Package ‘Gviz’

February 2, 2026

Title Plotting data and annotation information along genomic
coordinates

Version 1.55.0

Description Genomic data analyses requires integrated visualization
of known genomic information and new experimental data. Gviz uses
the biomaRt and the rtracklayer packages to perform live
annotation queries to Ensembl and UCSC and translates this to
e.g. gene/transcript structures in viewports of the grid graphics
package. This results in genomic information plotted together with
your data.

LazyLoad yes

Encoding UTF-8

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Depends R (>= 4.3), methods, S4Vectors (>= 0.9.25), [Ranges (>=
1.99.18), GenomicRanges (>= 1.61.1), grid

Imports XVector (>= 0.5.7), rtracklayer (>= 1.69.1), lattice,
RColorBrewer, biomaRt (>= 2.11.0), AnnotationDbi (>= 1.27.5),
Biobase (>= 2.15.3), GenomicFeatures (>= 1.61.4), ensembldb (>=
2.11.3), BSgenome (>= 1.77.1), Biostrings (>= 2.77.2),
biovizBase (>= 1.13.8), Rsamtools (>=2.25.1), latticeExtra (>=
0.6-26), matrixStats (>= 0.8.14), GenomicAlignments (>=
1.45.1), Seqinfo, GenomelnfoDb, BiocGenerics (>=0.11.3),
digest(>= 0.6.8), graphics, grDevices, stats, utils

Suggests BSgenome.Hsapiens.UCSC.hg19, xml2, BiocStyle, knitr,
rmarkdown, testthat

biocViews Visualization, Microarray, Sequencing
URL https://github.com/ivanek/Gviz

BugReports https://github.com/ivanek/Gviz/issues
VignetteBuilder knitr

License Artistic-2.0

https://github.com/ivanek/Gviz
https://github.com/ivanek/Gviz/issues

2 Contents

Collate 'utils.R' TmageMap-class.R' DisplayPars-class.R'
'GdObject-class.R' 'ReferenceTrack-class.R'
‘SequenceTrack-class.R' 'RangeTrack-class.R'
'StackedTrack-class.R' 'NumericTrack-class.R'
'DataTrack-class.R' 'AlignmentsTrack-class.R'
'AnnotationTrack-class.R' 'GeneRegionTrack-class.R'
'‘BiomartGeneRegionTrack-class.R' 'CustomTrack-class.R'
'GenomeAxisTrack-class.R' 'Gviz-defunct.R' 'Gviz-deprecated.R’
'HighlightTrack-class.R' TdeogramTrack-class.R’
'OverlayTrack-class.R' 'UcscTrack.R' 'collapsing.R'
'datasets.R' 'exportTracks.R' 'grouping.R' 'plotTracks.R'
'settings.R'

git_url https://git.bioconductor.org/packages/Gviz
git_branch devel

git_last_commit 6339846
git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Florian Hahne [aut],
Steffen Durinck [aut],
Robert Ivanek [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8403-056X>),
Arne Mueller [aut],
Steve Lianoglou [aut],
Ge Tan [aut],
Lance Parsons [aut],
Shraddha Pai [aut],
Thomas McCarthy [ctb],
Felix Ernst [ctb],
Mike Smith [ctb]

Maintainer Robert Ivanek <robert.ivanek@unibas.ch>

Contents
AlignmentsTrack-class L 3
AnnotationTrack-class 10
availableDefaultMapping 21
BiomartGeneRegionTrack-class 23
collapsing 28
CustomTrack-class 29
datasets e e e 31
DataTrack-class e 31
DisplayPars-class e e e 39
exportTracks L 43

GdObject-class 44

https://orcid.org/0000-0002-8403-056X

AlignmentsTrack-class 3

GeneRegionTrack-class e 52
GenomeAxisTrack-class L 62
GIOUPING .+« o v v v v e et e e e e e e e e e e e e e e e e e e 66
Gviz-defunct e 67
Gviz-deprecated e 67
HighlightTrack-class i 68
IdeogramTrack-class 71
ImageMap-class 74
NumericTrack-class e 75
OverlayTrack-class e 77
plotTracks e e e e 79
RangeTrack-class e 83
SequenceTrack-class e 88
SELHINGS e e 95
StackedTrack-class 120
UcscTrack o o e e 123
Index 127

AlignmentsTrack-class AlignmentsTrack class and methods

Description

A class to represent short sequences that have been aligned to a reference genome as they are
typically generated in next generation sequencing experiments.

Usage

S4 method for signature 'AlignmentsTrack'
initialize(
.Object,
stackRanges = GRanges(),
stacks = numeric(),
sequences = DNAStringSet(),
referenceSequence = NULL,

)

S4 method for signature 'ReferenceAlignmentsTrack'’
initialize(

.Object,

stream,

reference,

mapping = list(),

args = list(),

defaults = list(),

stacks = numeric(),

AlignmentsTrack-class

stackRanges = GRanges(),
sequences = Biostrings::DNAStringSet(),
referenceSequence = NULL,

)
AlignmentsTrack(
range = NULL,
start = NULL,
end = NULL,
width = NULL,
strand,
chromosome,
genome,
stacking = "squish”,
id,
cigar,
mapq,
flag = scanBamFlag(isUnmappedQuery = FALSE),
isize,
groupid,
status,
md,
segs,
name = "AlignmentsTrack”,
isPaired = TRUE,
importFunction,
referenceSequence,
)

S4 method for signature 'AlignmentsTrack'
values(x)

S4 replacement method for signature 'AlignmentsTrack'
chromosome (GdObject) <- value

S4 method for signature 'AlignmentsTrack'
stacks(GdObject)

S4 method for signature 'AlignmentsTrack'
setStacks(GdObject, ...)

S4 method for signature 'AlignmentsTrack'’
subset(x, from = NULL, to = NULL, stacks = FALSE, use.defaults = TRUE, ...)

S4 method for signature 'ReferenceAlignmentsTrack'
subset(x, from, to, chromosome, ...)

AlignmentsTrack-class 5

S4 method for signature 'AlignmentsTrack'
drawAxis(GdObject, ...)

S4 method for signature 'AlignmentsTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, subset = TRUE, ...)

S4 method for signature 'AlignmentsTrack'
show(object)

S4 method for signature 'ReferenceAlignmentsTrack'

show(object)
Arguments

.Object .Object

stackRanges stackRanges

stacks stacks

sequences sequences

referenceSequence
An optional SequenceTrack object containing the reference sequence against
which the reads have been aligned. This is only needed when mismatch infor-
mation has to be added to the plot (i.e., the showMismatchs display parameter
is TRUE) because this is normally not encoded in the BAM file. If not provided
through this argument, the plotTracks function is smart enough to detect the
presence of a SequenceTrack object in the track list and will use that as a refer-
ence sequence.
Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

stream stream

reference reference

mapping mapping

args args

defaults defaults

range An optional meta argument to handle the different input types. If the range

argument is missing, all the relevant information to create the object has to be
provided as individual function arguments (see below).

The different input options for range are:

A character string: the path to a BAM file containing the read alignments. To
be precise, this will result in the instantiation of a ReferenceAlignmentsTrack
object, but for the user this implementation detail should be of no concern.

A GRanges object: the genomic ranges of the individual reads as well as the op-
tional additional metadata columns id, cigar, mapq, flag, isize, groupid,
status, md and seqgs (see description of the individual function parameters

start, end, width

strand

chromosome

genome

stacking

AlignmentsTrack-class

below for details). Calling the constructor on a GRanges object without fur-
ther arguments, e.g. AlignmentsTrack(range=obj) is equivalent to call-
ing the coerce method as(obj, "AlignmentsTrack").

An IRanges object: almost identical to the GRanges case, except that the chro-
mosome and strand information as well as all additional metadata has to be
provided in the separate chromosome, strand, feature, group or id argu-
ments, because it can not be directly encoded in an IRanges object. Note
that none of those inputs are mandatory, and if not provided explicitely the
more or less reasonable default values chromosome=NA and strand="x" are
used.

A data.frame object: the data.frame needs to contain at least the two manda-
tory columns start and end with the range coordinates. It may also contain
a chromosome and a strand column with the chromosome and strand in-
formation for each range. If missing it will be drawn from the separate
chromosome or strand arguments. In addition, the id, cigar, mapq, flag,
isize, groupid, status, md and seqs data can be provided as additional
columns. The above comments about potential default values also apply
here.

Integer vectors, giving the start and the end coordinates for the individual track
items, or their width. Two of the three need to be specified, and have to be of
equal length or of length one, in which case this single value will be recycled.
Otherwise, the usual R recycling rules for vectors do not apply here.

Character vector, the strand information for the reads. It may be provided in
the form + for the Watson strand, - for the Crick strand or * for either one of
the two. Needs to be of equal length as the provided genomic coordinates, or
of length 1. Please note that paired reads need to be on opposite strands, and
erroneous entries will result in casting of an error.

The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier if options (ucscChromosomeNames=TRUE). Please
note that in this case only syntactic checking takes place, i.e., the argument value
needs to be an integer, numeric character or a character of the form chrx, where
x may be any possible string. The user has to make sure that the respective
chromosome is indeed defined for the the track’s genome. If not provided here,
the constructor will try to construct the chromosome information based on the
available inputs, and as a last resort will fall back to the value chrNA. Please
note that by definition all objects in the Gviz package can only have a single
active chromosome at a time (although internally the information for more than
one chromosome may be present), and the user has to call the chromosome<-
replacement method in order to change to a different active chromosome.

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If not provided here the constructor will try to extract this information
from the provided input, and eventually will fall back to the default value of NA.

The stacking type for overlapping items of the track. One in c(hide, dense,
squish, pack, full). Currently, only squish (make best use of the available
space), dense (no stacking, collapse overlapping ranges), and hide (do not show
any track items at all) are implemented.

AlignmentsTrack-class

id

cigar

mapq

flag

isize

groupid

status

md

seqgs
name

isPaired

importFunction

X
GdObject
value

from, to

use.defaults

Character vector of read identifiers. Those identifiers have to be unique, i.e.,
each range representing a read needs to have a unique id.

A character vector of valid CIGAR strings describing details of the alignment.
Typically those include alignment gaps or insertions and deletions, but also hard
and soft clipped read regions. If missing, a fully mapped read without gaps
or indels is assumed. Needs to be of equal length as the provided genomic
coordinates, or of length 1.

A numeric vector of read mapping qualities. Needs to be of equal length as the
provided genomic coordinates, or of length 1.

A named integer vector of length 2, as is produced by Rsamtools::scanBamFlag(),
used to filter out undesirable reads. If missing, all mapped reads will be in-
cluded.

A numeric vector of empirical insert sizes. This only applies if the reads are
paired. Needs to be of equal length as the provided genomic coordinates, or of
length 1. Currently not used.

A factor (or vector than can be coerced into one) defining the read pairs. Reads
with the same groupid are considered to be mates. Please note that each read
group may only have one or two members. Needs to be of equal length as the
provided genomic coordinates, or of length 1.

A factor describing the mapping status of a read. Has to be one in mated,
unmated or ambiguous. Needs to be of equal length as the provided genomic
coordinates, or of length 1.

A character vector describing the mapping details. This is effectively and alter-
native to the CIGAR encoding and it removes the dependency on a reference
sequence to figure out read mismatches. Needs to be of equal length as the
provided genomic coordinates, or of length 1. Currently not used.

DNAStringSet of read sequences.
Character scalar of the track’s name used in the title panel when plotting.

A logical scalar to determine whether the reads are paired or not. While this
may be used to render paired-end data as single-end, the oppsite will typically
not have any effect because the appropriate groupid settings will not be present.
Thus setting isPaired to TRUE can usually be used to autodetect the pairing state
of the input data.

A user-defined function to be used to import the data from a file. This only
applies when the range argument is a character string with the path to the input
data file. The function needs to accept an argument x containing the file path and
a second argument selection with the desired plotting ranges. It has to return
a proper GRanges object with all the necessary metadata columns set. A single
default import function is already implemented in the package for BAM files.

X
Object of GdObject-class.
value

from,to

logical

8 AlignmentsTrack-class

minBase, maxBase
minBase,maxBase

prepare logical

subset logical

object object
Value

The return value of the constructor function is a new object of class AlignmentsTrack or ReferenceAlignmentsTrack.

Functions

e initialize(AlignmentsTrack): Initialize.

* ReferenceAlignmentsTrack-class: The file-based version of the AlignmentsTrack-class.
e initialize(ReferenceAlignmentsTrack): Initialize.

e AlignmentsTrack(): Constructor for AlignmentsTrack-class.

* values(AlignmentsTrack): Return all additional annotation information except for the ge-
nomic coordinates for the track items as a data. frame.

* chromosome (AlignmentsTrack) <- value: replace the value of the track’s chromosome.
This has to be a valid UCSC chromosome identifier or an integer or character scalar that
can be reasonably coerced into one.

e stacks(AlignmentsTrack): return the stack indices for each track item.

* setStacks(AlignmentsTrack): recompute the stacks based on the available space and on
the object’s track items and stacking settings.

* subset(AlignmentsTrack): Subset a AlignmentsTrack by coordinates and sort if neces-
sary.

* subset(ReferenceAlignmentsTrack): Subset a ReferenceAlignmentsTrack by coordi-
nates and sort if necessary.

* drawAxis(AlignmentsTrack): add a y-axis to the title panel of a track.

e drawGD(AlignmentsTrack): plot the object to a graphics device. The return value of this
method is the input object, potentially updated during the plotting operation. Internally, there
are two modes in which the method can be called. Either in ’prepare’ mode, in which case
no plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

¢ show(AlignmentsTrack): Show method.

¢ show(ReferenceAlignmentsTrack): Show method.

Objects from the Class

Objects can be created using the constructor function AlignmentsTrack.

Author(s)

Florian Hahne

AlignmentsTrack-class

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Creating objects

afrom <- 2960000

ato <- 3160000

alTrack <- AlignmentsTrack(system.file(

package = "Gviz", "extdata”,
"gapped.bam”
), isPaired = TRUE)
plotTracks(alTrack, from = afrom, to = ato, chromosome = "chri2")

Omit the coverage or the pile-ups part

plotTracks(alTrack,
from = afrom, to = ato, chromosome = "chri12",
type = "coverage”

)

plotTracks(alTrack,
from = afrom, to = ato, chromosome = "chr12",

type = "pileup”
)

Including sequence information with the constructor
if (require(BSgenome.Hsapiens.UCSC.hg19)) {
strack <- SequenceTrack(Hsapiens, chromosome = "chr21")
afrom <- 44945200
ato <- 44947200
alTrack <- AlignmentsTrack(system.file(
package = "Gviz", "extdata",
"snps.bam”
), isPaired = TRUE, referenceSequence = strack)
plotTracks(alTrack, chromosome = "chr21”, from = afrom, to = ato)

10 AnnotationTrack-class

Including sequence information in the track list
alTrack <- AlignmentsTrack(system.file(
package = "Gviz", "extdata",
"snps.bam”
), isPaired = TRUE)
plotTracks(c(alTrack, strack),
chromosome = "chr21"”, from = 44946590,
to = 44946660

AnnotationTrack-class AnnotationTrack class and methods

Description

A fairly generic track object for arbitrary genomic range annotations, with the option of grouped
track items. The extended DetailsAnnotationTrack provides a more flexible interface to add
user-defined custom information for each range.

Usage

S4 method for signature 'AnnotationTrack'
initialize(.Object, ...)

S4 method for signature 'ReferenceAnnotationTrack'
initialize(

.Object,

stream,

reference,

mapping = list(),

args = list(),

defaults = list(),

)
AnnotationTrack(
range = NULL,
start = NULL,
end = NULL,
width = NULL,
feature,
group,
id,
strand,
chromosome,
genome,

stacking = "squish”,

AnnotationTrack-class

name = "AnnotationTrack”,
fun,

selectFun,
importFunction,

stream = FALSE,

)
DetailsAnnotationTrack(...)

S4 method for signature 'DetailsAnnotationTrack'
initialize(.0Object, fun, selectFun, ...)

S4 method for signature 'AnnotationTrack'
group(GdObject)

S4 replacement method for signature 'AnnotationTrack,character’
group(GdObject) <- value

S4 method for signature 'AnnotationTrack'

11

identifier(GdObject, type = .dpOrDefault(GdObject, "groupAnnotation”, "group"))

S4 replacement method for signature 'AnnotationTrack,character'
identifier(GdObject) <- value

S4 method for signature 'AnnotationTrack'
setStacks(GdObject, recomputeRanges = TRUE)

S4 method for signature 'AnnotationTrack'
consolidateTrack(
GdObject,
hasAxis = FALSE,
hasTitle = .dpOrDefault(GdObject, "showTitle"”, TRUE),
title.width = NULL,

)

S4 method for signature 'AnnotationTrack'
collapseTrack(GdObject, diff = .pxResolution(coord = "x"), xrange)

S4 method for signature 'AnnotationTrack'

subset(
X,
from = NULL,
to = NULL,
sort = FALSE,

stacks = FALSE,
use.defaults = TRUE,

12 AnnotationTrack-class

S4 method for signature 'ReferenceAnnotationTrack'
subset(x, from, to, chromosome, ...)

S4 method for signature 'AnnotationTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, subset = TRUE, ...)

S4 method for signature 'DetailsAnnotationTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, ...)

S4 method for signature 'AnnotationTrack'
show(object)

S4 method for signature 'ReferenceAnnotationTrack'

show(object)
Arguments

Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

stream A logical flag indicating that the user-provided import function can deal with in-
dexed files and knows how to process the additional selection argument when
accessing the data on disk. This causes the constructor to return a ReferenceAnnotationTrack
object which will grab the necessary data on the fly during each plotting opera-
tion.

range An optional meta argument to handle the different input types. If the range

argument is missing, all the relevant information to create the object has to be
provided as individual function arguments (see below).

The different input options for range are:

* A GRanges object: the genomic ranges for the Annotation track as well
as the optional additional metadata columns feature, group and id (see
description of the individual function parameters below for details). Call-
ing the constructor on a GRanges object without further arguments, e.g.
AnnotationTrack(range=obj) is equivalent to calling the coerce method
as(obj, "AnnotationTrack").

* A GRangesList object: this is very similar to the previous case, except
that the grouping information that is part of the list structure is preserved
in the AnnotationTrack. L.e., all the elements within one list item receive
the same group id. For consistency, there is also a coercion method from
GRangesLists as(obj,"AnnotationTrack”).

* An IRanges object: almost identical to the GRanges case, except that the
chromosome and strand information as well as all additional metadata has
to be provided in the separate chromosome, strand, feature, group or
id arguments, because it can not be directly encoded in an IRange object.
Note that none of those inputs are mandatory, and if not provided explicitly

settings

AnnotationTrack-class

start, end, width

feature

group

id

strand

chromosome

13

the more or less reasonable default values chromosome=NA and strand="x*"
are used.

* A data.frame object: the data.frame needs to contain at least the two
mandatory columns start and end with the range coordinates. It may
also contain a chromosome and a strand column with the chromosome and
strand information for each range. If missing it will be drawn from the sep-
arate chromosome or strand arguments. In addition, the feature, group
and id data can be provided as additional columns. The above comments
about potential default values also apply here.

* A character scalar: in this case the value of the range argument is con-
sidered to be a file path to an annotation file on disk. A range of file types
are supported by the Gviz package as identified by the file extension. See
the importFunction documentation below for further details.

Integer vectors, giving the start and the end end coordinates for the individual
track items, or their width. Two of the three need to be specified, and have to be
of equal length or of length one, in which case this single value will be recycled.
Otherwise, the usual R recycling rules for vectors do not apply here.

Factor (or other vector that can be coerced into one), giving the feature types
for the individual track items. When plotting the track to the device, if a display
parameter with the same name as the value of feature is set, this will be used
as the track item’s fill colour. See grouping for details. Needs to be of equal
length as the provided genomic coordinates, or of length 1.

Factor (or other vector that can be coerced into one), giving the group member-
ships for the individual track items. When plotting to the device, all items in the
same group will be connected. See grouping for details. Needs to be of equal
length as the provided genomic coordinates, or of length 1.

Character vector of track item identifiers. When plotting to the device, it’s value
will be used as the identifier tag if the display parameter showFeatureId=TRUE.
Needs to be of equal length as the provided genomic ranges, or of length 1.

Character vector, the strand information for the individual track items. It may
be provided in the form + for the Watson strand, - for the Crick strand or *
for either one of the two. Needs to be of equal length as the provided genomic
coordinates, or of length 1. Please note that grouped items need to be on the
same strand, and erroneous entries will result in casting of an error.

The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier if options (ucscChromosomeNames=TRUE). Please
note that in this case only syntactic checking takes place, i.e., the argument value
needs to be an integer, numeric character or a character of the form chrx, where
x may be any possible string. The user has to make sure that the respective
chromosome is indeed defined for the the track’s genome. If not provided here,
the constructor will try to construct the chromosome information based on the
available inputs, and as a last resort will fall back to the value chrNA. Please
note that by definition all objects in the Gviz package can only have a single
active chromosome at a time (although internally the information for more than
one chromosome may be present), and the user has to call the chromosome<-
replacement method in order to change to a different active chromosome.

14

genome

stacking

name

fun

selectFun

AnnotationTrack-class

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If not provided here the constructor will try to extract this information
from the provided input, and eventually will fall back to the default value of NA.

The stacking type for overlapping items of the track. One in c(hide, dense,
squish, pack,full). Currently, only squish (make best use of the available
space), dense (no stacking, collapse overlapping ranges), and hide (do not show
any track items at all) are implemented.

Character scalar of the track’s name used in the title panel when plotting.

A function that is being called for each entry in the AnnotationTrack object.
See section 'Details’ and ’Examples’ for further information. When called inter-
nally by the plotting machinery, a number of arguments are automatically passed
on to this function, and the user needs to make sure that they can all be digested
(i.e., either have all of them as formal named function arguments, or gobble up
everything that is not needed in . . .). These arguments are:

* start: the genomic start coordinate of the range item.

* end: the genomic end coordinates of the range item.

* strand: the strand information for the range item.

* chromosome: the chromosome of the range item.

e identifier: the identifier of the range item, i.e., the result of calling
identifier(DetailsAnnotationTrack, lowest=TRUE). Typically those
identifiers are passed on to the object constructor during instantiation as the
id argument.

* index: a counter enumerating the ranges. The AnnotationTrack object is
sorted internally for visibility, and the index argument refers to the index
of plotting.

* GdObject: a reference to the currently plotted DetailsAnnotationTrack
object.

* GdObject.original: areference to the DetailsAnnotationTrack before
any processing like item collapsing has taken place. Essentially, this is the
track object as it exists in your working environment.

Additional arguments can be passed to the plotting function by means of the
detailsFunArgs argument (see below). Note that the plot must use grid graph-
ics (e.g. function in the ’lattice’ package or low-level grid functions). To access
a data object such a matrix or data frame within the function you can either store
it as a variable in the global environment or, to avoid name space conflicts, you
can make it part of the function environment by means of a closure. Alterna-
tively, you may want to explicitely stick it into an environment or pass it along in
the detailsFunArgs list. To figure out in your custom plotting function which
annotation element is currently being plotted you can either use the identifier
which has to be unique for each range element, or you may want to use the
genomic position (start/end/strand/chromosome) e.g. if the data is stored in a
GRanges object.

