Package ‘MANOR’

February 2, 2026
Version 1.83.0
Date 2024-03-12
Title CGH Micro-Array NORmalization

Description Importation, normalization, visualization, and quality
control functions to correct identified sources of variability
in array-CGH experiments.

Author Pierre Neuvial <pierre.neuvial@math.cnrs.fr>, Philippe Hupé
<philippe.hupe@curie.fr>

Maintainer Pierre Neuvial <pierre.neuvial@math.cnrs.fr>

License GPL-2

Depends R (>=2.10)

Imports GLAD, graphics, grDevices, stats, utils

Suggests knitr, rmarkdown, bookdown

VignetteBuilder knitr
URL http://bioinfo.curie.fr/projects/manor/index.html

BugReports https://github.com/pneuvial /MANOR/issues
Encoding UTF-8

biocViews Microarray, TwoChannel, Datalmport, QualityControl,
Preprocessing, CopyNumber Variation, Normalization

git_url https://git.bioconductor.org/packagessMANOR
git_branch devel

git_last_commit 4e71ccf

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

http://bioinfo.curie.fr/projects/manor/index.html
https://github.com/pneuvial/MANOR/issues

2 arrayTrend

Contents
arrayTrend L e e 2
detectSB L 4
flagarrayCGH e 6
flag.summary e 7
flags e 9
genome.plot L e e e e e 10
htmlreport 12
IMPOTE . . . v v ot e e e e e e e e e e e e e e 14
MANOR-internal 16
01530 o N 16
11075 1o 18
SCOTE .+ v v v e vt e e e e e e e e e e e e e e 20
gscore.arrayCGH e 21
gSCOTE.SUMIMATLY . . .« « « v v e v v e 22
SCOTES + v v v e v v e 24
report.plot 25
SOTE o v v e e e e e e e e e e e e e 27
spatial L e e e e 28
toflag L 29

Index 32

arrayTrend Spatial trend of microarray spots statistic
Description

The function arrayTrend computes the spatial trend.

Usage

Default S3 method:
arrayTrend(Statistic, Col, Row, ...)
S3 method for class 'arrayCGH'
arrayTrend(arrayCGH, variable, ...)

Arguments
Statistic Statistic to be smoothed.
Col Vector of columns coordinates.
Row Vector of rows coordinates.
arrayCGH Object of class arrayCGH.
variable Variable to be smooth.

Parameters to be passed to loess function.

arrayTrend 3

Details

Spatial trend of microarray spots statistic.

Value

Either a data frame with elements :

Trend Trend fitted by loess function.
Col Vector of columns coordinates.
Row Vector of rows coordinates.

or the element Trend is added to the data.frame arrayValues of the arrayCGH object.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Philippe HupA®©, <philippe.hupe@curie.fr>.

References

P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E.
Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.

See Also

loess, loess.control.

Examples
data(spatial) ## arrays with local spatial effects
edgeTrend <- arrayTrend(edge, "LogRatio”, span=0.03, degree=1,

iterations=3, family="symmetric")
GLAD: :arrayPlot(edgeTrend, "Trend”, main="Spatial trend of array CGH", bar="v")

http://bioinfo.curie.fr
http://bioinfo.curie.fr

4 detectSB

detectSB Spatial bias detection

Description

This function detects spatial bias on array CGH.

Usage

S3 method for class 'arrayCGH'
detectSB(arrayCGH, variable, proportionup=0.25,

proportiondown, type="up”, thresholdup=0.2, thresholddown=0.2, ...)
Arguments

arrayCGH Object of arrayCGH.

variable Variable used to compare the mean of zones detected by nem

proportionup Maximal proportion of the array which may be affected by spatial bias with high
values.

proportiondown Maximal proportion of the array which may be affected by spatial bias with low
values.

type Type of spatial bias detected. Specify either "up" (to detect spatial bias with
high values), or "down" (to detect spatial bias with low values) or "upanddown"
(to detect both type of spatial bias).

thresholdup Threshold used to detect spatial bias with high values.
thresholddown Threshold used to detect spatial bias with low values.

Details

You must run the arrayTrend and nem function before detecting spatial bias: the arrayTrend
computes a spatial trend and the nem function performs a classification with spatial constraints
defining different zones on the array. Based on those results, spatial bias is detected.

Value

An object of class arrayCGH with the following added information in the data.frame attribute

arrayValues:
SB Spots located in zone of spatial bias are coded either by 1 (if they correspond to
a spatial bias with high values) or by -1 (if they correspond to a spatial bias with
low values). Otherwise they are coded by 0.
Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

detectSB 5

Author(s)

Philippe HupA©, <philippe.hupe@curie.fr>.

References

P. Neuvial, P. Hup?, L. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E.
Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.

See Also

arrayTrend, nem

Examples
data(spatial) ## arrays with local spatial effects

Plot of LogRatio measured on the array CGH
GLAD: :arrayPlot(edge, "LogRatio”, main="Log2-Ratio measured on the array
CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE)

Spatial trend of the scaled log-ratios (the variable "ScaledlLogRatio"
equals to the log-ratio minus the median value of the corresponding
chromosome arm)

edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio”,

span=0.03, degree=1, iterations=3, family="symmetric")

GLAD: :arrayPlot(edgeTrend, variable="Trend”, main="Spatial trend of the
array CGH", bar="v")

Not run:

Classification with spatial constraint of the spatial trend

edgeNem <- nem(edgeTrend, variable="Trend")

GLAD: :arrayPlot(edgeNem, variable="ZoneNem", main="Spatial zones identified
by nem”, bar="v")

