)

Arguments

object an untrained MOFA object

Details

This function provides a default set of data options that can be modified and passed to the MOFA ob-
ject in the prepare_mofa step (see example), i.e. after creating a MOFA object (using create_mofa)
and before starting the training (using run_mofa) The data options are the following:

 scale_views: logical indicating whether to scale views to have the same unit variance. As
long as the scale differences between the views is not too high, this is not required. Default is
FALSE.

* scale_groups: logical indicating whether to scale groups to have the same unit variance. As
long as the scale differences between the groups is not too high, this is not required. Default
is FALSE.

* use_float32: logical indicating whether use float32 instead of float64 arrays to increase speed
and memory usage. Default is FALSE.

Value

Returns a list with the default data options.

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata”, "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Load default data options

get_default_mefisto_options 23

data_opts <- get_default_data_options(MOFAmodel)

Edit some of the data options
data_opts$scale_views <- TRUE

Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel, data_options = data_opts)

get_default_mefisto_options
Get default options for MEFISTO covariates

Description

Function to obtain the default options for the usage of MEFISTO covariates with MEFISTO

Usage

get_default_mefisto_options(object)

Arguments

object an untrained MOFA object

Details

The options are the following:

* scale_cov: logical: Scale covariates?
* start_opt: integer: First iteration to start the optimisation of GP hyperparameters

* n_grid: integer: Number of points for the grid search in the optimisation of GP hyperparam-
eters

» opt_freq: integer: Frequency of optimisation of GP hyperparameters
* sparseGP: logical: Use sparse GPs to speed up the optimisation of the GP parameters?

¢ frac_inducing: numeric between 0 and 1: Fraction of samples to use as inducing points (only
relevant if sparseGP is TRUE)

* warping: logical: Activate warping functionality to align covariates between groups (requires
a multi-group design)

* warping_freq: numeric: frequency of the warping (only relevant if warping is TRUE)

» warping_ref: A character specifying the reference group for warping (only relevant if warping
is TRUE)

» warping_open_begin: logical: Warping: Allow for open beginning? (only relevant warping
is TRUE)

* warping_open_end: logical: Warping: Allow for open end? (only relevant warping is TRUE)

24 get_default_model_options

* warping_groups: Assignment of groups to classes used for alignment (advanced option).
Needs to be a vector of length number of samples, e.g. a column of samples_metadata, which
needs to have the same value within each group. By default groups are used specified in
‘create_mofa‘.

* model_groups: logical: Model covariance structure across groups (for more than one group,
otherwise FALSE)? If FALSE, we assume the same patterns in all groups.

* new_values: Values for which to predict the factor values (for interpolation / extrapolation).
This should be numeric matrix in the same format with covariate(s) in rows and new values in
columns. Default is NULL, leading to no interpolation.

Value

Returns a list with default options for the MEFISTO covariate(s) functionality.

Examples

generate example data

dd <- make_example_data(sample_cov = seq(@,1,length.out = 200), n_samples = 200,
n_factors = 4, n_features = 200, n_views = 4, lscales = c(0.5, 0.2, 0, 0))

input data

data <- dd$data

covariate matrix with samples in columns

time <- dd$sample_cov

rownames(time) <- "time"

create mofa and set covariates
sm <- create_mofa(data = dd$data)

sm <- set_covariates(sm, covariates = time)

MEFISTO_opt <- get_default_mefisto_options(sm)

get_default_model_options
Get default model options

Description

Function to obtain the default model options.

Usage

get_default_model_options(object)

Arguments

object an untrained MOFA object

get_default_model_options 25

Details

This function provides a default set of model options that can be modified and passed to the MOFA ob-
jectin the prepare_mofa step (see example), i.e. after creating a MOFA object (using create_mofa)
and before starting the training (using run_mofa) The model options are the following:

* likelihoods: character vector with data likelihoods per view: ’gaussian’ for continuous data
(Default for all views), bernoulli’ for binary data and "poisson’ for count data.

* num_factors: numeric value indicating the (initial) number of factors. Default is 15.

* spikeslab_factors: logical indicating whether to use spike and slab sparsity on the factors
(Default is FALSE)

« spikeslab_weights: logical indicating whether to use spike and slab sparsity on the weights
(Default is TRUE)

 ard_factors: logical indicating whether to use ARD sparsity on the factors (Default is TRUE
only if using multiple groups)

» ard_weights: logical indicating whether to use ARD sparsity on the weights (Default is
TRUE)

Value

Returns a list with the default model options.

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata”, "test_data.RData", package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Load default model options
model_opts <- get_default_model_options(MOFAmodel)

Edit some of the model options
model_opts$num_factors <- 10
model_opts$spikeslab_weights <- FALSE

Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel, model_options = model_opts)

26 get_default_stochastic_options

get_default_stochastic_options
Get default stochastic options

Description

Function to obtain the default options for stochastic variational inference.

Usage

get_default_stochastic_options(object)

Arguments

object an untrained MOFA

Details

This function provides a default set of stochastic inference options that can be modified and passed
to the MOFA object in the prepare_mofa step), i.e. after creating a MOFA object (using create_mofa)
and before starting the training (using run_mofa) These options are only relevant when activating
stochastic inference in training_options (see example). The stochastic inference options are the fol-
lowing:

 batch_size: numeric value indicating the batch size (as a fraction). Default is 0.5 (half of the
data set).

* learning_rate: numeric value indicating the learning rate. Default is 1.0
* forgetting_rate: numeric indicating the forgetting rate. Default is 0.5

* start_stochastic: integer indicating the first iteration to start stochastic inference Default is 1

Value

Returns a list with default options

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata"”, "test_data.RData”, package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

activate stochastic inference in training options
train_opts <- get_default_training_options(MOFAmodel)

get_default_training_options 27

train_opts$stochastic <- TRUE

Load default stochastic options
stochastic_opts <- get_default_stochastic_options(MOFAmodel)

Edit some of the stochastic options
stochastic_opts$learning_rate <- 0.75
stochastic_opts$batch_size <- 0.25

Prepare the MOFA object

MOFAmodel <- prepare_mofa(MOFAmodel,
training_options = train_opts,
stochastic_options = stochastic_opts

)

get_default_training_options
Get default training options

Description

Function to obtain the default training options.

Usage

get_default_training_options(object)

Arguments

object an untrained MOFA

Details

This function provides a default set of training options that can be modified and passed to the
MOFA object in the prepare_mofa step (see example), i.e. after creating a MOFA object (using
create_mofa) and before starting the training (using run_mofa) The training options are the fol-
lowing:

* maxiter: numeric value indicating the maximum number of iterations. Default is 1000. Con-
vergence is assessed using the ELBO statistic.

* drop_factor_threshold: numeric indicating the threshold on fraction of variance explained
to consider a factor inactive and drop it from the model. For example, a value of 0.01 implies
that factors explaining less than 1% of variance (in each view) will be dropped. Default is -1
(no dropping of factors)

* convergence_mode: character indicating the convergence criteria, either "fast", "medium" or
"slow", corresponding to 0.0005%, 0.00005% or 0.000005% deltaELBO change.

28

get_dimensions

* verbose: logical indicating whether to generate a verbose output.
« startELBO: integer indicating the first iteration to compute the ELBO (default is 1).
* freqELBO: integer indicating the first iteration to compute the ELBO (default is 1).

« stochastic: logical indicating whether to use stochastic variational inference (only required
for very big data sets, default is FALSE).

* gpu_mode: logical indicating whether to use GPUs (see details).
* gpu_device: integer indicating which GPU to use.

* seed: numeric indicating the seed for reproducibility (default is 42).

Value

Returns a list with default training options

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata"”, "test_data.RData”, package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Load default training options
train_opts <- get_default_training_options(MOFAmodel)

Edit some of the training options
train_opts$convergence_mode <- "medium”
train_opts$startELBO <- 100
train_opts$seed <- 42

Prepare the MOFA object
MOFAmodel <- prepare_mofa(MOFAmodel, training_options = train_opts)

get_dimensions Get dimensions

Description

Extract dimensionalities from the model.

Usage

get_dimensions(object)

get_elbo 29

Arguments

object a MOFA object.

Details

K indicates the number of factors, M indicates the number of views, D indicates the number of
features (per view), N indicates the number of samples (per group) and C indicates the number of
covariates.

Value

list containing the dimensionalities of the model

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

dims <- get_dimensions(model)

get_elbo Get ELBO

Description

Extract the value of the ELBO statistics after model training. This can be useful for model selection.

Usage

get_elbo(object)

Arguments

object a MOFA object.

Details

This can be useful for model selection.

Value

Value of the ELBO

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

elbo <- get_elbo(model)

30 get_expectations

get_expectations Get expectations

Description
Function to extract the expectations from the (variational) posterior distributions of a trained MOFA
object.

Usage

get_expectations(object, variable, as.data.frame = FALSE)

Arguments
object a trained MOFA object.
variable variable name: *Z’ for factors and "W’ for weights.

as.data.frame logical indicating whether to output the result as a long data frame, default is
FALSE.

Details

Technical note: MOFA is a Bayesian model where each variable has a prior distribution and a
posterior distribution. In particular, to achieve scalability we used the variational inference frame-
work, thus true posterior distributions are replaced by approximated variational distributions. This
function extracts the expectations of the variational distributions, which can be used as final point
estimates to analyse the results of the model.

The priors and variational distributions of each variable are extensively described in the supplemen-
tary methods of the original paper.

Value

the output varies depending on the variable of interest:

e "Z': a matrix with dimensions (samples,factors). If as.data. frame is TRUE, a long-formatted
data frame with columns (sample,factor,value)

o "W": alist of length (views) where each element is a matrix with dimensions (features,factors).
If as.data. frame is TRUE, a long-formatted data frame with columns (view,feature,factor,value)

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

factors <- get_expectations(model, "Z")

weights <- get_expectations(model, "W")

get_factors 31

get_factors Get factors

Description

Extract the latent factors from the model.

