
Package ‘LOLA’
February 2, 2026

Version 1.41.1

Date 2026-01-05

Title Locus overlap analysis for enrichment of genomic ranges

Description Provides functions for testing overlap of sets of genomic regions
with public and custom region set (genomic ranges) databases. This makes it
possible to do automated enrichment analysis for genomic region sets, thus
facilitating interpretation of functional genomics and epigenomics data.

Author Nathan Sheffield <http://www.databio.org> [aut, cre],
Christoph Bock [ctb]

Maintainer Nathan Sheffield <nathan@code.databio.org>

Depends R (>= 2.10)

Imports BiocGenerics, S4Vectors, IRanges, GenomicRanges, data.table,
reshape2, utils, stats, methods

Suggests parallel, XVector, testthat, knitr, BiocStyle, rmarkdown

Enhances simpleCache, qvalue, ggplot2

VignetteBuilder knitr

License GPL-3

biocViews GeneSetEnrichment, GeneRegulation, GenomeAnnotation,
SystemsBiology, FunctionalGenomics, ChIPSeq, MethylSeq,
Sequencing

URL http://code.databio.org/LOLA

BugReports http://github.com/nsheff/LOLA

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/LOLA

git_branch devel

git_last_commit 5459337

git_last_commit_date 2026-01-05

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

http://www.databio.org
http://code.databio.org/LOLA
http://github.com/nsheff/LOLA

2 buildRestrictedUniverse

Contents
buildRestrictedUniverse . 2
checkUniverseAppropriateness . 3
cleanws . 4
countOverlapsAnyRev . 4
extractEnrichmentOverlaps . 5
getRegionFile . 6
getRegionSet . 7
lapplyAlias . 8
listRegionSets . 8
listToGRangesList . 9
loadRegionDB . 9
LOLA . 10
mergeRegionDBs . 10
nlist . 11
plotTopLOLAEnrichments . 11
readBed . 12
readCollection . 13
readCollectionAnnotation . 13
readCollectionFiles . 14
readRegionGRL . 15
readRegionSetAnnotation . 16
redefineUserSets . 17
replaceFileExtension . 18
runLOLA . 18
sampleGRL . 20
setLapplyAlias . 20
setSharedDataDir . 21
splitDataTable . 21
splitFileIntoCollection . 22
userSets . 23
userUniverse . 23
write.tsv . 24
writeCombinedEnrichment . 24
writeDataTableSplitByColumn . 25

Index 27

buildRestrictedUniverse

If you want to test for differential enrichment within your usersets, you
can restrict the universe to only regions that are covered in at least
one of your sets. This function helps you build just such a restricted
universe

checkUniverseAppropriateness 3

Description

If you want to test for differential enrichment within your usersets, you can restrict the universe to
only regions that are covered in at least one of your sets. This function helps you build just such a
restricted universe

Usage

buildRestrictedUniverse(userSets)

Arguments

userSets The userSets you will pass to the enrichment calculation.

Value

A restricted universe

Examples

data("sample_input", package="LOLA") # load userSets
restrictedUniverse = buildRestrictedUniverse(userSets)

checkUniverseAppropriateness

Check universe appropriateness

Description

Checks to see if the universe is appropriate for the userSets Anything in the userSets should be
present in the universe. In addition, 2 different regions in the userSets should not overlap the same
region in the universe

Usage

checkUniverseAppropriateness(userSets, userUniverse, cores = 1, fast = FALSE)

Arguments

userSets Regions of interest

userUniverse Regions tested for inclusion in userSets

cores Number of processors

fast Skip the (slow) test for many-to-many relationships

Value

No return value.

4 countOverlapsAnyRev

Examples

data("sample_input", package="LOLA") # load userSet
data("sample_universe", package="LOLA") # load userUniverse
checkUniverseAppropriateness(userSets, userUniverse)

cleanws cleanws takes multi-line, code formatted strings and just formats them
as simple strings

Description

cleanws takes multi-line, code formatted strings and just formats them as simple strings

Usage

cleanws(string)

Arguments

string string to clean

Value

A string with all consecutive whitespace characters, including tabs and newlines, merged into a
single space.

countOverlapsAnyRev Just a reverser. Reverses the order of arguments and passes them un-
touched to countOverlapsAny – so you can use it with lapply.

