Package ‘Ibex’

February 2, 2026
Title Methods for BCR single-cell embedding
Version 1.1.0

Description Implementation of the Ibex algorithm for single-cell embedding based on BCR se-
quences. The package includes a standalone function to encode BCR sequence informa-
tion by amino acid properties or sequence order using tensorflow-based autoencoder. In addi-
tion, the package interacts with SingleCellExperiment or Seurat data objects.

License MIT + file LICENSE
Encoding UTF-8

LazyData false
RoxygenNote 7.3.2

biocViews Software, InmunoOncology, SingleCell, Classification,
Annotation, Sequencing

Depends R (>=4.5.0)

Imports basilisk, immApex (>= 1.3.2), methods, Matrix, reticulate (>=
1.43.0), rlang, SeuratObject, scRepertoire,
SingleCellExperiment, stats, SummarizedExperiment, tensorflow,
tools

Suggests basilisk.utils, BiocStyle, bluster, dplyr, ggplot2,
kableExtra, knitr, markdown, mumosa, patchwork, Peptides,
rmarkdown, scater, spelling, testthat (>= 3.0.0), utils,
viridis

SystemRequirements Python (via basilisk)

VignetteBuilder knitr

Language en-US
URL https://github.com/BorchLab/Ibex/

BugReports https://github.com/BorchLab/Ibex/issues
Roxygen list(markdown = TRUE)

git_url https://git.bioconductor.org/packages/Ibex
git_branch devel

git_last_commit 1dadb52

https://github.com/BorchLab/Ibex/
https://github.com/BorchLab/Ibex/issues

2 Ibex-package

git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01
Author Nick Borcherding [aut, cre]

Maintainer Nick Borcherding <ncborch@gmail.com>

Contents
Ibex-package 2
combineExpandedBCR L o 3
CoNGATY e 4
filter.cells o e e 5
ibex_example e e e 6
Ibex_ matrix e e 6
bex_vdj e e 8
runlbex e 9

Index 12

Ibex-package Ibex: Methods for BCR single-cell embedding
Description

Ibex implements methods for embedding B-cell receptor (BCR) sequences from single-cell assays
into a continuous latent space. It supports amino-acid property—based and sequence-order encod-
ings via a TensorFlow autoencoder, and interoperates with common single-cell containers such as
SingleCellExperiment and SeuratObject.

Details

Key features
* Encode BCR sequence information using biochemical properties or raw sequence order (Ten-
sorFlow autoencoder).

* Interoperate with SingleCellExperiment and SeuratObject for downstream analysis and vi-
sualization.

* Utilities for loading pretrained models and managing dependencies in an isolated basilisk
environment.

Getting started

browseVignettes("Ibex")

combineExpandedBCR 3

Models and caching Pretrained encoders can be retrieved with aa.model . loader (), which val-
idates against internal metadata and caches downloaded artifacts; see the function help for cache
location and behavior.

Python/TensorFlow note Ibex uses basilisk to provision an isolated Python environment at run-
time; no manual setup is usually required.

Author(s)

Maintainer: Nick Borcherding <ncborch@gmail.com>

See Also

https://github.com/BorchLab/Ibex
https://github.com/BorchLab/Ibex/issues

combineExpandedBCR combineBCR for CDR1/2/3 sequences

Description

This function enhances BCR processing by incorporating additional sequence information from
CDR1 and CDR?2 regions before applying the BCR combination logic. The function depends on
scRepertoire: :combineBCR().