Usage
get_factors(
object,
groups = "all”,
factors = "all”,

scale = FALSE,
as.data.frame = FALSE

)
Arguments

object a trained MOFA object.

groups character vector with the group name(s), or numeric vector with the group in-
dex(es). Default is "all".

factors character vector with the factor name(s), or numeric vector with the factor in-
dex(es). Default is "all".

scale logical indicating whether to scale factor values.

as.data.frame logical indicating whether to return a long data frame instead of a matrix. De-
fault is FALSE.

Value

By default it returns the latent factor matrix of dimensionality (N,K), where N is number of samples
and K is number of factors.

Alternatively, if as.data. frame is TRUE, returns a long-formatted data frame with columns (sam-
ple,factor,value).

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch factors in matrix format (a list, one matrix per group)
factors <- get_factors(model)

Concatenate groups
factors <- do.call("rbind"”,factors)

32 get_imputed_data

Fetch factors in data.frame format instead of matrix format
factors <- get_factors(model, as.data.frame = TRUE)

get_group_kernel Get group covariance matrix

Description

Extract the inferred group-group covariance matrix per factor

Usage

get_group_kernel(object)

Arguments

object a MOFA object.

Details
This can be used only if covariates are passed to the MOFAobject upon creation and GP_factors is
set to True.

Value

A list of group-group correlation matrices per factor

get_imputed_data Get imputed data

Description

Function to get the imputed data. It requires the previous use of the impute method.

Usage
get_imputed_data(
object,
views = "all",
groups = "all”,
features = "all”,

as.data.frame = FALSE

get_interpolated_factors 33

Arguments
object a trained MOFA object.
views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".
groups character vector with the group name(s), or numeric vector with the group in-
dex(es). Default is "all".
features list of character vectors with the feature names or list of numeric vectors with

the feature indices. Default is "all".

as.data.frame logical indicating whether to return a long-formatted data frame instead of a list
of matrices. Default is FALSE.
Details

Data is imputed from the generative model of MOFA.

Value

A list containing the imputed valued or a data.frame if as.data.frame is TRUE

Examples

Using an existing trained model

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

model <- impute(model)

imputed <- get_imputed_data(model)

get_interpolated_factors
Get interpolated factor values

Description

Extract the interpolated factor values

Usage

get_interpolated_factors(object, as.data.frame = FALSE, only_mean = FALSE)

Arguments

object a MOFA object
as.data.frame logical indicating whether to return data as a data.frame

only_mean logical indicating whether include only mean or also uncertainties

34 get_lengthscales

Details

This can be used only if covariates are passed to the object upon creation, GP_factors is set to True
and new covariates were passed for interpolation.

Value

By default, a nested list containing for each group a list with a matrix with the interpolated factor
values ("mean"), their variance ("variance") and the values of the covariate at which interpolation
took place ("new_values"). Alternatively, if as.data. frame is TRUE, returns a long-formatted data
frame with columns containing the covariates and (factor, group, mean and variance).

get_lengthscales Get lengthscales

Description

Extract the inferred lengthscale for each factor after model training.

Usage

get_lengthscales(object)

Arguments

object a MOFA object.

Details

This can be used only if covariates are passed to the MOFAobject upon creation and GP_factors is
set to True.

Value

A numeric vector containing the lengthscale for each factor.

Examples

Using an existing trained model

file <- system.file("extdata"”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

1ls <- get_lengthscales(model)

get_scales 35

get_scales Get scales

Description

Extract the inferred scale for each factor after model training.

Usage

get_scales(object)

Arguments

object a MOFA object.

Details
This can be used only if covariates are passed to the MOFAobject upon creation and GP_factors is
set to True.

Value

A numeric vector containing the scale for each factor.

Examples

Using an existing trained model

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

s <- get_scales(model)

get_variance_explained
Get variance explained values

Description

Extract the latent factors from the model.

Usage
get_variance_explained(
object,
groups = "all”,
views = "all"”,
factors = "all”,

as.data.frame = FALSE

36

Arguments

object

groups

views

factors

as.data.frame

Value

get_weights

a trained MOFA object.

character vector with the group name(s), or numeric vector with the group in-
dex(es). Default is "all".

character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".

character vector with the factor name(s), or numeric vector with the factor in-
dex(es). Default is "all".

logical indicating whether to return a long data frame instead of a matrix. De-
fault is FALSE.

A list of data matrices with variance explained per group or a data.frame (if as.data.frame is

TRUE)

Examples

Using an existing trained model
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch variance explained values (in matrix format)
r2 <- get_variance_explained(model)

Fetch variance explained values (in data.frame format)
r2 <- get_variance_explained(model, as.data.frame = TRUE)

get_weights

Get weights

Description

Extract the weights from the model.

Usage

get_weights(
object,

views = "all”,
factors = "all”,

abs = FALSE,

scale = FALSE,

as.data.frame

= FALSE

groups_names 37

Arguments

object a trained MOFA object.

views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".

factors character vector with the factor name(s) or numeric vector with the factor in-
dex(es).
Default is "all".

abs logical indicating whether to take the absolute value of the weights.

scale logical indicating whether to scale all weights from -1 to 1 (or from O to 1 if

abs=TRUE).

as.data.frame logical indicating whether to return a long data frame instead of a list of matrices.
Default is FALSE.

Value

By default it returns a list where each element is a loading matrix with dimensionality (D,K), where
D is the number of features and K is the number of factors.
Alternatively, if as.data. frame is TRUE, returns a long-formatted data frame with columns (view,feature,factor,value).

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Fetch weights in matrix format (a list, one matrix per view)
weights <- get_weights(model)

Fetch weights for factor 1 and 2 and view 1
weights <- get_weights(model, views = 1, factors = c(1,2))

Fetch weights in data.frame format
weights <- get_weights(model, as.data.frame = TRUE)

groups_names groups_names: set and retrieve group names

Description

groups_names: set and retrieve group names

38 impute
Usage

groups_names(object)

groups_names(object) <- value

S4 method for signature 'MOFA'
groups_names(object)

S4 replacement method for signature 'MOFA,character'
groups_names(object) <- value

Arguments

object a MOFA object.

value character vector with the names for each group
Value

character vector with the names for each sample group

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

groups_names (model)

groups_names(model) <- c("my_group”)

impute Impute missing values from a fitted MOFA

Description

This function uses the latent factors and the loadings to impute missing values.

Usage
impute(
object,
views = "all”,
groups = "all”,
factors = "all”,

add_intercept = TRUE

interpolate_factors 39

Arguments
object a MOFA object.
views character vector with the view name(s), or numeric vector with view index(es).
groups character vector with the group name(s), or numeric vector with group index(es).
factors character vector with the factor names, or numeric vector with the factor in-

dex(es).
add_intercept add feature intercepts to the imputation (default is TRUE).

Details

MOFA generates a denoised and condensed low-dimensional representation of the data that cap-
tures the main sources of heterogeneity of the data. This representation can be used to reconstruct
the data, simply using the equation Y = WX. For more details read the supplementary methods of the
manuscript.

Note that with impute you can only generate the point estimates (the means of the posterior distri-
butions). If you want to add uncertainty estimates (the variance) you need to set impute=TRUE in
the training options. See get_default_training_options.

Value
This method fills the imputed_data slot by replacing the missing values in the input data with the
model predictions.

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Impute missing values in all data modalities
imputed_data <- impute(model, views = "all")

Impute missing values in all data modalities using factors 1:3
imputed_data <- impute(model, views = "all"”, factors = 1:3)

interpolate_factors Interpolate factors in MEFISTO based on new covariate values

Description

Function to interpolate factors in MEFISTO based on new covariate values.

Usage

interpolate_factors(object, new_values)

40 load_model

Arguments
object a MOFA object trained with MEFISTO options and a covariate
new_values a matrix containing the new covariate values to inter/extrapolate to. Should be
in the same format as the covariates used for training.
Details

This function requires the functional MEFISTO framework to be used in training. Use set_covariates
and specify mefisto_options when preparing the training using prepare_mofa. Currently, only the
mean of the interpolation is provided from R.

Value

Returns the MOFA with interpolated factor values filled in the corresponding slot (interpolatedZ)

Examples

Using an existing trained model

file <- system.file("extdata"”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

model <- interpolate_factors(model, new_values = seq(0,1.1,0.01))

load_model Load a trained MOFA

Description

Method to load a trained MOFA
The training of mofa is done using a Python framework, and the model output is saved as an .hdf5
file, which has to be loaded in the R package.

Usage

load_model(
file,
sort_factors = TRUE,
on_disk = FALSE,
load_data = TRUE,
remove_outliers = FALSE,
remove_inactive_factors = TRUE,
verbose = FALSE,
load_interpol_Z = FALSE

make_example_data 41

Arguments

file an hdf5 file saved by the mofa Python framework

sort_factors logical indicating whether factors should be sorted by variance explained (de-
fault is TRUE)

on_disk logical indicating whether to work from memory (FALSE) or disk (TRUE).
This should be set to TRUE when the training data is so big that cannot fit into
memory.
On-disk operations are performed using the HDF5Array and DelayedArray frame-
work.

load_data logical indicating whether to load the training data (default is TRUE, it can be

memory expensive)

remove_outliers
logical indicating whether to mask outlier values.

remove_inactive_factors
logical indicating whether to remove inactive factors from the model.

verbose logical indicating whether to print verbose output (default is FALSE)

load_interpol_Z
(MEFISTO) logical indicating whether to load predictions for factor values based
on latent processed (only relevant for models trained with covariates and Gaus-
sian processes, where prediction was enabled)

Value

a MOFA model

Examples

#' # Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

make_example_data Simulate a data set using the generative model of MOFA

Description

Function to simulate an example multi-view multi-group data set according to the generative model
of MOFA2.

42 make_example_data

Usage

make_example_data(
n_views = 3,
n_features = 100,
n_samples = 50,
n_groups = 1,
n_factors = 5,

likelihood = "gaussian”,
lscales = 1,
sample_cov = NULL,
as.data.frame = FALSE
)
Arguments
n_views number of views
n_features number of features in each view
n_samples number of samples in each group
n_groups number of groups
n_factors number of factors
likelihood likelihood for each view, one of "gaussian" (default), "bernoulli", "poisson”, or
a character vector of length n_views
lscales vector of lengthscales, needs to be of length n_factors (default is 0 - no smooth
factors)
sample_cov (only for use with MEFISTO) matrix of sample covariates for one group with

covariates in rows and samples in columns or "equidistant” for sequential order-
ing, default is NULL (no smooth factors)

as.data.frame return data and covariates as long dataframe

Value

Returns a list containing the simulated data and simulation parameters.