A function that is being called for each entry in the AnnotationTrack object
with exactly the same arguments as in fun. The purpose of this function is to
decide for each track element whether details should be drawn, and consequently

AnnotationTrack-class 15

it has to return a single logical scalar. If the return value is TRUE, details will be
drawn for the item, if it is FALSE, the details strip for the item is omitted.

importFunction A user-defined function to be used to import the data from a file. This only

Value

applies when the range argument is a character string with the path to the input
data file. The function needs to accept an argument x containing the file path and
has to return a proper GRanges object with all the necessary metadata columns
set. A set of default import functions is already implemented in the package
for a number of different file types, and one of these defaults will be picked
automatically based on the extension of the input file name. If the extension can
not be mapped to any of the existing import function, an error is raised asking
for a user-defined import function via this argument. Currently the following
file types can be imported with the default functions: gff, gff1, gff2, gff3,
bed, bam.

The return value of the constructor function is a new object of class AnnotationTrack or of class
DetailsAnnotationTrack, depending on the constructor arguments. Typically the user will not
have to be troubled with this distinction and can rely on the constructor to make the right choice.

Functions

initialize(AnnotationTrack): Show method.

ReferenceAnnotationTrack-class: The file-based version of the AnnotationTrack-class.
initialize(ReferenceAnnotationTrack): Initialize.

AnnotationTrack(): Constructor function for AnnotationTrack-class
DetailsAnnotationTrack-class: directly extends AnnotationTrack.

DetailsAnnotationTrack(): Constructor function for DetailsAnnotationTrack-class

The DetailsAnnotationTrack class directly extends AnnotationTrack. The purpose of this
track type is to add an arbitrarily detailed plot section (typically consisting of additional quan-
titative data) for each range element of an AnnotationTrack. This allows a locus wide view
of annotation elements together with any kind of details per feature or element that may for
instance provide insight on how some complex quantitative measurements change according
to their position in a locus. If the quantitative data is too complex for a DataTrack e.g. be-
cause it requires extra space or a trellis-like representation, a DetailsAnnotationTrack can
be used instead. Example: An AnnotationTrack shows the positions of a number of probes
from a microarray, and you want a histogram of the signal intensity distribution derived from
all samples at each of these probe location. Another example usage would be to show for each
element of an AnnotationTrack an xy-plot of the signal against some clinical measurement
such as blood pressure. The limitation for applications of this type of track is basically only
the available space of the device you are plotting to.

This flexibility is possible by utilizing a simple function model to perform all the detailed plot-
ting. The functionality of this plotting function fun is totally up to the user, and the function
environment is prepared in a way that all necessary information about the plotted annotation
feature is available. To restrict the details section to only selected number of annotation fea-
tures one can supply another function selectFun, which decides for each feature separately
whether details are available or not. Finally, an arbitrary number of additional arguments can

16

AnnotationTrack-class

be passed on to these two function by means of the detailsFunArgs display parameter. This
is expected to be a named list, and all list elements are passed along to the plotting function
fun and to the selector function selectFun as additional named arguments. Please note that
some argument names like start, end or identifier are reserved and can not be used in the
detailsFunArgs list. For examples of plotting functions, see the ’Examples’ section.

initialize(DetailsAnnotationTrack): Initialize.
group(AnnotationTrack): extract the group membership for all track items.

group(GdObject = AnnotationTrack) <- value: replace the grouping information for track
items. The replacement value must be a factor of appropriate length or another vector that can
be coerced into such.

identifier(AnnotationTrack): return track item identifiers. Depending on the setting of
the optional argument lowest, these are either the group identifiers or the individual item iden-
tifiers.

identifier(GdObject = AnnotationTrack) <- value: Set the track item identifiers. The
replacement value has to be a character vector of appropriate length. This always replaces the
group-level identifiers, so essentially it is similar to groups<-.

setStacks(AnnotationTrack): Recompute the stacks based on the available space and on
the object’s track items and stacking settings.

consolidateTrack(AnnotationTrack): Consolidate. Determine whether there is group la-
bel annotation or not, and add this information as the internal display parameter . __hasAnno.
Precompute the grouped ranges together with optional labels in order to determine the correct
plotting range later.

collapseTrack(AnnotationTrack): preprocess the track before plotting. This will collapse
overlapping track items based on the available resolution and increase the width and height of
all track objects to a minimum value to avoid rendering issues. See collapsing for details.

subset (AnnotationTrack): subset a AnnotationTrack by coordinates and sort if necessary.

subset(ReferenceAnnotationTrack): subset a ReferenceAnnotationTrack by coordi-
nates and sort if necessary.

drawGD(AnnotationTrack): plot the object to a graphics device. The return value of this
method is the input object, potentially updated during the plotting operation. Internally, there
are two modes in which the method can be called. Either in ’prepare’ mode, in which case
no plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

drawGD(DetailsAnnotationTrack): plot the object to a graphics device. The return value
of this method is the input object, potentially updated during the plotting operation. Internally,
there are two modes in which the method can be called. Either in ’prepare’ mode, in which
case no plotting is done but the object is preprocessed based on the available space, or in
“plotting’ mode, in which case the actual graphical output is created. Since subsetting of the
object can be potentially costly, this can be switched off in case subsetting has already been
performed before or is not necessary.

show(AnnotationTrack): Show method.

show(ReferenceAnnotationTrack): Show method.

AnnotationTrack-class 17

Slots
dp Object of DisplayPars-class, the display settings controlling the look and feel of a track. See
settings for details on setting graphical parameters for tracks.

name Object of class character, a human-readable name for the track that will be used in the
track’s annotation panel if necessary.

imageMap Object of ImageMap-class, containing optional information for an HTML image map.
This will be created by the drawGD methods when the track is plotted to a device and is usually
not set by the user.

range Object of class GRanges, the genomic ranges of the track items as well as additional annota-
tion information in its elementMetaData slot. Please not that the slot is actually implemented
as a class union between GRanges and IRanges to increase efficiency, for instance for Data-
Track objects. This usually does not concern the user.

chromosome Object of class character, the chromosome on which the track is defined. There can
only be a single chromosome for one track. For certain subclasses, the space of allowed chro-
mosome names is limited (e.g., only those chromosomes that exist for a particular genome).
Throughout the package, chromosome name have to be entered either as a single integer scalar
or as a character scalar of the form chrXYZ, where XYZ may be an arbitrary character string.

genome Object of class character, the genome for which the track is defined. For most sub-classes
this has to be valid UCSC genome identifier, however this may not always be formally checked
upon object instantiation.

stacking Object of class character, the stacking type of overlapping items on the final plot.
One in c(hide, dense, squish, pack, full). Currently, only hide (do not show the track
items at all), squish (make best use of the available space) and dense (no stacking at all) are
implemented.

stacks Object of class numeric, holding the stack indices for each track item. This slot is usually
populated by calling the setStacks method upon plotting, since the correct stacking is a
function of the available plotting space.

fun A function that is being called for each AnnotationTrack element to plot details.

selectFun A function that is being called for each AnnotationTrack element to decide whether
details need to be plotted.
Objects from the class

Objects can be created using the constructor function AnnotationTrack.

Author(s)

Florian Hahne, Arne Mueller

See Also
DisplayPars
GdObject
GRanges
HighlightTrack

18 AnnotationTrack-class

ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

An empty object
AnnotationTrack()

Construct from individual arguments

st <- c(2000000, 2070000, 2100000, 2160000)
ed <- c(2050000, 2130000, 2150000, 2170000)
str <= c("-=", "+", "=U)M=TY

gr <- c("Group1”, "Group2", "Groupl”, "Group3")

annTrack <- AnnotationTrack(
start = st, end = ed, strand = str, chromosome = 7,

genome = "hgl19”, feature = "test”, group = gr,
id = paste(”annTrack item”, 1:4),
name = "generic annotation”, stacking = "squish”

)

Or from a data.frame
df <- data.frame(
start = st, end = ed, strand = str, id = paste("annTrack item”, 1:4),

feature = "test"”, group = gr
)
annTrack <- AnnotationTrack(
range = df, genome = "hgl19", chromosome = 7,
name = "generic annotation”, stacking = "squish”
)

Or from a GRanges object
gr <- GRanges(
segnames = "chr7"”, range = IRanges(start = df$start, end = df$end),
strand = str
)
genome(gr) <- "hgl19”
mcols(gr) <- df[, -(1:3)]
annTrack <- AnnotationTrack(
range = gr, name = "generic annotation”,
stacking = "squish”

AnnotationTrack-class

Finally from a GRangesList
grl <- split(gr, values(gr)$group)
AnnotationTrack(grl)

Plotting
plotTracks(annTrack)

Track names
names(annTrack)
names(annTrack) <- "foo”
plotTracks(annTrack)

Subsetting and splitting

subTrack <- subset(annTrack, to = 2155000)
length(subTrack)

subTrack[1:2]

split(annTrack, c(1, 2, 1, 2))

Accessors

start(annTrack)

end(annTrack)

width(annTrack)

position(annTrack)

width(subTrack) <- width(subTrack) + 1000

strand(annTrack)
strand(subTrack) <- "-"

chromosome (annTrack)
chromosome (subTrack) <- "chrX"

genome (annTrack)
genome (subTrack) <- "mm9”

range (annTrack)
ranges(annTrack)

Annotation
identifier(annTrack)
identifier(annTrack, "lowest")
identifier(subTrack) <- "bar"

feature(annTrack)
feature(subTrack) <- "foo"

values(annTrack)

Grouping

group(annTrack)
group(subTrack) <- "Group 1"
chromosome (subTrack) <- "chr7"”

19

AnnotationTrack-class

plotTracks(subTrack)

Stacking
stacking(annTrack)
stacking(annTrack) <- "dense'
plotTracks(annTrack)

I

coercion
as(annTrack, "data.frame")
as(annTrack, "UCSCData")

HTML image map

coords(annTrack)

tags(annTrack)

annTrack <- plotTracks(annTrack)$foo
coords(annTrack)

tags(annTrack)

DetailsAnnotationTrack
library(lattice) # need to use grid grapics

generate two random distributions per row (probe/feature)

the difference between the distributions increases from probe 1 to 4
m <- matrix(c(rgamma(400, 1)), ncol = 100)

mL, 51:100] <- m[, 51:100] + 0:3

rownames must be accessible by AnnotationTrack element identifier
rownames(m) <- identifier(annTrack, "lowest")

create a lattice density plot for the values (signals) of the two groups
as the chart must be placed into a pre-set grid view port we have to use
print without calling plot.new! Note, use a common prefix for all lattice.
Avoid wasting space by removing y-axis decorations.

Note, in this example 'm' will be found in the environment the 'details'
function is defined in. To avoid overwriting 'm' you should use a closure
or environment to access 'm'.
details <- function(identifier, ...) {
d <- data.frame(signal = m[identifier, 1, group = rep(c("grp1”, "grp2"), each = 50))
print(densityplot(~signal,
group = group, data = d, main = identifier,
scales = list(draw = FALSE, x = list(draw = TRUE)), ylab = "", xlab = "",
), newpage = FALSE, prefix = "plot")

3

deTrack <- AnnotationTrack(
range = gr, genome = "hgl19", chromosome = 7,
name = "generic annotation with details per entry”, stacking = "squish"”,
fun = details, details.ratio =1

)

plotTracks(deTrack)

set.seed(1234)

availableDefaultMapping 21

deTrack <- AnnotationTrack(

range = gr, genome = "hgl19", chromosome = 7,
name = "generic annotation with details per entry”,
stacking = "squish”, fun = details,

details.ratio = 1, selectFun = function(...) {
sample(c(FALSE, TRUE), 1)
}
)

plotTracks(deTrack)

availableDefaultMapping
ReferenceTrack class and methods

Description

A class allow for on-demand streaming of data off the file system.

Usage

availableDefaultMapping(file, trackType)

S4 method for signature 'ReferenceTrack'
initialize(

.Object,

stream,

reference,

mapping = list(),

args = list(),

defaults = list()

)
Arguments
file A character scalar with a file name or just a file extension.
trackType A character scalar with one of the available track types in the package.
.Object .Object
stream stream
reference reference
mapping mapping
args ars

defaults defaults

22 availableDefaultMapping

Details

The availableDefaultMappings function can be used to find out whether the package defines a
mapping scheme between one of the many supported input file types and the metadata columns of
the tracks’ GRanges objects.

Value

Constructor functions of AnnotationTrack, DataTrack, SequenceTrack and AlignmentsTrack™ "
erence*Track‘ subclass with pointer to the referenced file.

A virtual class: No objects may be created from it.

Functions

* availableDefaultMapping(): Function to find out whether the package defines a mapping
scheme between one of the many supported input file types and the metadata columns of the
tracks’s GRanges objects.

e initialize(ReferenceTrack): Initialize.

Slots

stream Object of class function. The import function to stream data of the file system. Needs to be
able to handle the two mandatory arguments file (a character containing a valid file path)
and selection (a GRanges object with the genomic region to plot).

reference Object of class "character", the path to the file containing the data.

mapping Object of class list, a default mapping between the metadata columns of the returned
GRanges object from the import function and the elemenMetadata columns that make up the
final track object.

args Object of class list, the passed in constructor arguments during object instantiation. Those
will be needed when fetching the data in order to fill all necessary slots.

defaults Object of class list, the relevant default values to be used when neither mapping nor
args provides the necessary information.

Author(s)
Florian Hahne

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges

RangeTrack

can create a special

BiomartGeneRegionTrack-class 23

DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

This is a reference class, below example from AlignmentsTrack
afrom <- 2960000

ato <- 3160000
alTrack <- AlignmentsTrack(system.file(

package = "Gviz", "extdata”,
"gapped.bam”
), isPaired = TRUE)
plotTracks(alTrack, from = afrom, to = ato, chromosome = "chri12")

BiomartGeneRegionTrack-class
BiomartGeneRegionTrack class and methods

Description

A class to hold gene model data for a genomic region fetched dynamically from EBI’s Biomart
Ensembl data source.

Usage

S4 method for signature 'BiomartGeneRegionTrack'
initialize(
.Object,
start = NULL,
end = NULL,
biomart,
filter = list(),
range,
genome = NULL,
chromosome = NULL,
strand = NULL,
featureMap = NULL,
symbol = NULL,
gene = NULL,
transcript = NULL,
entrez = NULL,

BiomartGeneRegionTrack(

start = NULL,

end = NULL,

biomart,

chromosome = NULL,
strand,

genome = NULL,
stacking = "squish”,

filters = list(),
featureMap = NULL,

name = "BiomartGeneRegionTrack”,
symbol = NULL,
gene = NULL,

entrez = NULL,
transcript = NULL,

BiomartGeneRegionTrack-class

S4 method for signature 'BiomartGeneRegionTrack'

subset(x, from, to, chromosome, use.defaults = TRUE, ...)
Arguments

.Object .Object

start An integer scalar with the genomic start coordinates for the gene model range.

end An integer scalar with the genomic end coordinates for the gene model range.

biomart An optional Mart object providing access to the EBI Biomart webservice. As
default the appropriate Ensembl data source is selected based on the provided
genome and chromosome.

filter filter

range range

genome The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If no mapping from genome to Biomart Ensembl data source is possible,
the biomart argument needs to be provided by the user.

chromosome The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier. Please note that at this stage only syntactic check-
ing takes place, i.e., the argument value needs to be a single integer, numeric
character or a character of the form chrx, where x may be any possible string.
The user has to make sure that the respective chromosome is indeed defined for
the the track’s genome.

strand Character scalar, the strand for which to fetch gene information from Biomart.

One in +, -, or +-.

BiomartGeneRegionTrack-class 25

featureMap Named character vector or list to map between the fields in the Biomart data
base and the features as they are used to construct the track. If multiple values
are provided in a single list item, the package will use the first one that is defined
in the selected Biomart.

symbol, transcript, gene, entrez
Character vector giving one or several gene symbols, Ensembl transcript identi-
fiers, Ensembl gene identifiers, or ENTREZ gene identifiers, respectively. The
genomic locus of their gene model will be fetch from Biomart instead of pro-
viding explicit start and end coordinates.

Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

stacking The stacking type for overlapping items of the track. One in c(hide, dense,
squish, pack, full). Currently, only hide (don’t show the track items, squish
(make best use of the available space) and dense (no stacking at all) are imple-

mented.

filters A list of additional filters to be applied in the Biomart query. See getBM for
details.

name Character scalar of the track’s name used in the title panel when plotting.

X A valid track object class name, or the object itself, in which case the class is

derived directly from it.
from, to from, to

use.defaults logical

Details

A track containing all gene models in a particular region as fetched from EBI’s Biomart service.
Usually the user does not have to take care of the Biomart connection, which will be established
automatically based on the provided genome and chromosome information. However, for full flex-
ibility a valid Mart object may be passed on to the constructor. Please note that this assumes a
connection to one of the Ensembl gene data sources, mapping the available query data back to the
internal object slots.

Value

The return value of the constructor function is a new object of class BiomartGeneRegionTrack.

Functions

e initialize(BiomartGeneRegionTrack): Initialize.
e BiomartGeneRegionTrack(): Constructor function for BiomartGeneRegionTrack-class.

* subset(BiomartGeneRegionTrack): subsetaBiomartGeneRegionTrack by coordinates and
sort if necessary.

Objects from the class

Objects can be created using the constructor function BiomartGeneRegionTrack.

26 BiomartGeneRegionTrack-class

Author(s)
Florian Hahne

References

EBI Biomart webservice at http://www.biomart.org.

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Construct the object

Not run:

bmTrack <- BiomartGeneRegionTrack(
start = 26682683, end = 26711643,
chromosome = 7, genome = "mm9"

)

End(Not run)

Plotting
plotTracks(bmTrack)

Track names

names (bmTrack)
names(bmTrack) <- "foo"
plotTracks(bmTrack)

Subsetting and splitting
subTrack <- subset(bmTrack, from = 26700000, to = 26705000)

http://www.biomart.org

BiomartGeneRegionTrack-class

length(subTrack)
subTrack <- bmTrack[transcript(bmTrack) == "ENSMUSTQ0000144140"]
split(bmTrack, transcript(bmTrack))

Accessors

start(bmTrack)

end(bmTrack)

width(bmTrack)

position(bmTrack)

width(subTrack) <- width(subTrack) + 100

strand(bmTrack)
strand(subTrack) <- "-"

chromosome (bmTrack)
chromosome (subTrack) <- "chrx"

genome (bmTrack)
genome (subTrack) <- "hgl19"

range (bmTrack)
ranges(bmTrack)

Annotation
identifier(bmTrack)
identifier(bmTrack, "lowest")
identifier(subTrack) <- "bar"

feature(bmTrack)
feature(subTrack) <- "foo"

exon(bmTrack)
exon(subTrack) <- letters[1:2]

gene (bmTrack)
gene(subTrack) <- "bar”

symbol (bmTrack)
symbol (subTrack) <- "foo"

transcript(bmTrack)
transcript(subTrack) <- c("foo"”, "bar")
chromosome (subTrack) <- "chr7”
plotTracks(subTrack)

values(bmTrack)

Grouping

group (bmTrack)
group(subTrack) <- "Group 1"
transcript(subTrack)
plotTracks(subTrack)

28 collapsing

Stacking
stacking(bmTrack)
stacking(bmTrack) <- "dense”
plotTracks(bmTrack)

coercion
as(bmTrack, "data.frame")
as(bmTrack, "UCSCData")

HTML image map

coords(bmTrack)

tags(bmTrack)

bmTrack <- plotTracks(bmTrack)$foo
coords(bmTrack)

tags(bmTrack)

collapsing Dynamic content based on the available resolution

Description

When plotting features linearly along genomic coordinates one frequently runs into the problem
of too little resolution to adequately display all details. Most genome browsers try to reasonably
reduce the amount of detail that is shown based on the current zoom level.

Details

Most track classes in this package define an internal collapseTrack method which tries to adjust
the plotted content to the available resolution, aims at reducing over-plotting and prevents rendering
issues, e.g. when lines are too thin to be plotted. This feature can be toggled on or off using the
collapse display parameter (see settings for details on setting these parameters).

In the simplest case (for AnnotationTrack objects) this involves expanding all shown features
to a minimum pixel width and height (using display parameters min.width and min.heigh) and
collapsing overlapping annotation items (as defined by the parameter min.distance into one single
item to prevent over-plotting.

For objects of class DataTrack, the data values underlying collapsed regions will be summarized
based on the summary display parameter. See the class’ documentation for more details.

See Also

AnnotationTrack
DataTrack

settings

CustomTrack-class 29

CustomTrack-class CustomTrack class and methods

Description

A fully customizable track object to be populated via a user-defined plotting function.

Usage
S4 method for signature 'CustomTrack'
initialize(.Object, plottingFunction, variables, ...)
CustomTrack(
plottingFunction = function(GdObject, prepare = FALSE, ...) {
b
variables = list(),
name = "CustomTrack”,
)

S4 method for signature 'CustomTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, ...)

S4 method for signature 'CustomTrack'

show(object)
Arguments

.Object .Object

plottingFunction
A user-defined function to be executed once the track coordinates have been
properly set up. The function needs to accept two mandatory arguments: GdObject,
the CustomTrack object to be plotted, and prepare, a logical flag indicating
whether the function has been called in preparation mode or in drawing mode.
It also needs to return the input GdObject, potentially with modifications.

variables A list of additional variables for the user-defined plotting function.
Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

name Character scalar of the track’s name.

GdObject Object of GdObject-class.

minBase minBase

maxBase maxBase

prepare logical

object object

30 CustomTrack-class

Details

A track to allow for any sort of plotting, with the currently displayed genomic location set. Essen-
tially this acts as a simple callback into the Gviz plotting machinery after all the track panels and
coordinates have been set up. It is entirely up to the user what to plot in the track, or even to use the
predefined coordinate system. The only prerequisite is that all plotting operations need to utilize
Grid graphics.

Value

The return value of the constructor function is a new object of class CustomTrack.

Functions

e initialize(CustomTrack): Initialize.
* CustomTrack(): Objects can be created using the constructor function.

* drawGD(CustomTrack): plot the object to a graphics device. The return value of this method
is the input object, potentially updated during the plotting operation. Internally, there are
two modes in which the method can be called. Either in ’prepare’ mode, in which case no
plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

¢ show(CustomTrack): Show method.

Author(s)

Florian Hahne

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

datasets 31
Examples
Object construction:

An empty object
CustomTrack()

datasets Data sets

Description

Some sample data sets used for the illustrative examples and the vignette.

DataTrack-class DataTrack class and methods

Description

A class to store numeric data values along genomic coordinates. Multiple samples as well as sample
groupings are supported, with the restriction of equal genomic coordinates for a single observation
across samples.

Usage

S4 method for signature 'DataTrack'
initialize(.Object, data = matrix(), strand, ...)

S4 method for signature 'ReferenceDataTrack'
initialize(

.Object,

stream,

reference,

mapping = list(),

args = list(),

defaults = list(),

)

DataTrack(
range = NULL,
start = NULL,
end = NULL,
width = NULL,
data,

chromosome,

32

DataTrack-class

strand,

genome,

name = "DataTrack”,
importFunction,

stream = FALSE,

)

S4 method for signature 'DataTrack'
values(x, all = FALSE)

S4 replacement method for signature 'DataTrack'
values(x) <- value

S4 method for signature 'DataTrack'
strand(x)

S4 replacement method for signature 'DataTrack,ANY'
strand(x) <- value

S4 method for signature 'DataTrack,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'DataTrack'
feature(GdObject)

S4 replacement method for signature 'DataTrack,character’
feature(GdObject) <- value

S4 method for signature 'DataTrack'
collapseTrack(GdObject, diff = .pxResolution(coord = "x"), xrange)

S4 method for signature 'DataTrack,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'DataTrack'

subset(
X,
from = NULL,
to = NULL,
sort = FALSE,
drop = TRUE,

use.defaults = TRUE,

)

S4 method for signature 'ReferenceDataTrack'
subset(x, from, to, chromosome, ...)