Detection of spatial bias
edgeDet <- detectSB(edgeNem, variable="LogRatio"”, proportionup=0.25,type="up"”, thresholdup=0.15)
GLAD: :arrayPlot(edgeDet, variable="SB", main="Zone of spatial bias in red”, bar="v")

CGH profile

plot(LogRatio ~ PosOrder, data=edgeDet$arrayValues,
col=c("black"”,"red")[as.factor(SB)], pch=20, main="CGH profile: spots
located in spatial bias are in red")

End(Not run)

6 flag.arrayCGH

flag.arrayCGH Apply a flag to an arrayCGH

Description

Function flag$FUN is applied to a flag object for normalization

Usage
flag.arrayCGH(flag, arrayCGH)

Arguments
flag an object of type ’flag’
arrayCGH an object of type arrayCGH
Details

Optional arguments in flag$args are passed to flag$FUN

Value
An object of class arrayCGH, which corresponds to the return value of flag$FUN if flag$char is
null, and to the input arrayCGH object with spots given by flag$FUN flagged with flag$char
Note
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.
Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

to.flag, norm.arrayCGH

Examples

data(spatial)
data(flags)

gradient$arrayValues$LogRatioNorm <- gradient$arrayValues$LogRatio
flag spots with no available position on the genome
gradient <- flag.arrayCGH(position.flag, gradient)

flag spots corresponding to low poor quality clones
gradient <- flag.arrayCGH(val.mark.flag, gradient)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

flag.summary 7

flag spots excluded by Genepix pro
gradient <- flag.arrayCGH(spot.flag, gradient)

flag local spatial bias zones
Not run: gradient <- flag.arrayCGH(local.spatial.flag, gradient)

correct global spatial bias
gradient <- flag.arrayCGH(global.spatial.flag, gradient)

flag spots with low signal to noise
gradient <- flag.arrayCGH(SNR.flag, gradient)

flag spots with extremely high log-ratios
gradient <- flag.arrayCGH(amplicon.flag, gradient)

flag spots with poor within replicate consistency
gradient <- flag.arrayCGH(replicate.flag, gradient)

flag spots corresponding to clones for which all other spot
replicates have already been flagged
gradient <- flag.arrayCGH(unique.flag, gradient)

summary.factor(gradient$arrayValues$Flag)

flag.summary Summarize information about flags after array normalization

Description

Compute spot-level information (number of flagged spots, normalization parameters), and display
it in a convenient way

Usage
S3 method for class 'arrayCGH'
flag.summary(arrayCGH, flag.list, flag.var="Flag"”, nflab="not flagged", ...)
Default S3 method:
flag.summary(spot.flags, flag.list, nflab="not flagged”, ...)
Arguments
arrayCGH an object of type arrayCGH, after normalization by MANOR
flag.list a list of flags with flag$char corresponding to the values of spot.flags
flag.var the name of a variable of arrayCGH$arrayValues containing information about

flags (defaults to Flag)

var the name of a variable of arrayCGH$cloneValues containing signal values (de-
faults to LogRatio)

8 flag.summary

spot.flags a character vector containing information about flags
nflab a character vector providing a legend for "not flagged" spots
Details

This function is used by the function html.report for the generation of an HMTL report of the
normalization step. It can also be used by itself.

Value

A data.frame data.frame with 4 columns:

name flag character
label flag label
arg first numeric argument of flag$FUN
count number of flagged spots
Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

html.report, flag

Examples

data(spatial)

data(flags)

flag.list <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)

flag.list$spatial$args <- alist(var="ScaledlLogRatio"”, by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list$spot$args <- alist(var="SpotFlag")

flag.list$spot$char <- "0"

flag.list$spot$label <- "Image analysis”

normalize arrayCGH

Not run: edge.norm <- norm(edge, flag.list=flag.list,
var="LogRatio”, FUN=median, na.rm=TRUE)

End(Not run)

fs <- flag.summary(edge.norm, flag.list=flag.list, flag.var="Flag")

http://bioinfo.curie.fr
http://bioinfo.curie.fr

flags

print(”"Flag and normalization parameters summary")
print(fs)

flags

Examples of flag objects to apply to CGH arrays

Description

This data set provides flag objects that can be applied to arrayCGH objects in order to normalize

them.

Usage

data(flags)

Format

These flag objects typically take part to a normalization process:

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

amplicon.flag
chromosome. flag
control.flag
global.spatial.flag
local.spatial.flag
num. chromosome. flag
position.flag
replicate.flag
ref.snr.flag
dapi.snr.flag

SNR. flag
spot.corr.flag
spot.flag
unique.flag
val.mark.flag
intensity.flag

Author(s)

flags spots with high log-ratios (temp flag)

flags spots located on sexual chromosomes (named "X" and "Y")
flag control spots

corrects arrayCGH from global spatial trend on the array

flags spots belonging to local spatial bias zones on the array
flags spots located on sexual chromosomes (named 23 and 24)
flag spots with no available genome position

flag spots with poor within-clone-replicate consitency

flags spots with low signal to noise ratio for reference

flags spots with low signal to noise ratio for DAPI

flags spots with low signal to noise ratio

flags spots with low correlation coefficient after image analysis
flags spots excluded by the image analysis software

exclude last non-flagged spot of a clone

flags spots corresponding to bad quality clones

corrects for an intensity effect (using loess regression)

Pierre Neuvial, <manor@curie. fr>.