Examples

Generate a simulated data set
MOFAexample <- make_example_data()

MOFA 43

MOFA Class to store a mofa model

Description

The MOFA is an S4 class used to store all relevant data to analyse a MOFA model

Slots

data The input data

intercepts Feature intercepts

samples_metadata Samples metadata

features_metadata Features metadata.

imputed_data The imputed data.

expectations expected values of the factors and the loadings.
dim_red non-linear dimensionality reduction manifolds.
training_stats model training statistics.

data_options Data processing options.

training_options Model training options.
stochastic_options Stochastic variational inference options.
model_options Model options.

mefisto_options Options for the use of MEFISO

dimensions Dimensionalities of the model: M for the number of views, G for the number of
groups, N for the number of samples (per group), C for the number of covariates per sample,
D for the number of features (per view), K for the number of factors.

on_disk Logical indicating whether data is loaded from disk.

cache Cache.

status Auxiliary variable indicating whether the model has been trained.

covariates optional slot to store sample covariate for training in MEFISTO
covariates_warped optional slot to store warped sample covariate for training in MEFISTO

interpolated_Z optional slot to store interpolated factor values (used only with MEFISTO)

44 plot_ascii_data

plot_alignment Plot covariate alignment across groups

Description

Function to plot the alignment learnt by MEFISTO for the covariate values between different groups

Usage

plot_alignment(object)

Arguments

object a MOFA object using MEFISTO with warping

Details
This function requires the functional MEFISTO framework to be used in training. Use set_covariates
and specify mefisto_options when preparing the training using prepare_mofa.

Value

ggplot object showing the alignment

plot_ascii_data Visualize the structure of the data in the terminal

Description

A Fancy printing method

Usage

plot_ascii_data(object, nonzero = FALSE)

Arguments
object a MOFA object
nonzero a logical value specifying whether to calculate the fraction of non-zero values
(non-NA values by default)
Details

This function is helpful to get an overview of the structure of the data as a text output

plot_data_heatmap 45

Value

None

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_ascii_data(model)

plot_data_heatmap Plot heatmap of relevant features

Description

Function to plot a heatmap of the data for relevant features, typically the ones with high weights.

Usage
plot_data_heatmap(
object,
factor,
view = 1,
groups = "all",

features = 50,
annotation_features = NULL,
annotation_samples = NULL,
transpose = FALSE,

imputed = FALSE,

denoise = FALSE,

max.value = NULL,

min.value = NULL,

)
Arguments

object a MOFA object.

factor a string with the factor name, or an integer with the index of the factor.

view a string with the view name, or an integer with the index of the view. Default is
the first view.

groups groups to plot. Default is "all".

features if an integer (default), the total number of features to plot based on the absolute

value of the weights. If a character vector, a set of manually defined features.

46

plot_data_heatmap

annotation_features

annotation metadata for features (rows). Either a character vector specifying
columns in the feature metadata, or a data.frame that will be passed to pheatmap
as annotation_col

annotation_samples

transpose

imputed

denoise

max.value

min.value

Details

annotation metadata for samples (columns). Either a character vector specifying
columns in the sample metadata, or a data.frame that will be passed to pheatmap
as annotation_row

logical indicating whether to transpose the heatmap. Default corresponds to
features as rows and samples as columns.

logical indicating whether to plot the imputed data instead of the original data.
Default is FALSE.

logical indicating whether to plot a denoised version of the data reconstructed
using the MOFA factors.

numeric indicating the maximum value to display in the heatmap (i.e. the matrix
values will be capped at max.value).

numeric indicating the minimum value to display in the heatmap (i.e. the matrix
values will be capped at min.value). See predict. Default is FALSE.

further arguments that can be passed to pheatmap

One of the first steps for the annotation of a given factor is to visualise the corresponding weights,
using for example plot_weights or plot_top_weights.
However, one might also be interested in visualising the direct relationship between features and

factors, rather than

looking at "abstract" weights.

This function generates a heatmap for selected features, which should reveal the underlying pattern
that is captured by the latent factor.
A similar function for doing scatterplots rather than heatmaps is plot_data_scatter.

Value

A pheatmap object

Examples

Using an existing trained model

file <- system.fi

le("extdata”, "model.hdf5", package = "MOFA2")

model <- load_model(file)

plot_data_heatmap

(model, factor = 1, show_rownames = FALSE, show_colnames = FALSE)

plot_data_overview 47

plot_data_overview Overview of the input data

Description

Function to do a tile plot showing the missing value structure of the input data

Usage

plot_data_overview(
object,
covariate = 1,
colors = NULL,
show_covariate = FALSE,
show_dimensions = TRUE

)
Arguments

object a MOFA object.

covariate (only for MEFISTO) specifies sample covariate to order samples by in the plot.
This should be a character or a numeric index giving the name or position of a
column present in the covariates slot of the object. Default is the first sample
covariate in covariates slot. NULL does not order by covariate

colors a vector specifying the colors per view (see example for details).

show_covariate (only for MEFISTO) boolean specifying whether to include the covariate in the
plot

show_dimensions
logical indicating whether to plot the dimensions of the data (default is TRUE).

Details

This function is helpful to get an overview of the structure of the data. It shows the model dimen-
sionalities (number of samples, groups, views and features) and it indicates which measurements
are missing.

Value

A ggplot object

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_data_overview(model)

48 plot_data_scatter

plot_data_scatter Scatterplots of feature values against latent factors

Description

Function to do a scatterplot of features against factor values.

Usage

plot_data_scatter(
object,
factor =
view = 1,
groups = "all”,
features = 10,
sign = "all",
color_by = "group",
legend = TRUE,

1,

alpha = 1,
shape_by = NULL,
stroke = NULL,
dot_size = 2.5,
text_size = NULL,
add_1lm = TRUE,

Im_per_group = TRUE,
imputed = FALSE

)
Arguments

object a MOFA object.

factor string with the factor name, or an integer with the index of the factor.

view string with the view name, or an integer with the index of the view. Default is
the first view.

groups groups to plot. Default is "all".

features if an integer (default), the total number of features to plot. If a character vector,
a set of manually-defined features.

sign can be ’positive’, ‘negative’ or ’all’ (default) to show only positive, negative or
all weights, respectively.

color_by specifies groups or values (either discrete or continuous) used to color the dots

(samples). This can be either:
* the string "group": dots are coloured with respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the same of a column in the sample metadata slot

plot_data_scatter

legend
alpha
shape_by

stroke

dot_size
text_size
add_1Im

Im_per_group

imputed

Details

49

* a vector of the same length as the number of samples specifying the value
for each sample.

* a dataframe with two columns: "sample" and "color"
logical indicating whether to add a legend
numeric indicating dot transparency (default is 1).

specifies groups or values (only discrete) used to shape the dots (samples). This
can be either:
* the string "group": dots are shaped with respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the same of a column in the sample metadata slot

* a vector of the same length as the number of samples specifying the value
for each sample.

* adataframe with two columns: "sample" and "shape"

numeric indicating the stroke size (the black border around the dots, default is
NULL, inferred automatically).

numeric indicating dot size (default is 5).
numeric indicating text size (default is 5).
logical indicating whether to add a linear regression line for each plot

logical indicating whether to add a linear regression line separately for each
group

logical indicating whether to include imputed measurements

One of the first steps for the annotation of factors is to visualise the weights using plot_weights
or plot_top_weights. However, one might also be interested in visualising the direct relationship
between features and factors, rather than looking at "abstract" weights.

A similar function for doing heatmaps rather than scatterplots is plot_data_heatmap.

Value

A ggplot object

Examples

Using an existing trained model

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_data_scatter(model)

50 plot_data_vs_cov

plot_data_vs_cov Scatterplots of feature values against sample covariates

Description

Function to do a scatterplot of features against sample covariate values.

Usage

plot_data_vs_cov(
object,
covariate = 1,
warped = TRUE,
factor = 1,
view = 1,
groups = "all",
features = 10,
sign = "all”,
color_by = "group",
legend = TRUE,
alpha = 1,
shape_by = NULL,
stroke = NULL,
dot_size = 2.5,

text_size = NULL,
add_1lm = FALSE,
Im_per_group = FALSE,
imputed = FALSE,
return_data = FALSE

)
Arguments

object a MOFA object using MEFISTO.

covariate string with the covariate name or a samples_metadata column, or an integer with
the index of the covariate

warped logical indicating whether to show the aligned covariate (default: TRUE), only
relevant if warping has been used to align multiple sample groups

factor string with the factor name, or an integer with the index of the factor to take top
features from

view string with the view name, or an integer with the index of the view. Default is
the first view.

groups groups to plot. Default is "all".

features if an integer (default), the total number of features to plot (given by highest

weights). If a character vector, a set of manually-defined features.

plot_data_vs_cov 51

sign can be "positive’, ‘negative’ or ’all’ (default) to show only features with highest
positive, negative or all weights, respectively.

color_by specifies groups or values (either discrete or continuous) used to color the dots
(samples). This can be either:
* the string "group": dots are coloured with respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the same of a column in the sample metadata slot

* a vector of the same length as the number of samples specifying the value
for each sample.

* adataframe with two columns: "sample" and "color"

legend logical indicating whether to add a legend
alpha numeric indicating dot transparency (default is 1).
shape_by specifies groups or values (only discrete) used to shape the dots (samples). This

can be either:

* the string "group": dots are shaped with respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the same of a column in the sample metadata slot

* a vector of the same length as the number of samples specifying the value
for each sample.

* adataframe with two columns: "sample" and "shape"

stroke numeric indicating the stroke size (the black border around the dots, default is
NULL, inferred automatically).

dot_size numeric indicating dot size (default is 5).
text_size numeric indicating text size (default is 5).
add_1m logical indicating whether to add a linear regression line for each plot

Im_per_group logical indicating whether to add a linear regression line separately for each

group
imputed logical indicating whether to include imputed measurements
return_data logical indicating whether to return a data frame instead of a plot

Details

One of the first steps for the annotation of factors is to visualise the weights using plot_weights or
plot_top_weights and inspect the relationship of the factor to the covariate(s) using plot_factors_vs_cov.
However, one might also be interested in visualising the direct relationship between features and
covariate(s), rather than looking at "abstract" weights and possibly look at the interpolated and
extrapolated values by setting imputed to True.