DataTrack-class 33

S4 method for signature 'DataTrack'
drawAxis(GdObject, ...)

S4 method for signature 'DataTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, subset = TRUE, ...)

S4 method for signature 'DataTrack'
show(object)

S4 method for signature 'ReferenceDataTrack'
show(object)

Arguments

.Object .Object

data A numeric matrix of data points with the number of columns equal to the num-
ber of coordinates in range, or a numeric vector of appropriate length that will
be coerced into such a one-row matrix. Each individual row is supposed to con-
tain data for a given sample, where the coordinates for each single observation
are constant across samples. Depending on the plotting type of the data (see
"Details’ and ’Display Parameters’ sections), sample grouping or data aggrega-
tion may be available. Alternatively, this can be a character vector of column
names that point into the element metadata of the range object for subsetting.
Naturally, this is only supported when the range argument is of class GRanges.

strand Character vector, the strand information for the individual track items. Currently
this has to be unique for the whole track and doesn’t really have any visible
consequences, but we might decide to make DataTracks strand-specific at a
later stage.

Additional items which will all be interpreted as further display parameters.

stream A logical flag indicating that the user-provided import function can deal with in-
dexed files and knows how to process the additional selection argument when
accessing the data on disk. This causes the constructor to return a ReferenceDataTrack
object which will grab the necessary data on the fly during each plotting opera-
tion.

range An optional meta argument to handle the different input types. If the range
argument is missing, all the relevant information to create the object has to be
provided as individual function arguments (see below).

The different input options for range are:

A GRanges object: essentially all the necessary information to create a DataTrack
can be contained in a single GRanges object. The track’s coordinates are
taken from the start, end and seqnames slots, the genome information
from the genome slot, and the numeric data values can be extracted from ad-
ditional metadata columns columns (please note that non-numeric columns
are being ignored with a warning). As a matter of fact, calling the construc-
tor on a GRanges object without further arguments, e.g. DataTrack(range=obj)

34

start, end, width

chromosome

genome

name

importFunction

DataTrack-class

is equivalent to calling the coerce method as(obj, "DataTrack”). Alter-
natively, the GRanges object may only contain the coordinate information,
in which case the numeric data part is expected to be present in the separate
data argument, and the ranges have to match the dimensions of the data
matrix. If data is not NULL, this will always take precedence over anything
defined in the range argument. See below for details.

An IRanges object: this is very similar to the above case, except that the nu-
meric data part now always has to be provided in the separate data argu-
ment. Also the chromosome information must be provided in the chromosome
argument, because neither of the two can be directly encoded in an IRange
object.

A data.frame object: the data.frame needs to contain at least the two manda-
tory columns start and end with the range coordinates. It may also contain
a chromosome column with the chromosome information for each range. If
missing it will be drawn from the separate chromosome argument. All ad-
ditional numeric columns will be interpreted as data columns, unless the
data argument is explicitely provided.

A character scalar: in this case the value of the range argument is considered
to be a file path to an annotation file on disk. A range of file types are
supported by the Gviz package as identified by the file extension. See the
importFunction documentation below for further details.

Integer vectors, giving the start and the end end coordinates for the individual
track items, or their width. Two of the three need to be specified, and have to be
of equal length or of length one, in which case the single value will be recycled
accordingly. Otherwise, the usual R recycling rules for vectors do not apply and
the function will cast an error.

The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier if options (ucscChromosomeNames=TRUE). Please
note that in this case only syntactic checking takes place, i.e., the argument value
needs to be an integer, numeric character or a character of the form chrx, where
x may be any possible string. The user has to make sure that the respective
chromosome is indeed defined for the the track’s genome. If not provided here,
the constructor will try to construct the chromosome information based on the
available inputs, and as a last resort will fall back to the value chrNA. Please
note that by definition all objects in the Gviz package can only have a single
active chromosome at a time (although internally the information for more than
one chromosome may be present), and the user has to call the chromosome<-
replacement method in order to change to a different active chromosome.

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If not provided here the constructor will try to extract this information
from the provided input, and eventually will fall back to the default value of NA.

Character scalar of the track’s name used in the title panel when plotting.

A user-defined function to be used to import the data from a file. This only ap-
plies when the range argument is a character string with the path to the input
data file. The function needs to accept an argument file containing the file

DataTrack-class 35

path and has to return a proper GRanges object with the data part attached as nu-
meric metadata columns. Essentially the process is equivalent to constructing a
DataTrack directly from a GRanges object in that non-numeric columns will be
dropped, and further subsetting can be archived by means of the data argument.
A set of default import functions is already implemented in the package for a
number of different file types, and one of these defaults will be picked automat-
ically based on the extension of the input file name. If the extension can not be
mapped to any of the existing import function, an error is raised asking for a
user-defined import function. Currently the following file types can be imported
with the default functions: wig, bigWig/bw, bedGraph and bam.

Some file types support indexing by genomic coordinates (e.g., bigWig and
bam), and it makes sense to only load the part of the file that is needed for plot-
ting. To this end, the Gviz package defines the derived ReferenceDataTrack
class, which supports streaming data from the file system. The user typically
does not have to deal with this distinction but may rely on the constructor func-
tion to make the right choice as long as the default import functions are used.
However, once a user-defined import function has been provided and if this func-
tion adds support for indexed files, you will have to make the constructor aware
of this fact by setting the stream argument to TRUE. Please note that in this case
the import function needs to accept a second mandatory argument selection
which is a GRanges object containing the dimensions of the plotted genomic
range. As before, the function has to return an appropriate GRanges object.

value Value to be set.
GdObject Object of GdObject-class.
Details

Depending on the setting of the type display parameter, the data can be plotted in various different
forms as well as combinations thereof. Supported plotting types are:

O O

w n

r
h:

: simple xy-plot.

: lines plot. In the case of multiple samples this plotting type is not overly usefull since the points

in the data matrix are connected in column-wise order. Type a might be more appropriate in
these situations.

combination of xy-plot and lines plot.

lines plot of the column-wise average values.
sort and connect data points along the x-axis
sort and connect data points along the y-axis

add grid lines. To ensure a consitant look and feel across multiple tracks, grid lines should
preferentially be added by using the grid display parameter.

add a regression line to the plot.

histogram-like vertical lines centered in the middle of the coordinate ranges.

smooth: add a loess fit to the plot. The following display parameters can be used to control the

loess calculation: span, degree,family, evaluation. See panel.loess for details.

histogram: plot data as a histogram, where the width of the histogram bars reflects the width of

the genomic ranges in the range slot.

36 DataTrack-class

mountain: plot a smoothed version of the data relative to a baseline, as defined by the baseline
display parameter. The following display parameters can be used to control the smoothing:
span, degree,family, evaluation. See panel.loess for details. The layout of the plot
can be further customized via the following display parameters: col.mountain, lwd.mountain,
lty.mountain, fill.mountain.

polygon: plot data as a polygon (similar to mountain-type but without smoothing). Data are
plotted relative to a baseline, as defined by the baseline display parameter. The layout of
the plot can be further customized via the following display parameters: col.mountain,
lwd.mountain, lty.mountain, fill.mountain.

boxplot: plot the data as box-and-whisker plots. The layout of the plot can be further cus-
tomized via the following display parameters: box.ratio, box.width, varwidt, notch,
notch.frac, levels.fos, stats,coef, do.out. See panel.bwplot for details.

gradient: collapse the data across samples and plot this average value as a color-coded gradient.
Essenitally this is similar to the heatmap-type plot of a single sample. The layout of the plot
can be further customized via the display parameters ncolor and gradient which control the
number of gradient colors as well as the gradient base colors, respectively.

heatmap: plot the color-coded values for all samples in the form of a heatmap. The data for in-
dividual samples can be visually separated by setting the separator display parameter. It’s
value is taken as the amount of spacing in pixels in between two heatmap rows. The layout
of the plot can be further customized via the display parameters ncolor and gradient which
control the number of gradient colors as well as the gradient base colors, respectively.

horizon: plot continuous data by cutting the y range into segments and overplotting them with
color representing the magnitude and direction of deviation. This is particularly useful when
comparing multiple samples, in which case the horizon strips are stacked. See horizonplot
for details. Please note that the origin and horizonscale arguments of the Lattice horizonplot
function are available as display parameters horizon.origin and horizon.scale.

For some of the above plotting-types the groups display parameter can be used to indicate sample
sub-groupings. Its value is supposed to be a factor vector of similar length as the number of samples.
In most cases, the groups are shown in different plotting colors and data aggregation operations are
done in a stratified fashion.

The window display parameter can be used to aggregate the data prior to plotting. Its value is taken
as the number of equal-sized windows along the genomic coordinates of the track for which to com-
pute average values. The special value auto can be used to automatically determine a reasonable
number of windows which can be particularly useful when plotting very large genomic regions with
many data points.

The aggregation parameter can be set to define the aggregation function to be used when averaging
in windows or across collapsed items. It takes the form of either a function which should condense
a numeric vector into a single number, or one of the predefined options as character scalars "mean”,
"median” or "sum” for mean, median or summation, respectively. Defaults to computing mean
values for each sample. Note that the predefined options can be much faster because they are
optimized to work on large numeric tables.

Value

The return value of the constructor function is a new object of class DataTrack or ReferenceDataTrack.

DataTrack-class 37

Functions

initialize(DataTrack): Initialize.

ReferenceDataTrack-class: The file-based version of the DataTrack-class.
initialize(ReferenceDataTrack): Initialize.

DataTrack(): Constructor function for DataTrack-class

values(DataTrack): return the raw data values of the object, i.e., the data matrix in the data
slot.

values(DataTrack) <- value: Replace the data matrix in the data slot.

strand(DataTrack): return a vector of strand specifiers for all track items, in the form ’+’
for the Watson strand, -’ for the Crick strand or **’ for either of the two.

strand(x = DataTrack) <- value: replace the strand information for the track items. The
replacement value needs to be an appropriate scalar or vector of strand values.

split(x = DataTrack, f = ANY): Split a DataTrack object by an appropriate factor vector (or
another vector that can be coerced into one). The output of this operation is a list of DataTrack
objects.

feature(DataTrack): returns NULL since there is no grouping information for the ranges in
aDataTrack.

feature(GdObject = DataTrack) <- value: this return the unaltered input object since there
is no grouping information for the ranges in a DataTrack.

collapseTrack(DataTrack): preprocess the track before plotting. This will collapse over-
lapping track items based on the available resolution and increase the width and height of all
track objects to a minimum value to avoid rendering issues. See collapsing for details.

x[i: subset the items in the DataTrack object. This is essentially similar to subsetting of
the GRanges object in the range slot. For most applications, the subset method may be more
appropriate.

subset(DataTrack): Subset a DataTrack by coordinates and sort if necessary.

subset (ReferenceDataTrack): Subset a ReferenceDataTrack by coordinates and sort if
necessary.

drawAxis(DataTrack): add a y-axis to the title panel of a track.

drawGD(DataTrack): plot the object to a graphics device. The return value of this method
is the input object, potentially updated during the plotting operation. Internally, there are
two modes in which the method can be called. Either in ’prepare’ mode, in which case no
plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

show(DataTrack): Show method.

show(ReferenceDataTrack): Show method.

Objects from the class

Objects can be created using the constructor function DataTrack.

38 DataTrack-class

Author(s)

Florian Hahne

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Object construction:

An empty object
DataTrack()

from individual arguments

dat <- matrix(runif(400), nrow = 4)

dtTrack <- DataTrack(
start = seq(1, 1000, len = 100), width = 10, data = dat,
chromosome = 1, genome = "mm9”, name = "random data”

)

from GRanges
library(GenomicRanges)
gr <- GRanges(seqgnames = "chr1"”, ranges = IRanges(seq(1, 1000, len = 100),

width = 10
))
values(gr) <- t(dat)
dtTrack <- DataTrack(range = gr, genome = "mm9"”, name = "random data")

from IRanges

dtTrack <- DataTrack(
range = ranges(gr), data = dat, genome = "mm9",
name = "random data”, chromosome = 1

DisplayPars-class

from a data.frame

df <- as.data.frame(gr)

colnames(df)[1] <- "chromosome"

dtTrack <- DataTrack(range = df, genome = "mm9"”, name = "random data")

Plotting
plotTracks(dtTrack)

Track names

names (dtTrack)
names(dtTrack) <- "foo"
plotTracks(dtTrack)

Subsetting and splitting

subTrack <- subset(dtTrack, from = 100, to = 300)
length(subTrack)

subTrack[1:2,]

subTrack[, 1:2]

split(dtTrack, rep(1:2, each = 50))

Accessors

start(dtTrack)

end(dtTrack)

width(dtTrack)

position(dtTrack)

width(subTrack) <- width(subTrack) - 5

strand(dtTrack)
strand(subTrack) <- "-"

chromosome (dtTrack)
chromosome (subTrack) <- "chrx”

genome (dtTrack)
genome (subTrack) <- "mm9”

range (dtTrack)
ranges(dtTrack)

Data
values(dtTrack)
score(dtTrack)

coercion
as(dtTrack, "data.frame")

DisplayPars-class DisplayPars: A class to control the plotting parameters for GdObjects

40 DisplayPars-class

Description

All tracks within this package are highly customizable. The DisplayPars class facilitates this and
provides a unified API to the customization parameters.

The individual parameters in a DisplayParameters class are stored as pointers in an environment.
This has the upshot of not having to copy the whole track object when changing parameters, and pa-
rameters can be updated without the need to explicitly reassign the track to a symbol (i.e., updating
of parameters happens in place). The downside is that upon copying of track objects, the parameter
environment needs to be re-instantiated.

Objects can be created using the constructor function DisplayPars.

The default display parameters for a track object class can be queried using the availableDisplayPars
function.

Usage
DisplayPars(...)
getPar(x, name, ...)

S4 method for signature 'DisplayPars,character’
getPar(x, name, asIs = FALSE)

S4 method for signature 'DisplayPars,missing'’
getPar(x, hideInternal = TRUE)

displayPars(x, name, ...)

S4 method for signature 'DisplayPars,missing'
displayPars(x, hideInternal = TRUE)

S4 method for signature 'DisplayPars,character’
displayPars(x, name)

S4 method for signature 'DisplayPars'
as.list(x)

setPar(x, value, ...)

S4 method for signature 'DisplayPars,list'’
setPar(x, value, interactive = TRUE)

S4 method for signature 'DisplayPars,character’
setPar(x, name, value, interactive = TRUE)

displayPars(x, recursive = FALSE) <- value

S4 replacement method for signature 'DisplayPars,list’
displayPars(x, recursive = FALSE) <- value

DisplayPars-class

41

S4 method for signature 'DisplayPars’

show(object)

S4 method for signature 'InferredDisplayPars'

as.list(x)

S4 method for signature 'InferredDisplayPars'

show(object)

availableDisplayPars(class)

Arguments

X
name

asls
hideInternal
value
interactive
recursive
object

class

Value

All named arguments are stored in the object’s environment as individual pa-
rameters, regardless of their type.

object to set the displayPar value on
Name of the retrieved parameter.
logical

logical

named value to be set

logical

logical

object

Either character scalar or object. Supported classes are: GdObject, GenomeAxisTrack,

RangeTrack, NumericTrack, DataTrack, IdeogramTrack, StackedTrack, AnnotationTrack
DetailsAnnotationTrack, GeneRegionTrack, BiomartGeneRegionTrack, AlignmentsTrack,
SequenceTrack, SequenceBSgenomeTrack, SequenceDNAStringSetTrack, SequenceRNAStringSetTr

The return value of the constructor function is a new object of class DisplayPars.

availableDisplayPars returns a list of the default display parameters.

Functions

¢ DisplayPars(): Constructor function.

e getPar(): Generics for getPar.

e getPar(x = DisplayPars, name = character): Alias for the displayPars method.

e getPar(x =DisplayPars, name = missing): Alias for the displayPars method

e displayPars(): Generics for displayPars.

* displayPars(x =DisplayPars, name = missing): Returns all available display parameters.

e displayPars(x = DisplayPars, name = character): Returns the value of a subset of dis-
play parameters, as identified by name.

42

DisplayPars-class

as.list(DisplayPars): Converts DisplayParsto list.

setPar(): Generics for SetPar.
SetPar generic function

setPar(x = DisplayPars, value = list): Sets display parameters by the values of the named
list in value. Note that display parameters in the DisplayPars-class are pass-by-reference,
so no re-assignment to the symbol obj is necessary.

setPar(x = DisplayPars, value = character): set the single display parameter name to
value. Note that display parameters in the DisplayPars class are pass-by-reference, so no
re-assignment to the symbol obj is necessary.

displayPars(x, recursive = FALSE) <- value: Generics for displayPars<-.

displayPars(x = DisplayPars) <- value: Replaces or adds display parameters as provided

by the named list items.

e show(DisplayPars): Show method.

e as.list(InferredDisplayPars): Return InferredDisplayPars as a list.

¢ show(InferredDisplayPars): Show method.

* availableDisplayPars(): Get default display parameters.

Slots

pars an environment or a list containing parameter key value pairs.

Author(s)

Florian Hahne

Examples

Construct object
dp <- DisplayPars(col = "red”, 1lwd = 2, transformation = log2)
dp

Query parameters

displayPars(dp)

displayPars(dp, "col")

getPar(dp, c("col”, "transformation”))

Modify parameters

displayPars(dp) <- list(lty = 1, fontsize = 3)
setPar(dp, "pch", 20)

dp

Default parameters
availableDisplayPars("GenomeAxisTrack")

exportTracks 43

exportTracks Export Gviz tracks into an annotation file representation.

Description

This function is still a bit experimental. Write all tracks provided as a list tracks into a single BED
file. So far only BED export is supported.

Usage

exportTracks(tracks, range, chromosome, file)

Arguments
tracks A list of annotation track objects to be exported into a single BED file.
range A numeric vector or length 2. The genomic range to display when opening the
file in a browser.
chromosome The chromosome to display when opening the file in a browser.
file Character, the path to the file to write into.
Value

The function is called for its side effect of writing to a file.

Author(s)

Florian Hahne

Examples

export AnnotationTrack to BED file

at <- AnnotationTrack(start = seq(1, 10), width = 1, chromosome = "chr1")
exportTracks(list(at),
range = c(1, 10), chromosome = "chri1”,

file = paste@(tempfile(), ".bed")

44 GdObject-class

GdObject-class GdObject class and methods

Description

The virtual parent class for all track items in the Gviz package. This class definition contains all
the common entities that are needed for a track to be plotted. During object instantiation for any of
the sub-classes inheriting from GdObject, this class’ global initializer has to be called in order to
assure that all necessary settings are present.

Usage
S4 method for signature 'GdObject'

initialize(.Object, name, ...)

S4 method for signature 'GdObject,character'
setPar(x, name, value, interactive = TRUE)

S4 method for signature 'GdObject,list'
setPar(x, value, interactive = TRUE)

S4 replacement method for signature 'GdObject,list'’
displayPars(x, recursive = FALSE) <- value

S4 method for signature 'GdObject,character'
getPar(x, name, asIs = FALSE)

S4 method for signature 'GdObject,missing'
getPar(x, hideInternal = TRUE)

S4 method for signature 'GdObject,character'
displayPars(x, name)

S4 method for signature 'GdObject,missing'
displayPars(x, hideInternal = TRUE)

S4 method for signature 'GdObject'
coords(ImageMap)

S4 method for signature 'GdObject'
tags(ImageMap)

S4 method for signature 'GdObject'
subset(x, ...)

S4 method for signature 'GdObject'
names (x)

GdObject-class

S4 replacement method for signature 'GdObject,character'’
names(x) <- value

group(GdObject, ...)
group(GdObject) <- value

S4 method for signature 'GdObject'
group(GdObject)

imageMap(GdObject, ...)

S4 method for signature 'GdObject'
imageMap (GdObject)

imageMap(GdObject) <- value

S4 replacement method for signature 'GdObject,ImageMapOrNULL'
imageMap(GdObject) <- value

drawAxis(GdObject, ...)

S4 method for signature 'GdObject'
drawAxis(GdObject, ...)

drawGrid(GdObject, ...)
drawGD(GdObject, ...)
gene(GdObject, ...)
gene(GdObject) <- value
symbol(GdObject, ...)
symbol(GdObject) <- value
transcript(GdObject, ...)
transcript(GdObject) <- value
exon(GdObject, ...)
exon(GdObject) <- value

feature(GdObject, ...)

45

46 GdObject-class

feature(GdObject) <- value
identifier(GdObject, ...)
identifier(GdObject) <- value
chromosome (GdObject, ...)

S4 method for signature 'GdObject'
chromosome (GdObject)

chromosome (GdObject) <- value

S4 replacement method for signature 'GdObject'
chromosome (GdObject) <- value

position(GdObject, ...)

S4 method for signature 'GdObject'
genome (x)

S4 replacement method for signature 'GdObject'’
genome(x) <- value

consolidateTrack(GdObject, ...)

S4 method for signature 'GdObject'
consolidateTrack(GdObject, alpha, ...)

stacking(GdObject, ...)
stacking(GdObject) <- value
stacks(GdObject, ...)
setStacks(GdObject, ...)

S4 method for signature 'GdObject'

setStacks(GdObject, ...)
setCoverage(GdObject, ...)

Arguments
name Name of the retrieved parameter.

Additional arguments.

X A valid track object class name, or the object itself, in which case the class is
derived directly from it.

GdObject-class 47

value Value to be set.

interactive logical

recursive logical

asls logical

hideInternal logical

ImageMap Object of ImageMap-class, containing optional information for an HTML im-
age map.

GdObject Object of GdObject-class.

Details

Display Parameters:

The following display parameters are set for objects of class GdObject upon instantiation, unless
one or more of them have already been set by one of the optional sub-class initializers, which
always get precedence over these global defaults. See settings for details on setting graphical
parameters for tracks.

alpha=1 Numeric scalar. The transparency for all track items.

alpha.title=NULL Numeric scalar. The transparency for the title panel.
background.legend="transparent” Integer or character scalar. The background colour
for the legend.

background.panel="transparent"” Integer or character scalar. The background colour of
the content panel.

background.title="lightgray" Integer or character scalar. The background colour for
the title panel.

cex=1 Numeric scalar. The overall font expansion factor for all text and glyphs, unless a
more specific definition exists.

cex.axis=NULL Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.
cex.title=NULL Numeric scalar. The expansion factor for the title panel. This effects the
font size of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col="#0080FF" Integer or character scalar. Default line colour setting for all plotting ele-
ments, unless there is a more specific control defined elsewhere.

col.axis="white" Integer or character scalar. The font and line colour for the y axis, if any.
col.border.title="white" Integer or character scalar. The border colour for the title pan-
els.

col.frame="lightgray"” Integer or character scalar. The line colour used for the panel
frame, if frame==TRUE

col.grid="#808080" Integer or character scalar. Default line colour for grid lines, both
when type=="g" in DataTracks and when display parameter grid==TRUE.

col.line=NULL Integer or character scalar. Default colours for plot lines. Usually the same
as the global col parameter.

col.symbol=NULL Integer or character scalar. Default colours for plot symbols. Usually the
same as the global col parameter.

