
Package ‘LedPred’
February 2, 2026

Title Learning from DNA to Predict Enhancers

Description This package aims at creating a predictive model of regulatory
sequences used to score unknown sequences based on the content of DNA motifs,
next-generation sequencing (NGS) peaks and signals and other numerical scores of
the sequences using supervised classification. The package contains a workflow
based on the support vector machine (SVM) algorithm that maps features to
sequences, optimize SVM parameters and feature number and creates a model that
can be stored and used to score the regulatory potential of unknown sequences.

Version 1.45.0

Date 2016-08-13

Author Elodie Darbo, Denis Seyres, Aitor Gonzalez

Maintainer Aitor Gonzalez <aitor.gonzalez@univ-amu.fr>

Depends R (>= 3.2.0), e1071 (>= 1.6)

Imports akima, ggplot2, irr, jsonlite, parallel, plot3D, plyr, RCurl,
ROCR, testthat

License MIT | file LICENSE

LazyData true

biocViews SupportVectorMachine, Software, MotifAnnotation, ChIPSeq,
Sequencing, Classification

NeedsCompilation no

BugReports https://github.com/aitgon/LedPred/issues

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/LedPred

git_branch devel

git_last_commit f513d31

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

https://github.com/aitgon/LedPred/issues

2 createModel

Contents
createModel . 2
crm.features . 3
evaluateModelPerformance . 3
feature.ranking . 4
LedPred . 5
mapFeaturesToCRMs . 6
mcTune . 8
rankFeatures . 9
scoreData . 11
tuneFeatureNb . 11

Index 13

createModel Create the model with the optimal features

Description

createModel function creates a SVM model from the training data set with the selected features.

Usage

createModel(data, cl = 1, kernel = "radial", cost = 1, gamma = 1,
valid.times = 10, feature.ranking = NULL, feature.nb = NULL,
file.prefix = NULL)

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

cost The SVM cost parameter for both linear and radial kernels. If NULL (default),
the function mcTune is run.

gamma The SVM gamma parameter for radial kernel. If radial kernel and NULL (de-
fault), the function mcTune is run.

valid.times Integer indicating how many times the training set will be split for the cross
validation step (default = 10). This number must be smaller than positive and
negative sets sizes.

feature.ranking

List of ordered features.

feature.nb the optimal number of feature to use from the list of ordered features.

file.prefix A character string that will be used as a prefix followed by "_model.RData" for
the resulting model file, if it is NULL (default), no model is saved

crm.features 3

Value

the best SVM model

Examples

data(crm.features)
cost <- 1
gamma <- 1
data(feature.ranking)
feature.nb <- 70

#svm.model <- createModel(data.granges=crm.features, cost=cost, gamma=gamma,
feature.ranking=feature.ranking, feature.nb=feature.nb)
#feature.weights <- as.data.frame(t(t(svm.model$coefs) %*% svm.model$SV))

crm.features This is data to be included in my package

Description

This is data to be included in my package

evaluateModelPerformance

Evaluate model performances

Description

evaluateModelPerformance function computes the precision and recall measures to evaluate the
model through cross validation steps using ROCR package.

Usage

evaluateModelPerformance(data, cl = 1, valid.times = 10,
feature.ranking = NULL, feature.nb = NULL,
numcores = ifelse(.Platform$OS.type == "windows", 1, parallel::detectCores()
- 1), file.prefix = NULL, kernel = "linear", cost = NULL,
gamma = NULL)

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

valid.times Integer indicating how many times the training set will be split for the cross
validation step (default = 10). This number must be smaller than positive and
negative sets sizes.

4 feature.ranking

feature.ranking

List of ordered features.

feature.nb the optimal number of feature to use from the list of ordered features.

numcores Number of cores to use for parallel computing (default: the number of available
cores in the machine - 1)

file.prefix A character string that will be used as a prefix followed by "_ROCR_perf.png"
for the result plot file, if it is NULL (default), no plot is returned

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

cost The SVM cost parameter for both linear and radial kernels. If NULL (default),
the function mcTune is run.

gamma The SVM gamma parameter for radial kernel. If radial kernel and NULL (de-
fault), the function mcTune is run.