Value

Returns a ggplot2 object or the underlying dataframe if return_data is set to TRUE.

52

Examples

Using an existing trained model

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")

model <- load_model(file)

plot_data_vs_cov(model, factor = 3, features =

plot_dimred

plot_dimred

Plot dimensionality reduction based on MOFA factors

Description

Plot dimensionality reduction based on MOFA factors

Usage

plot_dimred(

object,

method = c("UMAP", "TSNE"),
groups = "all",
show_missing = TRUE,
color_by = NULL,

shape_by = NULL,

color_name
shape_name

NULL,
NULL,

label = FALSE,

dot_size =

1.5,

stroke = NULL,
alpha_missing = 1,
legend = TRUE,
rasterize = FALSE,
return_data = FALSE,

Arguments

object
method

groups

show_missing

a trained MOFA object.

string indicating which method has been used for non-linear dimensionality re-

duction (either 'umap’ or ’tsne’)

character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.

logical indicating whether to include samples for which shape_by or color_by

is missing

plot_dimred

color_by

shape_by

color_name
shape_name
label

dot_size

stroke

alpha_missing
legend
rasterize

return_data

Details

53

specifies groups or values used to color the samples. This can be either: (1) a
character giving the name of a feature present in the training data. (2) a character
giving the same of a column present in the sample metadata. (3) a vector of the
same length as the number of samples specifying discrete groups or continuous
numeric values.

specifies groups or values used to shape the samples. This can be either: (1) a
character giving the name of a feature present in the training data, (2) a character
giving the same of a column present in the sample metadata. (3) a vector of the
same length as the number of samples specifying discrete groups.

name for color legend.
name for shape legend.

logical indicating whether to label the medians of the clusters. Only if color_by
is specified

numeric indicating dot size.

numeric indicating the stroke size (the black border around the dots, default is
NULL, inferred automatically).

numeric indicating dot transparency of missing data.

logical indicating whether to add legend.

logical indicating whether to rasterize plot using geom_point_rast

logical indicating whether to return the long data frame to plot instead of plotting

extra arguments passed to run_umap or run_tsne.

This function plots dimensionality reduction projections that are stored in the dim_red slot. Typ-
ically this contains UMAP or t-SNE projections computed using run_tsne or run_umap, respec-

tively.

Value

Returns a ggplot2 object or a long data.frame (if return_data is TRUE)

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Run UMAP

model <- run_umap(model)

Plot UMAP

plot_dimred(model, method = "UMAP")

Plot UMAP, colour by Factor 1 values
plot_dimred(model, method = "UMAP"”, color_by = "Factor1")

54 plot_enrichment

Plot UMAP, colour by the values of a specific feature
plot_dimred(model, method = "UMAP", color_by = "feature_0_view_0")

plot_enrichment Plot output of gene set Enrichment Analysis

Description

Method to plot the results of the gene set Enrichment Analysis

Usage

plot_enrichment(
enrichment.results,
factor,
alpha = 0.1,
max.pathways = 25,
text_size = 1,
dot_size = 5

Arguments

enrichment.results
output of run_enrichment function

factor a string with the factor name or an integer with the factor index
alpha p.value threshold to filter out gene sets

max.pathways maximum number of enriched pathways to display

text_size text size
dot_size dot size
Details

it requires run_enrichment to be run beforehand.

Value

a ggplot2 object

plot_enrichment_detailed

55

plot_enrichment_detailed

Plot detailed output of the Feature Set Enrichment Analysis

Description

Method to plot a detailed output of the Feature Set Enrichment Analysis (FSEA).

Each row corresponds to a significant pathway, sorted by statistical significance, and each dot cor-

responds to a gene.

For each pathway, we display the top genes of the pathway sorted by the corresponding feature
statistic (by default, the absolute value of the weight) The top genes with the highest statistic
(max.genes argument) are displayed and labelled in black. The remaining genes are colored in

grey.

Usage

plot_enrichment_detailed(
enrichment.results,
factor,
alpha = 0.1,
max.genes = 5,
max.pathways = 10,
text_size = 3

Arguments

enrichment.results
output of run_enrichment function

factor string with factor name or numeric with factor index
alpha p-value threshold to filter out feature sets
max.genes maximum number of genes to display, per pathway

max.pathways maximum number of enriched pathways to display

text_size size of the text to label the top genes

Value

a ggplot2 object

56 plot_factor

plot_enrichment_heatmap
Heatmap of Feature Set Enrichment Analysis results

Description

This method generates a heatmap with the adjusted p.values that result from the the feature set
enrichment analysis. Rows are feature sets and columns are factors.

Usage

plot_enrichment_heatmap(
enrichment.results,
alpha = 0.1,
cap = le-50,
log_scale = TRUE,

Arguments

enrichment.results
output of run_enrichment function

alpha FDR threshold to filter out unsignificant feature sets which are not represented
in the heatmap. Default is 0.10.

cap cap p-values below this threshold
log_scale logical indicating whether to plot the -log of the p.values.

extra arguments to be passed to the pheatmap function

Value

produces a heatmap

plot_factor Beeswarm plot of factor values

Description

Beeswarm plot of the latent factor values.

plot_factor

Usage
plot_factor(

object,
factors = 1,
groups = "all
group_by = "g
color_by = "g
shape_by = NU
add_dots = TR
dot_size = 2,
dot_alpha = 1
add_violin =

violin_alpha
color_violin
add_boxplot
boxplot_alpha
color_boxplot
show_missing
scale = FALSE
dodge = FALSE
color_name =
shape_name =
stroke = NULL
legend = TRUE

57

roup”,
roup”,
LL,
UE,

’

FALSE,
0.5,
TRUE,

FALSE,

0.5,
= TRUE,

= TRUE,

’

’
nn

’
nn

’

’

’

rasterize = FALSE

Arguments

object

factors

groups

group_by

color_by

a trained MOFA object.

character vector with the factor names, or numeric vector with the indices of the
factors to use, or "all" to plot all factors.

character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.
specifies grouping of samples:
* (default) the string "group": in this case, the plot will color samples with
respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the name of a column in the sample metadata slot
* a vector of the same length as the number of samples specifying the value
for each sample.
specifies color of samples. This can be either:
* (default) the string "group": in this case, the plot will color the dots with
respect to their predefined groups.
* acharacter giving the name of a feature that is present in the input data
* acharacter giving the name of a column in the sample metadata slot

58

shape_by

add_dots
dot_size
dot_alpha
add_violin
violin_alpha
color_violin
add_boxplot
boxplot_alpha
color_boxplot

show_missing

scale
dodge
color_name
shape_name
stroke
legend

rasterize

Details

plot_factor

* a vector of the same length as the number of samples specifying the value
for each sample.

specifies shape of samples. This can be either:

* (default) the string "group": in this case, the plot will shape the dots with
respect to their predefined groups.

* acharacter giving the name of a feature that is present in the input data
* acharacter giving the name of a column in the sample metadata slot

* a vector of the same length as the number of samples specifying the value
for each sample.

logical indicating whether to add dots.
numeric indicating dot size.

numeric indicating dot transparency.

logical indicating whether to add violin plots
numeric indicating violin plot transparency.
logical indicating whether to color violin plots.
logical indicating whether to add box plots
numeric indicating boxplot transparency.
logical indicating whether to color box plots.

logical indicating whether to remove samples for which shape_by or color_by
is missing.

logical indicating whether to scale factor values.

logical indicating whether to dodge the dots (default is FALSE).

name for color legend (usually only used if color_by is not a character itself).
name for shape legend (usually only used if shape_by is not a character itself).
numeric indicating the stroke size (the black border around the dots).

logical indicating whether to add a legend to the plot (default is TRUE).

logical indicating whether to rasterize the plot (default is FALSE).

One of the main steps for the annotation of factors is to visualise and color them using known
covariates or phenotypic data.

This function generates a Beeswarm plot of the sample values in a given latent factor.

Similar functions are plot_factors for doing scatter plots.

Value

Returns a ggplot?2

plot_factors

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Plot Factors 1 and 2 and colour by "group”
plot_factor(model, factors = c(1,2), color_by="group”)

Plot Factor 3 and colour by the value of a specific feature
plot_factor(model, factors = 3, color_by="feature_981_view_1")

Add violin plots

plot_factor(model, factors = c(1,2), color_by="group”, add_violin

Scale factor values from -1 to 1
plot_factor(model, factors = c(1,2), scale = TRUE)

TRUE)

59

plot_factors

Scatterplots of two factor values

Description

Scatterplot of the values of two latent factors.

Usage

plot_factors(
object,

factors = c(1, 2),
groups = "all",

show_missing = TRUE,

scale = FALSE,

color_by = NULL,
shape_by = NULL,
color_name = NULL,
NULL,

shape_name
dot_size = 2,
alpha = 1,

legend = TRUE,
stroke = NULL,

return_data = FALSE

Arguments

object a trained MOFA object.

60

factors

groups

show_missing

scale

color_by

shape_by

color_name
shape_name
dot_size
alpha
legend

stroke

return_data

Details

plot_factors

a vector of length two with the factors to plot. Factors can be specified either as
a characters

character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.

logical indicating whether to include samples for which shape_by or color_by
is missing
logical indicating whether to scale factor values.

specifies groups or values used to color the samples. This can be either: (1) a
character giving the name of a feature present in the training data. (2) a character
giving the name of a column present in the sample metadata. (3) a vector of the
same length as the number of samples specifying discrete groups or continuous
numeric values.

specifies groups or values used to shape the samples. This can be either: (1) a
character giving the name of a feature present in the training data, (2) a character
giving the name of a column present in the sample metadata. (3) a vector of the
same length as the number of samples specifying discrete groups.

name for color legend.

name for shape legend.

numeric indicating dot size (default is 2).
numeric indicating dot transparency (default is 1).
logical indicating whether to add legend.

numeric indicating the stroke size (the black border around the dots, default is
NULL, inferred automatically).

logical indicating whether to return the data frame to plot instead of plotting

One of the first steps for the annotation of factors is to visualise and group/color them using known
covariates such as phenotypic or clinical data. This method generates a single scatterplot for the
combination of two latent factors. TO-FINISH... plot_factors for doing Beeswarm plots for

factors.