48

GdObject-class

col.title="white" (Aliases fontcolour.title) Integer or character scalar. The border
colour for the title panels

collapse=TRUE Boolean controlling whether to collapse the content of the track to accom-
modate the minimum current device resolution. See collapsing for details.

fill="lightgray" Integer or character scalar. Default fill colour setting for all plotting
elements, unless there is a more specific control defined elsewhere.

fontcolour="black"” Integer or character scalar. The font colour for all text, unless a more
specific definition exists.

fontface=1 Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontface.title=2 Integer or character scalar. The font face for the title panels.

fontfamily="sans" Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontfamily.title="sans" Integer or character scalar. The font family for the title panels.

fontsize=12 Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE Boolean. Draw a frame around the track when plotting.

grid=FALSE Boolean, switching on/off the plotting of a grid.

h=-1 Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lineheight=1 Numeric scalar. The font line height for all text, unless a more specific defi-
nition exists.

1ty="solid"” Numeric scalar. Default line type setting for all plotting elements, unless there
is a more specific control defined elsewhere.

lty.grid="solid" Integer or character scalar. Default line type for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

lwd=1 Numeric scalar. Default line width setting for all plotting elements, unless there is a
more specific control defined elsewhere.

lwd.border.title=1 Integer scalar. The border width for the title panels.

lwd.grid=1 Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

lwd. title=1 Integer scalar. The border width for the title panels

min.distance=1 Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details.

min.height=3 Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.
min.width=1 Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.
reverseStrand=FALSE Logical scalar. Set up the plotting coordinates in 3* -> 5’ direction if
TRUE. This will effectively mirror the plot on the vertical axis.

rotation=0 The rotation angle for all text unless a more specific definition exists.
rotation.title=90 (Aliases rotation.title) The rotation angle for the text in the title panel.
Even though this can be adjusted, the automatic resizing of the title panel will currently not
work, so use at own risk.

GdObject-class 49

» showAxis=TRUE Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

* showTitle=TRUE Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still be
an empty place holder in case any of the other tracks include a title. The same holds true for
axes. Note that the the title panel background colour could be set to transparent in order to
completely hide it.

e size=1 Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function.

e v=-1 Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

e ... additional display parameters are allowed. Those typically take the value of a valid R
colour descriptors. The parameter names will later be matched to optional track item types
as defined in the ’feature’ range attribute, and all tracks of the matched types are coloured
accordingly. See the documentation of the GeneRegionTrack and AnnotationTrack classes
as well as grouping for details.

Value

A virtual class: No objects may be created from it.

Functions

e initialize(GdObject): Initialize the object. This involves setting up a new environment
for the display parameters and filling it up with the current settings. All arguments that have
not been clobbered up by one of the sub-class initializers are considered to be additional
display parameters and are also added to the environment. See settings for details on setting
graphical parameters for tracks.

* setPar(x =GdObject, value = character): set the single display parameter name to value.
Note that display parameters in the GdObject-class are pass-by-reference, so no re-assignment
to the symbol obj is necessary. See settings for details on display parameters and customiza-
tion.

* setPar(x = GdObject, value = list): set display parameters by the values of the named list
in value. Note that display parameters in the GdObject-class are pass-by-reference, so no
re-assignment to the symbol obj is necessary. See settings for details on display parameters
and customization.

» displayPars(x = GdObject) <- value: set display parameters using the values of the named
list in value. See settings for details on display parameters and customization.

e getPar(x = GdObject, name = character): alias for the displayPars method. See settings
for details on display parameters and customization.

e getPar(x = GdObject, name =missing): alias for the displayPars method. See settings
for details on display parameters and customization.

* displayPars(x = GdObject, name = character): list the value of the display parameter
name. See settings for details on display parameters and customization.

e displayPars(x = GdObject, name = missing): list the value of all available display param-
eters. See settings for details on display parameters and customization.

50

GdObject-class

coords(GdObject): return the coordinates from the internal image map.
tags(GdObject): return the tags from the internal image map.

subset (GdObject): subset a GdObject by coordinates. Most of the respective sub-classes
inheriting from GdObject overwrite this method, the default is to return the unaltered input
object.

names (GdObject): return the value of the name slot.

names (x = GdObject) <- value: set the value of the name slot.
group(): Generics for group.

group(GdObject) <- value: Generics for group<-.

group(GdObject): return grouping information for the individual items in the track. Unless
overwritten in one of the sub-classes, this usually returns NULL.

imageMap(): Generics for imageMap.

imageMap (GdObject): Extract the content of the imageMap slot.

imageMap(GdObject) <- value: Generics for imageMap<-.

imageMap(GdObject = GdObject) <- value: Replace the content of the imageMap slot.
drawAxis(): Generics for drawAxis.

drawAxis(GdObject): add a y-axis to the title panel of a track if necessary. Unless overwrit-
ten in one of the sub-classes this usually does not plot anything and returns NULL.

drawGrid(): Generics for drawGrid.

drawGD(): Generics for drawGD.

gene(): Generics for gene.

gene(GdObject) <- value: Generics for gene<-.

symbol (): Generics for symbol.

symbol (GdObject) <- value: Generics for symbol<-.
transcript(): Generics for transcript.
transcript(GdObject) <- value: Generics for transcript<-.
exon(): Generics for exon.

exon(GdObject) <- value: Generics for exon<-.

feature(): Generics for feature.

feature(GdObject) <- value: Generics for feature<-.
identifier(): Generics for identifier.
identifier(GdObject) <- value: Generics for identifier<-.
chromosome (): Generics for chromosome.

chromosome (GdObject): return the chromosome for which the track is defined.
chromosome (GdObject) <- value: Generics for chromosome.

chromosome (GdObject) <- value: replace the value of the track’s chromosome. This has to
be a valid UCSC chromosome identifier or an integer or character scalar that can be reasonably
coerced into one.

position(): Generics for position.

GdObject-class 51

* genome (GdObject): return the track’s genome.

* genome (GdObject) <- value: set the track’s genome. Usually this has to be a valid UCSC
identifier, however this is not formally enforced here.

e consolidateTrack(): Generics for consolidateTrack.

* consolidateTrack(GdObject): Consolidate. Determine whether there is alpha settings or
not, and add this information as the internal display parameter . __hasAlphaSupport.

e stacking(): Generics for stacking.

e stacking(GdObject) <- value: Generics for stacking<-.
e stacks(): Generics for stacks.

e setStacks(): Generics for “.

e setStacks(GdObject): set stacks.

e setCoverage(): Generics for “.

Slots
dp Object of DisplayPars-class, the display settings controlling the look and feel of a track. See
settings for details on setting graphical parameters for tracks.

name Object of class character, a human-readable name for the track that will be used in the
track’s annotation panel if necessary.

imageMap Object of ImageMap-class, containing optional information for an HTML image map.
This will be created by the drawGD methods when the track is plotted to a device and is usually
not set by the user.

Author(s)

Florian Hahne

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

52 GeneRegionTrack-class

Examples

This is a reference class therefore we show below
an example from AnnotationTrack:

An empty object
AnnotationTrack()

Construct from individual arguments

st <- c(2000000, 2070000, 2100000, 2160000)

ed <- c(2050000, 2130000, 2150000, 2170000)

str <- c("=", "+", U=T)on="y

gr <- c("Group1”, "Group2", "Groupl1”, "Group3")

annTrack <- AnnotationTrack(
start = st, end = ed, strand = str, chromosome = 7,

genome = "hg19"”, feature = "test"”, group = gr,
id = paste(”annTrack item”, 1:4),
name = "generic annotation”, stacking = "squish”

Plotting
plotTracks(annTrack)

GeneRegionTrack-class GeneRegionTrack class and methods

Description

A class to hold gene model data for a genomic region.

Usage

S4 method for signature 'GeneRegionTrack'
initialize(.Object, start, end, ...)

S4 method for signature 'ReferenceGeneRegionTrack'
initialize(

.Object,

stream,

reference,

mapping = list(),

args = list(),

defaults = list(),

GeneRegionTrack(

GeneRegionTrack-class

range = NULL,
rstarts = NULL,
rends = NULL,
rwidths = NULL,
strand,

feature,

exon,

transcript,

gene,

symbol,

chromosome,

genome,

stacking = "squish”,
name = "GeneRegionTrack",
start = NULL,

end = NULL,
importFunction,
stream = FALSE,

)

S4 method for signature 'GeneRegionTrack'
gene(GdObject)

S4 replacement method for signature 'GeneRegionTrack,character'
gene(GdObject) <- value

S4 method for signature 'GeneRegionTrack'
symbol (GdObject)

S4 replacement method for signature 'GeneRegionTrack,character'
symbol(GdObject) <- value

S4 method for signature 'GeneRegionTrack'
transcript(GdObject)

S4 replacement method for signature 'GeneRegionTrack,character'
transcript(GdObject) <- value

S4 method for signature 'GeneRegionTrack'
exon(GdObject)

S4 replacement method for signature 'GeneRegionTrack,character'
exon(GdObject) <- value

S4 method for signature 'GeneRegionTrack'
group(GdObject)

53

54 GeneRegionTrack-class

S4 replacement method for signature 'GeneRegionTrack,character'
group(GdObject) <- value

S4 method for signature 'GeneRegionTrack'
identifier(

GdObject,

type = .dpOrDefault(GdObject, "transcriptAnnotation”, "symbol”)
)

S4 replacement method for signature 'GeneRegionTrack,character'
identifier(GdObject) <- value

S4 method for signature 'ReferenceGeneRegionTrack'
subset(x, ...)

S4 method for signature 'GeneRegionTrack'
drawGD(GdObject, ...)

S4 method for signature 'GeneRegionTrack'
show(object)

S4 method for signature 'ReferenceGeneRegionTrack'
show(object)

Arguments

.Object .Object

start, end An integer scalar with the genomic start or end coordinate for the gene model
range. If those are missing, the default value will automatically be the smallest
(or largest) value, respectively in rstarts and rends for the currently active
chromosome. When building a GeneRegionTrack from a TxDb object, these
arguments can be used to subset the desired annotation data by genomic coor-
dinates. Please note this in that case the chromosome parameter must also be
set.

Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

stream A logical flag indicating that the user-provided import function can deal with in-
dexed files and knows how to process the additional selection argument when
accessing the data on disk. This causes the constructor to return a ReferenceGeneRegionTrack
object which will grab the necessary data on the fly during each plotting opera-
tion.

reference reference file
mapping mapping
args args

defaults logical

GeneRegionTrack-class 55

range

An optional meta argument to handle the different input types. If the range
argument is missing, all the relevant information to create the object has to be
provided as individual function arguments (see below).

The different input options for range are:

A TxDb object: all the necessary gene model information including exon loca-
tions, transcript groupings and associated gene ids are contained in TxDb
objects, and the coercion between the two is almost completely automated.
If desired, the data to be fetched from the TxDb object can be restricted us-
ing the constructor’s chromosome, start and end arguments. See below
for details. A direct coercion method as(obj, "GeneRegionTrack") is
also available. A nice added benefit of this input option is that the UTR and
coding region information that is part of the original TxDb object is retained
in the GeneRegionTrack.

A GRanges object: the genomic ranges for the GeneRegion track as well as the
optional additional metadata columns feature, transcript, gene, exon
and symbol (see description of the individual function parameters below
for details). Calling the constructor on a GRanges object without further
arguments, e.g. GeneRegionTrack(range=obj) is equivalent to calling the
coerce method as(obj, "GeneRegionTrack"”).

A GRangesList object: this is very similar to the previous case, except that
the grouping information that is part of the list structure is preserved in
the GeneRegionTrack. l.e., all the elements within one list item receive
the same group id. For consistancy, there is also a coercion method from
GRangesLists as(obj, "GeneRegionTrack"”). Please note that unless the
necessary information about gene ids, symbols, etc. is present in the indi-
vidual GRanges meta data slots, the object will not be particularly useful,
because all the identifiers will be set to a common default value.

An IRanges object: almost identical to the GRanges case, except that the chro-
mosome and strand information as well as all additional data has to be pro-
vided in the separate chromosome, strand, feature, transcript, symbol,
exon or gene arguments, because it can not be directly encoded in an
IRanges object. Note that only the former two are mandatory (if not pro-
vided explicitely the more or less reasonable default values chromosome=NA
and strand=+ are used, but not providing information about the gene-to-
transcript relationship or the human-readble symbols renders a lot of the
class’ functionality useles.

A data.frame object: the data.frame needs to contain at least the two manda-
tory columns start and end with the range coordinates. It may also contain
a chromosome and a strand column with the chromosome and strand infor-
mation for each range. If missing, this information will be drawn from the
constructor’s chromosome or strand arguments. In addition, the feature,
exon, transcript, gene and symbol data can be provided as columns in
the data.frame. The above comments about potential default values also
apply here.

A character scalar: in this case the value of the range argument is considered
to be a file path to an annotation file on disk. A range of file types are
supported by the Gviz package as identified by the file extension. See the
importFunction documentation below for further details.

56

rstarts

rends

rwidths

strand

feature

exon

transcript

gene

symbol

chromosome

GeneRegionTrack-class

An integer vector of the start coordinates for the actual gene model items, i.e.,
for the individual exons. The relationship between exons is handled via the gene
and transcript factors. Alternatively, this can be a vector of comma-separated
lists of integer coordinates, one vector item for each transcript, and each comma-
separated element being the start location of a single exon within that transcript.
Those lists will be exploded upon object instantiation and all other annotation
arguments will be recycled accordingly to regenerate the exon/transcript/gene
relationship structure. This implies the approriate number of items in all anno-
tation and coordinates arguments.

An integer vector of the end coordinates for the actual gene model items. Both
rstarts and rends have to be of equal length.

An integer vector of widths for the actual gene model items. This can be used
instead of either rstarts or rends to specify the range coordinates.

Character vector, the strand information for the individual track exons. It may
be provided in the form + for the Watson strand, - for the Crick strand or * for
either one of the two. Please note that all items within a single gene or transcript
model need to be on the same strand, and erroneous entries will result in casting
of an error.

Factor (or other vector that can be coerced into one), giving the feature types
for the individual track exons. When plotting the track to the device, if a dis-
play parameter with the same name as the value of feature is set, this will be
used as the track item’s fill color. Additionally, the feature type defines whether
an element in the GeneRegionTrack is considered to be coding or non-coding.
The details section as well as the section about the thinBoxFeature display
parameter further below has more information on this. See also grouping for
details.

Character vector of exon identifiers. It’s values will be used as the identifier tag
when plotting to the device if the display parameter showExonId=TRUE.

Factor (or other vector that can be coerced into one), giving the transcript mem-
berships for the individual track exons. All items with the same transcript iden-
tifier will be visually connected when plotting to the device. See grouping for
details. Will be used as labels when showId=TRUE, and geneSymbol=FALSE.

Factor (or other vector that can be coerced into one), giving the gene member-
ships for the individual track exons.

A factor with human-readable gene name aliases which will be used as labels
when showId=TRUE, and geneSymbol=TRUE.

The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier if options(ucscChromosomeNames=TRUE). Please
note that in this case only syntactic checking takes place, i.e., the argument value
needs to be an integer, numeric character or a character of the form chrx, where
x may be any possible string. The user has to make sure that the respective
chromosome is indeed defined for the the track’s genome. If not provided here,
the constructor will try to build the chromosome information based on the avail-
able inputs, and as a last resort will fall back to the value chrNA. Please note
that by definition all objects in the Gviz package can only have a single active
chromosome at a time (although internally the information for more than one

GeneRegionTrack-class 57

genome

stacking

name

importFunction

GdObject
value

type

X

object

Details

chromosome may be present), and the user has to call the chromosome<- re-
placement method in order to change to a different active chromosome. When
creating a GeneRegionTrack from a TxDb object, the value of this parameter can
be used to subset the data to fetch only transcripts from a single chromosome.

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If not provided here the constructor will try to extract this information
from the provided inputs, and eventually will fall back to the default value of
NA.

The stacking type for overlapping items of the track. One in c(hide, dense,
squish, pack, full). Currently, only hide (don’t show the track items, squish
(make best use of the available space) and dense (no stacking at all) are imple-
mented.

Character scalar of the track’s name used in the title panel when plotting.

A user-defined function to be used to import the data from a file. This only
applies when the range argument is a character string with the path to the input
data file. The function needs to accept an argument x containing the file path and
has to return a proper GRanges object with all the necessary metadata columns
set. A set of default import functions is already implemented in the package
for a number of different file types, and one of these defaults will be picked
automatically based on the extension of the input file name. If the extension can
not be mapped to any of the existing import function, an error is raised asking
for a user-defined import function via this argument. Currently the following file
types can be imported with the default functions: gff, gff1, gff2, gff3, gtf.

Object of GdObject-class.
Value to be set.
type

A valid track object class name, or the object itself, in which case the class is
derived directly from it.

object

A track containing all gene models in a particular region. The data are usually fetched dynami-
ally from an online data store, but it is also possible to manully construct objects from local
data. Connections to particular online data sources should be implemented as sub-classes, and
GeneRegionTrack is just the commone denominator that is being used for plotting later on. There
are several levels of data associated to a GeneRegionTrack:

exon level: identifiers are stored in the exon column of the GRanges object in the range slot. Data
may be extracted using the exon method.

transcript level: identifiers are stored in the transcript column of the GRanges object. Data may be
extracted using the transcript method.

gene level: identifiers are stored in the gene column of the GRanges object, more human-readable
versions in the symbol column. Data may be extracted using the gene or the symbol methods.

58

GeneRegionTrack-class

transcript-type level: information is stored in the feature column of the GRanges object. If a

display parameter of the same name is specified, the software will use its value for the coloring.

GeneRegionTrack objects also know about coding regions and non-coding regions (e.g., UTRs) in
a transcript, and will indicate those by using different shapes (wide boxes for all coding regions,
thinner boxes for non-coding regions). This is archived by setting the feature values of the object
for non-coding elements to one of the options that are provided in the thinBoxFeature display
parameters. All other elements are considered to be coding elements.

Value

The return value of the constructor function is a new object of class GeneRegionTrack.

Functions

initialize(GeneRegionTrack): Initialize.

ReferenceGeneRegionTrack-class: The file-based version of the GeneRegionTrack-class.
initialize(ReferenceGeneRegionTrack): Initialize.

GeneRegionTrack(): Constructor function for GeneRegionTrack-class.
gene(GeneRegionTrack): Extract the gene identifiers for all gene models.

gene(GdObject = GeneRegionTrack) <- value: Replace the gene identifiers for all gene
models. The replacement value must be a character of appropriate length or another vector
that can be coerced into such.

symbol (GeneRegionTrack): Extract the human-readble gene symbol for all gene models.

symbol (GdObject = GeneRegionTrack) <- value: Replace the human-readable gene sym-
bol for all gene models. The replacement value must be a character of appropriate length or
another vector that can be coerced into such.

transcript(GeneRegionTrack): Extract the transcript identifiers for all transcripts in the
gene models.

transcript(GdObject = GeneRegionTrack) <- value: Replace the transcript identifiers for
all transcripts in the gene model. The replacement value must be a character of appropriate
length or another vector that can be coerced into such.

exon(GeneRegionTrack): Extract the exon identifiers for all exons in the gene models.

exon(GdObject = GeneRegionTrack) <- value: replace the exon identifiers for all exons in
the gene model. The replacement value must be a character of appropriate length or another
vector that can be coerced into such.

group(GeneRegionTrack): extract the group membership for all track items.

group(GdObject = GeneRegionTrack) <- value: replace the grouping information for track
items. The replacement value must be a factor of appropriate length or another vector that can
be coerced into such.

identifier(GeneRegionTrack): return track item identifiers. Depending on the setting of
the optional argument lowest, these are either the group identifiers or the individual item iden-
tifiers. export

GeneRegionTrack-class 59

e identifier(GdObject = GeneRegionTrack) <- value: Set the track item identifiers. The
replacement value has to be a character vector of appropriate length. This always replaces the
group-level identifiers, so essentially it is similar to groups<-.

* subset(ReferenceGeneRegionTrack): Subset a GeneRegionTrack by coordinates and sort
if necessary.

* drawGD(GeneRegionTrack): plot the object to a graphics device. The return value of this
method is the input object, potentially updated during the plotting operation. Internally, there
are two modes in which the method can be called. Either in *prepare’ mode, in which case
no plotting is done but the object is preprocessed based on the available space, or in *plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

* show(GeneRegionTrack): Show method.

¢ show(ReferenceGeneRegionTrack): Show method.

Objects from the class

Objects can be created using the constructor function GeneRegionTrack.

Author(s)

Florian Hahne, Steve Lianoglou

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

60 GeneRegionTrack-class

Examples

The empty object
GeneRegionTrack()

Load some sample data
data(cyp2b10)

Construct the object

grTrack <- GeneRegionTrack(
start = 26682683, end = 26711643,
rstart = cyp2bl@$start, rends = cyp2b1@$end, chromosome = 7, genome = "mm9",
transcript = cyp2bl@$transcript, gene = cyp2bl10$gene, symbol = cyp2b10@$symbol,
feature = cyp2bl@$feature, exon = cyp2bl@$exon,
name = "Cyp2b10"”, strand = cyp2b1@$strand

)

Directly from the data.frame
grTrack <- GeneRegionTrack(cyp2b10)

From a TxDb object
if (require(GenomicFeatures)) {
samplefile <- system.file("extdata"”,
"hg19_knownGene_sample.sqlite”,
package = "GenomicFeatures")
txdb <- loadDb(samplefile)
GeneRegionTrack(txdb)
GeneRegionTrack(txdb, chromosome = "chr6”, start = 35000000, end = 40000000)

Plotting
plotTracks(grTrack)

Track names
names(grTrack)
names(grTrack) <- "foo"
plotTracks(grTrack)

Subsetting and splitting

subTrack <- subset(grTrack, from = 26700000, to = 26705000)
length(subTrack)

subTrack <- grTrack[transcript(grTrack) == "ENSMUST0Q0000144140"]
split(grTrack, transcript(grTrack))

Accessors

start(grTrack)

end(grTrack)

width(grTrack)

position(grTrack)

width(subTrack) <- width(subTrack) + 100

GeneRegionTrack-class

strand(grTrack)
strand(subTrack) <- "-"

chromosome (grTrack)
chromosome (subTrack) <- "chrX"

genome (grTrack)
genome (subTrack) <- "hg19”

range(grTrack)
ranges(grTrack)

Annotation
identifier(grTrack)
identifier(grTrack, "lowest”)
identifier(subTrack) <- "bar"

feature(grTrack)
feature(subTrack) <- "foo"

exon(grTrack)
exon(subTrack) <- letters[1:2]

gene(grTrack)
gene(subTrack) <- "bar"

symbol (grTrack)
symbol(subTrack) <- "foo"

transcript(grTrack)
transcript(subTrack) <- c("foo"”, "bar")
chromosome (subTrack) <- "chr7"”
plotTracks(subTrack)

values(grTrack)

Grouping

group(grTrack)
group(subTrack) <- "Group 1"
transcript(subTrack)
plotTracks(subTrack)

Collapsing transcripts

plotTracks(grTrack,
collapseTranscripts = TRUE, showId = TRUE,
extend.left = 10000, shape = "arrow”

)

Stacking
stacking(grTrack)
stacking(grTrack) <- "dense”
plotTracks(grTrack)

61

62

coercion
as(grTrack, "data.frame")
as(grTrack, "UCSCData")

HTML image map

coords(grTrack)

tags(grTrack)

grTrack <- plotTracks(grTrack)$foo
coords(grTrack)

tags(grTrack)

GenomeAxisTrack-class

GenomeAxisTrack-class GenomeAxisTrack class and methods

Description

A class representing a customizable genomic axis.