Value

A list with two objects.

probs The predictions computed by the model for each subset during the cross-validation

labels The actual class for each subset

Examples

data(crm.features)
data(feature.ranking)
#probs.labels.list <- evaluateModelPerformance(data.granges=crm.features,
feature.ranking=feature.ranking, feature.nb=50,
file.prefix = "test")
#names(probs.labels.list[[1]])

feature.ranking This is data to be included in my package

Description

This is data to be included in my package

LedPred 5

LedPred Creates an SVM model given a feature matrix

Description

The LedPred function computes the best SVM parameters, defines the optimal features for creating
the SVM model by running sequentially mcTune, rankFeatures, tuneFeatureNb and createModel.
The performances of this model are then computed usong evaluateModelPerformance.

Usage

LedPred(data = NULL, cl = 1, ranges = list(gamma = c(1, 10), cost = c(1,
10)), cost = NULL, gamma = NULL, kernel = "linear", valid.times = 10,
file.prefix = NULL, numcores = ifelse(.Platform$OS.type == "windows", 1,
parallel::detectCores() - 1), step.nb = 10, halve.above = 100)

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

ranges list object containing one (linear kernel) or two (radial kernel) vectors of integers
corresponding to SVM cost and SVM gamma parameters to test.

cost The SVM cost parameter for both linear and radial kernels. If NULL (default),
the function mcTune is run.

gamma The SVM gamma parameter for radial kernel. If radial kernel and NULL (de-
fault), the function mcTune is run.

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

valid.times Integer indicating how many times the training set will be split for the cross
validation step (default = 10). This number must be smaller than positive and
negative sets sizes.

file.prefix A character string that will be used as a prefix for the result files. If it is NULL
(default), no plot is returned

numcores Number of cores to use for parallel computing (default: the number of available
cores in the machine - 1)

step.nb Number of features to add at each step (default = 10)

halve.above During RFE, all the features are ranked at the first round and the half lowest
ranked features (that contribute the least in the model) are removed for the next
round. When the number of feauture is lower or equal to halve.above, the fea-
tures are removed one by one. (default=100)

6 mapFeaturesToCRMs

Value

A list of the object produced at each step

best.params A list of the parameters giving the lowest misclassification error

feature.ranking

List of ordered features from rankFeatures

feature.nb he optimal number of feature to use from the list of ordered features from
tuneFeatureNb

model.svm The best SVM model createModel
probs.label.list

The cross-validation results from evaluateModelPerformance

Examples

data(crm.features)
#cost_vector <- c(1,3,10)
#gamma_vector <- c(1,3,10)
#ledpred.list=LedPred(data.granges=crm.features, cl=1, ranges = list(cost=cost_vector,
gamma=gamma_vector), kernel="linear", halve.above=50)
#names(ledpred.list)

mapFeaturesToCRMs R interface to bed_to_matrix REST in server

Description

The mapFeaturesToCRMs function allows the user to create a training set matrix to build a predictive
model. The training set is composed of positive regions (known to be involved in the pathway of in-
terest) and negative regions (randomly picked or known to not be involved in the pathway of interest)
that will be described (scored) by features. Three types of features file format are accepted: Position
specific scoring matrices modeling motifs recognised by transcription factors, bed files containing
region coordinates for any discrete feature (NGS peaks, conservation blocks) and wig/bigWig files
containing signal data. This script has been tested with version 0.99 of the online server. Go here
to see current version of the server http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php

Usage

mapFeaturesToCRMs(URL = "http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php",
positive.bed = NULL, genome = NULL, negative.bed = NULL,
shuffling = NULL, background.seqs = NULL, genome.info = NULL,
pssm = NULL, background.freqs = NULL, ngs = NULL, bed.overlap = NULL,
my.values = NULL, feature.ranking = NULL, feature.nb = NULL,
crm.feature.file = NULL, stderr.log.file = NULL, stdout.log.file = NULL)

mapFeaturesToCRMs 7

Arguments

URL URL of the server REST target

positive.bed Positive bed file path. Compulsory

genome Genome code, eg. dm3 for Drosophila Melanogaster. Compulsory

negative.bed Negative bed file path.

shuffling Integer with number of time shuffle background sequences (background.seqs).
If negative.bed is NULL and shuffling is set at 0, the feature matrix does not
contain negative sequences. It is useful to produce a test set matrix.

background.seqs

Background sequences used for shuffling. If shuffling = 0, set this parameter at
0.

genome.info File require for shuffling bed. If shuffling = 0, set this parameter at 0.