Value

Returns a ggplot2 object

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Scatterplot of factors 1 and 2
plot_factors(model, factors = c(1,2))

Shape dots by a column in the metadata

plot_factors_vs_cov 61

plot_factors(model, factors = c(1,2), shape_by="group")

Scale factor values from -1 to 1
plot_factors(model, factors = c(1,2), scale = TRUE)

plot_factors_vs_cov Scatterplots of a factor’s values against the sample covariates

Description

Scatterplots of a factor’s values against the sample covariates

Usage
plot_factors_vs_cov(
object,
factors = "all",

covariates = NULL,
warped = TRUE,
show_missing = TRUE,
scale = FALSE,
color_by = NULL,
shape_by = NULL,
color_name = NULL,
shape_name = NULL,
dot_size = 1.5,
alpha = 1,

stroke = NULL,
legend = TRUE,
rotate_x = FALSE,
rotate_y = FALSE,
return_data = FALSE,
show_variance = FALSE

)
Arguments

object a trained MOFA object using MEFISTO.

factors character or numeric specifying the factor(s) to plot, default is "all"

covariates specifies sample covariate(s) to plot against: (1) a character giving the name of
a column present in the sample covariates or sample metadata. (2) a character
giving the name of a feature present in the training data. (3) a vector of the
same length as the number of samples specifying continuous numeric values per
sample. Default is the first sample covariates in covariates slot

warped logical indicating whether to show the aligned covariate (default: TRUE), only

relevant if warping has been used to align multiple sample groups

62

show_missing

scale

color_by

shape_by

color_name
shape_name
dot_size
alpha
stroke
legend
rotate_x
rotate_y
return_data

show_variance

Details

plot_factors_vs_cov

(for 1-dim covariates) logical indicating whether to include samples for which
shape_by or color_by is missing

logical indicating whether to scale factor values.

(for 1-dim covariates) specifies groups or values used to color the samples. This
can be either: (1) a character giving the name of a feature present in the training
data. (2) a character giving the same of a column present in the sample metadata.
(3) a vector of the same length as the number of samples specifying discrete
groups or continuous numeric values.

(for 1-dim covariates) specifies groups or values used to shape the samples. This
can be either: (1) a character giving the name of a feature present in the training
data, (2) a character giving the same of a column present in the sample metadata.
(3) a vector of the same length as the number of samples specifying discrete
groups.

(for 1-dim covariates) name for color legend.

(for 1-dim covariates) name for shape legend.

(for 1-dim covariates) numeric indicating dot size.

(for 1-dim covariates) numeric indicating dot transparency.

(for 1-dim covariates) numeric indicating the stroke size

(for 1-dim covariates) logical indicating whether to add legend.

(for spatial, 2-dim covariates) Rotate covariate on x-axis

(for spatial, 2-dim covariates) Rotate covariate on y-axis

logical indicating whether to return the data frame to plot instead of plotting

(for 1-dim covariates) logical indicating whether to show the marginal variance
of inferred factor values (only relevant for 1-dimensional covariates)

To investigate the factors pattern along the covariates (such as time or a spatial coordinate) this
function an be used to plot a scatterplot of the factor against the values of each covariate

Value

Returns a ggplot2 object

Examples

Using an existing trained model

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_factors_vs_cov(model)

plot_factor_cor 63

plot_factor_cor Plot correlation matrix between latent factors

Description

Function to plot the correlation matrix between the latent factors.

Usage
plot_factor_cor(object, method = "pearson”, ...)
Arguments
object a trained MOFA object.
method a character indicating the type of correlation coefficient to be computed: pearson
(default), kendall, or spearman.
arguments passed to corrplot
Details

This method plots the correlation matrix between the latent factors.

The model encourages the factors to be uncorrelated, so this function usually yields a diagonal cor-
relation matrix.

However, it is not a hard constraint such as in Principal Component Analysis and correlations be-
tween factors can occur, particularly with large number factors.

Generally, correlated factors are redundant and should be avoided, as they make interpretation
harder. Therefore, if you have too many correlated factors we suggest you try reducing the number
of factors.

Value

Returns a symmetric matrix with the correlation coefficient between every pair of factors.

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Plot correlation between all factors
plot_factor_cor(model)

64 plot_group_kernel

plot_group_kernel Heatmap plot showing the group-group correlations per factor

Description

Heatmap plot showing the group-group correlations inferred by the model per factor

Usage
plot_group_kernel(object, factors = "all”, groups = "all”, ...)
Arguments
object a trained MOFA object using MEFISTO.
factors character vector with the factors names, or numeric vector indicating the indices
of the factors to use
groups character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.
additional parameters that can be passed to pheatmap
Details

The heatmap gives insight into the clustering of the patterns that factors display along the covariate
in each group. A correlation of 1 indicates that the module captured by a factor shows identical
patterns across groups, a correlation of zero that it shows distinct patterns, a negative correlation
that the patterns go in opposite directions.

Value

Returns a ggplot, gg object containing the heatmaps

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_group_kernel (model)

plot_interpolation_vs_covariate 65

plot_interpolation_vs_covariate
Plot interpolated factors versus covariate (1-dimensional)

Description

make a plot of interpolated covariates versus covariate

Usage
plot_interpolation_vs_covariate(
object,
covariate = 1,
factors = "all",

only_mean = TRUE,
show_observed = TRUE

)
Arguments
object a trained MOFA object using MEFISTO.
covariate covariate to use for plotting
factors character or numeric specifying the factor(s) to plot, default is "all"
only_mean show only mean or include uncertainties?

show_observed include observed factor values as dots on the plot

Details

to be filled

Value

Returns a ggplot2 object

Examples

Using an existing trained model

file <- system.file("extdata”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

model <- interpolate_factors(model, new_values = seq(@,1.1,0.1))
plot_interpolation_vs_covariate(model, covariate = "time"”, factors = 1)

66 plot_smoothness

plot_sharedness Barplot showing the sharedness per factor

Description

Barplot indicating a sharedness score (between O (non-shared) and 1 (shared)) per factor

Usage

plot_sharedness(object, factors = "all"”, color = "#B8CF87")

Arguments
object a trained MOFA object using MEFISTO.
factors character vector with the factors names, or numeric vector indicating the indices
of the factors to use
color for the shared part of the bar
Details

The sharedness score is calculated as the distance of the learnt group correlation matrix to the
identity matrix in terms of the mean absolute distance on the off-diagonal elements.

Value

Returns a ggplot2 object

plot_smoothness Barplot showing the smoothness per factor

Description

Barplot indicating a smoothness score (between 0 (non-smooth) and 1 (smooth)) per factor

Usage
plot_smoothness(object, factors = "all”, color = "cadetblue”)
Arguments
object a trained MOFA object using MEFISTO.
factors character vector with the factors names, or numeric vector indicating the indices

of the factors to use

color for the smooth part of the bar

plot_top_weights 67

Details
The smoothness score is given by the scale parameter for the underlying Gaussian process of each
factor.

Value

Returns a ggplot2 object

Examples

Using an existing trained model

file <- system.file("extdata"”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

smoothness_bars <- plot_smoothness(model)

plot_top_weights Plot top weights

Description

Plot top weights for a given factor and view.

Usage
plot_top_weights(
object,
view = 1,
factors = 1,
nfeatures = 10,
abs = TRUE,
scale = TRUE,
sign = "all”
)
Arguments
object a trained MOFA object.
view a string with the view name, or an integer with the index of the view.
factors a character string with factors names, or an integer vector with factors indices.
nfeatures number of top features to display. Default is 10
abs logical indicating whether to use the absolute value of the weights (Default is
FALSE).
scale logical indicating whether to scale all weights from -1 to 1 (or from O to 1 if
abs=TRUE). Default is TRUE.
sign can be ’positive’, "negative’ or "all’ to show only positive, negative or all weights,

respectively. Default is "all’.

68 plot_variance_explained

Details

An important step to annotate factors is to visualise the corresponding feature weights.

This function displays the top features with highest loading whereas the function plot_top_weights
plots all weights for a given latent factor and view.

Importantly, the weights of the features within a view have relative values and they should not be
interpreted in an absolute scale. Therefore, for interpretability purposes we always recommend to
scale the weights with scale=TRUE.

Value

Returns a ggplot2 object

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Plot top weights for Factors 1 and 2 and View 1
plot_top_weights(model, view = 1, factors = c(1,2))

Do not take absolute value
plot_weights(model, abs = FALSE)

plot_variance_explained
Plot variance explained by the model

Description

plots the variance explained by the MOFA factors across different views and groups, as specified
by the user. Consider using cowplot::plot_grid(plotlist = ...) to combine the multiple plots that this
function generates.

Usage

plot_variance_explained(
object,
x = "view",
y = "factor”,
split_by = NA,
plot_total = FALSE,
factors = "all”,
min_r2 = 0,
max_r2 = NULL,
legend = TRUE,
use_cache = TRUE,

plot_variance_explained 69

)
Arguments
object a MOFA object
X character specifying the dimension for the x-axis ("view", "factor", or "group").
y character specifying the dimension for the y-axis ("view", "factor", or "group").
split_by character specifying the dimension to be faceted ("view", "factor”, or "group").
plot_total logical value to indicate if to plot the total variance explained (for the variable
in the x-axis)
factors character vector with a factor name(s), or numeric vector with the index(es) of
the factor(s). Default is "all".
min_r2 minimum variance explained for the color scheme (default is 0).
max_r2 maximum variance explained for the color scheme.
legend logical indicating whether to add a legend to the plot (default is TRUE).
use_cache logical indicating whether to use cache (default is TRUE)
extra arguments to be passed to calculate_variance_explained
Value

A list of ggplot objects (if plot_total is TRUE) or a single ggplot object

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Calculate variance explained (R2)
r2 <- calculate_variance_explained(model)

Plot variance explained values (view as x-axis, and factor as y-axis)
plot_variance_explained(model, x="view"”, y="factor")

Plot variance explained values (view as x-axis, and group as y-axis)
plot_variance_explained(model, x="view"”, y="group")

Plot variance explained values for factors 1 to 3
plot_variance_explained(model, x="view”, y="group"”, factors=1:3)

Scale R2 values
plot_variance_explained(model, max_r2=0.25)

70 plot_variance_explained_by_covariates

plot_variance_explained_by_covariates
Plot variance explained by the smooth components of the model

Description

This function plots the variance explained by the smooth components (Gaussian processes) under-
lying the factors in MEFISTO across different views and groups, as specified by the user.