Usage
combineExpandedBCR(
input.data,
samples = NULL,
ID = NULL,
call.related.clones = TRUE,
threshold = 0.85,
removeNA = FALSE,
removeMulti = FALSE,
filterMulti = TRUE,
filterNonproductive = TRUE
)
Arguments
input.data List of filtered contig annotations.
samples Character vector. Labels of samples (required).
ID Character vector. Additional sample labeling (optional).

call.related.clones
Logical. Whether to call related clones based on nucleotide sequence and V
gene. Default is TRUE.

https://github.com/BorchLab/Ibex
https://github.com/BorchLab/Ibex/issues

4 CoNGAfty

threshold Numeric. Normalized edit distance for clone clustering. Default is 0. 85.

removeNA Logical. Whether to remove any chain without values. Default is FALSE.

removeMulti Logical. Whether to remove barcodes with more than two chains. Default is
FALSE.

filterMulti Logical. Whether to select the highest-expressing light and heavy chains. De-
fault is TRUE.

filterNonproductive
Logical. Whether to remove nonproductive chains. Default is TRUE.

Value

A list of consolidated BCR clones with expanded CDR sequences.

See Also

scRepertoire: :combineBCR()

Examples

#' # Get Data
ibex_vdj <- get(data("ibex_vdj"))

combined.BCR <- combineExpandedBCR(1list(ibex_vdj),
samples = "Samplel”,
filterNonproductive = TRUE)

CoNGAfy Reduce a Single-Cell Object to Representative Cells

Description

This function generates a single-cell object with a reduced representation of RNA expression by
clone. The approach is inspired by the method introduced in CoNGA. Users can generate either a
mean representation of features by clone or identify a representative cell using count-based minimal
Euclidean distance. Please read and cite the original work by the authors of CONGA.

Usage

CoNGAFy(
input.data,
method = "dist",
features = NULL,
assay = "RNA",
meta.carry = c("CTaa", "CTgene")

https://pubmed.ncbi.nlm.nih.gov/34426704/

filter.cells 5

Arguments
input.data A single-cell dataset in Seurat or SingleCellExperiment format.
method Character. Specifies the method to reduce the dataset:
* "mean" - Computes the mean expression of selected features across cells in
each clonotype.
» "dist" - Uses PCA reduction to identify the cell with the minimal Euclidean
distance within each clonotype group.
features Character vector. Selected genes for the reduction. If NULL (default), all genes
are used.
assay Character. The name of the assay or assays to include in the output. Defaults to
the active assay.
meta.carry Character vector. Metadata variables to carry over from the input single-cell
object to the output.
Value

A reduced single-cell object where each clonotype is represented by a single cell.

Examples
#' # Get Data

ibex_example <- get(data("”ibex_example"))

ibex.clones <- CoNGAfy(ibex_example,
method = "dist")

ibex.clones <- CoNGAfy(ibex_example,
method = "mean”

filter.cells Filter Single-Cell Data Based on CDR3 Sequences

Description
This function subsets a Seurat or SingleCellExperiment object, removing cells where the CTaa
column is missing or contains unwanted patterns.

Usage

filter.cells(sc.obj, chain)

Arguments

sc.obj A Seurat or SingleCellExperiment object.
chain Character. Specifies the chain type ("Heavy" or "Light").

6 Ibex_matrix

Value

A filtered Seurat or SingleCellExperiment object.

ibex_example A SingleCellExperiment object with 200 randomly-sampled B
cells with BCR sequences from the 10x Genomics 2k_BEAM-
Ab_Mouse_HEL_5pv2 dataset.

Description

This object includes normalized gene expression values, metadata annotations, and B cell clonotype
information derived from 10x V(D)J sequencing. It is intended as a small example dataset for testing
and demonstration purposes.

Format

A SingleCellExperiment object with 32,285 genes (rows) and 200 cells (columns).

assays List of matrices containing expression values: counts (raw counts) and logcounts (log-
transformed).

rowData Empty in this example (no gene-level annotations).

colData A DataFrame with 14 columns of cell metadata, including: - orig.ident: Original sam-
ple identity. - nCount_RNA: Total number of counts per cell. - nFeature_RNA: Number of
detected genes per cell. - cloneSize: Size of each clone. - ident: Cluster assignment.

reducedDims Contains dimensionality reductions: PCA, pca, and apca.

altExp One alternative experiment named BEAM containing additional expression data.