pssm Position specific scoring matrices

background.freqs

Background frequencies of nucleotides in genome

ngs NGS (bed and wig) files

bed.overlap Minimal overlap as a fraction of query sequence with NGS bed peak. Equivalent
with intersectBed -f argument. Default 1bp.

my.values Bed file where fourth column are values to append to the SVM matrix

feature.ranking

File with ranked features (Output of rankFeatures). It is used for scoring a query
bed file

feature.nb Integer with feature.nb

crm.feature.file

Path to feature matrix file
stderr.log.file

Path to error log

stdout.log.file

Path to standard output log

Value

A list

feature.matrix a data frame where each row is a region and each column a feature, each cell
carry a score, the first column is the response vector

stdout.log Standard output log of mapFeaturesToCRMs script in server

stderr.log Standard error log of mapFeaturesToCRMs script in server

8 mcTune

Examples

Not run:
dirPath <- system.file("extdata", package="LedPred")
file.list <- list.files(dirPath, full.names=TRUE)
background.freqs <- file.list[grep("freq", file.list)]
positive.regions <- file.list[grep("positive", file.list)]
negative.regions <- file.list[grep("negative", file.list)]
TF.matrices <- file.list[grep("tf", file.list)]
ngs.path <- system.file("extdata/ngs", package="LedPred")
ngs.files=list.files(ngs.path, full.names=TRUE)
crm.features.list <- mapFeaturesToCRMs(positive.bed=positive.regions,

negative.bed=negative.regions, background.freqs=background.freqs,
pssm=TF.matrices, genome="dm3", ngs=ngs.files,
crm.feature.file = "crm.features.tab",
stderr.log.file = "stderr.log", stdout.log.file = "stdout.log")

names(crm.features.list)
class(crm.features.list$crm.features)
crm.features.list$stdout.log
crm.features.list$stderr.log

End(Not run)

mcTune Tuning the SVM parameters

Description

The mcTune function is a modified version of the function tune from package e1071 [6]. It tests
the different combinations of C and gamma parameters given as vectors in a list and will return the
prediction error computed during the cross-validation step.

Usage

mcTune(data, cl = 1, ranges = list(gamma = c(1, 10), cost = c(1, 10)),
kernel = "linear", valid.times = 10, file.prefix = NULL,
numcores = ifelse(.Platform$OS.type == "windows", 1, parallel::detectCores()
- 1))

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

ranges list object containing one (linear kernel) or two (radial kernel) vectors of integers
corresponding to SVM cost and SVM gamma parameters to test.

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

rankFeatures 9

valid.times Integer indicating how many times the training set will be split for the cross
validation step (default = 10). This number must be smaller than positive and
negative sets sizes.

file.prefix A character string that will be used as a prefix followed by "_c_g_eval.png" for
result plot files, if it is NULL (default), no plot is returned

numcores Number of cores to use for parallel computing (default: the number of available
cores in the machine - 1)

Value

A list of class tune

best.parameters

A list of the parameters giving the lowest misclassification error
best.performance

The lowest misclassification error

method The method used

nparcomb the number of tested parameter combinations

train.ind The indexes used to produce subsets during the cross validation step

sampling The cross-validation fold number

performances A matrix summarizing the cross-validation step with the error for each tested
parameter at each round and the dispersion of these errors (regarding to the
average error)

best.model The model produced by the best parameters

Examples

data(crm.features)
cost.vector <- c(1,3,10,30)
gamma.vector <- c(1,3,10,30)
#c.g.obj <- mcTune(data.granges= crm.features, ranges = list(cost=cost.vector,
gamma=gamma.vector), kernel='linear', file.prefix = "test")
#names(c.g.obj)
cost <- c.g.obj$best.parameters$cost
gamma <- c.g.obj$best.parameters$gamma

rankFeatures Ranking the features according to their importance

Description

The rankFeatures function performs a Recursive Feature Elimination (RFE) on subsets of the
feature matrix. For each subset the features are ranked according to the weight attributed by SVM
at each round of elimination and the average rank of each feature over the subsets is returned. We
recommand to save the object containing the ranked features for the following steps.

10 rankFeatures

Usage

rankFeatures(data, cl = 1, halve.above = 100, valid.times = 10,
kernel = "linear", cost = 1, gamma = 1,
numcores = ifelse(.Platform$OS.type == "windows", 1, parallel::detectCores()
- 1), file.prefix = NULL)

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

halve.above During RFE, all the features are ranked at the first round and the half lowest
ranked features (that contribute the least in the model) are removed for the next
round. When the number of feauture is lower or equal to halve.above, the fea-
tures are removed one by one. (default=100)

valid.times Integer indicating how many times the training set will be split (default = 10).
This number must be smaller than positive and negative sets sizes.