Usage
plot_variance_explained_by_covariates(
object,
factors = "all”,
x = "view",
y = "factor”,
split_by = NA,

min_r2 = 0,

max_r2 = NULL,
compare_total = FALSE,
legend = TRUE

)

Arguments
object a MOFA object
factors character vector with a factor name(s), or numeric vector with the index(es) of

the factor(s). Default is "all".

X character specifying the dimension for the x-axis ("view", "factor", or "group").
y character specifying the dimension for the y-axis ("view", "factor", or "group").
split_by character specifying the dimension to be faceted ("view", "factor”, or "group").
min_r2 minimum variance explained for the color scheme (default is 0).
max_r2 maximum variance explained for the color scheme.

compare_total plot corresponding variance explained in total in addition

legend logical indicating whether to add a legend to the plot (default is TRUE).

Details
Note that this function requires the use of MEFISTO. To activate the functional MEFISTO frame-
work, specify mefisto_options when preparing the training using prepare_mofa

Value

A list of ggplot objects (if compare_total is TRUE) or a single ggplot object. Consider using
cowplot::plot_grid(plotlist = ...) to combine the multiple plots that this function generates.

plot_variance_explained_per_feature 71

Examples

load_model

file <- system.file("extdata"”, "MEFISTO_model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_variance_explained_by_covariates(model)

compare to total variance explained
plist <- plot_variance_explained_by_covariates(model, compare_total = TRUE)
cowplot::plot_grid(plotlist = plist)

plot_variance_explained_per_feature
Plot variance explained by the model for a set of features

Description

Returns a tile plot with a group on the X axis and a feature along the Y axis

Usage

plot_variance_explained_per_feature(
object,
view,
features = 10,
split_by_factor = FALSE,
group_features_by = NULL,
groups = "all”,
factors = "all",
min_r2 = 0,
max_r2 = NULL,
legend = TRUE,
return_data = FALSE,

)
Arguments
object a MOFA object.
view a view name or index.
features a vector with indices or names for features from the respective view, or number

of top features to be fetched by their loadings across specified factors. "all" to
plot all features.

split_by_factor

logical indicating whether to split R2 per factor or plot R2 jointly
group_features_by

column name of features metadata to group features by

72

groups
factors
min_r2
max_r2
legend

return_data

Value

ggplot object

Examples

plot_weights

a vector with indices or names for sample groups (default is all)

a vector with indices or names for factors (default is all)

minimum variance explained for the color scheme (default is 0).

maximum variance explained for the color scheme.

logical indicating whether to add a legend to the plot (default is TRUE).
logical indicating whether to return the data frame to plot instead of plotting

extra arguments to be passed to calculate_variance_explained

Using an existing trained model

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)
plot_variance_explained_per_feature(model, view = 1)

plot_weights

Plot distribution of feature weights (weights)

Description

An important step t
This function plots

o annotate factors is to visualise the corresponding feature weights.
all weights for a given latent factor and view, labeling the top ones.

In contrast, the function plot_top_weights displays only the top features with highest loading.

Usage

plot_weights(
object,
view = 1,
factors = 1,
nfeatures =

10,

color_by = NULL,
shape_by = NULL,

abs = FALSE,
manual = NULL,

color_manual = NULL,

scale = TRUE,
dot_size = 1,
text_size = 5,
legend = TRUE,
return_data =

FALSE

plot_weights

Arguments
object
view

factors

nfeatures

color_by

shape_by

abs

manual

color_manual

scale

dot_size
text_size
legend

return_data

Value

73

a MOFA object.
a string with the view name, or an integer with the index of the view.

character vector with the factor name(s), or numeric vector with the index of the
factor(s).

number of top features to label.

specifies groups or values (either discrete or continuous) used to color the dots
(features). This can be either:

* (default) the string "group": in this case, the plot will color the dots with
respect to their predefined groups.

* acharacter giving the name of a feature that is present in the input data

* acharacter giving the same of a column in the features metadata slot

* a vector of the same length as the number of features specifying the value
for each feature

¢ a dataframe with two columns: "feature" and "color"

specifies groups or values (only discrete) used to shape the dots (features). This
can be either:

* (default) the string "group": in this case, the plot will shape the dots with
respect to their predefined groups.

* acharacter giving the name of a feature that is present in the input data
¢ acharacter giving the same of a column in the features metadata slot

* a vector of the same length as the number of features specifying the value
for each feature

* adataframe with two columns: "feature" and "shape"
logical indicating whether to take the absolute value of the weights.

A nested list of character vectors with features to be manually labelled (see the
example for details).

a character vector with colors, one for each element of 'manual’

logical indicating whether to scale all weights from -1 to 1 (or from O to 1 if
abs=TRUE).

numeric indicating the dot size.
numeric indicating the text size.
logical indicating whether to add legend.

logical indicating whether to return the data frame to plot instead of plotting

A ggplot object or a data. frame if return_data is TRUE

74 plot_weights_heatmap

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Plot distribution of weights for Factor 1 and View 1
plot_weights(model, view = 1, factors = 1)

Plot distribution of weights for Factors 1 to 3 and View 1
plot_weights(model, view = 1, factors = 1:3)

Take the absolute value and highlight the top 10 features
plot_weights(model, view = 1, factors = 1, nfeatures = 10, abs = TRUE)

Change size of dots and text
plot_weights(model, view = 1, factors = 1, text_size = 5, dot_size = 1)

plot_weights_heatmap Plot heatmap of the weights

Description

Function to visualize the weights for a given set of factors in a given view.

This is useful to visualize the overall pattern of the weights but not to individually characterise the
factors.

To inspect the weights of individual factors, use the functions plot_weights and plot_top_weights

Usage
plot_weights_heatmap(
object,
view = 1,
features = "all”,
factors = "all”,

threshold = 0,

)
Arguments
object a trained MOFA object.
view character vector with the view name(s), or numeric vector with the index of the
view(s) to use. Default is the first view.
features character vector with the feature name(s), or numeric vector with the index of

the feature(s) to use. Default is *all’.

plot_weights_scatter 75

factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’.

threshold threshold on absolute weight values, so that weights with a magnitude below
this threshold (in all factors) are removed

extra arguments passed to pheatmap.

Value

A pheatmap object

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_weights_heatmap(model)

plot_weights_scatter Scatterplots of weights

Description

Scatterplot of the weights values for two factors

Usage

plot_weights_scatter(
object,
factors,
view = 1,
color_by = NULL,
shape_by = NULL,
dot_size = 1,

nn

name_color = R

name_shape = "",
show_missing = TRUE,
abs = FALSE,
scale = TRUE,
legend = TRUE

)

Arguments
object a trained MOFA object.
factors a vector of length two with the factors to plot. Factors can be specified either as

a characters using the factor names, or as numeric with the index of the factors

76

view

color_by

shape_by

dot_size
name_color
name_shape

show_missing

abs

scale

legend

Details

plot_weights_scatter
character vector with the view name, or numeric vector with the index of the
view to use. Default is the first view.
specifies groups or values used to color the features. This can be either

* acharacter giving the same of a column in the feature metadata slot
* a vector specifying the value for each feature.

* a dataframe with two columns: "feature" and "color"
specifies groups or values used to shape the features. This can be either

* acharacter giving the same of a column in the feature metadata slot
* a vector specifying the value for each feature.

* adataframe with two columns: "feature" and "shape"
numeric indicating dot size.
name for color legend (usually only used if color_by is not a character itself)
name for shape legend (usually only used if shape_by is not a character itself)

logical indicating whether to include dots for which shape_by or color_by is
missing

logical indicating whether to take the absolute value of the weights.

logical indicating whether to scale all weights from -1 to 1 (or from O to 1 if
abs=TRUE).

logical indicating whether to add a legend to the plot (default is TRUE).

One of the first steps for the annotation of factors is to visualise and group/color them using known
covariates such as phenotypic or clinical data. This method generates a single scatterplot for the
combination of two latent factors.

Value

Returns a ggplot2 object

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

plot_weights_scatter(model, factors = 1:2)

predict 77

predict Do predictions using a fitted MOFA

Description

This function uses the latent factors and the weights to do data predictions.

Usage
predict(
object,
views = "all",
groups = "all",
factors = "all",
add_intercept = TRUE
)
Arguments
object a MOFA object.
views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".
groups character vector with the group name(s), or numeric vector with the group in-
dex(es). Default is "all".
factors character vector with the factor name(s) or numeric vector with the factor in-

dex(es). Default is "all".
add_intercept add feature intercepts to the prediction (default is TRUE).

Details

MOFA generates a denoised and condensed low-dimensional representation of the data that captures
the main sources of heterogeneity of the data. This representation can be used to reconstruct a
denoised representation of the data, simply using the equation Y = WX. For more mathematical details
read the supplementary methods of the manuscript.

Value

Returns a list with the data reconstructed by the model predictions.

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Predict observations for all data modalities
predictions <- predict(model)

78 prepare_mofa

prepare_mofa Prepare a MOFA for training

Description

Function to prepare a MOFA object for training. It requires defining data, model and training options.

Usage

prepare_mofa(
object,
data_options = NULL,
model_options = NULL,
training_options = NULL,
stochastic_options = NULL,
mefisto_options = NULL

Arguments

object an untrained MOFA

data_options list of data_options (see get_default_data_options details). If NULL, de-
fault options are used.

model_options list of model options (see get_default_model_options for details). If NULL,
default options are used.
training_options

list of training options (see get_default_training_options for details). If
NULL, default options are used.

stochastic_options

list of options for stochastic variational inference (see get_default_stochastic_options
for details). If NULL, default options are used.

mefisto_options

list of options for mefisto (see get_default_mefisto_options for details). If
NULL, default options are used.