Source

Institut Curie, <manor@curie.fr>.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

10 genome.plot

See Also

spatial, norm.arrayCGH, flag, flag.summary

Examples
data(flags)

complete normalization of an arrayCGH object (with spatial gradient):
Initialize flag$args

flag.list1 <- list(local.spatial=local.spatial.flag,
global.spatial=global.spatial.flag, spot=spot.flag, SNR=SNR.flag,
val.mark=val.mark.flag, unique=unique.flag,
amplicon=amplicon.flag, chromosome=chromosome.flag,
replicate=replicate.flag)

data(spatial)

Not run: gradient.norm <- norm(gradient, flag.list=flag.list1,
var="LogRatio"”, FUN=median, na.rm=TRUE)

End(Not run)

print(gradient.norm$flags) ## spot-level flag summary (computed by flag.summary)

complete normalization of an arrayCGH object (with local spatial bias):
Initialize flag$args

flag.list2 <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)

flag.list2$spatial$args <- alist(var="ScaledLogRatio”, by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list2$spot$args <- alist(var="SpotFlag")

flag.list2$spot$char <- "0"

flag.list2$spot$label <- "Image analysis”

Not run: edge.norm <- norm(edge, flag.list=flag.list2,

var="LogRatio"”, FUN=median, na.rm=TRUE)

End(Not run)

print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)

genome.plot Pan-genomic representation of a normalized arrayCGH

Description

Displays a pan-genomic representation of a normalized arrayCGH.

genome.plot

Usage

11

S3 method for class 'arrayCGH'
genome.plot(arrayCGH, x="PosOrder”, y="LogRatio",

chrLim=NULL, col.var=NULL, clim=NULL, cex=NULL, pch=NULL, ...)
Default S3 method:
genome.plot(data, pch=NULL, cex=NULL, xlab="", ylab="", ...)
Arguments

arrayCGH an object of type arrayCGH

data a data frame with two columns: ’x’ and ’y’, and optionally a column ’chrLim’
giving the limits of each chromosome

X a variable name from arrayCGH$cloneValues giving the order position of the
clones along the genome (defaults to ’PosOrder’)

y a variable name from arrayCGH$cloneValues to be plotted along the genome
(defaults to LogRatio’)

chrLim an optional variable name from arrayCGH$cloneValues giving the limits of
each chromosome

col.var a variable name from arrayCGH$cloneValues defining the color legend

clim a numeric vector of length 2: color range limits (used if col. var is numeric)

cex a numerical value giving the amount by which plotting text and symbols should
be scaled relative to the default: see par

xlab a title for the x axis: see title

ylab a title for the y axis: see title

pch either an integer specifying a symbol or a single character to be used as the
default in plotting points: see par
further arguments to be passed to plot

Details

if col.var is a numeric variable, y colors are proportionnal to col.var values; if it is a character
variable or a factor, one color is assigned to each different value of col.var. If col.var is NULL,
colors are proportionnal to y values.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.

fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

flag, report.plot

http://bioinfo.curie.fr
http://bioinfo.curie.fr

12 html.report

Examples

data(spatial)

default color code: log-ratios
Not run:
genome.plot(edge.norm, chrLim="LimitChr")

End(Not run)

color code determined by a qualitative variable: ZoneGNL (DNA copy number code)
edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

Not run:

genome.plot(edge.norm, col.var="ZoneGNL")

End(Not run)
comparing profiles with and without normalization
aggregate data without normalization (flags)

gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio",
FUN=median, na.rm=TRUE)
gradient.nonorm <- sort(gradient.nonorm)

Not run:

genome.plot(gradient.nonorm, pch=20, main="Genomic profile without
normalization”, chrLim="LimitChr")

x110)

genome.plot(gradient.norm, pch=20, main="Genomic profile with
normalization”, chrLim="LimitChr")

End(Not run)

html.report Generate an HTML report of array normalization

Description

Create an HTML file with various illustrations of array normalization, including plots before and
after normalization, and statistics about flagged spots and clones

Usage

S3 method for class 'arrayCGH'

html.report(array.norm, array.nonorm=NULL, dir.out=".",

array.name=NULL, x="PosOrder"”, y=c("LogRatioNorm”, "LogRatio"), chrLim=NULL,
ylim=NULL, zlim=NULL, clim=NULL, intensity=NULL, light=FALSE,
file.name="report”, width=10, height=5, ...)

Default S3 method:
html.report(spot.data, clone.data=NULL,
flag.data=NULL, quality.data=NULL, ...)

html.report

Arguments

array.norm
array.nonorm
spot.data
clone.data
flag.data

quality.data

dir.out

array.name

X

y
chrLim

ylim

clim

zlim

intensity

light

file.name
width
height

Details

13

an object of type arrayCGH after normalization step

an optional object of type arrayCGH after a normalization step with no flags

a data.frame containing spot-level informations (e.g. arrayCGH\$arrayValues)
a data.frame containing clone-level informations (e.g. arrayCGH\$cloneValues)

a data.frame containing information about flags, with fields char, label, arg,
count as generated by function flag. summary

a data.frame containing information about quality scores with fields name, label,
score as generated by function gscore. summary

absolute path of a directory where the file is generated (defaults to the current
directory)

name or identifier of the array

a variable name from arrayCGH\$cloneValues giving the order position of the
clones along the genome (defaults to ’PosOrder’)

a vector of one or two variable names to be passed to report.plot

an optional variable name from arrayCGH\$cloneValues giving the limits of
each chromosome

a numeric vector of length 2 to be passed to report.plot: y axis range of the
genomic profile display

a numeric vector of length 2 to be passed to report.plot: color range of the
genomic profile

a numeric vector of length 2 to be passed to report.plot: color range for array
image display

non

an optional list with names c("M.var", "A.var", "pred.var", "span"). The first 3
items specify existing variable names from arrayCGH\$arrayValues that will
be used to draw a MA-plot. The last item is the value of the loess ’span’

boolean value: if (light), only the core of the html file is generated; if (!light), a
complete html file is generated

file name of the generated report (defaults to "report")
plot width, in inches

plot height, in inches

further arguments to be passed to report.plot

This function creates an HTML report file showing - the array image and the genome representation
before normalization (if array.nonorm is provided) and after normalization, and optionally a MA-
plot - a table with information about the number of flagged spots for each flag, and the number of
remaining spots after normalization - a table with information about various quality criteria for the

array

Value

none

14 import

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

flag.summary, report.plot

import Import raw file to an arrayCGH object

Description

Load raw data from a text file coming from image analysis and convert it to an arrayCGH object,
using additional information about the array design.