Usage

S4 method for signature 'GenomeAxisTrack'
initialize(.Object, range, ids, ...)
GenomeAxisTrack(range = NULL, name = "Axis"”, id, ...)

S4 method for signature 'GenomeAxisTrack'
ranges(x)

S4 method for signature 'GenomeAxisTrack'
range(x)

S4 method for signature 'GenomeAxisTrack'
start(x)

S4 replacement method for signature 'GenomeAxisTrack'
start(x) <- value

S4 method for signature 'GenomeAxisTrack'
end(x)

S4 replacement method for signature 'GenomeAxisTrack'
end(x) <- value

S4 method for signature 'GenomeAxisTrack'
width(x)

S4 method for signature 'GenomeAxisTrack'
length(x)

GenomeAxisTrack-class 63

S4 method for signature 'GenomeAxisTrack'
values(x)

S4 method for signature 'GenomeAxisTrack'
strand(x)

S4 method for signature 'GenomeAxisTrack'
collapseTrack(

GdObject,

min.width = 1,

min.distance = 0,

collapse = TRUE,

diff = .pxResolution(coord = "x"),

xrange

)

S4 method for signature 'GenomeAxisTrack,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'GenomeAxisTrack'
subset(x, from = NULL, to = NULL, sort = FALSE, ...)

S4 method for signature 'GenomeAxisTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, subset = TRUE, ...)

S4 method for signature 'GenomeAxisTrack'

show(object)
Arguments
range Optional object of class GRanges or IRanges containing regions to be high-
lighted on the axis by coloured boxes.
Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.
name Character scalar of the track’s name used in the title panel when plotting.
id A character vector of the same length as range containing identifiers for the
ranges. If missing, the constructor will try to extract the ids from names(range).
X A valid track object class name, or the object itself, in which case the class is
derived directly from it.
Details

A GenomeAxisTrack can be customized using the familiar display parameters. By providing a
GRanges or IRanges object to the constructor, ranges on the axis can be further highlighted.

With the scale display parameter, a small scale indicator can be shown instead of the entire ge-
nomic axis. The scale can either be provided as a fraction of the plotting region (it will be rounded

64

GenomeAxisTrack-class

to the nearest human readable absolute value) or as an absolute value and is always displayed in bp,
kb, mb or gb units. Note that most display parameters for the GenomeAxisTrack are ignored when
a scale is used instead of the full axis. In particular, only the parameters exponent, alpha, 1wd,
col, cex, distFromAxis and labelPos are used.

Value

The return value of the constructor function is a new object of class GenomeAxisTrack.

Objects can be created using the constructor function GenomeAxisTrack.

Functions

initialize(GenomeAxisTrack): Intialize.
GenomeAxisTrack(): Constructor

ranges(GenomeAxisTrack): return the genomic coordinates for the track along with all ad-
ditional annotation information as an object of class GRanges.

range (GenomeAxisTrack): return the genomic coordinates for the track as an object of class
IRanges. @export

start(GenomeAxisTrack): return the start coordinates of the track items.
start(GenomeAxisTrack) <- value: replace the start coordinates of the track items.
end(GenomeAxisTrack): return the end coordinates of the track items.
end(GenomeAxisTrack) <- value: replace the end coordinates of the track items.
width(GenomeAxisTrack): return the with of the track items in genomic coordinates.
length(GenomeAxisTrack): return the number of items stored in the ranges slot.

values(GenomeAxisTrack): return all additional annotation information except for the ge-
nomic coordinates for the track items.

strand(GenomeAxisTrack): return a vector of strand specifiers for all track items, in the
form ’+° for the Watson strand, ’-’ for the Crick strand or **’ for either of the two.

collapseTrack(GenomeAxisTrack): preprocess the track before plotting. This will collapse
overlapping track items based on the available resolution and increase the width and height of
all track objects to a minimum value to avoid rendering issues. See collapsing for details.

x[i: subset the items in the GenomeAxisTrack object. This is essentially similar to subsetting
of the GRanges object in the range slot. For most applications, the subset method may be
more appropriate.

subset (GenomeAxisTrack): plot subset all the contained tracks in an GenomeAxisTrack by
coordinates and sort if necessary.

drawGD(GenomeAxisTrack): plot the object to a graphics device. The return value of this
method is the input object, potentially updated during the plotting operation. Internally, there
are two modes in which the method can be called. Either in ’prepare’ mode, in which case
no plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

show(GenomeAxisTrack): Show method.

GenomeAxisTrack-class

Author(s)

Florian Hahne

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Construct object
axTrack <- GenomeAxisTrack(
name = "Axis",
range <- IRanges(start = c(100, 300, 800), end = c(150, 400, 1000))

Plotting

plotTracks(axTrack, from = @, to 1100)

Track names
names (axTrack)
names(axTrack) <- "foo"

Subsetting and splitting

subTrack <- subset(axTrack, from = @, to = 500)
length(subTrack)

subTrack[1]

split(axTrack, c(1, 1, 2))

Accessors
start(axTrack)
end(axTrack)
width(axTrack)

66 grouping

strand(axTrack)

range (axTrack)
ranges(axTrack)

Annotation
values(axTrack)

Grouping
group(axTrack)

HTML image map

coords(axTrack)

tags(axTrack)

axTrack <- plotTracks(axTrack)$foo
coords(axTrack)

tags(axTrack)

adding an axis to another track

data(cyp2b10)

grTrack <- GeneRegionTrack(
start = 26682683, end = 26711643,
rstart = cyp2bl@$start, rends = cyp2bi@$end, chromosome = 7, genome = "mm9",
transcript = cyp2bl@$transcript, gene = cyp2bl@$gene, symbol = cyp2b1@$symbol,
name = "Cyp2b10"”, strand = cyp2b1@$strand

)

plotTracks(list(grTrack, GenomeAxisTrack()))

plotTracks(list(grTrack, GenomeAxisTrack(scale = 0.1)))
plotTracks(list(grTrack, GenomeAxisTrack(scale = 5000)))
plotTracks(list(grTrack, GenomeAxisTrack(scale = 0.5, labelPos = "below")))

grouping Grouping of annotation features

Description

Many annotation tracks are actually composed of a number of grouped sub-features, for instance ex-
ons in a gene model. This man page highlights the use of grouping information to build informative
annotation plots.

Details

All track objects that inherit from class AnnotationTrack support the grouping feature. The in-
formation is usually passed on to the constructor function (for AnnotationTrack via the groups
argument and for GeneRegionTrack objects via the exon argument) or automatically downloaded
from an online annotation repository (BiomartGeneRegionTrack). Group membership is specified
by a factor vector with as many items as there are annotation items in the track (i.e., the value of
length(track). Upon plotting, the grouped annotation features are displayed together and will not
be separated in the stacking of track items.

Gviz-defunct 67

Author(s)

Florian Hahne

See Also
AnnotationTrack
BiomartGeneRegionTrack

GeneRegionTrack

Gviz-defunct Defunct functions in package Gviz

Description

These functions are defunct and no longer available.

Defunct functions are::

(none)

Gviz-deprecated Deprecated functions in package Gviz

Description

These functions are provided for compatibility with older versions of Gviz only, and will be defunct
at the next release.

The following functions are deprecated and will be made defunct (use the replacement indi-
cated below)::

(none)

68

HighlightTrack-class

HighlightTrack-class

HighlightTrack class and methods

Description

A container for other track objects from the Gviz package that allows for the addition of a common

highlighting area across tracks.

Usage

S4 method for signature 'HighlightTrack'
initialize(.Object, trackList, ...)

HighlightTrack(
trackList = list(),
range = NULL,
start = NULL,
end = NULL,
width = NULL,
chromosome,
genome,
name = "HighlightTrack”,

) .

S4 replacement method for signature 'HighlightTrack,list

displayPars(x, recursive = FALSE) <- value

S4 method for signature 'HighlightTrack'
length(x)

S4 replacement method for signature 'HighlightTrack'

chromosome (GdObject) <- value

S4 method for signature 'HighlightTrack'
setStacks(GdObject, ...)

S4 method for signature 'HighlightTrack'
consolidateTrack(GdObject, chromosome, ...)

S4 method for signature 'HighlightTrack'
subset(x, ...)

S4 method for signature 'HighlightTrack'
show(object)

HighlightTrack-class

Arguments

.Object
trackList

range

start, end
width

chromosome

genome

name

recursive

value

69

.Object
A list of Gviz track objects that all have to inherit from class GdObject.
All additional parameters are ignored.

An optional meta argument to handle the different input types. If the range
argument is missing, all the relevant information to create the object has to be
provided as individual function arguments (see below).

The different input options for range are:

A GRanges object: the genomic ranges for the highlighting regions.

An IRanges object: almost identical to the GRanges case, except that the chro-
mosome information has to be provided in the separate chromosome argu-
ment, because it can not be directly encoded in an IRanges object.

A data.frame object: the data.frame needs to contain at least the two manda-
tory columns start and end with the range coordinates. It may also contain
a chromosome column with the chromosome information for each range. If
missing, this information will be drawn from the constructor’s chromosome
argument.

An integer scalar with the genomic start or end coordinates for the highlighting
range. Can also be supplied as part of the range argument.

An integer vector of widths for highlighting ranges. This can be used instead of
either start or end to specify the range coordinates.

The chromosome on which the track’s genomic ranges are defined. A valid
UCSC chromosome identifier if options(ucscChromosomeNames=TRUE). Please
note that in this case only syntactic checking takes place, i.e., the argument value
needs to be an integer, numeric character or a character of the form chrx, where
x may be any possible string. The user has to make sure that the respective
chromosome is indeed defined for the the track’s genome. If not provided here,
the constructor will try to build the chromosome information based on the avail-
able inputs, and as a last resort will fall back to the value chrNA. Please note
that by definition all objects in the Gviz package can only have a single ac-
tive chromosome at a time (although internally the information for more than
one chromosome may be present), and the user has to call the chromosome<-
replacement method in order to change to a different active chromosome.

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. If not provided here the constructor will try to extract this information
from the provided inputs, and eventually will fall back to the default value of
NA.

Character scalar of the track’s name. This is not really used and only exists fro
completeness.

A valid track object class name, or the object itself, in which case the class is
derived directly from it.

logical

Value to be set.

70 HighlightTrack-class

GdObject Object of GdObject-class.
object object
Details

A track to conceptionally group other Gviz track objects into a meta track for the sole purpose
of overlaying all the contained tracks with the same highlighting region as defined by the objects
genomic ranges. During rendering the contained tracks will be treated as if they had been provided
to the plotTracks function as individual objects.

Value

The return value of the constructor function is a new object of class HighlightTrack.

Functions
e initialize(HighlightTrack): Initialize.
e HighlightTrack(): Constructor function for HighlightTrack-class.

» displayPars(x =HighlightTrack) <- value: set display parameters using the values of the
named list in value. See settings for details on display parameters and customization.

¢ length(HighlightTrack): return the number of subtracks.

* chromosome (HighlightTrack) <- value: replace the value of the track’s chromosome. This
has to be a valid UCSC chromosome identifier or an integer or character scalar that can be
reasonably coerced into one.

* setStacks(HighlightTrack): Rrecompute the stacks based on the available space and on
the object’s track items and stacking settings. This really just calls the setStacks methods
for the contained tracks and only exists for dispatching reasons.

* consolidateTrack(HighlightTrack): Consolidate For aHighlightTrack apply the method
on each of the subtracks in the trackList slot

* subset(HighlightTrack): subset all the contained tracks in an HighlightTrack by coordi-
nates and sort if necessary.

e show(HighlightTrack): Show method.

Objects from the Class

Objects can be created using the constructor function HighlightTrack.

Author(s)

Florian Hahne

See Also
DisplayPars
GdObject
GRanges

IdeogramTrack-class 71

HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Object construction:

set.seed(123)

dat <- runif(100, min = -2, max = 22)

gt <- GenomeAxisTrack()

dt <- DataTrack(data = dat, start = sort(sample(200, 100)), width = 1, genome = "hgl19")

ht <- HighlightTrack(trackList = list(gt, dt))

IdeogramTrack-class ldeogramTrack class and methods

Description

A class to represent the schematic display of a chromosome, also known as an ideogram. The
respective information is typically directly fetched from UCSC.

Arguments

chromosome The chromosome for which to create the ideogram. Has to be a valid UCSC
chromosome identifier of the form chrx, or a single integer or numeric character
unless option(ucscChromosomeNames=FALSE). The user has to make sure that
the respective chromosome is indeed defined for the the track’s genome.

genome The genome on which to create the ideogram. This has to be a valid UCSC
genome identifier if the ideogram data is to be fetched from the UCSC reposi-
tory.

name Character scalar of the track’s name used in the title panel when plotting. De-

faults to the selected chromosome.

72 IdeogramTrack-class

bands A data. frame with the cytoband information for all available chromosomes on
the genome similar to the data that would be fetched from UCSC. The table
needs to contain the mandatory columns chrom, chromStart, chromeEnd, name
and gieStain with the chromosome name, cytoband start and end coordinates,
cytoband name and coloring information, respectively. This can be used when
no connection to the internet is available or when the cytoband information has
been cached locally to avoid the somewhat slow connection to UCSC.

Additional items which will all be interpreted as further display parameters.

Details

Ideograms are schematic depictions of chromosomes, including chromosome band information and
centromere location. The relevant data for various species is stored in the UCSC data base. The
initializer method of the class will automatically fetch the respective data for a given genome and
chromosome from UCSC and fill the appropriate object slots. When plotting IdeogramTracks, the
current genomic location is indicated on the chromosome by a colored box.

The Gviz.ucscUrl option controls which URL is being used to connect to UCSC. For instance, one
could switch to the European UCSC mirror by calling options(Gviz.ucscUrl="http://genome-euro.ucsc.edu/cgi-bir
Value

The return value of the constructor function is a new object of class IdeogramTrack.

Objects from the Class

Objects can be created using the constructor function IdeogramTrack.

Note

When fetching ideogram data from UCSC the results are cached for faster acces. See clearSessionCache
on details to delete these cached items.

Author(s)

Florian Hahne

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack

collapsing

IdeogramTrack-class

grouping
panel.grid
plotTracks

settings

Examples

Construct the object
Not run:
idTrack <- IdeogramTrack(chromosome = 7, genome = "mm9")

End(Not run)

Plotting
plotTracks(idTrack, from = 5000000, to = 9000000)

Track names

names (idTrack)

names(idTrack) <- "foo"

plotTracks(idTrack, from = 5000000, to = 9000000)

Accessors

chromosome (idTrack)

Not run:

chromosome (idTrack) <- "chrXx"

End(Not run)
genome (idTrack)

Not run:
genome(id) <- "hgl19”

End(Not run)

range (idTrack)
ranges(idTrack)

Annotation
values(idTrack)

coercion
as(idTrack, "data.frame")

74 ImageMap-class

ImageMap-class ImageMap: HTML image map information

Description

HTML image map information for annotation tracks.

Usage

coords(ImageMap, ...)

S4 method for signature '“NULL™'
coords(ImageMap)

S4 method for signature 'ImageMap'
coords(ImageMap)

tags(ImageMap, ...)

S4 method for signature '“NULL™'
tags(ImageMap)

S4 method for signature 'ImageMap'

tags(ImageMap)
Arguments
ImageMap Object of ImageMap-class, containing optional information for an HTML im-
age map.
Details

Objects of the ImageMap-class are usually not created by the user, hence the constructor function
ImageMap is not exported in the name space.

Value

Returns the coordinates from the image map.

Returns the tags from the image map.

Functions

e coords(): Generics for coords.
e coords(NULL™): Returns the coordinates from the image map.
* coords(ImageMap): Returns the coordinates from the image map.

¢ tags(): Generics for tags.

NumericTrack-class 75

* tags("NULL™): Returns the tags from the image map

* tags(ImageMap): Returns the tags from the image map

Slots

coords Object of class matrix, the image map coordinates. In the order x bl, y bl, x tr, y tr. Row
names are mandatory for the matrix and have to be unique.

tags Object of class 1ist, the individual HTML tags for the image map. The value of each list
item has to be a named character vector, where the names must match back into the row names
of the coords matrix

Examples

Not provided. This is an internal structure.

NumericTrack-class NumericTrack class and methods

Description
The virtual parent class for all track items in the Gviz package designed to contain numeric data.
This class merely exists for dispatching purpose.

Usage

S4 method for signature 'NumericTrack'
drawAxis(GdObject, from, to, ...)

S4 method for signature 'NumericTrack'
drawGrid(GdObject, from, to)

Arguments
GdObject Object of GdObject-class.
from, to Numeric scalar, giving the range of genomic coordinates to limit the tracks in.
Note that to cannot be larger than from.
Additional arguments.
Value

A virtual class: No objects may be created from it.

Functions

* drawAxis(NumericTrack): add a y-axis to the title panel of a track.

e drawGrid(NumericTrack): superpose a grid on top of a track.

76 NumericTrack-class

Slots

dp Object of DisplayPars-class, the display settings controlling the look and feel of a track. See
settings for details on setting graphical parameters for tracks.

name Object of class character, a human-readable name for the track that will be used in the
track’s annotation panel if necessary.

imageMap Object of ImageMap-class, containing optional information for an HTML image map.
This will be created by the drawGD methods when the track is plotted to a device and is usually
not set by the user.

range Object of class GRanges, the genomic ranges of the track items as well as additional annota-
tion information in its elementMetaData slot. Please not that the slot is actually implemented
as a class union between GRanges and IRanges to increase efficiency, for instance for Data-
Track objects. This usually does not concern the user.

chromosome Object of class character, the chromosome on which the track is defined. There can
only be a single chromosome for one track. For certain subclasses, the space of allowed chro-
mosome names is limited (e.g., only those chromosomes that exist for a particular genome).
Throughout the package, chromosome name have to be entered either as a single integer scalar
or as a character scalar of the form chrXYZ, where XYZ may be an arbitrary character string.

genome Object of class character, the genome for which the track is defined. For most sub-classes
this has to be valid UCSC genome identifier, however this may not always be formally checked
upon object instantiation.

Author(s)

Florian Hahne

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

OverlayTrack-class 77

OverlayTrack-class OverlayTrack class and methods

Description

A container for other track objects from the Gviz package that allows for overlays of their content
on the same region of the plot.

Usage
S4 method for signature 'OverlayTrack'
initialize(.Object, trackList, ...)
OverlayTrack(trackList = list(), name = "OverlayTrack", ...)

S4 replacement method for signature 'OverlayTrack,list'
displayPars(x, recursive = FALSE) <- value

S4 method for signature 'OverlayTrack'
length(x)

S4 method for signature 'OverlayTrack'
chromosome (GdObject)

S4 replacement method for signature 'OverlayTrack'
chromosome (GdObject) <- value

S4 method for signature 'OverlayTrack'
setStacks(GdObject, ...)

S4 method for signature 'OverlayTrack'
consolidateTrack(GdObject, chromosome, ...)

S4 method for signature 'OverlayTrack'
subset(x, ...)

S4 method for signature 'OverlayTrack'
drawGD(GdObject, ...)

S4 method for signature 'OverlayTrack'
show(object)
Arguments

trackList A list of Gviz track objects that all have to inherit from class GdObject.

All additional parameters are ignored.

78 OverlayTrack-class

name Character scalar of the track’s name. This is not really used and only exists fro
completeness.

Details

A track to conceptionally group other Gviz track objects into a meta track in order to merge them
into a single overlay visualization. Only the first track in the supplied list will be inferred when
setting up the track title and axis, for all the other tracks only the panel content is plotted.

Value

The return value of the constructor function is a new object of class OverlayTrack.

Functions

e initialize(OverlayTrack): Initialize.
e OverlayTrack(): Constructor function for OverlayTrack-class.

* displayPars(x = OverlayTrack) <- value: set display parameters using the values of the
named list in value. See settings for details on display parameters and customization.

e length(OverlayTrack): return the number of subtracks.
e chromosome (OverlayTrack): return the chromosome for which the track is defined.

* chromosome (OverlayTrack) <- value: replace the value of the track’s chromosome. This
has to be a valid UCSC chromosome identifier or an integer or character scalar that can be
reasonably coerced into one.

* setStacks(OverlayTrack): recompute the stacks based on the available space and on the
object’s track items and stacking settings. This really just calls the setStacks methods for the
contained tracks and only exists for dispatching reasons.

* consolidateTrack(OverlayTrack): # For a OverlayTrack apply the method on each of
the subtracks in the tracklList slot

* subset(OverlayTrack): plot subset all the contained tracks in an OverlayTrack by coordi-
nates and sort if necessary.

* drawGD(OverlayTrack): plot the object to a graphics device. The return value of this method
is the input object, potentially updated during the plotting operation. Internally, there are
two modes in which the method can be called. Either in "prepare’ mode, in which case no
plotting is done but the object is preprocessed based on the available space, or in ’plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

¢ show(OverlayTrack): Show method.

Objects from the Class

Objects can be created using the constructor function OverlayTrack.

Author(s)

Florian Hahne

plotTracks

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

Object construction:

set.seed(123)

dat <- runif (100, min
dt1 <- DataTrack(data
dt2 <- DataTrack(data

-2, max = 22)

dat, start = sort(sample(200, 100)), width =
dat, start = sort(sample(200, 100)), width
ot <- OverlayTrack(trackList = list(dt1, dt2))

79

1, genome = "hgl9")
1, genome = "hgl9")

plotTracks

The main plotting function for one or several Gviz tracks.

Description

plotTracks is the main interface when plotting single track objects, or lists of tracks linked to-
gether across the same genomic coordinates. Essentially, the resulting plots are very similar to the
graphical output of the UCSC Genome Browser, except for all of the interactivity.

Usage

plotTracks(
trackList,
from = NULL,
to = NULL,

D

sizes = NULL,

panel.only = FALSE,

80

extend.right = 0,
extend.left = 0,
title.width = NULL,
add = FALSE,

main,

cex.main = 2,
fontface.main = 2,
col.main = "black”,
margin = 6,
chromosome = NULL,
innerMargin = 3

plotTracks

Arguments

trackList

from, to

sizes

panel.only

A list of Gviz track objects, all inheriting from class GdObject. The tracks will
all be drawn to the same genomic coordinates, either as defined by the from and
to arguments if supplied, or by the maximum range across all individual items
in the list.

Character scalar, giving the range of genomic coordinates to draw the tracks in.
Note that to cannot be larger than from. If NULL, the plotting ranges are derived
from the individual tracks. See extend.lef't and extend.right below for the
definition of the final plotting ranges.

Additional arguments which are all interpreted as display parameters to tweak
the appearance of the plot. These parameters are global, meaning that they will
be used for all tracks in the list where they actually make sense, and they override
the track-internal settings. See settings for details on display parameters.

A numeric vector of relative vertical sizes for the individual tracks of length
equal to the number of tracks in trackList, or NULL to auto-detect the most
appropriate vertical size proportions.

Logical flag, causing the tracks to be plotted as lattice-like panel functions with-
out resetting the plotting canvas and omitting the title pane. This allows to em-
bed tracks into a trellis layout. Usually the function is called for a single track
only when panel.only==TRUE.

extend.right, extend.left

title.width

add

main

Numeric scalar, extend the plotting range to the right or to the left by a fixed
number of bases. The final plotting range is defined as from-extend.left to
tot+extend.right.