Details

This function is called after creating a MOFA object (using create_mofa) and before starting the
training (using run_mofa). Here, we can specify different options for the data (data_options), the
model (model_options) and the training (training_options, stochastic_options). Take a look at the
individual default options for an overview using the get_default_XXX_options functions above.

Value

Returns an untrained MOFA with specified options filled in the corresponding slots

run_enrichment 79

Examples

Using an existing simulated data with two groups and two views
file <- system.file("extdata"”, "test_data.RData”, package = "MOFA2")

Load data dt (in data.frame format)
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Prepare MOFA object using default options
MOFAmodel <- prepare_mofa(MOFAmodel)

Prepare MOFA object changing some of the default model options values
model_opts <- get_default_model_options(MOFAmodel)
model_opts$num_factors <- 10

MOFAmodel <- prepare_mofa(MOFAmodel, model_options = model_opts)

run_enrichment Run feature set Enrichment Analysis

Description

Method to perform feature set enrichment analysis. Here we use a slightly modified version of the
pcgse function.

Usage

run_enrichment(
object,
view,
feature.sets,
factors = "all",
set.statistic = c("mean.diff"”, "rank.sum"),
statistical.test = c("parametric”, "cor.adj.parametric”, "permutation”),
sign = c("all”, "positive”, "negative"),
min.size = 10,

nperm = 1000,
p.adj.method = "BH",
alpha = 0.1,
verbose = TRUE

)

Arguments
object a MOFA object.
view a character with the view name, or a numeric vector with the index of the view

to use.

80 run_enrichment

feature.sets data structure that holds feature set membership information. Must be a binary
membership matrix (rows are feature sets and columns are features). See details
below for some pre-built gene set matrices.

factors character vector with the factor names, or numeric vector with the index of the
factors for which to perform the enrichment.

set.statistic the set statistic computed from the feature statistics. Must be one of the follow-
ing: "mean.diff" (default) or "rank.sum".

statistical.test
the statistical test used to compute the significance of the feature set statistics
under a competitive null hypothesis. Must be one of the following: "parametric"

"non

(default), "cor.adj.parametric”, "permutation”.

sign use only "positive" or "negative" weights. Default is "all".
min.size Minimum size of a feature set (default is 10).
nperm number of permutations. Only relevant if statistical.test is set to "permutation”.

Default is 1000

p.adj.method Method to adjust p-values factor-wise for multiple testing. Can be any method
in p.adjust.methods(). Default uses Benjamini-Hochberg procedure.

alpha FDR threshold to generate lists of significant pathways. Default is 0.1
verbose boolean indicating whether to print messages on progress
Details

The aim of this function is to relate each factor to pre-defined biological pathways by performing a

gene set enrichment analysis on the feature weights.

This function is particularly useful when a factor is difficult to characterise based only on the genes

with the highest weight.

We provide a few pre-built gene set matrices in the MOFAdata package. See https://github.com/bioFAM/MOFAdata
for details.

The function we implemented is based on the pcgse function with some modifications. Please read

this paper https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543476 for details on the math.

Value

a list with five elements:

\strong{pval}: matrices with nominal p-values.
\strong{pval.adj}:

matrices with FDR-adjusted p-values.
\strong{feature.statistics}:

matrices with the local (feature-wise) statistics.
\strong{set.statistics}:

matrices with the global (gene set-wise) statistics.
\strong{sigPathways}

list with significant pathways per factor.

run_mofta 81

run_mofa Train a MOFA model

Description

Function to train an untrained MOFA object.

Usage

run_mofa(object, outfile = NULL, save_data = TRUE, use_basilisk = FALSE)

Arguments
object an untrained MOFA object
outfile output file for the model (.hdf5 format). If NULL, a temporary file is created.
save_data logical indicating whether to save the training data in the hdf5 file. This is useful

for some downstream analysis (mainly functions with the prefix plot_data), but
it can take a lot of disk space.

use_basilisk use basilisk to automatically install a conda environment with mofapy2 and
all dependencies? If FALSE (default), you should specify the right python bi-
nary when loading R with reticulate: :use_python(..., force=TRUE) or
the right conda environment with reticulate: :use_condaenv(. .., force=TRUE).

Details

This function is called once a MOFA object has been prepared (using prepare_mofa) In this step

the R package calls the mofapy2 Python package, where model training is performed.

The interface with Python is done with the reticulate package. If you have several versions of
Python installed and R is not detecting the correct one, you can change it using reticulate: :use_python
when loading the R session. Alternatively, you can let us install mofapy2 for you using basilisk

if you set use_basilisk to TRUE

Value

a trained MOFA object

Examples

Load data (in data.frame format)
file <- system.file("extdata"”, "test_data.RData", package = "MOFA2")
load(file)

Create the MOFA object
MOFAmodel <- create_mofa(dt)

Prepare the MOFA object with default options
MOFAmodel <- prepare_mofa(MOFAmodel)

82 run_tsne

Run the MOFA model
Not run: MOFAmodel <- run_mofa(MOFAmodel, use_basilisk = TRUE)

run_tsne Run t-SNE on the MOFA factors

Description

Run t-SNE on the MOFA factors

Usage
run_tsne(object, factors = "all", groups = "all"”, ...)
Arguments
object a trained MOFA object.
factors character vector with the factor names, or numeric vector with the indices of the
factors to use, or "all" to use all factors (default).
groups character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use all groups (default).
arguments passed to Rtsne
Details

This function calls Rtsne to calculate a TSNE representation from the MOFA factors. Subse-
quently, you can plot the TSNE representation with plot_dimred or fetch the coordinates using
plot_dimred(..., method="TSNE", return_data=TRUE). Remember to use set.seed before the
function call to get reproducible results.

Value

Returns a MOFA object with the MOFAobject@dim_red slot filled with the t-SNE output

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Run
Not run: model <- run_tsne(model, perplexity = 15)

Plot
Not run: model <- plot_dimred(model, method="TSNE")

Fetch data
Not run: tsne.df <- plot_dimred(model, method="TSNE", return_data=TRUE)

run_umap

83

run_umap

Run UMAP on the MOFA factors

Description

Run UMAP on the MOFA factors

Usage

run_umap (
object,

factors = "all",
groups = "all",
n_neighbors = 30,
min_dist = 0.3,

metric = "cosine”,
)
Arguments
object a trained MOFA object.
factors character vector with the factor names, or numeric vector with the indices of the
factors to use, or "all" to use all factors (default).
groups character vector with the groups names, or numeric vector with the indices of

n_neighbors

the groups of samples to use, or "all" to use all groups (default).

number of neighbouring points used in local approximations of manifold struc-
ture. Larger values will result in more global structure being preserved at the
loss of detailed local structure. In general this parameter should often be in the
range 5 to 50.

min_dist This controls how tightly the embedding is allowed compress points together.
Larger values ensure embedded points are more evenly distributed, while smaller
values allow the algorithm to optimise more accurately with regard to local
structure. Sensible values are in the range 0.01 to 0.5
metric choice of metric used to measure distance in the input space
arguments passed to umap
Details

This function calls umap to calculate a UMAP representation from the MOFA factors For details
on the hyperparameters of UMAP see the documentation of umap. Subsequently, you can plot
the UMAP representation with plot_dimred or fetch the coordinates using plot_dimred(...,
method="UMAP", return_data=TRUE). Remember to use set.seed before the function call to get
reproducible results.

84 samples_metadata

Value

Returns a MOFA object with the MOFAobject@dim_red slot filled with the UMAP output

Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Change hyperparameters passed to umap

Not run: model <- run_umap(model, min_dist = ©.01, n_neighbors = 10)
Plot

Not run: model <- plot_dimred(model, method="UMAP")

Fetch data
Not run: umap.df <- plot_dimred(model, method="UMAP", return_data=TRUE)

samples_metadata samples_metadata: retrieve sample metadata

Description

samples_metadata: retrieve sample metadata
Usage

samples_metadata(object)

samples_metadata(object) <- value

S4 method for signature 'MOFA'
samples_metadata(object)

S4 replacement method for signature 'MOFA,data.frame'’
samples_metadata(object) <- value

Arguments
object a MOFA object.
value data frame with sample metadata, it must at least contain the columns sample
and group. The order of the rows must match the order of samples_names(object)
Value

a data frame with sample metadata

samples_names

Examples

Using an existing trained model on simulated data

file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

samples_metadata(model)

85

samples_names samples_names: set and retrieve sample names

Description

samples_names: set and retrieve sample names

Usage

samples_names(object)
samples_names(object) <- value

S4 method for signature 'MOFA'
samples_names(object)

S4 replacement method for signature 'MOFA,list’
samples_names(object) <- value

Arguments

object a MOFA object.

value list of character vectors with the sample names for every group
Value

list of character vectors with the sample names for each group

Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

samples_names(model)

86 set_covariates

select_model Select a model from a list of trained MOFA objects based on the best
ELBO value

Description

Different objects of MOFA are compared in terms of the final value of the ELBO statistics and the
model with the highest ELBO value is selected.

Usage
select_model (models, plot = FALSE)

Arguments

models a list containing MOFA objects.

plot boolean indicating whether to show a plot of the ELBO for each model instance

Value

A MOFA object

set_covariates Add covariates to a MOFA model

Description

Function to add continuous covariate(s) to a MOFA object for training with MEFISTO

Usage

set_covariates(object, covariates)

Arguments
object an untrained MOFA
covariates Sample-covariates to be passed to the model. This can be either:

* acharacter, specifying columns already present in the samples_metadata of
the object

* a data.frame with columns "sample", "covariate", "value". Sample names
need to match those present in the data

* a matrix with samples in columns and covariate(s) in row(s)

Note that the covariate should be numeric and continuous.

subset_factors 87

Details
To activate the functional MEFISTO framework, specify mefisto_options when preparing the train-
ing using prepare_mofa

Value

Returns an untrained MOFA with covariates filled in the corresponding slots

Examples

#' # Simulate data

dd <- make_example_data(sample_cov = seq(@,1,length.out = 100), n_samples = 100, n_factors = 4)

Create MOFA object
sm <- create_mofa(data = dd$data)

Add a covariate
sm <- set_covariates(sm, covariates = dd$sample_cov)
sm

subset_factors Subset factors

Description

Method to subset (or sort) factors

Usage

subset_factors(object, factors, recalculate_variance_explained = TRUE)

Arguments
object a MOFA object.
factors character vector with the factor names, or numeric vector with the index of the

factors.
recalculate_variance_explained

logical indicating whether to recalculate variance explained values. Default is
TRUE.