Supported file types are Genepix Results file (.gpr), outputs from SPOT, or any text file with appro-
priate fields "Row" and "Column" and specified array design

Usage

import(file, var.names=NULL, spot.names=NULL, clone.names=NULL,
type=c("default”, "gpr"”, "spot”), id.rep=1, design=NULL, add.lines=FALSE, ...)

Arguments

file a connection or character string giving the name of the file to import.

var.names a vector of variables names used to compute the array design. If default is not
overwritten, it is set to ¢("Block”, "Column", "Row", "X", "Y") for gpr files,
c("Arr.colx", "Arr.rowy", "Spot.colx", "Spot.rowy") for SPOT files, and c("Col",
"Row") for other text files

spot.names a list with spot-level variable names to be added to arrayCGH$arrayValues

clone.names a list with clone-level variable names to be added to arrayCGH$cloneValues
(only used in case of within-slide replicates)

type a character value specifying the type of input file: currently .gpr files ("gpr"),
spot files ("spot") and other text files with fields "Col’ and "Row’ ("default") are
supported

id.rep index of the replicate identifier (e.g. the name of the clone) in the vector(clone.names)

design a numeric vector of length 4 specifying array design as number of blocks per

column, number of blocks per row, number of columns by block, number of
rows per block. This field is mandatory for "default" text files, optional for
"gpr" files, and not used for "SPOT" files

http://bioinfo.curie.fr
http://bioinfo.curie.fr

import 15

add.lines boolean value to handle the case when array design does not match number of
lines. If TRUE, empty lines are added; if FALSE, execution is stopped

additional import parameters (e.g. ’sep=", or ’comment.char=’, to be passed
to read.delim function. Note that argument as.is=TRUE is always passed to
read.delim, in order to avoid unapropriate conversion of character vectors to
factors

Details

Mandatory elements of arrayCGH objects are the array design and the x and y absolute coordinates
of each spot on the array. Output files from SPOT contain x and y relative coordinates of each
spot within a block, as well as block coordinates on the array; one can therefore easily construct te
corresponding arrayCGH object.

.gpr files currently only contain x and y relative coordinates of each spot within a block, and block
index with no specification of the spatial block design: if block design is not specified by user, we
compute it using the real pixel locations of each spot (X and Y variables in usual .gpr files)

If clone.names is provided, an additional data frame is created with clone-level information (e.g.
clone names, positions, chromosomes, quality marks), aggregated from array-level information us-
ing the identifier specified by id.rep. This identifier is also added to the arrayCGH object created,
with name ’id.rep’.

Due to space limitations, only the first 100 lines of sample *gpr’ and ’spot’ files are given in the stan-
dard distribution of MANOR. Complete files are available at http: //bioinfo.curie.fr/projects/
manor/index.html

Value

an object of class arrayCGH

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

arrayCGH

Examples

dir.in <- system.file("extdata", package="MANOR")

import from 'spot' files

spot.names <- c("LogRatio”, "RefFore", "RefBack”, "DapiFore"”, "DapiBack",
"SpotFlag", "ScaledLogRatio")

clone.names <- c("PosOrder”, "Chromosome")

http://bioinfo.curie.fr/projects/manor/index.html
http://bioinfo.curie.fr/projects/manor/index.html
http://bioinfo.curie.fr
http://bioinfo.curie.fr

16 nem

edge <- import(paste(dir.in, "/edge.txt", sep=""), type="spot”,
spot.names=spot.names, clone.names=clone.names, add.lines=TRUE)

import from 'gpr' files

spot.names <- c("Clone”, "FLAG”, "TEST_B_MEAN", "REF_B_MEAN",
"TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm")

clone.names <- c("Clone”, "Chromosome”, "Position”, "Validation")

ac <- import(paste(dir.in, "/gradient.gpr”, sep=""), type="gpr",
spot.names=spot.names, clone.names=clone.names, sep="\t",
comment.char="@Q", add.lines=TRUE)

MANOR-internal Internal Functions for MANOR Package

Description

Internal functions not intended for direct calls by user.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

nem Spatial Classification by EM algorithm

Description

The function nem computes spatial classification by EM algorithm.

Usage

Default S3 method:

nem(LogRatio, Col, Row, nk=nk, beta=1, iters=2000, ...)
S3 method for class 'arrayCGH'

nem(arrayCGH, variable, nk=5, beta=1, iters=2000, ...)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

nem 17

Arguments
LogRatio Vector that corresponds to the values to be classified.
Col Vector of columns coordinates.
Row Vector of rows coordinates.
nk Integer value corresponding to the number classes.
beta Scale parameter for importance of spatial information.
iters Maximum number of iterations allowed.
arrayCGH Object of class arrayCGH.
variable Variable that corresponds to the values to be classified.
Value

Either a data frame with the following added elements:
ZoneNem Vector of label zones.
or an object of class arrayCGH with the following elements added to the data.frame attribute arrayValues:

ZoneNem Vector of label zones.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Philippe Hup?, <manor@curie. fr>.