Description

Just a reverser. Reverses the order of arguments and passes them untouched to countOverlapsAny
– so you can use it with lapply.

Usage

countOverlapsAnyRev(subj, quer)

Arguments

subj Subject
quer Query

Value

Results from countOverlaps

extractEnrichmentOverlaps 5

extractEnrichmentOverlaps

Given a single row from an enrichment table calculation, finds the set
of overlaps between the user set and the test set. You can then use
these, for example, to get sequences for those regions.

Description

Given a single row from an enrichment table calculation, finds the set of overlaps between the user
set and the test set. You can then use these, for example, to get sequences for those regions.

Usage

extractEnrichmentOverlaps(locResult, userSets, regionDB)

Arguments

locResult Results from runLOLA function

userSets User sets passed to the runLOLA function

regionDB Region database used

Value

userSets overlapping the supplied database entry.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

6 getRegionFile

getRegionFile Grab the filename for a a single region set from a database specified
by filename.

Description

Like getRegionSet but returns a filename instead of a GRanges object. Given a local filename,
returns a complete absolulte path so you can read that file in.

Usage

getRegionFile(dbLocation, filenames, collections = NULL)

Arguments

dbLocation folder of regionDB

filenames Filename(s) of a particular region set to grab.

collections (optional) subset of collections to list

Value

A filename the specified file in the regionDB.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

getRegionSet 7

getRegionSet Grab a single region set from a database, specified by filename.

Description

If you want to work with a LOLA regionDB region set individually, this function can help you.
It can extract individual (or subsets of) region sets from either loaded regionDBs, loaded with
loadRegionDB(), or from a database on disk, where only the region sets of interest will be loaded.

Usage

getRegionSet(regionDB, filenames, collections = NULL)

Arguments

regionDB A region database loaded with loadRegionDB().

filenames Filename(s) of a particular region set to grab.

collections (optional) subset of collections to list

Value

A GRanges object derived from the specified file in the regionDB.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

8 listRegionSets

lapplyAlias Function to run lapply or mclapply, depending on the option set in
getOption("mc.cores"), which can be set with setLapplyAlias().

Description

Function to run lapply or mclapply, depending on the option set in getOption("mc.cores"), which
can be set with setLapplyAlias().

Usage

lapplyAlias(..., mc.preschedule = TRUE)

Arguments

... Arguments passed lapply() or mclapply()
mc.preschedule Argument passed to mclapply

Value

Result from lapply or parallel::mclapply

listRegionSets Lists the region sets for given collection(s) in a region database on
disk.

Description

Lists the region sets for given collection(s) in a region database on disk.

Usage

listRegionSets(regionDB, collections = NULL)

Arguments

regionDB File path to region database
collections (optional) subset of collections to list

Value

a list of files in the given collections

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
listRegionSets(dbPath)

listToGRangesList 9

listToGRangesList converts a list of GRanges into a GRangesList; strips all metadata.

Description

converts a list of GRanges into a GRangesList; strips all metadata.

Usage

listToGRangesList(lst)

Arguments

lst a list of GRanges objects

Value

a GRangesList object

loadRegionDB Helper function to annotate and load a regionDB, a folder with sub-
folder collections of regions.

Description

Helper function to annotate and load a regionDB, a folder with subfolder collections of regions.

Usage

loadRegionDB(dbLocation, useCache = TRUE, limit = NULL, collections = NULL)

Arguments

dbLocation folder where your regionDB is stored, or list of such folders
useCache uses simpleCache to cache and load the results
limit You can limit the number of regions for testing. Default: NULL (no limit)
collections Restrict the database loading to this list of collections

Value

regionDB list containing database location, region and collection annotations, and regions GRanges-
List

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)

10 mergeRegionDBs

LOLA Genome locus overlap analysis.

Description

Run, Lola!