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

cost The SVM cost parameter for both linear and radial kernels. If NULL (default),
the function mcTune is run.

gamma The SVM gamma parameter for radial kernel. If radial kernel and NULL (de-
fault), the function mcTune is run.

numcores Number of cores to use for parallel computing (default: the number of available
cores in the machine - 1)

file.prefix A character string that will be used as a prefix for output file, if it is NULL
(default), no file is writen.

Value

A 3-columns data frame with ranked features. First column contains the feature names, the second
the original position of the feature in the feature.matrix and the third the average rank over the
subsets.

Examples

data(crm.features)
cost <- 1
gamma <- 1
#feature.ranking <- rankFeatures(data.granges=crm.features, cost=cost,gamma=gamma,
kernel='linear', file.prefix = "test", halve.above=10)

scoreData 11

scoreData Predicting new regulatory regions

Description

scoreData function predict new regulatory regions using SVM model from a test data set

Usage

scoreData(data, ledpred = NULL, model = NULL, score.file = NULL)

Arguments

data data.frame containing the test set. This test set must have the same descriptive
features as the one that were used to build the model.

ledpred Returned object from the LedPred function

model Returned object of the createModel function

score.file A character string that will be used as the file name for the output file, if it is
NULL (default), no file is writen. The output file takes the form of two columns
with object names and scores.

Value

A 2-columns dataframe. First column containg the SVM model prediction probabilities and the
second containing the corresponding regions

Examples

data(crm.features)
data(svm.model)
#pred.test <- scoreData(data.granges=crm.features, model=svm.model,
score.file="test_prediction.tab")

tuneFeatureNb Selecting the optimal number of features

Description

tuneFeatureNb iterates through increasing feature numbers to calculate kappa values which repre-
sents the performance of the model computed with the given features. We recommand to save the
object containing the optimal number of features for the following steps.

12 tuneFeatureNb

Usage

tuneFeatureNb(data, cl = 1, feature.ranking, step.nb = 10,
valid.times = 10, cost = NULL, gamma = NULL, kernel = "linear",
numcores = ifelse(.Platform$OS.type == "windows", 1, parallel::detectCores()
- 1), file.prefix = NULL)

Arguments

data data.frame containing the training set

cl integer indicating the column number corresponding to the response vector that
classify positive and negative regions (default = 1)

feature.ranking

List of ordered features.

step.nb Number of features to add at each step (default = 10)

valid.times Integer indicating how many times the training set will be split for the cross
validation step (default = 10). This number must be smaller than positive and
negative sets sizes.

cost The SVM cost parameter for both linear and radial kernels. If NULL (default),
the function mcTune is run.

gamma The SVM gamma parameter for radial kernel. If radial kernel and NULL (de-
fault), the function mcTune is run.

kernel SVM kernel, a character string: "linear" or "radial". (default = "radial")

numcores Number of cores to use for parallel computing (default: the number of available
cores in the machine - 1)

file.prefix A character string that will be used as a prefix followed by "_kappa_measures.png"
for the result plot file. If it is NULL (default), no plot is returned

Value

A list with two objects.

performance 2-columns data frame. first column correspond to the number of tested features,
second column contains the corresponding kappa value

best.feature.nb

Integer corresponding to the number of features producing the model with the
highest kappa value

Examples

data(crm.features)
data(feature.ranking)
cost <- 1
gamma <- 1
#feature.nb.obj <- tuneFeatureNb(data.granges=crm.features,
feature.ranking=feature.ranking, kernel='linear', cost=cost,gamma=gamma,
file.prefix = "test")
#names(feature.nb.obj)

Index

createModel, 2
crm.features, 3

evaluateModelPerformance, 3

feature.ranking, 4

LedPred, 5

mapFeaturesToCRMs, 6
mcTune, 8

rankFeatures, 9

scoreData, 11

tuneFeatureNb, 11

13

	createModel
	crm.features
	evaluateModelPerformance
	feature.ranking
	LedPred
	mapFeaturesToCRMs
	mcTune
	rankFeatures
	scoreData
	tuneFeatureNb
	Index