Value

A MOFA object

88 subset_groups

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Subset factors 1 to 3
model <- subset_factors(model, factors = 1:3)

subset_features Subset features

Description

Method to subset (or sort) features

Usage

subset_features(object, view, features)

Arguments
object a MOFA object.
view character vector with the view name or integer with the view index
features character vector with the sample names, numeric vector with the feature indices
or logical vector with the samples to be kept as TRUE.
Value
A MOFA object
subset_groups Subset groups
Description

Method to subset (or sort) groups

Usage

subset_groups(object, groups)

Arguments
object a MOFA object.
groups character vector with the groups names, numeric vector with the groups indices

or logical vector with the groups to be kept as TRUE.

subset_samples 89

Value

A MOFA object

Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Subset the first group
model <- subset_groups(model, groups = 1)

subset_samples Subset samples

Description

Method to subset (or sort) samples

Usage

subset_samples(object, samples)

Arguments
object a MOFA object.
samples character vector with the sample names or numeric vector with the sample in-
dices.
Value
A MOFA object
Examples

Using an existing trained model on simulated data
file <- system.file("extdata”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

(TO-DO) Remove a specific sample from the model (an outlier)

90 summarise_factors

subset_views Subset views

Description

Method to subset (or sort) views

Usage

subset_views(object, views)

Arguments
object a MOFA object.
views character vector with the views names, numeric vector with the views indices,
or logical vector with the views to be kept as TRUE.
Value
A MOFA object
Examples

Using an existing trained model on simulated data
file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")
model <- load_model(file)

Subset the first view
model <- subset_views(model, views = 1)

summarise_factors Summarise factor values using external groups

Description

Function to summarise factor values using a discrete grouping of samples.

Usage
summarise_factors(
object,
df,
factors = "all”,
groups = "all”,
abs = FALSE,

return_data = FALSE

views_names

Arguments

object
df

factors

groups

abs

return_data

Value

91

a trained MOFA object.

a data.frame with the columns "sample" and "level", where level is a factor with
discrete group assignments for each sample.

character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’.

character vector with the groups names, or numeric vector with the indices of
the groups of samples to use, or "all" to use samples from all groups.

logical indicating whether to take the absolute value of the factors (default is
FALSE).

logical indicating whether to return the fa instead of plotting

A ggplot object or a data. frame if return_data is TRUE

views_names

views_names: set and retrieve view names

Description

views_names: set and retrieve view names

Usage

views_names(object)

views_names(object) <- value

S4 method for signature 'MOFA'
views_names(object)

S4 replacement method for signature 'MOFA,character’
views_names(object) <- value

Arguments

object

value

Value

a MOFA object.

character vector with the names for each view

character vector with the names for each view

92 %>%
Examples

Using an existing trained model on simulated data

file <- system.file("extdata"”, "model.hdf5", package = "MOFA2")

model <- load_model(file)

views_names(model)

views_names(model) <- c("viewA", "viewB")

%>% Re-exporting the pipe operator See magrittr: :Rpercent>Rpercent
for details.

Description

Re-exporting the pipe operator See magrittr: : %>% for details.

Usage
lhs %>% rhs

Arguments
lhs see magrittr: :%>%
rhs see magrittr::%>%
Value

depending on lhs and rhs

Index

%>%, 92,92
Rpercent>Rpercent, 92

add_mofa_factors_to_seurat, 4

calculate_contribution_scores, 5

calculate_variance_explained, 6, 69, 72

calculate_variance_explained_per_sample,
7

cluster_samples, 8

compare_elbo, 9

compare_factors, 10

correlate_factors_with_covariates, 10

corrplot, /1, 63

covariates,MOFA-method
(covariates_names), 12

covariates_names, 12

covariates_names,MOFA-method
(covariates_names), 12

covariates_names<- (covariates_names),
12

covariates_names<-,MOFA, vector-method
(covariates_names), 12

create_mofa, 12, 22, 25-27, 78

create_mofa_from_df, 12, 13

create_mofa_from_matrix, /2, 14

create_mofa_from_MultiAssayExperiment,
13,15

create_mofa_from_Seurat, 13, 15

create_mofa_from_SingleCellExperiment,
13,16

DelayedArray, 41

factors_names, 17
factors_names,MOFA-method
(factors_names), 17
factors_names<- (factors_names), 17
factors_names<-,MOFA, vector-method
(factors_names), 17

93

features_metadata, 18

features_metadata,MOFA-method
(features_metadata), 18

features_metadata<-
(features_metadata), 18

features_metadata<-,MOFA,data.frame-method

(features_metadata), 18
features_names, 18
features_names,MOFA-method

(features_names), 18
features_names<- (features_names), 18
features_names<-,MOFA, list-method

(features_names), 18

geom_point_rast, 53

get_covariates, 19

get_data, 20

get_default_data_options, 22, 78

get_default_mefisto_options, 23, 78

get_default_model_options, 24, 78

get_default_stochastic_options, 26, 78

get_default_training_options, 27, 39, 78

get_dimensions, 28

get_elbo, 29

get_expectations, 30

get_factors, 31

get_group_kernel, 32

get_imputed_data, 32

get_interpolated_factors, 33

get_lengthscales, 34

get_scales, 35

get_variance_explained, 35

get_weights, 36

ggplot, 9,47, 49, 69, 70, 73, 91

groups_names, 37

groups_names,MOFA-method
(groups_names), 37

groups_names<- (groups_names), 37

groups_names<-,MOFA, character-method
(groups_names), 37

94

HDF5Array, 41

impute, 32, 38, 39
interpolate_factors, 39

kmeans, 8
load_model, 40

make_example_data, 41

MOFA, 4-20, 22-27, 2941, 43, 44, 45, 47, 48,
50, 52, 57,59, 61,63-67,69-71,
73-75,77-79, 81-91

MOFA-class (MOFA), 43

pcgse, 79, 80
pheatmap, 11, 46, 56, 75
plot_alignment, 44
plot_ascii_data, 44
plot_data_heatmap, 45, 49
plot_data_overview, 47
plot_data_scatter, 46, 48
plot_data_vs_cov, 50
plot_dimred, 52, 82, 83
plot_enrichment, 54
plot_enrichment_detailed, 55
plot_enrichment_heatmap, 56
plot_factor, 56
plot_factor_cor, 63
plot_factors, 58, 59, 60
plot_factors_vs_cov, 51, 61
plot_group_kernel, 64
plot_interpolation_vs_covariate, 65
plot_sharedness, 66
plot_smoothness, 66
plot_top_weights, 46, 49, 51, 67, 68, 72, 74
plot_variance_explained, 68
plot_variance_explained_by_covariates,
70
plot_variance_explained_per_feature,
71
plot_weights, 46, 49, 51,72, 74
plot_weights_heatmap, 74
plot_weights_scatter, 75
predict, 46, 77
prepare_mofa, 22, 25-27,78, 81

reticulate, 81
Rtsne, 82
run_enrichment, 54-56, 79

INDEX

run_mofa, 22, 25-27, 78, 81
run_tsne, 53, 82
run_umap, 53, 83

samples_metadata, 84
samples_metadata,MOFA-method
(samples_metadata), 84
samples_metadata<- (samples_metadata),
84
samples_metadata<-,MOFA,data. frame-method
(samples_metadata), 84
samples_names, 85
samples_names,MOFA-method
(samples_names), 85
samples_names<- (samples_names), 85
samples_names<-,MOFA,list-method
(samples_names), 85
select_model, 86
set_covariates, 86
subset_factors, 87
subset_features, 88
subset_groups, 88
subset_samples, 89
subset_views, 90
summarise_factors, 90

umap, 83

views_names, 91

views_names,MOFA-method (views_names),
91

views_names<- (views_names), 91

views_names<-,MOFA, character-method
(views_names), 91

	add_mofa_factors_to_seurat
	calculate_contribution_scores
	calculate_variance_explained
	calculate_variance_explained_per_sample
	cluster_samples
	compare_elbo
	compare_factors
	correlate_factors_with_covariates
	covariates_names
	create_mofa
	create_mofa_from_df
	create_mofa_from_matrix
	create_mofa_from_MultiAssayExperiment
	create_mofa_from_Seurat
	create_mofa_from_SingleCellExperiment
	factors_names
	features_metadata
	features_names
	get_covariates
	get_data
	get_default_data_options
	get_default_mefisto_options
	get_default_model_options
	get_default_stochastic_options
	get_default_training_options
	get_dimensions
	get_elbo
	get_expectations
	get_factors
	get_group_kernel
	get_imputed_data
	get_interpolated_factors
	get_lengthscales
	get_scales
	get_variance_explained
	get_weights
	groups_names
	impute
	interpolate_factors
	load_model
	make_example_data
	MOFA
	plot_alignment
	plot_ascii_data
	plot_data_heatmap
	plot_data_overview
	plot_data_scatter
	plot_data_vs_cov
	plot_dimred
	plot_enrichment
	plot_enrichment_detailed
	plot_enrichment_heatmap
	plot_factor
	plot_factors
	plot_factors_vs_cov
	plot_factor_cor
	plot_group_kernel
	plot_interpolation_vs_covariate
	plot_sharedness
	plot_smoothness
	plot_top_weights
	plot_variance_explained
	plot_variance_explained_by_covariates
	plot_variance_explained_per_feature
	plot_weights
	plot_weights_heatmap
	plot_weights_scatter
	predict
	prepare_mofa
	run_enrichment
	run_mofa
	run_tsne
	run_umap
	samples_metadata
	samples_names
	select_model
	set_covariates
	subset_factors
	subset_features
	subset_groups
	subset_samples
	subset_views
	summarise_factors
	views_names
	>
	Index