Author(s)

Nathan Sheffield

References

http://github.com/sheffien

mergeRegionDBs Given two regionDBs, (lists returned from loadRegionDB()), This
function will combine them into a single regionDB. This will enable
you to combine, for example, LOLA Core databases with custom
databases into a single analysis.

Description

Given two regionDBs, (lists returned from loadRegionDB()), This function will combine them into
a single regionDB. This will enable you to combine, for example, LOLA Core databases with
custom databases into a single analysis.

Usage

mergeRegionDBs(dbA, dbB)

Arguments

dbA First regionDB database.

dbB Second regionDB database.

Value

A combined regionDB.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbPath)
combinedRegionDB = mergeRegionDBs(regionDB, regionDB)

http://github.com/sheffien

nlist 11

nlist Named list function.

Description

This function is a drop-in replacement for the base list() function, which automatically names your
list according to the names of the variables used to construct it. It seemlessly handles lists with some
names and others absent, not overwriting specified names while naming any unnamed parameters.
Took me awhile to figure this out.

Usage

nlist(...)

Arguments

... arguments passed to list()

Value

A named list object.

plotTopLOLAEnrichments

Given some results (you grab the top ones on your own), this plots a
barplot visualizing their odds ratios.

Description

Given some results (you grab the top ones on your own), this plots a barplot visualizing their odds
ratios.

Usage

plotTopLOLAEnrichments(data)

Arguments

data A results table returned from runLOLA()

Value

Returns a ggplot2 plot object.

12 readBed

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

readBed Imports bed files and creates GRanges objects, using the fread() func-
tion from data.table.

Description

Imports bed files and creates GRanges objects, using the fread() function from data.table.

Usage

readBed(file)

Arguments

file File name of bed file.

Value

GRanges Object

Examples

a = readBed(system.file("extdata", "examples/combined_regions.bed",
package="LOLA"))

readCollection 13

readCollection Given a bunch of region set files, read in all those flat (bed) files and
create a GRangesList object holding all the region sets. This function
is used by readRegionGRL to process annotation objects.

Description

Given a bunch of region set files, read in all those flat (bed) files and create a GRangesList object
holding all the region sets. This function is used by readRegionGRL to process annotation objects.

Usage

readCollection(filesToRead, limit = NULL)

Arguments

filesToRead a vector containing bed files

limit for testing purposes, limit the number of files read. NULL for no limit (default).

Value

A GRangesList with the GRanges in the filesToRead.

Examples

files = list.files(system.file("extdata", "hg19/ucsc_example/regions",
package="LOLA"), pattern="*.bed")

regionAnno = readCollection(files)

readCollectionAnnotation

Read collection annotation

Description

Read collection annotation

Usage

readCollectionAnnotation(dbLocation, collections = NULL)

Arguments

dbLocation Location of the database

collections Restrict the database loading to this list of collections. Leave NULL to load the
entire database (Default).

14 readCollectionFiles

Value

Collection annotation data.table

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
collectionAnno = readCollectionAnnotation(dbLocation=dbPath)

readCollectionFiles Given a database and a collection, this will create the region annota-
tion data.table; either giving a generic table based on file names, or
by reading in the annotation data.

Description

Given a database and a collection, this will create the region annotation data.table; either giving a
generic table based on file names, or by reading in the annotation data.

Usage

readCollectionFiles(dbLocation, collection, refreshSizes = FALSE)

Arguments

dbLocation folder where your regionDB is stored.

collection Collection folder to load

refreshSizes should I recreate the sizes files documenting how many regions (lines) are in
each region set?

Value

A data.table annotating the regions in the collections.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionAnno = readCollectionFiles(dbLocation=dbPath, "ucsc_example")

readRegionGRL 15

readRegionGRL This function takes a region annotation object and reads in the regions,
returning a GRangesList object of the regions.

Description

This function takes a region annotation object and reads in the regions, returning a GRangesList
object of the regions.

Usage

readRegionGRL(
dbLocation,
annoDT,
refreshCaches = FALSE,
useCache = TRUE,
limit = NULL

)

Arguments

dbLocation folder of regiondB

annoDT output of readRegionSetAnnotation().

refreshCaches should I recreate the caches?

useCache uses simpleCache to cache and load the results

limit for testing purposes, limit the nmber of files read. NULL for no limit (default).