Ibex_matrix Ibex Matrix Interface

Description

This function runs the Ibex algorithm to generate latent vectors from input data. The output can
be returned as a matrix, with options to choose between deep learning autoencoders or geometric
transformations based on the BLOSUM62 matrix.

Ibex_matrix 7

Usage
Ibex_matrix(
input.data,
chain = c("Heavy", "Light"),
method = c("encoder”, "geometric”),

encoder.model = c("CNN", "VAE", "CNN.EXP", "VAE.EXP"),

encoder.input = c("atchleyFactors”, "crucianiProperties”, "kideraFactors”, "MSWHIM",
"tScales”, "OHE"),

geometric.theta = pi/3,

species = "Human”,
verbose = TRUE
)
Arguments
input.data Input data, which can be:
* A Single Cell Object in Seurat or SingleCellExperiment format
* The output of scRepertoire: :combineBCR() or combineExpandedBCR()
chain Character. Specifies which chain to analyze:
* "Heavy" for the heavy chain
* "Light" for the light chain
method Character. The algorithm to use for generating latent vectors:

* "encoder" - Uses deep learning autoencoders
* "geometric" - Uses geometric transformations based on the BLOSUMG62
matrix
encoder.model Character. The type of autoencoder model to use:

¢ "CNN" - CDR3 Convolutional Neural Network-based autoencoder
e "VAE" - CDR3 Variational Autoencoder

¢ "CNN.EXP" - CDR1/2/3 CNN

e "VAE.EXP" - CDR1/2/3 VAE

encoder.input Character. Specifies the input features for the encoder model. Options include:

non

* Amino Acid Properties: "atchleyFactors", "crucianiProperties", "kideraFac-
tors", "MSWHIM","tScales", "zScales"

* "OHE" for One Hot Encoding
geometric.theta

Numeric. Angle (in radians) for the geometric transformation. Only used when
method = "geometric".

species Character. Default is "Human" or "Mouse".
verbose Logical. Whether to print progress messages. Default is TRUE.
Value

A matrix of latent vectors generated by the specified method.

8 ibex_vdj

See Also

immApex: :propertyEncoder (), immApex: : geometricEncoder ()

Examples

Get Data
ibex_example <- get(data("”ibex_example"))

Using the encoder method with a variational autoencoder
ibex_values <- Ibex_matrix(ibex_example,

chain = "Heavy",

method = "encoder”,

encoder.model = "VAE",
encoder.input = "atchleyFactors”)

Using the geometric method with a specified angle
ibex_values <- Ibex_matrix(ibex_example,
chain = "Heavy",
method = "geometric”,
geometric.theta = pi)

ibex_vdj Full filtered_annotated_contig.csv from the 10x 2k_BEAM-
Ab_Mouse_HEL_5pv2

Description

This dataset contains single-cell V(D)J sequencing annotations from the 10x Genomics BEAM-Ab
Mouse dataset. It includes V(D)J gene calls, CDR regions, productivity information, and clonotype
assignments for each contig.

Format

A data frame with 6 rows and 35 columns:

barcode Character. Unique cell barcode.

is_cell Logical. Whether the barcode is identified as a cell.
contig_id Character. Unique identifier for each contig.
high_confidence Logical. Whether the contig is high confidence.
length Integer. Length of the contig.

chain Character. Chain type (e.g., IGH, IGK).

v_gene Character. V gene annotation.

d_gene Character. D gene annotation.

j_gene Character. J gene annotation.

runlbex 9

c_gene Character. C gene annotation.

full_length Logical. Whether the contig is full-length.
productive Logical. Whether the contig is productive.

fwrl Character. Amino acid sequence for Framework Region 1.
fwrl_nt Character. Nucleotide sequence for FWRI.

cdrl Character. Amino acid sequence for CDR1.

cdrl_nt Character. Nucleotide sequence for CDR1.

fwr2 Character. Amino acid sequence for FWR2.

fwr2_nt Character. Nucleotide sequence for FWR2.

cdr2 Character. Amino acid sequence for CDR2.