A expansion factor for the width of the title panels. This can be used to make
more space, e.g. to accommodate for more detailed data axes. The default is to
use as much space as needed to fit all the annotation text.

Logical flag, add the plot to an existing plotting canvas without re-initialising.

Character scalar, the plots main header.

cex.main, fontface.main, col.main

margin

The fontface, color and expansion factor settings for the main header.

The margin width to add to the plot in pixels.

plotTracks 81

chromosome Set the chromosome for all the tracks in the track list.
innerMargin The inner margin width to add to the plot in pixels.
Details

Gviz tracks are plotted in a vertically stacked layout. Each track panel is split up into a title section
containing the track name, as well as an optional axis for tracks containing numeric data, and a data
section showing the actual data along genomic coordinates. In that sense, the output is very similar
to the UCSC Genome Browser.

The layout of the individual tracks is highly customizable though so called "display parameters".
See settings for details.

While plotting a track, the software automatically computes HTML image map coordinates based
on the current graphics device. These coordinates as well as the associated annotation information
can later be used to embed images of the plots in semi-interactive HTML pages. See ImageMap for
details.

Value

A list of Gviz tracks, each one augmented by the computed image map coordinates in the imageMap
slot, along with the additional ImageMap object titles containing information about the title pan-
els.

Author(s)

Florian Hahne

See Also

GdObject
ImageMap
ImageMap
StackedTrack

settings

Examples

Create some tracks to plot
st <- c(2000000, 2070000, 2100000, 2160000)
ed <- c(2050000, 2130000, 2150000, 2170000)
str <- c("=", "+", U=V onen
gr <- c("Group1”, "Group2", "Groupl"”, "Group3")
annTrack <- AnnotationTrack(
start = st, end = ed, strand = str, chromosome = 7,
genome = "hgl19"”, feature = "test”, group = gr,
id = paste("annTrack item”, 1:4),
name = "annotation track foo”,
stacking = "squish”

82

ax <- GenomeAxisTrack()

dt <- DataTrack(
start = seq(min(st), max(ed), len = 10), width = 18000,
data = matrix(runif(40), nrow = 4), genome = "hgl19", chromosome = 7,
type = "histogram”, name = "data track bar”

Now plot the tracks
res <- plotTracks(list(ax, annTrack, dt))

Plot only a subrange
res <- plotTracks(list(ax, annTrack, dt), from = 2080000, to = 2156000)

Extend plotting ranges
res <- plotTracks(list(ax, annTrack, dt), extend.left = 200000, extend.right

Add a header

res <- plotTracks(list(ax, annTrack, dt),
main = "A GenomGraphs plot”,
col.main = "darkgray”

Change vertical size and title width
res <- plotTracks(list(ax, annTrack, dt), sizes = c(1, 1, 5))

names(annTrack) <- "foo"
res <- plotTracks(list(ax, annTrack), title.width = 0.6)

Adding and lattice like plots

library(grid)

grid.newpage()

pushViewport(viewport(height = 0.5, y = 1, just = "top"))
grid.rect()

plotTracks(annTrack, add = TRUE)

popViewport (1)

pushViewport(viewport(height = 0.5, y = @, just = "bottom"))
grid.rect()

plotTracks(dt, add = TRUE)

popViewport (1)
Not run:
library(lattice)
myPanel <- function(x, ...) {
plotTracks(annTrack,
panel.only = TRUE,
from = min(x), to = max(x), shape = "box"
)
3
a <- seq(1900000, 2250000, len = 40)
xyplot(b ~ a | c, data.frame(a = a, b = 1, ¢c = cut(a, 4)),

plotTracks

= 200000)

RangeTrack-class

panel = myPanel,
scales = list(x = "free")

)

End(Not run)

83

RangeTrack-class

RangeTrack class and methods

Description

The virtual parent class for all track items in the Gviz package that contain some form of genomic

ranges (start, end, strand, chromosome and the associated genome.)

Usage

S4 method for

signature

initialize(.Object, range,

S4 method for
ranges(x)

S4 method for
range(x)

S4 method for
segnames (x)

S4 method for
seqlevels(x)

S4 method for
seqinfo(x)

S4 method for
genome (x)

signature

signature

signature

signature

signature

signature

'RangeTrack’

chromosome, genome, ...)

'RangeTrack'

'RangeTrack'

'RangeTrack'

'RangeTrack'

'RangeTrack'

'RangeTrack'

S4 replacement method for signature
genome(x) <- value

S4 method for signature 'RangeTrack'
chromosome (GdObject)

'RangeTrack'

S4 replacement method for signature 'RangeTrack'
chromosome (GdObject) <- value

84

S4 method for signature 'RangeTrack'’
start(x)

S4 replacement method for signature
start(x) <- value

S4 method for signature 'RangeTrack'
end(x)

S4 replacement method for signature
end(x) <- value

S4 method for signature 'RangeTrack'
width(x)

S4 replacement method for signature
width(x) <- value

S4 method for signature 'RangeTrack'
min(x)

S4 method for signature 'RangeTrack'’
max (x)

S4 method for signature 'RangeTrack'
length(x)

S4 method for signature 'RangeTrack'

strand(x)

S4 replacement method for signature
strand(x) <- value

S4 method for signature 'RangeTrack'
position(GdObject, from = NULL, to =

NULL, sort =

RangeTrack-class

'RangeTrack'

'RangeTrack'

'RangeTrack'

'RangeTrack,ANY'

FALSE, ...)

S4 method for signature 'RangeTrack,ANY,ANY,ANY'

x[i, jJ, ., drop = TRUE]

S4 method for signature 'RangeTrack'

subset(
X,
from = NULL,
to = NULL,
sort = FALSE,
drop = TRUE,

use.defaults = TRUE,

RangeTrack-class 85

)

S4 method for signature 'RangeTrack,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'RangeTrack'’
values(x)

S4 method for signature 'RangeTrack'
feature(GdObject)

S4 replacement method for signature 'RangeTrack,character'
feature(GdObject) <- value

S4 method for signature 'RangeTrack'

consolidateTrack(GdObject, chromosome, ...)
Arguments
.Object .Object
range range
chromosome the currently active chromosome which may have to be set for a RangeTrack or

a SequenceTrack object parameters
genome genome
Additional arguments.

X A valid track object class name, or the object itself, in which case the class is
derived directly from it.

value Value to be set.
GdObject the input track object
from, to Numeric scalar, giving the range of genomic coordinates to limit the tracks in.

Note that to cannot be larger than from.

sort logical.

i Numeric scalar, index to subset.

j Numeric scalar, index to subset. Ignored.

drop logical, indicating if levels that do not occur should be dropped (if f is a fac-
tor).

use.defaults logical.

f factor in the sense that as. factor (f) defines the grouping,

Value

A virtual class: No objects may be created from it.

86

RangeTrack-class

Functions

initialize(RangeTrack): Initialize.

ranges(RangeTrack): return the genomic coordinates for the track along with all additional
annotation information as an object of class GRanges.

range(RangeTrack): return the genomic coordinates for the track as an object of class
IRanges.

segnames (RangeTrack): return the track’s seqnames.
seqlevels(RangeTrack): return the track’s seqlevels.
seqinfo(RangeTrack): return the track’s seqinfo.
genome (RangeTrack): return the track’s genome.

genome (RangeTrack) <- value: set the track’s genome. Usually this has to be a valid UCSC
identifier, however this is not formally enforced here.

chromosome (RangeTrack): return the chromosome for which the track is defined.

chromosome (RangeTrack) <- value: replace the value of the track’s chromosome. This has
to be a valid UCSC chromosome identifier or an integer or character scalar that can be reason-
ably coerced into one.

start(RangeTrack): the start of the track items in genomic coordinates.
start(RangeTrack) <- value: replace the start of the track items in genomic coordinates.
end(RangeTrack): the end of the track items in genomic coordinates.

end(RangeTrack) <- value: replace the end of the track items in genomic coordinates.
width(RangeTrack): the width of the track items in genomic coordinates.
width(RangeTrack) <- value: replace the width of the track items in genomic coordinates.
min(RangeTrack): return the start position for the leftmost range item.

max (RangeTrack): return the end position for the rightmost range item.
length(RangeTrack): return the number of items in the track.

strand(RangeTrack): return a vector of strand specifiers for all track items, in the form "+’
for the Watson strand, ’-’ for the Crick strand or **’ for either of the two.

strand(x = RangeTrack) <- value: replace the strand information for the track items. The
replacement value needs to be an appropriate scalar or vector of strand values.

position(RangeTrack): the arithmetic mean of the track item’s coordionates, i.e., (end(obj)-start(obj))/2.

x[i: subset the items in the RangeTrack object. This is essentially similar to subsetting of
the GRanges object in the range slot. For most applications, the subset method may be more
appropriate.

subset (RangeTrack): subset a RangeTrack by coordinates and sort if necessary.

split(x = RangeTrack, f = ANY): split a RangeTrack object by an appropriate factor vector
(or another vector that can be coerced into one). The output of this operation is a list of objects
of the same class as the input object, all inheriting from class RangeTrack.

values(RangeTrack): return all additional annotation information except for the genomic
coordinates for the track items as a data. frame.

RangeTrack-class 87

* feature(RangeTrack): return the grouping information for track items. For certain sub-
classes, groups may be indicated by different colour schemes when plotting. See grouping or
AnnotationTrack and GeneRegionTrack for details. @export

» feature(GdObject = RangeTrack) <- value: set the grouping information for track items.
This has to be a factor vector (or another type of vector that can be coerced into one) of the
same length as the number of items in the RangeTrack. See grouping or AnnotationTrack
and GeneRegionTrack for details. @export

* consolidateTrack(RangeTrack): Consolidate.

Slots
dp Object of DisplayPars-class, the display settings controlling the look and feel of a track. See
settings for details on setting graphical parameters for tracks.

name Object of class character, a human-readable name for the track that will be used in the
track’s annotation panel if necessary.

imageMap Object of ImageMap-class, containing optional information for an HTML image map.
This will be created by the drawGD methods when the track is plotted to a device and is usually
not set by the user.

range Object of class GRanges, the genomic ranges of the track items as well as additional annota-
tion information in its elementMetaData slot. Please not that the slot is actually implemented
as a class union between GRanges and IRanges to increase efficiency, for instance for Data-
Track objects. This usually does not concern the user.

chromosome Object of class character, the chromosome on which the track is defined. There can
only be a single chromosome for one track. For certain subclasses, the space of allowed chro-
mosome names is limited (e.g., only those chromosomes that exist for a particular genome).
Throughout the package, chromosome name have to be entered either as a single integer scalar
or as a character scalar of the form chrXYZ, where XYZ may be an arbitrary character string.

genome Object of class character, the genome for which the track is defined. For most sub-classes
this has to be valid UCSC genome identifier, however this may not always be formally checked
upon object instantiation.

Author(s)
Florian Hahne

See Also

DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack

88 SequenceTrack-class

collapsing
grouping

panel.grid
plotTracks

settings

Examples

This is a reference class therefore we show below
an example from AnnotationTrack

An empty object
AnnotationTrack()

Construct from individual arguments

st <- c(2000000, 2070000, 2100000, 2160000)

ed <- c(2050000, 2130000, 2150000, 2170000)
str <= c("=", "+", =T)oM=Ty

gr <- c("Group1”, "Group2", "Groupl1”, "Group3")

annTrack <- AnnotationTrack(
start = st, end = ed, strand = str, chromosome = 7,
genome = "hgl19", feature = "test”, group = gr,
id = paste(”annTrack item”, 1:4),
name = "generic annotation”, stacking = "squish”

Plotting
plotTracks(annTrack)

SequenceTrack-class SequenceTrack class and methods

Description

A track class to represent genomic sequences. The three child classes SequenceDNAStringSetTrack,
SequenceRNAStringSetTrack and SequenceBSgenomeTrack do most of the work, however in
practise they are of no particular relevance to the user.

Usage
S4 method for signature 'SequenceTrack'
initialize(.Object, chromosome, genome, ...)
SequenceTrack(
sequence,

chromosome,

SequenceTrack-class

genome,
name = "SequenceTrack”,
importFunction,

stream = FALSE,

)

RNASequenceTrack(
sequence,
chromosome,
genome,
name = "SequenceTrack”,
importFunction,
stream = FALSE,

)

S4 method for signature 'SequenceDNAStringSetTrack'
initialize(.Object, sequence, ...)

S4 method for signature 'SequenceRNAStringSetTrack'
initialize(.Object, sequence, ...)

S4 method for signature 'SequenceBSgenomeTrack'
initialize(.Object, sequence = NULL, ...)

S4 method for signature 'ReferenceSequenceTrack'
initialize(.Object, stream, reference, ...)

S4 method for signature 'SequenceTrack'
segnames (x)

S4 method for signature 'SequenceBSgenomeTrack'
segnames (x)

S4 method for signature 'SequenceTrack'
seqlevels(x)

S4 method for signature 'SequenceBSgenomeTrack'
seqlevels(x)

S4 method for signature 'SequenceTrack'
start(x)

S4 method for signature 'SequenceTrack'
end(x)

S4 method for signature 'SequenceTrack'

89

90

width(x)

SequenceTrack-class

S4 method for signature 'SequenceTrack'

length(x)

S4 method for signature 'SequenceTrack'
chromosome (GdObject)

S4 replacement method for signature 'SequenceTrack'’
chromosome (GdObject) <- value

S4 method for signature 'SequenceTrack'

genome (x)

S4 method for signature 'SequenceTrack'
consolidateTrack(GdObject, chromosome, ...)

S4 method for signature 'SequenceTrack'
drawGD(GdObject, minBase, maxBase, prepare = FALSE, ...)

S4 method for signature 'SequenceBSgenomeTrack'

show(object)

S4 method for signature 'SequenceDNAStringSetTrack'

show(object)

S4 method for signature 'SequenceRNAStringSetTrack'

show(object)

S4 method for signature 'ReferenceSequenceTrack'

show(object)

Arguments

.Object

chromosome

genome

sequence

.Object

the currently active chromosome which may have to be set for a RangeTrack or
a SequenceTrack object parameters

The genome on which the track’s ranges are defined. Usually this is a valid
UCSC genome identifier, however this is not being formally checked at this
point. For a SequenceBSgenomeTrack object, the genome information is ex-
tracted from the input BSgenome package. For a DNAStringSet it has too be
provided or the constructor will fall back to the default value of NA.

Additional items which will all be interpreted as further display parameters. See
settings and the "Display Parameters" section below for details.

A meta argument to handle the different input types, making the construction of
a SequenceTrack as flexible as possible.

The different input options for sequence are:

SequenceTrack-class 91

An object of class DNAStringSet. The individual DNAStrings are considered
to be the different chromosome sequences.

An object of class BSgenome. The Gviz package tries to follow the BSgenome
philosophy in that the respective chromosome sequences are only realized
once they are first accessed.

A character scalar: in this case the value of the sequence argument is con-
sidered to be a file path to an annotation file on disk. A range of file types
are supported by the Gviz package as identified by the file extension. See
the importFunction documentation below for further details.

name Character scalar of the track’s name used in the title panel when plotting.

importFunction A user-defined function to be used to import the sequence data from a file. This
only applies when the sequence argument is a character string with the path to
the input data file. The function needs to accept an argument file containing
the file path and has to return a proper DNAStringSet object with the sequence
information per chromosome. A set of default import functions is already im-
plemented in the package for a number of different file types, and one of these
defaults will be picked automatically based on the extension of the input file
name. If the extension can not be mapped to any of the existing import func-
tion, an error is raised asking for a user-defined import function. Currently the
following file types can be imported with the default functions: fa/fasta and
2bit.
Both file types support indexing by genomic coordinates, and it makes sense to
only load the part of the file that is needed for plotting. To this end, the Gviz
package defines the derived ReferenceSequenceTrack class, which supports
streaming data from the file system. The user typically does not have to deal
with this distinction but may rely on the constructor function to make the right
choice as long as the default import functions are used. However, once a user-
defined import function has been provided and if this function adds support for
indexed files, you will have to make the constructor aware of this fact by setting
the stream argument to TRUE. Please note that in this case the import function
needs to accept a second mandatory argument selection which is a GRanges
object containing the dimensions of the plotted genomic range. As before, the
function has to return an appropriate DNAStringSet object.

stream A logical flag indicating that the user-provided import function can deal with in-
dexed files and knows how to process the additional selection argument when
accessing the data on disk. This causes the constructor to return a ReferenceSequenceTrack
object which will grab the necessary data on the fly during each plotting opera-

tion.

reference Name of the file (for streatming).

X A valid track object class name, or the object itself, in which case the class is
derived directly from it.

GdObject the input track object

value Value to be set.

minBase Start of the sequence.

maxBase End of the sequence.

92 SequenceTrack-class

prepare logical
object object
Value

The return value of the constructor function is a new object of class SequenceDNAStringSetTrack,
SequenceBSgenomeTrack ore ReferenceSequenceTrack, depending on the constructor arguments.
Typically the user will not have to be troubled with this distinction and can rely on the constructor
to make the right choice.

Functions

e initialize(SequenceTrack): Initialize.

* SequenceTrack(): Constructor

¢ RNASequenceTrack(): Constructor

¢ SequenceDNAStringSetTrack-class: The DNAStringSet-based version of the SequenceTrack-class.
e initialize(SequenceDNAStringSetTrack): Initialize.

e SequenceRNAStringSetTrack-class: The RNAStringSet-based version of the SequenceTrack-class.

e initialize(SequenceRNAStringSetTrack): Initialize RNAStringSet-based version of the
SequenceTrack-class.

¢ SequenceBSgenomeTrack-class: The BSgenome-based version of the SequenceTrack-class.
e initialize(SequenceBSgenomeTrack): Initialize.

¢ ReferenceSequenceTrack-class: The file-based version of the SequenceTrack-class.

e initialize(ReferenceSequenceTrack): Initialize.

* seqnames(SequenceTrack): return the names (i.e., the chromosome) of the sequences con-
tained in the object.

* segnames(SequenceBSgenomeTrack): return the names (i.e., the chromosome) of the se-
quences contained in the object.

* seqlevels(SequenceTrack): return the names (i.e., the chromosome) of the sequences con-
tained in the object. Only those with length > 0.

¢ seqlevels(SequenceBSgenomeTrack): return the names (i.e., the chromosome) of the se-
quences contained in the object. Only those with length > 0.

e start(SequenceTrack): return the start coordinates of the track items.

¢ end(SequenceTrack): return the end coordinates of the track items.

* width(SequenceTrack): return the with of the track items in genomic coordinates.

* length(SequenceTrack): return the length of the sequence for active chromosome.

¢ chromosome (SequenceTrack): return the chromosome for which the track is defined.

* chromosome (SequenceTrack) <- value: replace the value of the track’s chromosome. This
has to be a valid UCSC chromosome identifier or an integer or character scalar that can be
reasonably coerced into one.

» genome(SequenceTrack): Set the track’s genome. Usually this has to be a valid UCSC
identifier, however this is not formally enforced here.

SequenceTrack-class 93

e consolidateTrack(SequenceTrack): Consolidate/ Determine whether there is chromosome
settings or not, and add this information.

* drawGD(SequenceTrack): plot the object to a graphics device. The return value of this
method is the input object, potentially updated during the plotting operation. Internally, there
are two modes in which the method can be called. Either in ’prepare’ mode, in which case
no plotting is done but the object is preprocessed based on the available space, or in *plotting’
mode, in which case the actual graphical output is created. Since subsetting of the object can
be potentially costly, this can be switched off in case subsetting has already been performed
before or is not necessary.

* show(SequenceBSgenomeTrack): Show method.
* show(SequenceDNAStringSetTrack): Show method.
* show(SequenceRNAStringSetTrack): Show method.

¢ show(ReferenceSequenceTrack): Show method.

Objects from the class

Objects can be created using the constructor function SequenceTrack.

Author(s)

Florian Hahne

See Also
DisplayPars
GdObject
GRanges
HighlightTrack
ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

An empty object
SequenceTrack()

Construct from DNAStringSet

SequenceTrack-class

library(Biostrings)

letters <- c("A", "C", "T", "G", "N")

set.seed(999)

seqs <- DNAStringSet(c(chr1 = paste(sample(letters, 100000, TRUE),

collapse = ""
), chr2 = paste(sample(letters, 200000, TRUE), collapse = "")))
sTrack <- SequenceTrack(seqgs, genome = "hg19")
sTrack

Construct from BSGenome object

if (require(BSgenome.Hsapiens.UCSC.hg19)) {
sTrack <- SequenceTrack(Hsapiens)
sTrack

Set active chromosome
chromosome (sTrack)
chromosome(sTrack) <- "chr2"
head(segnames(sTrack))

Plotting
Sequences

plotTracks(sTrack, from = 199970, to = 200000)
Boxes
plotTracks(sTrack, from = 199800, to = 200000)
Line

plotTracks(sTrack, from = 1, to = 200000)
Force boxes
plotTracks(sTrack, from = 199970, to = 200000, nolLetters = TRUE)
Direction indicator
plotTracks(sTrack, from = 199970, to
Sequence complement
plotTracks(sTrack, from = 199970, to = 200000, add53 = TRUE, complement = TRUE)
Colors
plotTracks(sTrack, from = 199970, to = 200000, add53 = TRUE, fontcolor = c(
A=1,
C=1,G6=1,T=1, N=1

200000, add53 = TRUE)

)

Track names
names(sTrack)
names(sTrack) <- "foo"

Accessors

genome (sTrack)
genome(sTrack) <- "mm9"
length(sTrack)

Sequence extraction
subseq(sTrack, start = 100000, width = 20)
beyond the stored sequence range

settings 95

subseq(sTrack, start = length(sTrack), width = 20)

settings Setting display parameters to control the look and feel of the plots

Description

The genome track plots in this package are all highly customizable by means of so called ’display
parameters’. This page highlights the use of these parameters and list all available settings for the
different track classes.

Arguments
scheme A named nested list of display parameters, where the first level of nesting rep-
resents Gviz track object classes, and the second level of nesting represents pa-
rameters.
name A character scalar with the scheme name.
Details

All of the package’s track objects inherit the dp slot from the GdObject parent class, which is the
main container to store an object’s display parameters. Internally, the content of this slot has to be an
object of class DisplayPars, but the user is usually not exposed to this low level implementation.
Instead, there are two main interaction points, namely the individual object constructor functions
and the final plotTracks function. In both cases, all additional arguments that are not caught by any
of the formally defined function parameters are being interpreted as additional display parameters
and are automatically added to the aforementioned slot. The main difference here is that display
parameters that are passed on to the constructor function are specific for an individual track object,
whereas those supplied to the plotTracks function will be applied to all the objects in the plotting
list. Not all display parameters have an effect on the plotting of all track classes, and those will be
silently ignored.

One can query the available display parameters for a given class as well as their default values by
calling the availableDisplayPars function, or by inspecting the man pages of the individual track
classes. The structure of the classes defined in this package is hierarchical, and so are the available
display parameters, i.e., all objects inherit the parameters defined in the commom GdObject parent
class, and so on.