Value

GRangesList object

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionAnno = readRegionSetAnnotation(dbLocation=dbPath)
regionGRL = readRegionGRL(dbLocation= dbPath, regionAnno, useCache=FALSE)

16 readRegionSetAnnotation

readRegionSetAnnotation

Given a folder containing region collections in subfolders, this func-
tion will either read the annotation file if one exists, or create a generic
annotation file.

Description

Given a folder containing region collections in subfolders, this function will either read the annota-
tion file if one exists, or create a generic annotation file.

Usage

readRegionSetAnnotation(
dbLocation,
collections = NULL,
refreshCaches = FALSE,
refreshSizes = TRUE,
useCache = TRUE

)

Arguments

dbLocation folder where your regionDB is stored.

collections Restrict the database loading to this list of collections Leave NULL to load the
entire database (Default).

refreshCaches should I recreate the caches? Default: FALSE

refreshSizes should I refresh the size files? Default:TRUE

useCache Use simpleCache to store results and load them?

Value

Region set annotation (data.table)

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionAnno = readRegionSetAnnotation(dbLocation=dbPath)

redefineUserSets 17

redefineUserSets This function will take the user sets, overlap with the universe, and
redefine the user sets as the set of regions in the user universe that
overlap at least one region in user sets. this makes for a more appro-
priate statistical enrichment comparison, as the user sets are actually
exactly the same regions found in the universe otherwise, you can get
some weird artifacts from the many-to-many relationship between user
set regions and universe regions.

Description

This function will take the user sets, overlap with the universe, and redefine the user sets as the
set of regions in the user universe that overlap at least one region in user sets. this makes for a
more appropriate statistical enrichment comparison, as the user sets are actually exactly the same
regions found in the universe otherwise, you can get some weird artifacts from the many-to-many
relationship between user set regions and universe regions.

Usage

redefineUserSets(userSets, userUniverse, cores = 1)

Arguments

userSets Regions of interest

userUniverse Regions tested for inclusion in userSets

cores Number of processors

Value

userSets redefined in terms of userUniverse

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

18 runLOLA

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

replaceFileExtension This will change the string in filename to have a new extension

Description

This will change the string in filename to have a new extension

Usage

replaceFileExtension(filename, extension)

Arguments

filename string to convert

extension new extension

Value

Filename with original extension deleted, replaced by provided extension

runLOLA Enrichment Calculation

Description

Workhorse function that calculates overlaps between userSets, and then uses a fisher’s exact test
rank them by significance of the overlap.

Usage

runLOLA(
userSets,
userUniverse,
regionDB,
minOverlap = 1,
cores = 1,
redefineUserSets = FALSE,
direction = "enrichment"

)

runLOLA 19

Arguments

userSets Regions of interest

userUniverse Regions tested for inclusion in userSets

regionDB Region DB to check for overlap, from loadRegionDB()

minOverlap (Default:1) Minimum bases required to count an overlap

cores Number of processors
redefineUserSets

run redefineUserSets() on your userSets?

direction Defaults to "enrichment", but may also accept "depletion", which will swap the
direction of the fisher test (use ’greater’ or less’ value passed to the ’alternative’
option of fisher.test)

Value

Data.table with enrichment results. Rows correspond to individual pairwise fisher’s tests comparing
a single userSet with a single databaseSet. The columns in this data.table are: userSet and dbSet: in-
dex into their respective input region sets. pvalueLog: -log10(pvalue) from the fisher’s exact result;
oddsRatio: result from the fisher’s exact test; support: number of regions in userSet overlapping
databaseSet; rnkPV, rnkOR, rnkSup: rank in this table of p-value, oddsRatio, and Support respec-
tively. The –value is the negative natural log of the p-value returned from a one-sided fisher’s exact
test. maxRnk, meanRnk: max and mean of the 3 previous ranks, providing a combined ranking
system. b, c, d: 3 other values completing the 2x2 contingency table (with support). The remaining
columns describe the dbSet for the row.