cdr2_nt Character. Nucleotide sequence for CDR2.

fwr3 Character. Amino acid sequence for FWR3.

fwr3_nt Character. Nucleotide sequence for FWR3.

cdr3 Character. Amino acid sequence for CDR3.

cdr3_nt Character. Nucleotide sequence for CDR3.

fwrd Character. Amino acid sequence for FWR4.

fwr4_nt Character. Nucleotide sequence for FWR4.

reads Integer. Number of reads supporting the contig.

umis Integer. Number of UMIs supporting the contig.
raw_clonotype_id Character. Clonotype ID from 10x output.
raw_consensus_id Character. Consensus ID from 10x output.

exact_subclonotype_id Integer. Exact subclonotype grouping.

runIbex Ibex Single-Cell Calculation

Description

This function applies the Ibex algorithm to single-cell data, integrating seamlessly with Seurat or
SingleCellExperiment pipelines. The algorithm generates latent dimensions using deep learning
or geometric transformations, storing the results in the dimensional reduction slot. runIbex will
automatically subset the single-cell object based on amino acid sequences present for the given
chain selection.

10 runlbex

Usage
runIbex(
sc.data,
chain = "Heavy",
method = "encoder”,
encoder.model = "VAE",
encoder.input = "atchleyFactors”,
geometric.theta = pi,
reduction.name = "Ibex”,
species = "Human”,
verbose = TRUE
)
Arguments
sc.data A single-cell dataset, which can be:
* A Seurat object
* A SingleCellExperiment object
chain Character. Specifies the chain to analyze:
* "Heavy" for the heavy chain
* "Light" for the light chain
method Character. Algorithm to use for generating latent dimensions:

* "encoder" - Uses deep learning autoencoders
* "geometric" - Uses geometric transformations based on the BLOSUM62
matrix
encoder.model Character. The type of autoencoder model to use:

e "CNN" - CDR3 Convolutional Neural Network-based autoencoder
* "VAE" - CDR3 Variational Autoencoder

¢ "CNN.EXP" - CDR1/2/3 CNN

¢ "VAE.EXP" - CDR1/2/3 VAE

encoder.input Character. Input features for the encoder model:

"non

* Amino Acid Properties: "atchleyFactors", "crucianiProperties", "kideraFac-
tors", "MSWHIM", "tScales"

* "OHE" - One Hot Encoding

geometric.theta
Numeric. Angle (in radians) for geometric transformation. Used only when
method = "geometric”.

reduction.name Character. The name to assign to the dimensional reduction. This is useful for
running Ibex with multiple parameter settings and saving results under different
names.

species Character. Default is "Human" or "Mouse".

verbose Logical. Whether to print progress messages. Default is TRUE.

runlbex 11

Value

An updated Seurat or SingleCellExperiment object with Ibex dimensions added to the dimensional
reduction slot.

Examples
Get Data

ibex_example <- get(data("ibex_example”))

Using the encoder method with a variational autoencoder
ibex_example <- runIbex(ibex_example,

chain = "Heavy",

method = "encoder”,

encoder.model = "VAE",
encoder.input = "atchleyFactors")

Using the geometric method with a specified angle
ibex_example <- runIbex(ibex_example,
chain = "Heavy",
method = "geometric”,
geometric.theta = pi)

Index

* package
Ibex-package, 2

combineExpandedBCR, 3
combineExpandedBCR(), 7
CoNGAfy, 4

filter.cells, 5

Ibex (Ibex-package), 2
Ibex-package, 2

ibex_example, 6

Ibex_matrix, 6

ibex_vdj, 8

immApex: :geometricEncoder(), 8
immApex: :propertyEncoder(), 8

runIbex, 9

scRepertoire: :combineBCR(), 3, 4, 7

12

	Ibex-package
	combineExpandedBCR
	CoNGAfy
	filter.cells
	ibex_example
	Ibex_matrix
	ibex_vdj
	runIbex
	Index