References

C. Ambroise, Approche probabiliste en classification automatique et contraintes de voisinage,
Ph.D. thesis, Universit? de Technologie de Compi?gne, 1996.

C. Ambroise, M. Dang, and G. Govaert, Clustering of spatial data by the em algorithm in Geostatis-
tics for Environmental Applications, A. Soares, J. Gomez-Hernandez, and R. Froidevaux, Eds., pp.
493-504. Kluwer Academic Publisher, 1997.

P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E.
Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.

Examples
data(spatial) ## arrays with local spatial effects
Plot of LogRatio measured on the array CGH

Not run:
GLAD: :arrayPlot(edge, "LogRatio”, main="Log2-Ratio measured on the array

http://bioinfo.curie.fr
http://bioinfo.curie.fr

18

norm

CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE)
End(Not run)

Spatial trend of the scaled log-ratios (the variable "ScaledLogRatio"

equals to the log-ratio minus the median value of the corresponding chromosome arm)
edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio”,

span=0.03, degree=1, iterations=3, family="symmetric")

Not run:
GLAD: :arrayPlot(edgeTrend, variable="Trend"”, main="Spatial trend of the array CGH", bar="v")

End(Not run)

Classification with spatial constraint of the spatial trend
edgeNem <- nem(edgeTrend, variable="Trend")

Not run:

GLAD: :arrayPlot(edgeNem, variable="ZoneNem"”, main="Spatial zones identified by nem", bar="v")

End(Not run)

norm Normalize an object of type arrayCGH

Description

Normalize an object of type arrayCGH using a list of criteria specified as (temporary or permanent)
flags. If a replicate identifier (clone name) is provided, a single target value is computed for all the
replicates.

The normalization coefficient is computed as a function, and is applied to all good quality spots of
the array.

Usage
S3 method for class 'arrayCGH'
norm(arrayCGH, flag.list=NULL, var="LogRatio"”, printTime=FALSE, FUN=median, ...)
Arguments
arrayCGH an object of type arrayCGH
flag.list a list of objects of type flag
var a variable name (from arrayCGH$arrayValues) from which normalization co-
efficient has to be computed; default is "LogRatio"
printTime boolean value; if TRUE, the time taken by each step of the normalization process
is displayed
FUN an aggregation function (e.g. mean, median) to compute a normalization coeffi-

cient; default is median

further arguments to be passed to FUN

norm 19

Details

The two flag types are treated differently : - permanent flags detect poor quality spots, which are
removed from further analysis - temporary flags detect good quality spots that would bias the nor-
malization coefficient if they were not excluded from its computation, e.g. amplicons or sexual
chromosomes. Thus they are not taken into account for the computation of the coefficient, but at
the end of the analysis they are normalized as any good quality spots of the array.

The normalization coefficient is computed as a function (e.g. mean or median) of the target value
(e.g. log-ratios); it is then applied to all good quality spots (including temporary flags), i.e. sub-
stracted from each target value.

If clone level information is available (i.e. if arrayCGH$cloneValues is not null), a normalized

mean target value and basic statistics (such as the number of replicates per clone) are calculated for
each clone.

Value

an object of type arrayCGH

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

References

P. Neuvial, P. Hup?, L. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E.
Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.

See Also
flag

Examples

data(spatial)
data(flags)

'edge': local spatial bias

define a list of flags to be applied

flag.listl <- list(spatial=local.spatial.flag, spot=spot.corr.flag,
ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag,
unique=unique.flag)

flag.list1$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL,
nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric")
flag.list1$spot$args <- alist(var="SpotFlag")

flag.list1$spot$char <- "0"

flag.list1$spot$label <- "Image analysis”

http://bioinfo.curie.fr
http://bioinfo.curie.fr

20

gscore

normalize arrayCGH

edge.norm <- norm(edge, flag.list=flag.list1,

var="LogRatio"”, FUN=median, na.rm=TRUE)

print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)

aggregate arrayCGH without normalization
edge.nonorm <- norm(edge, flag.list=NULL, var="LogRatio",
FUN=median, na.rm=TRUE)

sort genomic informations
edge.norm <- sort(edge.norm, position.var="PosOrder")
edge.nonorm <- sort(edge.nonorm, position.var="PosOrder")

plot genomic profiles

layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (before normalization)”, zlim=c(-1,1),
ylim=c(-3,1))

report.plot(edge.norm, chrLim="LimitChr", layout=FALSE,

main="Pangenomic representation (after normalization)", zlim=c(-1,1),
ylim=c(-3,1))

'gradient': global array Trend

define a list of flags to be applied

flag.list2 <- list(
spot=spot.flag, global.spatial=global.spatial.flag, SNR=SNR.flag,
val.mark=val.mark.flag, position=position.flag, unique=unique.flag,
amplicon=amplicon.flag, replicate=replicate.flag,
chromosome=chromosome. flag)

normalize arrayCGH
gradient.norm <- norm(gradient, flag.list=flag.list2,
var="LogRatio"”, FUN=median, na.rm=TRUE)
aggregate arrayCGH without normalization
gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio"”, FUN=median, na.rm=TRUE)

sort genomic informations
gradient.norm <- sort(gradient.norm)
gradient.nonorm <- sort(gradient.nonorm)

plot genomic profiles

layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(gradient.nonorm, chrLim="LimitChr"”, layout=FALSE,
main="Pangenomic representation (before normalization)”, zlim=c(-2,2),
ylim=c(-3,2))

report.plot(gradient.norm, chrLim="LimitChr"”, layout=FALSE,
main="Pangenomic representation (after normalization)", zlim=c(-2,2),
ylim=c(-3,2))

gscore Create an object of type gscore

gscore.arrayCGH 21

Description

gscore object is a list which contains a function, a name, and optionnally a label and arguments to
be passed to the function.