If you have the qvalue package installed from bioconductor, runLOLA will add a q-value transfor-
mation to provide FDR scores automatically.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

20 setLapplyAlias

sampleGRL Function to sample regions from a GRangesList object, in specified
proportion

Description

Function to sample regions from a GRangesList object, in specified proportion

Usage

sampleGRL(GRL, prop)

Arguments

GRL GRangesList from which to sample
prop vector with same length as GRL, of values between 0-1, proportion of the list to

select

Value

A sampled subset of original GRangesList object.

setLapplyAlias To make parallel processing a possibility but not required, I use an
lapply alias which can point at either the base lapply (for no multi-
core), or it can point to mclapply, and set the options for the number
of cores (what mclapply uses). With no argument given, returns intead
the number of cpus currently selected.

Description

To make parallel processing a possibility but not required, I use an lapply alias which can point at
either the base lapply (for no multicore), or it can point to mclapply, and set the options for the
number of cores (what mclapply uses). With no argument given, returns intead the number of cpus
currently selected.

Usage

setLapplyAlias(cores = 0)

Arguments

cores Number of cpus

Value

None

setSharedDataDir 21

setSharedDataDir setSharedDataDir Sets global variable specifying the default data di-
rectory.

Description

setSharedDataDir Sets global variable specifying the default data directory.

Usage

setSharedDataDir(sharedDataDir)

Arguments

sharedDataDir directory where the shared data is stored.

Value

No return value.

Examples

setSharedDataDir("project/data")

splitDataTable Efficiently split a data.table by a column in the table

Description

Efficiently split a data.table by a column in the table

Usage

splitDataTable(DT, splitFactor)

Arguments

DT Data.table to split

splitFactor Column to split, which can be a character vector or an integer.

Value

List of data.table objects, split by column

22 splitFileIntoCollection

splitFileIntoCollection

This function will take a single large bed file that is annotated with
a column grouping different sets of similar regions, and split it into
separate files for use with the LOLA collection format.

Description

This function will take a single large bed file that is annotated with a column grouping different sets
of similar regions, and split it into separate files for use with the LOLA collection format.

Usage

splitFileIntoCollection(
filename,
splitCol,
collectionFolder = NULL,
filenamePrepend = ""

)

Arguments

filename the file to split

splitCol factor column that groups the lines in the file by set. It should be an integer.

collectionFolder

name of folder to place the new split files.

filenamePrepend

string to prepend to the filenames. Defaults to blank.

Value

No return value.

Examples

combFile = system.file("extdata", "examples/combined_regions.bed", package="LOLA")
splitFileIntoCollection(combFile, 4)

userSets 23

userSets An example set of regions, sampled from the example database.

Description

A dataset containing a few sample regions.

Usage

data(sample_input)

Format

A GRangesList object

Value

No return value.

Examples

Not run:
This is how I produced the sample data sets:
dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation= dbPath)
userSetA = reduce(do.call(c, (sampleGRL(regionDB$regionGRL,
prop=c(.1,.25,.05,.05,0)))))
userSetB = reduce(do.call(c, (sampleGRL(regionDB$regionGRL,
prop=c(.2,.05,.05,.05,0)))))

userSets = GRangesList(setA=userSetA, setB=userSetB)
userUniverse = reduce(do.call(c, regionDB$regionGRL))
save(userSets, file="sample_input.RData")
save(userUniverse, file="sample_universe.RData")

End(Not run)

userUniverse A reduced GRanges object from the example regionDB database

Description

A reduced GRanges object from the example regionDB database

Usage

data(sample_universe)

24 writeCombinedEnrichment

Format

A GRanges object

Value

No return value.

write.tsv Wrapper of write.table that provides defaults to write a simple .tsv file.
Passes additional arguments to write.table

Description

Wrapper of write.table that provides defaults to write a simple .tsv file. Passes additional arguments
to write.table

Usage

write.tsv(...)

Arguments

... Additional arguments passed to write.table

Value

No return value

writeCombinedEnrichment

Function for writing output all at once: combinedResults is an table
generated by "locationEnrichment()" or by rbinding category/location
results. Writes all enrichments to a single file, and also spits out the
same data divided into groups based on userSets, and Databases, just
for convenience. disable this with an option.