Once a track object has been created, the display parameters are still open for modification. To
this end, the DisplayPars replacement method is available for all objects inheriting from class
GdObject. The method takes a named list of parameters as input, e.g.:

displayPars(foo) <- list(col="red", lwd=2)

In the same spirit, the currently set display parameters for the object foo can be inferred using the
displayPars method directly, e.g.:

displayPars(foo)

For track objects inheriting from class AnnotationTrack, display parameters that are not formally
defined in the class definition or in any of the parent classes are considered to be valid R color

96 settings

identifiers that are used to distinguish between different types of annotation features. For instance,
the parameter 'miRNA’ will be used to color all annotation features of class miRNA. The annotation
types can be set in the constructor function of the track object via the feature argument. For most
of the tracks that have been inferred from one of the online repositories, this classification will
usually be downloaded along with the actual annotation data.

Users might find themselves changing the same parameters over and over again, and it would make
sense to register these modifications in a central location once and for all. To this end the Gviz
package supports display parameter schemes. A scheme is essentially just a bunch of nested named
lists, where the names on the first level of nesting should correspond to track class names, and the
names on the second level to the display parameters to set. The currently active schmeme can be
changed by setting the global option Gviz.scheme, and a new scheme can be registered by using
the addScheme function, providing both the list and the name for the new scheme. The getScheme
function is useful to get the current scheme as a list structure, for instance to use as a skeleton for
your own custom scheme.

In order to make these settings persitant across R sessions one can create one or several schemes in
the global environment in the special object .GvizSchemes, for instance by putting the necessary
code in the .Rprofile file. This object needs to be a named list of schemes, and it will be collected
when the Givz package loads. Its content is then automatically added to the collection of available
schemes.

Please note that because display parameters are stored with the track objects, a scheme change only
has an effect on those objects that are created after the change has taken place.

Value

The getScheme function returns current scheme as a list structure.

Display Parameters

GenomeAxisTrack: add35=FALSE: Logical scalar. Add 3’ to 5° direction indicators.
add53=FALSE: Logical scalar. Add 5’ to 3’ direction indicators.

background. title="transparent”: Character scalar. The background color for the title
panel. Defaults to omit the background.

cex.id=0.7: Numeric scalar. The text size for the optional range annotation.
cex=0.8: Numeric scalar. The overall font expansion factor for the axis annotation text.

col.border.title="transparent”: Integer or character scalar. The border color for the
title panels.

lwd.border.title=1: Integer scalar. The border width for the title panels.

col.id="white": Character scalar. The text color for the optional range annotation.

col.range="cornsilk4": Character scalar. The border color for highlighted regions on the
axis.

distFromAxis=1: Numeric scalar. Control the distance of the axis annotation from the tick
marks.

exponent=NULL: Numeric scalar. The exponent for the axis coordinates, e.g., 3 means mb, 6
means gb, etc. The default is to automatically determine the optimal exponent.

fill.range="cornsilk3": Character scalar. The fill color for highlighted regions on the
axis.

settings

97

fontcolor="#808080": Character scalar. The font color for the axis annotation text.
fontsize=10: Numeric scalar. Font size for the axis annotation text in points.

"non non

labelPos="alternating"”: Character vector, one in "alternating", "revAlternating", "above"
or "below". The vertical positioning of the axis labels. If scale is not NULL, the possible
values are "above", "below" and "beside".

littleTicks=FALSE: Logical scalar. Add more fine-grained tick marks.

lwd=2: Numeric scalar. The line width for the axis elementes.

scale=NULL: Numeric scalar. If not NULL a small scale is drawn instead of the full axis, if
the value is between 0 and 1 it is interpreted as a fraction of the current plotting region,
otherwise as an absolute length value in genomic coordinates.

showId=FALSE: Logical scalar. Show the optional range highlighting annotation.

showTitle=FALSE: Logical scalar. Plot a title panel. Defaults to omit the title panel.

ticksAt=NULL: Numeric scalar. The exact x-position for tickmarks (in base-pairs).

size=NULL: Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function. Defaults to the ideal size based on the other track settings.

col="darkgray": Character scalar. The color for the axis lines and tickmarks.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.
alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent”: Integer or character scalar. The background color of
the content panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

col.line=NULL: Integer or character scalar. Default colors for plot lines. Usually the same
as the global col parameter.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

collapse=TRUE: Boolean controlling whether to collapse the content of the track to accomo-
date the minimum current device resolution. See collapsing for details.

fill="lightgray": Integer or character scalar. Default fill color setting for all plotting ele-
ments, unless there is a more specific control defined elsewhere.

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

98

settings

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.

grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lineheight=1: Numeric scalar. The font line height for all text, unless a more specific defi-
nition exists.

lty.grid="solid": Integer or character scalar. Default line type for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

1ty="solid": Numeric scalar. Default line type setting for all plotting elements, unless there
is a more specific control defined elsewhere.

lwd.title=1: Integer scalar. The border width for the title panels

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

min.distance=1: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=90: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

rotation=0: The rotation angle for all text unless a more specific definiton exists.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

DataTrack: aggregateGroups=FALSE: Logical scalar. Aggregate the values within a sample

group using the aggregation funnction specified in the aggregation parameter.

aggregation="mean": Function or character scalar. Used to aggregate values in windows
or for collapsing overlapping items. The function has to accept a numeric vector as a
single input parameter and has to return a numeric scalar with the aggregated value. Al-
ternatively, one of the predefined options mean, median sum, min, max or extreme can be
supplied as a character scalar. Defaults to mean.

missingAsZero=TRUE: Logical scalar. Defines how the missing values are treated in the
aggregation procedure with running window. Setting it to TRUE fills empty positions with
zeros, which is default. FALSE fills empty positions with NA.

alpha.confint=0.3: Numeric scalar. The transparency for the confidence intervalls in confint-
type plots.

amount=NULL: Numeric scalar. Amount of jittering in xy-type plots. See panel.xyplot for
details.

settings 99

baseline=NULL: Numeric scalar. Y-axis position of an optional baseline. This parameter has
a special meaning for mountain-type and polygon-type plots, see the Details’ section in
DataTrack for more information.

box.legend=FALSE: Logical scalar. Draw a box around a legend.

box.ratio=1: Numeric scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

box.width=NULL: Numeric scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

grid=FALSE: Logical vector. Draw a line grid under the track content.

cex.legend=0.8: Numeric scalar. The size factor for the legend text.

cex.sampleNames=NULL: Numeric scalar. The size factor for the sample names text in heatmap
or horizon plots. Defaults to an automatic setting.

cex=0.7: Numeric scalar. The default pixel size for plotting symbols.

coef=1.5: Numeric scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

col.baseline=NULL: Character scalar. Color for the optional baseline, defaults to the setting
of col.

col.confint=NA: Character vector. Border colors for the confidence intervals for confint-
type plots.

col.boxplotFrame="#808080": Character scalar. Line color of the frame around grouped
boxplots.

col.histogram="#808080@": Character scalar. Line color in histogram-type plots.

col.horizon=NA: The line color for the segments in the horizon-type plot. See horizonplot
for details.

col.mountain=NULL: Character scalar. Line color in mountain-type and polygon-type plots,
defaults to the setting of col.

col.sampleNames="white": Character or integer scalar. The color used for the sample
names in heatmap plots.

col=c("#0080ff", "#ffooff", "darkgreen”, "#ff0000", "orange"”, "#00ff00", "brown"):
Character or integer vector. The color used for all line and symbol elements, unless there
is a more specific control defined elsewhere. Unless groups are specified, only the first
color in the vector is usually regarded.

collapse=FALSE: Logical scalar. Collapse overlapping ranges and aggregate the underlying
data.

degree=1: Numeric scalar. Parameter controlling the loess calculation for smooth and mountain-
type plots. See panel. loess for details.

do.out=TRUE: Logical scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

evaluation=50: Numeric scalar. Parameter controlling the loess calculation for smooth and
mountain-type plots. See panel.loess for details.

factor=0.5: Numeric scalar. Factor to control amount of jittering in xy-type plots. See
panel.xyplot for details.

family="symmetric"”: Character scalar. Parameter controlling the loess calculation for smooth
and mountain-type plots. See panel.loess for details.

fill.confint=NULL: Character vector. Fill colors for the confidence intervals for confint-
type plots.

100 settings

fill.histogram=NULL: Character scalar. Fill color in histogram-type plots, defaults to the
setting of fill.

fill.horizon=c("#B41414", "#E@3231", "#F7A99C", "#9FC8DC", "#468CC8", "#0165B3"):
The fill colors for the segments in the horizon-type plot. This should be a vector of length
six, where the first three entries are the colors for positive changes, and the latter three
entries are the colors for negative changes. Defaults to a red-blue color scheme. See
horizonplot for details.

fill.mountain=c("#CCFFFF", "#FFCCFF"): Character vector of length 2. Fill color in mountain-
type and polygon-type plots.

fontface.legend=NULL: Integer or character scalar. The font face for the legend text.

fontfamily.legend=NULL: Integer or character scalar. The font family for the legend text.

fontsize.legend=NULL: Numeric scalar. The pixel size for the legend text.

fontcolor.legend="#808080": Integer or character scalar. The font color for the legend
text.

gradient=c("#F7FBFF", "#DEEBF7", "#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C",
Character vector. The base colors for the gradient plotting type or the heatmap type with
a single group. When plotting heatmaps with more than one group, the col parameter
can be used to control the group color scheme, however the gradient will always be from
white to ’col’ and thus does not offer as much flexibility as this gradient parameter.

groups=NULL: Vector coercable to a factor. Optional sample grouping. See ’Details’ section
in DataTrack for further information.

horizon.origin=0: The baseline relative to which changes are indicated on the horizon-
type plot. See horizonplot for details.

horizon.scale=NULL: The scale for each of the segments in the horizon-type plot. Defaults
to 1/3 of the absolute data range. See horizonplot for details.

jitter.x=FALSE: Logical scalar. Toggle on jittering on the x axis in xy-type plots. See
panel.xyplot for details.

jitter.y=FALSE: Logical scalar. Toggle off jittering on the y axis in xy-type plots. See
panel.xyplot for details.

levels.fos=NULL: Numeric scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

legend=TRUE: Boolean triggering the addition of a legend to the track to indicate groups.
This only has an effect if at least two groups are present.

lineheight.legend=NULL: Numeric scalar. The line height for the legend text.

1ty.baseline=NULL: Character or numeric scalar. Line type of the optional baseline, de-
faults to the setting of 1ty.

1ty.mountain=NULL: Character or numeric scalar. Line type in mountain-type and polygon-
type plots, defaults to the setting of 1ty.

lwd.baseline=NULL: Numeric scalar. Line width of the optional baseline, defaults to the
setting of 1wd.

lwd.mountain=NULL: Numeric scalar. Line width in mountain-type and polygon-type plots,
defaults to the setting of lwd.

min.distance=0: Numeric scalar. The mimimum distance in pixel below which to collapse
ranges.

na.rm=FALSE: Boolean controlling whether to discard all NA values when plotting or to keep
empty spaces for NAs

settings 101

ncolor=100: Integer scalar. The number of colors for the ’gradient’ plotting type

notch.frac=0.5: Numeric scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

notch=FALSE: Logical scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

pch=20: Integer scalar. The type of glyph used for plotting symbols.

separator=0: Numeric scalar. Number of pixels used to separate individual samples in
heatmap- and horizon-type plots.

showColorBar=TRUE: Boolean. Indicate the data range color mapping in the axis for "heatmap’
or ’gradient’ types.

showSampleNames=FALSE: Boolean. Display the names of the individual samples in a heatmap
or a horizon plot.

size=NULL: Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function. By default the size will be set automatically based on the selected plotting type.

span=0.2: Numeric scalar. Parameter controlling the loess calculation for smooth and mountain-
type plots. See panel. loess for details.

stackedBars=TRUE: Logical scalar. When there are several data groups, draw the histogram-
type plots as stacked barplots or grouped side by side.

stats=X[[i]]: Function. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

transformation=NULL: Function. Applied to the data matrix prior to plotting or when call-
ing the score method. The function should accept exactly one input argument and its
return value needs to be a numeric vector which can be coerced back into a data matrix
of identical dimensionality as the input data.

type="p": Character vector. The plot type, one or several in p,1, b, a, a_confint, s, g, r,
S, confint, smooth, histogram, mountain, polygon, h, boxplot, gradient, heatmap,
horizon. See ’Details’ section in DataTrack for more information on the individual
plotting types.

varwidth=FALSE: Logical scalar. Parameter controlling the boxplot appearance. See panel.bwplot
for details.

window=NULL: Numeric or character scalar. Aggregate the rows values of the data matrix to
window equally sized slices on the data range using the method defined in aggregation.
If negative, apply a running window of size windowSize using the same aggregation
method. Alternatively, the special value auto causes the function to determine the op-
timal window size to avoid overplotting, and fixed uses fixed-size windows of size
windowSize.

windowSize=NULL: Numeric scalar. The size of the running window when the value of
window is negative.

ylim=NULL: Numeric vector of length 2. The range of the y-axis scale.

yTicksAt=NULL: Numeric vector. The points at which y-axis tick-marks are to be drawn. By
default, when NULL, tickmark locations are computed.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.
alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent”: Integer or character scalar. The background color of
the content panel.

102

settings

background.title="1lightgray": Integer or character scalar. The background color for the
title panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.border.title="white": Integer or character scalar. The border color for the title pan-
els.

col.frame="lightgray"”: Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when

—_nsn

type=="g" in DataTracks and when display parameter grid==TRUE.

col.line=NULL: Integer or character scalar. Default colors for plot lines. Usually the same
as the global col parameter.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

fill="lightgray": Integer or character scalar. Default fill color setting for all plotting ele-
ments, unless there is a more specific control defined elsewhere.

fontcolor="black": Integer or character scalar. The font color for all text, unless a more
specific definition exists.

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontsize=12: Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lineheight=1: Numeric scalar. The font line height for all text, unless a more specific defi-
nition exists.

1ty.grid="solid"”: Integer or character scalar. Default line type for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

1ty="solid": Numeric scalar. Default line type setting for all plotting elements, unless there
is a more specific control defined elsewhere.

lwd.border.title=1: Integer scalar. The border width for the title panels.
lwd.title=1: Integer scalar. The border width for the title panels

settings

103

nn

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

lwd=1: Numeric scalar. Default line width setting for all plotting elements, unless there is a
more specific control defined elsewhere.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=90: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

rotation=0: The rotation angle for all text unless a more specific definiton exists.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

showTitle=TRUE: Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still
be an empty placeholder in case any of the other tracks include a title. The same holds
true for axes. Note that the the title panel background color could be set to transparent in
order to completely hide it.

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

IdeogramTrack: background.title="transparent”: Character scalar. The background color

for the title panel. Defaults to omit the background.

bevel=0.45: Numeric scalar, between 0 and 1. The level of smoothness for the two ends of
the ideogram.

centromereShape="triangle"”: Character scalar. The shape of the centromere. Only "tri-
angle" or "circle" is accepted. Default to "triangle"

cex.bands=0.7: Numeric scalar. The font expansion factor for the chromosome band iden-
tifier text.

cex=0.8: Numeric scalar. The overall font expansion factor for the chromosome name text.

col="red": Character scalar. The border color used for the highlighting of the currently
displayed genomic region.

col.border.title="transparent"”: Integer or character scalar. The border color for the
title panels.

lwd.border.title=1: Integer scalar. The border width for the title panels.

fill="#FFE3E6": Character scalar. The fill color used for the highlighting of the currently
displayed genomic region.

fontface=1: Character scalar. The font face for the chromosome name text.

fontfamily="sans": Character scalar. The font family for the chromosome name text.

fontcolor="#808080": Character scalar. The font color for the chromosome name text.

fontsize=10: Numeric scalar. The font size for the chromosome name text.

outline=FALSE: Logical scalar. Add borders to the individual chromosome staining bands.

104

settings

showBandId=FALSE: Logical scalar. Show the identifier for the chromosome bands if there is
space for it.

1ty=1: Character or integer scalar. The line type used for the highlighting of the currently
displayed genomic region.

lwd=1: Numeric scalar. The line width used for the highlighting of the currently displayed
genomic region.

showId=TRUE: Logical scalar. Indicate the chromosome name next to the ideogram.

showTitle=FALSE: Logical scalar. Plot a title panel. Defaults to omit the title panel.

size=NULL: Numeric scalar. The relative size of the track. Defaults to automatic size setting.
Can also be overridden in the plotTracks function.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.
alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent"”: Integer or character scalar. The background color of
the content panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

col.line=NULL: Integer or character scalar. Default colors for plot lines. Usually the same
as the global col parameter.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

collapse=TRUE: Boolean controlling whether to collapse the content of the track to accomo-
date the minimum current device resolution. See collapsing for details.

fontface.title=2: Integer or character scalar. The font face for the title panels.
fontfamily.title="sans": Integer or character scalar. The font family for the title panels.
frame=FALSE: Boolean. Draw a frame around the track when plotting.

grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lineheight=1: Numeric scalar. The font line height for all text, unless a more specific defi-
nition exists.

lty.grid="solid": Integer or character scalar. Default line type for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

settings

105

lwd.title=1: Integer scalar. The border width for the title panels

nan

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

min.distance=1: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=90@: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

rotation=0: The rotation angle for all text unless a more specific definiton exists.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

AnnotationTrack: arrowHeadWidth=30: Numeric scalar. The width of the arrow head in pixels

if shape is fixedArrow.

arrowHeadMaxWidth=40: Numeric scalar. The maximum width of the arrow head in pixels
if shape is arrow.

cex.group=0.6: Numeric scalar. The font expansion factor for the group-level annotation.
cex=1: Numeric scalar. The font expansion factor for item identifiers.

col.line="darkgray": Character scalar. The color used for connecting lines between grouped
items. Defaults to a light gray, but if set to NULL the same color as for the first item in the
group is used.

col="transparent”: Character or integer scalar. The border color for all track items.

featureAnnotation=NULL: Character scalar. Add annotation information to the individual
track elements. This can be a value in id, group or feature. Defaults to id. Only works
if showFeatureId is not FALSE.

fill="1lightblue"”: Character or integer scalar. The fill color for untyped items. This is also
used to connect grouped items. See grouping for details.

fontfamily.group="sans": Character scalar. The font family for the group-level annota-
tion.

fontcolor.group="#808080": Character or integer scalar. The font color for the group-
level annotation.

fontcolor.item="white": Character or integer scalar. The font color for item identifiers.
fontface.group=2: Numeric scalar. The font face for the group-level annotation.
fontsize.group=12: Numeric scalar. The font size for the group-level annotation.

groupAnnotation=NULL: Character scalar. Add annotation information as group labels. This
can be a value in id, group or feature. Defaults to group. Only works if showId is not
FALSE.

106

settings

just.group="left": Character scalar. the justification of group labels. Either left, right,
above or below.

lex=1: Numeric scalar. The line expansion factor for all track items. This is also used to
connect grouped items. See grouping for details.

lineheight=1: Numeric scalar. The font line height for item identifiers.

1ty="solid": Character or integer scalar. The line type for all track items. This is also used
to connect grouped items. See grouping for details.

lwd=1: Integer scalar. The line width for all track items. This is also used to connect grouped
items. See grouping for details.

mergeGroups=FALSE: Logical scalar. Merge fully overlapping groups if collapse==TRUE.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.
For feathered bars indicating the strandedness of grouped items this also controls the
height of the arrow feathers.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

rotation=0: Numeric scalar. The degree of text rotation for item identifiers.

rotation.group=0: Numeric scalar. The degree of text rotation for group labels.

rotation.item=0: Numeric scalar. The degree of text rotation for item identifiers.

shape="arrow": Character scalar. The shape in which to display the track items. Currently
only box, arrow, fixedArrow, ellipse, and smallArrow are implemented.

showFeatureId=FALSE: Logical scalar. Control whether to plot the individual track item
identifiers.

showId=FALSE: Logical scalar. Control whether to annotate individual groups.

showOverplotting=FALSE: Logical scalar. Use a color gradient to show the amount of over-
plotting for collapsed items. This implies that collapse==TRUE

size=1: Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function.

Inherited from class StackedTrack:

stackHeight=0.75: Numeric between O and 1. Controls the vertical size and spacing be-
tween stacked elements. The number defines the proportion of the total available space
for the stack that is used to draw the glyphs. E.g., a value of 0.5 means that half of the
available vertical drawing space (for each stacking line) is used for the glyphs, and thus

one quarter of the available space each is used for spacing above and below the glyph.
Defaults to 0.75.

reverseStacking=FALSE: Logical flag. Reverse the y-ordering of stacked items. lL.e., fea-
tures that are plotted on the bottom-most stacks will be moved to the top-most stack and
vice versa.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.

alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent"”: Integer or character scalar. The background color of
the content panel.

background.title="lightgray": Integer or character scalar. The background color for the
title panel.

settings

107

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.border.title="white": Integer or character scalar. The border color for the title pan-
els.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

collapse=TRUE: Boolean controlling whether to collapse the content of the track to accomo-
date the minimum current device resolution. See collapsing for details.

fontcolor="black": Integer or character scalar. The font color for all text, unless a more
specific definition exists.

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontsize=12: Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.

grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lty.grid="solid": Integer or character scalar. Default line type for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

lwd.border.title=1: Integer scalar. The border width for the title panels.

lwd.title=1: Integer scalar. The border width for the title panels

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

min.distance=1: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=90: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

108 settings

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

showTitle=TRUE: Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still
be an empty placeholder in case any of the other tracks include a title. The same holds
true for axes. Note that the the title panel background color could be set to transparent in
order to completely hide it.

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

GeneRegionTrack: arrowHeadWidth=10: Numeric scalar. The width of the arrow head in pixels

if shape is fixedArrow.

arrowHeadMaxWidth=20: Numeric scalar. The maximum width of the arrow head in pixels
if shape is arrow.

col=NULL: Character or integer scalar. The border color for all track items. Defaults to using
the same color as in fill, also taking into account different track features.

collapseTranscripts=FALSE: Logical or character scalar. Can be one in gene, longest,
shortest or meta. Merge all transcripts of the same gene into one single gene model.
In the case of gene (or TRUE), this will only keep the start location of the first exon
and the end location of the last exon from all transcripts of the gene. For shortest
and longest, only the longest or shortest transcript model is retained. For meta, a meta-
transcript containing the union of all exons is formed (essentially identical to the operation
reduce (geneModel)).

exonAnnotation=NULL: Character scalar. Add annotation information to the individual exon
models. This can be a value in symbol, gene, transcript, exon or feature. Defaults
to exon. Only works if showExonId is not FALSE.

fill="orange": Character or integer scalar. The fill color for untyped items. This is also
used to connect grouped items. See grouping for details.

min.distance=0: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details. Note that a value larger
than 0 may lead to UTR regions being merged to CDS regions, which in most cases is not
particularly useful.

shape=c("smallArrow”, "box"): Character scalar. The shape in which to display the track
items. Currently only box, arrow, ellipse, and smallArrow are implemented.

showExonId=NULL: Logical scalar. Control whether to plot the individual exon identifiers.

thinBoxFeature=c("utr"”, "ncRNA", "utr3"”, "utr5”, "3UTR", "5UTR"”, "miRNA", "1incRNA", "three_prime_L
Character vector. A listing of feature types that should be drawn with thin boxes. Typi-
cally those are non-coding elements.

transcriptAnnotation=NULL: Character scalar. Add annotation information as transcript
labels. This can be a value in symbol, gene, transcript, exon or feature. Defaults to
symbol. Only works if showId is not FALSE.