Usage

to.gscore(FUN, name=NULL, args=NULL, label=NULL, dec=3)

Arguments
FUN a R function returning a numeric value, with first argument of type arrayCGH,
and optionally other arguments.
name a short character value for gscore object identification
args a list of arguments to be passed to FUN; defaults to NULL (ie arrayCGH is the
only argument to FUN)
label a character value for gscore object labelling
dec an integer value giving the number of significant digits to keep (defaults to 3)
Value

An object of class qscore.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

gscore.arrayCGH, gscore.summary.arrayCGH

gscore.arrayCGH arrayCGH quality score

Description

Computes a quality score for a given arrayCGH.

Usage

gscore.arrayCGH(qgscore, arrayCGH)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

22 gscore.summary

Arguments
gscore an object of type gscore.
arrayCGH an object of type arrayCGH.
Value

A numeric value.

Note
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

gscore, gscore. summary

Examples

data(gscores)
data(spatial)

compute a quality score for a couple of arrays: signal smoothness
gscore.arrayCGH(smoothness.qgscore, edge.norm)
gscore.arrayCGH(smoothness.qgscore, gradient.norm)

gscore.summary Compute quality scores for a given arrayCGH object

Description

Compute useful quality scores for the arrayCGH and display them in a convenient way

Usage

gscore.summary.arrayCGH(arrayCGH, gscore.list)

Arguments

arrayCGH an object of type arrayCGH

gscore.list a list of objects of type gqscore

http://bioinfo.curie.fr
http://bioinfo.curie.fr

gscore.summary 23

Details
This function is used by the function html.report for the generation of an HMTL report of the
normalization step. It can also be used by itself.

Value

A data.frame with 3 columns:

name gscore name
label gscore label
gscore quality gscore
Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

gscore, gscore.summary, html.report

Examples

data(gscores)
data(spatial)

define a list of gscores

gscore.list <- list(clone=clone.gscore, pct.clone=pct.clone.gscore,
pct.spot=pct.spot.qgscore, pct.replicate=pct.replicate.qscore,
smoothness=smoothness.qgscore, dyn.x=dyn.x.qgscore, dyn.y=dyn.y.qscore,
var.replicate=var.replicate.qgscore)

compute quality scores for a couple of normalized arrays
gradient.norm$quality <- gscore.summary.arrayCGH(gradient.norm,
gscore.list)

print(gradient.norm$quality[, 2:3])

gscore.list$dyn.x$args$test <- 23

gscore.list$dyn.y$args$test <- 24

edge.norm$quality <- gscore.summary.arrayCGH(edge.norm, qgscore.list)
print(edge.norm$quality[, 2:31)

http://bioinfo.curie.fr
http://bioinfo.curie.fr

24 gscores

gscores Examples of gscore objects (quality scores) to apply to CGH arrays

Description

This data set provides gscore objects that can be applied to normalized arrayCGH objects in order
to evaluate data quality after normalization.

Usage

data(gscores)

Format

The following gscore objects are provided:

clone.qgscore number of clones

pct.clone.gscore percentage of clones

pct.spot.qgscore percentage of spots
pct.spot.before.qscore percentage of spots before normalization
pct.replicate.qscore average percentage of replicates
smoothness.qgscore signal smoothness
var.replicate.qscore

dyn.x.qgscore signal dynamics on X chromosome
dyn.y.gscore signal dynamics on Y chromosome

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

Source

Institut Curie, <manor@curie. fr>.

See Also

spatial, gscore.summary.arrayCGH, gscore

http://bioinfo.curie.fr
http://bioinfo.curie.fr

report.plot 25

Examples

data(gscores)
data(spatial)

define a list of qgscores

gscore.list <- list(clone=clone.qgscore, pct.clone=pct.clone.qgscore,
pct.spot=pct.spot.qgscore, pct.replicate=pct.replicate.qscore,
smoothness=smoothness.qgscore, dyn.x=dyn.x.qgscore, dyn.y=dyn.y.qgscore,
var.replicate=var.replicate.qgscore)

compute quality scores for a couple of normalized arrays
gradient.norm$quality <- gscore.summary.arrayCGH(gradient.norm,
gscore.list)

print(gradient.norm$quality[, 2:3])

gscore.list$dyn.x$args$test <- 23

gscore.list$dyn.y$args$test <- 24

edge.norm$quality <- gscore.summary.arrayCGH(edge.norm, gscore.list)
print(edge.norm$quality[, 2:31)

report.plot Array image and a genomic representation of a normalized arrayCGH

Description

Displays an array image and a genomic representation of a normalized arrayCGH.

Usage

S3 method for class 'arrayCGH'

report.plot(arrayCGH, x="PosOrder"”, y=c("LogRatioNorm”,
"LogRatio"), chrLim=NULL, layout=TRUE, main=NULL, zlim=NULL, ...)

Default S3 method:

report.plot(spot.data, clone.data, design, x="PosOrder”,
y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, layout=TRUE, main=NULL,

zlim=NULL, ...)
Arguments
arrayCGH an object of type arrayCGH.
spot.data data.frame with spot-level information to be passed to arrayPlot.
clone.data data.frame with clone-level information to be passed to genome.plot.
design vector of length 4 with array design: number of blocks per column and per row,

number of columns and rows per block.

X a variable name from arrayCGH$cloneValues giving the order position of the
clones along the genome.