Description

Function for writing output all at once: combinedResults is an table generated by "locationEnrich-
ment()" or by rbinding category/location results. Writes all enrichments to a single file, and also
spits out the same data divided into groups based on userSets, and Databases, just for convenience.
disable this with an option.

writeDataTableSplitByColumn 25

Usage

writeCombinedEnrichment(
combinedResults,
outFolder = NULL,
includeSplits = TRUE

)

Arguments

combinedResults

enrichment results object

outFolder location to write results on disk

includeSplits also include individual files for each user set and database?

Value

No return value.

Examples

dbPath = system.file("extdata", "hg19", package="LOLA")
regionDB = loadRegionDB(dbLocation=dbPath)
data("sample_universe", package="LOLA")
data("sample_input", package="LOLA")

getRegionSet(regionDB, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionSet(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")
getRegionFile(dbPath, collections="ucsc_example", filenames="vistaEnhancers.bed")

res = runLOLA(userSets, userUniverse, regionDB, cores=1)
locResult = res[2,]
extractEnrichmentOverlaps(locResult, userSets, regionDB)
writeCombinedEnrichment(locResult, "temp_outfolder")

userSetsRedefined = redefineUserSets(userSets, userUniverse)
resRedefined = runLOLA(userSetsRedefined, userUniverse, regionDB, cores=1)

g = plotTopLOLAEnrichments(resRedefined)

writeDataTableSplitByColumn

Given a data table and a factor variable to split on, efficiently divides
the table and then writes the different splits to separate files, named
with filePrepend and numbered according to split.

26 writeDataTableSplitByColumn

Description

Given a data table and a factor variable to split on, efficiently divides the table and then writes the
different splits to separate files, named with filePrepend and numbered according to split.

Usage

writeDataTableSplitByColumn(
DT,
splitFactor,
filePrepend = "",
orderColumn = NULL

)

Arguments

DT data.table to split

splitFactor column of DT to split on

filePrepend notation string to prepend to output files

orderColumn column of DT to order on (defaults to the first column)

Value

number of splits written

Index

∗ datasets
userSets, 23
userUniverse, 23

buildRestrictedUniverse, 2

checkUniverseAppropriateness, 3
cleanws, 4
countOverlapsAnyRev, 4

extractEnrichmentOverlaps, 5

getRegionFile, 6
getRegionSet, 7

lapplyAlias, 8
listRegionSets, 8
listToGRangesList, 9
loadRegionDB, 9
LOLA, 10

mergeRegionDBs, 10

nlist, 11

plotTopLOLAEnrichments, 11

readBed, 12
readCollection, 13
readCollectionAnnotation, 13
readCollectionFiles, 14
readRegionGRL, 15
readRegionSetAnnotation, 16
redefineUserSets, 17
replaceFileExtension, 18
runLOLA, 18

sampleGRL, 20
setLapplyAlias, 20
setSharedDataDir, 21
splitDataTable, 21

splitFileIntoCollection, 22

userSets, 23
userUniverse, 23

write.tsv, 24
writeCombinedEnrichment, 24
writeDataTableSplitByColumn, 25

27

	buildRestrictedUniverse
	checkUniverseAppropriateness
	cleanws
	countOverlapsAnyRev
	extractEnrichmentOverlaps
	getRegionFile
	getRegionSet
	lapplyAlias
	listRegionSets
	listToGRangesList
	loadRegionDB
	LOLA
	mergeRegionDBs
	nlist
	plotTopLOLAEnrichments
	readBed
	readCollection
	readCollectionAnnotation
	readCollectionFiles
	readRegionGRL
	readRegionSetAnnotation
	redefineUserSets
	replaceFileExtension
	runLOLA
	sampleGRL
	setLapplyAlias
	setSharedDataDir
	splitDataTable
	splitFileIntoCollection
	userSets
	userUniverse
	write.tsv
	writeCombinedEnrichment
	writeDataTableSplitByColumn
	Index