26 report.plot

y a vector of one or two variable names to be plotted on the array and along the
genome. The first one is taken from arrayCGH$arrayValues and is plotted on
the array; the second one (or the first one if only one name was provided) is
taken from arrayCGH$cloneValues and is plotted along the genome.

chrLim an optional variable name from arrayCGH$clone Values giving the limits of each
chromosome.

layout if TRUE, plot layout is set to a 1*2 matrix with relative column widths 1 and 4.

main title for the genomic profile.

zlim numeric vector of length 2 to be passed to arrayPlot: minimum and maximum

signal values for array image display.

further arguments to be passed to genome.plot.

Details

This function successively calls arrayPlot and genome.plot.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

genome.plot, arrayPlot, html.report

Examples

data(spatial)

edge: local spatial bias

aggregate arrayCGH without normalization for comparison with
normalized array

edge.nonorm <- norm(edge, flag.list=NULL, FUN=median, na.rm=TRUE)
edge.nonorm <- sort(edge.nonorm, position.var="PosOrder")

layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (before normalization)”, zlim=c(-1,1),
ylim=c(-3,1))

report.plot(edge.norm, chrLim="LimitChr"”, layout=FALSE,

main="Pangenomic representation (after normalization)", zlim=c(-1,1),
ylim=c(-3,1))

gradient: global array Trend
aggregate arrayCGH without normalization for comparison with
normalized array

http://bioinfo.curie.fr
http://bioinfo.curie.fr

sort 27

gradient.nonorm <- norm(gradient, flag.list=NULL, FUN=median, na.rm=TRUE)
gradient.nonorm <- sort(gradient.nonorm)

layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1))
report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (before normalization)”, zlim=c(-2,2),
ylim=c(-3,2))

report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE,
main="Pangenomic representation (after normalization)", zlim=c(-2,2),
ylim=c(-3,2))

sort Sorting for normalized arrayCGH objects

Description

Sorts clone-level information of a normalized arrayCGH object.

Usage

S3 method for class 'arrayCGH'
sort(x, decreasing = FALSE, position.var="Position",

chromosome.var="Chromosome”, ...)
Arguments
X an object of type arrayCGH.
decreasing (for compatibility with sort class) currently unused.

position.var name of position variable.
chromosome.var name of chromosome variable.

further arguments to be passed to sort.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

norm. arrayCGH

http://bioinfo.curie.fr
http://bioinfo.curie.fr

28 spatial
Examples
data(spatial)

sort a normalized array by clone position
gradient.norm <- sort(gradient.norm)

report.plot(gradient.norm, main="Genomic profile after normalization")

spatial Examples of array-CGH data with spatial artifacts

Description
This data set provides an example of array-CGH data with spatial artifacts, consisting of including
arrayCGH objects before and after normalization

Usage

data(spatial)

Format

edge, gradient arrayCGH objects before normalization:

arrayValues spot-level information
arrayDesign block design of the array
cloneValues additionnal clone-level data (chromosome, position)

edge.norm, gradient.norm arrayCGH objects after normalization

Details

’edge’ presents local spatial bias in the top-right edge corner, and ’gradient’ presents global spatial
trend. ’edge’ and ’gradient’ are arrayCGH objects before normalization. They have been created
respectively from spot and gpr files using import. ’edge.norm’ and ’gradient.norm’ are the corre-
sponding arrayCGH objects after normalization using norm.arrayCGH.

flag objects used for data normalization come from flags dataset.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.
fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

http://bioinfo.curie.fr
http://bioinfo.curie.fr

to.flag 29

Source

Institut Curie, <manor@curie. fr>.

See Also

flags

Examples

data(spatial)
edge: example of array with local spatial effects

layout(matrix(1:4, 2, 2), height=c(9,1))

GLAD: :arrayPlot(edge, "LogRatio", main="Log-ratios before normalization"”,
zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE)

GLAD: :arrayPlot(edge.norm, "LogRatioNorm”, main="Log-ratios after spatial
normalization”, zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE)

gradient: example of array with spatial gradient

layout(matrix(1:4, 2, 2), height=c(9,1))

GLAD: :arrayPlot(gradient, "LogRatio”, main="Log-ratios before normalization”,
zlim=c(-2,2), bar="h", layout=FALSE)

GLAD: :arrayPlot(gradient.norm, "LogRatioNorm”, main="Log-ratios after spatial
normalization”, zlim=c(-2,2), bar="h", layout=FALSE)

to.flag Create an object of type flag

Description

A flag object is a list which contains essentially a function (flag action) and a character, optionally
arguments to be passed to the function. We make the distinction between two different flag types,
corresponding to two different purposes: - permanent flags identify poor quality spots or clones
and remove them from further analysis (eg spots with low signal to noise ratio) - temporary flags
identify spots or clones that have not to be taken into account for the computation of a (scaling)
normalization coefficient (eg X chromosome in case of sex mismatch)

Usage
to.flag(FUN, char=NULL, args=NULL, type="perm.flag", label=NULL)

Arguments

FUN a R function to be applied to an arrayCGH, and optionally other arguments. If
char is not NULL, must return a list of spots (lines of arrayCGH$arrayValues)
to be flagged out; if char==NULL, must return an object of type arrayCGH

30

char

args

type

label

Details

to.flag

a character value to identify flagged spots; defaults to NULL

a list of further arguments to be passed to FUN; defaults to NULL (ie arrayCGH
is the only argument to FUN)

a character value defaulting to "perm.flag" which makes the distinction between
permanent flags (type="perm.flag") and temporary flags (type="temp.flag")

a character value for flag labelling

If flag$char is null, flag$FUN is supposed to return a arrayCGH object; if it is not null, flag$FUN
is supposed to return a list of spots to be flagged with flag$char.

Value

An object of class flag.

Note

People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.

fr.

Author(s)

Pierre Neuvial, <manor@curie.fr>.

See Also

flag.arrayCGH, norm.arrayCGH

Examples

creation of a permanent flag:
flag spots with low signal to noise ratios
SNR.FUN <- function(arrayCGH, snr.thr)
which(arrayCGH$arrayValues$F2 < arrayCGH$arrayValues$B2+log(snr.thr, 2))

SNR.char <-

ng"

SNR.flag <- to.flag(SNR.FUN, SNR.char, args=alist(snr.thr=3))

creation of a permanent flag returning an arrayCGH object:
correct log-ratios for spatial trend

global.spatial.FUN <- function(arrayCGH, var)

{

Trend <- arrayTrend(arrayCGH, var, span=0.03, degree=1,
iterations=3, family="symmetric")
arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]]-Trend$arrayValues$Trend

arrayCGH

3

global.spatial.flag <- to.flag(global.spatial.FUN, args=alist(var="LogRatio"))

creation of a temporary flag:

http://bioinfo.curie.fr
http://bioinfo.curie.fr

to.flag 31

exclude sexual chromosomes from signal scaling

chromosome.FUN <- function(arrayCGH, var)
which(!is.na(match(as.character(arrayCGH$arrayValues[[var]l), c("X", "Y"))))

chromosome.char <- "X"

chromosome. flag <- to.flag(chromosome.FUN, chromosome.char, type="temp.flag",

args=alist(var="Chromosome"))

data(spatial)

SNR. flag$args$snr.thr <- 3 ## set SNR threshold
gradient <- flag.arrayCGH(SNR.flag, gradient) ## apply SNR.flag to array CGH

gradient <- flag.arrayCGH(global.spatial.flag, gradient)
gradient <- flag.arrayCGH(chromosome.flag, gradient)

summary.factor(gradient$arrayValues$Flag) ## permanent flags
summary.factor(gradient$arrayValues$FlagT) #i# temporary flags

Index

* 10 arrayPlot, 26
html.report, 12 arrayTrend, 2,4, 5
import, 14

x datasets center (MANOR-internal), 16
flags, 9 check.names (MANOR-internal), 16
gscores, 24 chrom (MANOR-internal), 16
spatial, 28 chromosome. flag (flags), 9

x file clone.qgscore (gscores), 24
import, 14 control.flag (flags), 9

* hplot cv (MANOR-internal), 16

genome.plot, 10

report.plot, 25 dapi.snr.flag (flags), 9

* internal detectSB, 4
MANOR-internal, 16 dyn.x.gscore (gscores), 24
* loess dyn.y.qgscore (gscores), 24
arrayTrend, 2 dynamics.qgscore (gscores), 24
* misc)
flag.arrayCGH, 6 edge (spatial), 28
flag.summary, 7 flag. 8-11.19,28
gscore, 21

flag (flag.arrayCGH), 6
flag.aggregate.arrayCGH
(MANOR-internal), 16

gscore.arrayCGH, 21
gscore.summary, 22

to.flag, 29 flag.arrayCGH, 6, 30
+ models flag.summary, 7, 10, 13, 14
detectSB, 4 flags, 9, 28, 29
nem, 16
norm, 18 genome.plot, 10, 26
* smooth getChromosomeArm (MANOR-internal), 16
arrayTrend, 2 global.spatial.flag (flags), 9
* spatial gradient (spatial), 28
arrayTrend, 2
detectSB, 4 html.report, 8,12, 23, 26
nem, 16
* utilities import, 14, 28
sort, 27 intensity.flag (flags), 9

intensity.plot (MANOR-internal), 16
add.lines (MANOR-internal), 16

amplicon.flag (flags), 9 local.spatial.flag (flags), 9
arrayCGH, 2,4, 6, 14, 15,17, 21, 28-30 loess, 2, 3
arrayCGH2txt (MANOR-internal), 16 loess.control, 3

32

INDEX

MANOR (norm), 18

manor (norm), 18

MANOR-internal, 16

my.aggregate.data.frame
(MANOR-internal), 16

nem, 4, 5, 16

norm, 18

norm.arrayCGH, 6, 10, 27, 28, 30
num.chromosome. flag (MANOR-internal), 16

par, 11

pct.clone.qgscore (gscores), 24
pct.replicate.qgscore (qscores), 24
pct.spot.before.qscore (gscores), 24
pct.spot.gscore (gscores), 24
position.flag (flags), 9

print.flag (MANOR-internal), 16

gscore, 20, 22-24
gscore.arrayCGH, 21, 21
gscore.summary, 13, 22,22, 23
gscore.summary.arrayCGH, 21, 24
gscores, 24

ref.snr.flag (flags), 9

rename (MANOR-internal), 16
rep.flag (flags), 9

replicate.aux (MANOR-internal), 16
replicate.flag (flags), 9
report.plot, 71, 13, 14,25

smoothness.qscore (gscores), 24
SNR.flag (flags), 9

sort, 27

spatial, 10, 24, 28

spatial.flag (flags), 9
spot.corr.flag (MANOR-internal), 16
spot.flag (flags), 9

title, 11
to.flag, 6, 29
to.qgscore (gscore), 21

unique.flag (flags), 9

val.mark.flag (flags), 9
var.replicate.qscore (gscores), 24

w (MANOR-internal), 16

33

	arrayTrend
	detectSB
	flag.arrayCGH
	flag.summary
	flags
	genome.plot
	html.report
	import
	MANOR-internal
	nem
	norm
	qscore
	qscore.arrayCGH
	qscore.summary
	qscores
	report.plot
	sort
	spatial
	to.flag
	Index