Inherited from class AnnotationTrack:

cex.group=0.6: Numeric scalar. The font expansion factor for the group-level annotation.
cex=1: Numeric scalar. The font expansion factor for item identifiers.

col.line="darkgray": Character scalar. The color used for connecting lines between grouped
items. Defaults to a light gray, but if set to NULL the same color as for the first item in the
group is used.

settings

109

featureAnnotation=NULL: Character scalar. Add annotation information to the individual
track elements. This can be a value in id, group or feature. Defaults to id. Only works
if showFeatureId is not FALSE.

fontfamily.group="sans": Character scalar. The font family for the group-level annota-
tion.

fontcolor.group="#808080": Character or integer scalar. The font color for the group-
level annotation.

fontcolor.item="white": Character or integer scalar. The font color for item identifiers.

fontface.group=2: Numeric scalar. The font face for the group-level annotation.

fontsize.group=12: Numeric scalar. The font size for the group-level annotation.

groupAnnotation=NULL: Character scalar. Add annotation information as group labels. This
can be a value in id, group or feature. Defaults to group. Only works if showId is not
FALSE.

just.group="1left": Character scalar. the justification of group labels. Either left, right,
above or below.

lex=1: Numeric scalar. The line expansion factor for all track items. This is also used to
connect grouped items. See grouping for details.

lineheight=1: Numeric scalar. The font line height for item identifiers.

1ty="solid": Character or integer scalar. The line type for all track items. This is also used
to connect grouped items. See grouping for details.

lwd=1: Integer scalar. The line width for all track items. This is also used to connect grouped
items. See grouping for details.

mergeGroups=FALSE: Logical scalar. Merge fully overlapping groups if collapse==TRUE.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.
For feathered bars indicating the strandedness of grouped items this also controls the
height of the arrow feathers.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

rotation=0: Numeric scalar. The degree of text rotation for item identifiers.

rotation.group=0: Numeric scalar. The degree of text rotation for group labels.

rotation.item=0: Numeric scalar. The degree of text rotation for item identifiers.

showFeatureId=FALSE: Logical scalar. Control whether to plot the individual track item
identifiers.

showId=FALSE: Logical scalar. Control whether to annotate individual groups.

showOverplotting=FALSE: Logical scalar. Use a color gradient to show the amount of over-
plotting for collapsed items. This implies that collapse==TRUE

size=1: Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function.

Inherited from class StackedTrack:

stackHeight=0.75: Numeric between O and 1. Controls the vertical size and spacing be-
tween stacked elements. The number defines the proportion of the total available space
for the stack that is used to draw the glyphs. E.g., a value of 0.5 means that half of the
available vertical drawing space (for each stacking line) is used for the glyphs, and thus

one quarter of the available space each is used for spacing above and below the glyph.
Defaults to 0.75.

110

settings

reverseStacking=FALSE: Logical flag. Reverse the y-ordering of stacked items. lL.e., fea-
tures that are plotted on the bottom-most stacks will be moved to the top-most stack and
vice versa.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.
alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent”: Integer or character scalar. The background color of
the content panel.

background.title="lightgray": Integer or character scalar. The background color for the
title panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.border.title="white": Integer or character scalar. The border color for the title pan-
els.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

collapse=TRUE: Boolean controlling whether to collapse the content of the track to accomo-
date the minimum current device resolution. See collapsing for details.

fontcolor="black": Integer or character scalar. The font color for all text, unless a more
specific definition exists.

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontsize=12: Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.
grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lty.grid="solid": Integer or character scalar. Default line type for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

settings

111

lwd.border.title=1: Integer scalar. The border width for the title panels.

lwd.title=1: Integer scalar. The border width for the title panels

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=90@: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

showTitle=TRUE: Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still
be an empty placeholder in case any of the other tracks include a title. The same holds
true for axes. Note that the the title panel background color could be set to transparent in
order to completely hide it.

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

BiomartGeneRegionTrack: C_segment="burlywood4": Character or integer scalar. Fill color

for annotation objects of type ’C_segment’.

D_segment="1lightblue”: Character or integer scalar. Fill color for annotation objects of
type *C_segment’.

J_segment="dodgerblue2”: Character or integer scalar. Fill color for annotation objects of
type *C_segment’.

Mt_rRNA="yellow": Character or integer scalar. Fill color for annotation objects of type
"Mt_rRNA’.

Mt_tRNA="darkgoldenrod”: Character or integer scalar. Fill color for annotation objects of
type "Mt_tRNA’.

Mt_tRNA_pseudogene="darkgoldenrod1”: Character or integer scalar. Fill color for anno-
tation objects of type "Mt_tRNA_pseudogene’.

V_segment="aquamarine”: Character or integer scalar. Fill color for annotation objects of
type *V_segment’.

miRNA="cornflowerblue”: Character or integer scalar. Fill color for annotation objects of
type 'L_segment’.

miRNA_pseudogene="cornsilk"”: Character or integer scalar. Fill color for annotation ob-
jects of type 'miRNA_pseudogene’.

misc_RNA="cornsilk3": Character or integer scalar. Fill color for annotation objects of type
"misc_RNA’.

misc_RNA_pseudogene="cornsilk4": Character or integer scalar. Fill color for annotation
objects of type *'misc_RNA_pseudogene’.

protein_coding="#FFD58A": Character or integer scalar. Fill color for annotation objects
of type ’protein_coding’.

pseudogene="brown1": Character or integer scalar. Fill color for annotation objects of type
’pseudogene’.

rRNA="darkolivegreen1": Character or integer scalar. Fill color for annotation objects of
type 'TRNA’.

112 settings

rRNA_pseudogene="darkolivegreen”: Character or integer scalar. Fill color for annotation
objects of type 'TRNA_pseudogene’.

retrotransposed="blueviolet”: Character or integer scalar. Fill color for annotation ob-
jects of type ‘retrotransposed’.

scRNA="gold4": Character or integer scalar. Fill color for annotation objects of type 'scRNA’.

scRNA_pseudogene="darkorange2": Character or integer scalar. Fill color for annotation
objects of type ’scRNA_pseudogene’.

snRNA="coral": Character or integer scalar. Fill color for annotation objects of type ’snRNA’.

snRNA_pseudogene="coral3": Character or integer scalar. Fill color for annotation objects
of type ’snRNA_pseudogene’.

snoRNA="cyan": Character or integer scalar. Fill color for annotation objects of type ’snoRNA’.

snoRNA_pseudogene="cyan2": Character or integer scalar. Fill color for annotation objects
of type ’snoRNA_pseudogene’.

tRNA_pseudogene="antiquewhite3": Character or integer scalar. Fill color for annotation
objects of type "tRNA_pseudogene’.

utr3="#FFD58A": Character or integer scalar. Fill color for annotation objects of type ’utr3’.
utr5="#FFD58A": Character or integer scalar. Fill color for annotation objects of type "utr5’.

verbose=FALSE: Logical scalar. Report data loading events from Bioamart or retrieval from
cache.

Inherited from class GeneRegionTrack:

arrowHeadWidth=10: Numeric scalar. The width of the arrow head in pixels if shape is
fixedArrow.

arrowHeadMaxWidth=20: Numeric scalar. The maximum width of the arrow head in pixels
if shape is arrow.

col=NULL: Character or integer scalar. The border color for all track items. Defaults to using
the same color as in fill, also taking into account different track features.

collapseTranscripts=FALSE: Logical or character scalar. Can be one in gene, longest,
shortest or meta. Merge all transcripts of the same gene into one single gene model.
In the case of gene (or TRUE), this will only keep the start location of the first exon
and the end location of the last exon from all transcripts of the gene. For shortest
and longest, only the longest or shortest transcript model is retained. For meta, a meta-
transcript containing the union of all exons is formed (essentially identical to the operation
reduce (geneModel)).

exonAnnotation=NULL: Character scalar. Add annotation information to the individual exon
models. This can be a value in symbol, gene, transcript, exon or feature. Defaults
to exon. Only works if showExonId is not FALSE.

fill="orange": Character or integer scalar. The fill color for untyped items. This is also
used to connect grouped items. See grouping for details.

min.distance=0: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details. Note that a value larger
than 0 may lead to UTR regions being merged to CDS regions, which in most cases is not
particularly useful.

shape=c("smallArrow”, "box"): Character scalar. The shape in which to display the track
items. Currently only box, arrow, ellipse, and smallArrow are implemented.

showExonId=NULL: Logical scalar. Control whether to plot the individual exon identifiers.

settings 113

thinBoxFeature=c("utr"”, "ncRNA", "utr3"”, "utr5”, "3UTR", "5UTR", "miRNA", "1incRNA", "three_prime_L
Character vector. A listing of feature types that should be drawn with thin boxes. Typi-
cally those are non-coding elements.

transcriptAnnotation=NULL: Character scalar. Add annotation information as transcript
labels. This can be a value in symbol, gene, transcript, exon or feature. Defaults to
symbol. Only works if showId is not FALSE.

Inherited from class AnnotationTrack:

cex.group=0.6: Numeric scalar. The font expansion factor for the group-level annotation.
cex=1: Numeric scalar. The font expansion factor for item identifiers.

col.line="darkgray": Character scalar. The color used for connecting lines between grouped
items. Defaults to a light gray, but if set to NULL the same color as for the first item in the
group is used.

featureAnnotation=NULL: Character scalar. Add annotation information to the individual
track elements. This can be a value in id, group or feature. Defaults to id. Only works
if showFeatureld is not FALSE.

fontfamily.group="sans": Character scalar. The font family for the group-level annota-
tion.

fontcolor.group="#808080": Character or integer scalar. The font color for the group-
level annotation.

fontcolor.item="white": Character or integer scalar. The font color for item identifiers.
fontface.group=2: Numeric scalar. The font face for the group-level annotation.
fontsize.group=12: Numeric scalar. The font size for the group-level annotation.

groupAnnotation=NULL: Character scalar. Add annotation information as group labels. This
can be a value in id, group or feature. Defaults to group. Only works if showId is not
FALSE.

just.group="left": Character scalar. the justification of group labels. Either left, right,
above or below.

lex=1: Numeric scalar. The line expansion factor for all track items. This is also used to
connect grouped items. See grouping for details.

lineheight=1: Numeric scalar. The font line height for item identifiers.

1ty="solid": Character or integer scalar. The line type for all track items. This is also used
to connect grouped items. See grouping for details.

lwd=1: Integer scalar. The line width for all track items. This is also used to connect grouped
items. See grouping for details.

mergeGroups=FALSE: Logical scalar. Merge fully overlapping groups if collapse==TRUE.

min.height=3: Numeric scalar. The minimum range height in pixels to display. All ranges
are expanded to this size in order to avoid rendering issues. See collapsing for details.
For feathered bars indicating the strandedness of grouped items this also controls the
height of the arrow feathers.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

rotation=0: Numeric scalar. The degree of text rotation for item identifiers.
rotation.group=0: Numeric scalar. The degree of text rotation for group labels.
rotation.item=0: Numeric scalar. The degree of text rotation for item identifiers.

114

settings

showFeatureId=FALSE: Logical scalar. Control whether to plot the individual track item
identifiers.

showId=FALSE: Logical scalar. Control whether to annotate individual groups.

showOverplotting=FALSE: Logical scalar. Use a color gradient to show the amount of over-
plotting for collapsed items. This implies that collapse==TRUE

size=1: Numeric scalar. The relative size of the track. Can be overridden in the plotTracks
function.

Inherited from class StackedTrack:

stackHeight=0.75: Numeric between O and 1. Controls the vertical size and spacing be-
tween stacked elements. The number defines the proportion of the total available space
for the stack that is used to draw the glyphs. E.g., a value of 0.5 means that half of the
available vertical drawing space (for each stacking line) is used for the glyphs, and thus
one quarter of the available space each is used for spacing above and below the glyph.
Defaults to 0.75.

reverseStacking=FALSE: Logical flag. Reverse the y-ordering of stacked items. IL.e., fea-
tures that are plotted on the bottom-most stacks will be moved to the top-most stack and
vice versa.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.

alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent"”: Integer or character scalar. The background color of
the content panel.

background.title="lightgray": Integer or character scalar. The background color for the
title panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.border.title="white": Integer or character scalar. The border color for the title pan-
els.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

collapse=TRUE: Boolean controlling whether to collapse the content of the track to accomo-
date the minimum current device resolution. See collapsing for details.

fontcolor="black": Integer or character scalar. The font color for all text, unless a more
specific definition exists.

settings

115

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontsize=12: Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.

grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lty.grid="solid": Integer or character scalar. Default line type for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

lwd.border.title=1: Integer scalar. The border width for the title panels.

lwd.title=1: Integer scalar. The border width for the title panels

nn

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=9@: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

showTitle=TRUE: Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still
be an empty placeholder in case any of the other tracks include a title. The same holds
true for axes. Note that the the title panel background color could be set to transparent in
order to completely hide it.

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

AlignmentsTrack: alpha.reads=0.5: Numeric scalar between 0 and 1. The transparency of the

individual read icons. Can be used to indicate overlapping regions in read pairs. Only on
supported devices.

alpha.mismatch=1: Numeric scalar between 0 and 1. The transparency of the mismatch
base information.

cex=0.7: Numeric Scalar. The global character expansion factor.

cex.mismatch=NULL: Numeric Scalar. The character expansion factor for the mismatch base
letters.

col.coverage=NULL: Integer or character scalar. The line color for the coverage profile.

col.gap="#808080": Integer or character scalar. The color of the line that is bridging the
gap regions in gapped alignments.

col.mates="#EQEQEQ": Integer or character scalar. The color of the line that is connecting
two paired reads.

116

settings

col.deletion="#000000": Integer or character scalar. The color of the line that is bridging
the deleted regions in alignments.

col.insertion="#984EA3": Integer or character scalar. The color of the line that highlight-
ing insertions in alignments.

col.mismatch="#808080": Integer or character scalar. The box color around mismatch
bases.

col.reads=NULL: Integer or character scalar. The box color around reads.
col.sashimi=NULL: Integer or character scalar. The line color for sashimi plots.
c0l="#808080": Integer or character scalar. The default color of all line elements.

collapse=FALSE: Logical scalar. Do not perform any collapsing of overlapping elements.
Currently not supported.

coverageHeight=0.1: Numeric scalar. The height of the coverage region of the track. Can
either be a value between 0 and 1 in which case it is taken as a relative height, or a positive
value greater 1 in which case it is interpreted as pixels.

fill.coverage=NULL: Integer or character scalar. The fill color for the coverage profile.
fill.reads=NULL: Integer or character scalar. The fill color for the read icons.
fill="#BABABA": Integer or character scalar. The default fill color of all plot elements.
fontface.mismatch=2: Integer scalar. The font face for mismatch bases.
1ty.coverage=NULL: Integer or character scalar. The line type of the coverage profile.

1ty.gap=NULL: Integer or character scalar. The type of the line that is bridging the gap re-
gions in gapped alignments.

lty.mates=NULL: Integer or character scalar. The type of the line that is connecting two
paired reads.

lty.deletion=NULL: Integer or character scalar. The type of the line that is bridging the
deleted regions in alignments.

lty.insertion=NULL: Integer or character scalar. The type of the line that highlighting in-
sertions in alignments.

1ty.mismatch=NULL: Integer or character scalar. The box line type around mismatch bases.
1ty.reads=NULL: Integer or character scalar. The box line type around mismatch reads.
1ty=1: Integer or character scalar. The default type of all line elements.
lwd.coverage=NULL: Integer or character scalar. The line width of the coverage profile.

lwd.gap=NULL: Integer scalar. The width of the line that is bridging the gap regions in gapped
alignments.

lwd.mates=NULL: Integer scalar. The width of the line that is connecting two paired reads.

lwd.deletion=NULL: Integer scalar. The width of the line that is bridging the deleted regions
in alignments.

lwd.insertion=NULL: Integer scalar. The width of the line that highlighting insertions in
alignments.

lwd.mismatch=NULL: Integer scalar. The box line width around mismatch bases.
lwd.reads=NULL: Integer scalar. The box line width around reads.
lwd.sashimiMax=10@: Integer scalar. The maximal width of the line in sashimi plots.
lwd=1: Integer scalar. The default width of all line elements.

max.height=10: Integer scalar. The maximum height of an individual read in pixels. Can be
used in combination with min.height to control the read and stacking appearance.

settings 117

min.height=5: Integer scalar. The minimum height of an individual read in pixels. Can be
used in combination with max.height to control the read and stacking appearance.

minCoverageHeight=50: Integer scalar. The minimum height of the coverage section. Usel-
ful in combination with a relative setting of coverageHeight.

minSashimiHeight=50: Integer scalar. The minimum height of the sashimi section. Uselful
in combination with a relative setting of sashimiHeight.

noLetters=FALSE: Logical scalar. Always plot colored boxes for mismatch bases regardles
of the available space.

sashimiFilter=NULL: GRanges object. Only junctions which overlap equally with sashimiFilter
GRanges are shown. Default NULL, no filtering.

sashimiFilterTolerance=0: Integer scalar. Only used in combination with sashimiFilter.
It allows to include junctions whose starts/ends are within specified distance from sashimiFilter
GRanges. This is useful for cases where the aligner did not place the junction reads pre-
cisely. Default OL , no tolerance.

sashimiHeight=0.1: Integer scalar. The height of the sashimi part of the track. Can either
be a value between 0 and 1 in which case it is taken as a relative height, or a positive
value greater 1 in which case it is interpreted as pixels.

sashimiScore=1: Integer scalar. The minimum number of reads supporting the junction.

sashimiStrand="x": Integer scalar. Only reads which have the specified strand are consid-
ered to count the junctions.

sashimiTransformation=NULL: Function. Applied to the junction score vector prior to plot-
ting. The function should accept exactly one input argument and its return value needs to
be a numeric vector of identical length as the input data.

showIndels=FALSE: Logical scalar. Consider insertions and deletions in coverage and pile-
up. Default is FALSE. If set to TRUE the deletions defined in CIGAR string are not con-
sidered in coverage plot. The deletions are displayed as bridging lines in pile-up track.
Insertions are shown as vertical bars.

showMismatches=TRUE: Logical scalar. Add mismatch information, either as individual base
letters or using color coded bars. This implies that the reference sequence has been pro-
vided, either to the class constructor or as part of the track list.

size=NULL: Numeric scalar. The size of the track. Defaults to automatic sizing.

transformation=NULL: Function. Applied to the coverage vector prior to plotting. The
function should accept exactly one input argument and its return value needs to be a
numeric Rle of identical length as the input data.

type=c("coverage"”, "pileup”): Character vactor. The type of information to plot. For
coverage a coverage plot, potentially augmented by base mismatch information, for
sashimi a sashimi plot, showing the juctions, and for pileup the pileups of the indi-
vidual reads. These three can be combined.

Inherited from class StackedTrack:

stackHeight=0.75: Numeric between O and 1. Controls the vertical size and spacing be-
tween stacked elements. The number defines the proportion of the total available space
for the stack that is used to draw the glyphs. E.g., a value of 0.5 means that half of the
available vertical drawing space (for each stacking line) is used for the glyphs, and thus
one quarter of the available space each is used for spacing above and below the glyph.
Defaults to 0.75.

118

settings

reverseStacking=FALSE: Logical flag. Reverse the y-ordering of stacked items. lL.e., fea-
tures that are plotted on the bottom-most stacks will be moved to the top-most stack and
vice versa.

Inherited from class GdObject:

alpha=1: Numeric scalar. The transparency for all track items.
alpha.title=NULL: Numeric scalar. The transparency for the title panel.

background.panel="transparent”: Integer or character scalar. The background color of
the content panel.

background.title="lightgray": Integer or character scalar. The background color for the
title panel.

background.legend="transparent”: Integer or character scalar. The background color for
the legend.

cex.axis=NULL: Numeric scalar. The expansion factor for the axis annotation. Defaults to
NULL, in which case it is automatically determined based on the available space.

cex.title=NULL: Numeric scalar. The expansion factor for the title panel. This effects the
fontsize of both the title and the axis, if any. Defaults to NULL, which means that the text
size is automatically adjusted to the available space.

col.axis="white": Integer or character scalar. The font and line color for the y axis, if any.

col.border.title="white": Integer or character scalar. The border color for the title pan-
els.

col.frame="lightgray": Integer or character scalar. The line color used for the panel
frame, if frame==TRUE

col.grid="#808080": Integer or character scalar. Default line color for grid lines, both when

nn

type=="g" in DataTracks and when display parameter grid==TRUE.

col.line=NULL: Integer or character scalar. Default colors for plot lines. Usually the same
as the global col parameter.

col.symbol=NULL: Integer or character scalar. Default colors for plot symbols. Usually the
same as the global col parameter.

col.title="white": Integer or character scalar. The border color for the title panels

fontcolor="black": Integer or character scalar. The font color for all text, unless a more
specific definition exists.

fontface.title=2: Integer or character scalar. The font face for the title panels.

fontface=1: Integer or character scalar. The font face for all text, unless a more specific
definition exists.

fontfamily.title="sans": Integer or character scalar. The font family for the title panels.

fontfamily="sans": Integer or character scalar. The font family for all text, unless a more
specific definition exists.

fontsize=12: Numeric scalar. The font size for all text, unless a more specific definition
exists.

frame=FALSE: Boolean. Draw a frame around the track when plotting.

grid=FALSE: Boolean, switching on/off the plotting of a grid.

h=-1: Integer scalar. Parameter controlling the number of horizontal grid lines, see panel.grid
for details.

lineheight=1: Numeric scalar. The font line height for all text, unless a more specific defi-
nition exists.

settings 119

lty.grid="solid"”: Integer or character scalar. Default line type for grid lines, both when
type=="g" in DataTracks and when display parameter grid==TRUE.

lwd.border.title=1: Integer scalar. The border width for the title panels.

lwd. title=1: Integer scalar. The border width for the title panels

lwd.grid=1: Numeric scalar. Default line width for grid lines, both when type=="g" in
DataTracks and when display parameter grid==TRUE.

min.distance=1: Numeric scalar. The minimum pixel distance before collapsing range
items, only if collapse==TRUE. See collapsing for details.

min.width=1: Numeric scalar. The minimum range width in pixels to display. All ranges are
expanded to this size in order to avoid rendering issues. See collapsing for details.

reverseStrand=FALSE: Logical scalar. Set up the plotting coordinates in 3’ -> 5’ direction
if TRUE. This will effectively mirror the plot on the vertical axis.

rotation.title=9@: The rotation angle for the text in the title panel. Even though this can
be adjusted, the automatic resizing of the title panel will currently not work, so use at
own risk.

rotation=0: The rotation angle for all text unless a more specific definiton exists.

showAxis=TRUE: Boolean controlling whether to plot a y axis (only applies to track types
where axes are implemented).

showTitle=TRUE: Boolean controlling whether to plot a title panel. Although this can be set
individually for each track, in multi-track plots as created by plotTracks there will still
be an empty placeholder in case any of the other tracks include a title. The same holds
true for axes. Note that the the title panel background color could be set to transparent in
order to completely hide it.

v=-1: Integer scalar. Parameter controlling the number of vertical grid lines, see panel.grid
for details.

Author(s)

Florian Hahne

See Also

AnnotationTrack
DataTrack

DisplayPars
GdObject

availableDisplayPars

collapsing

grouping

horizonplot

panel.bwplot

panel.grid

panel.loess

panel.xyplot

plotTracks

120 StackedTrack-class

Examples

Which scheme is used?
getOption("Gviz.scheme")

Change default settings for GeneRegionTrack

scheme <- getScheme()

scheme$GeneRegionTrack$fill <- "salmon”
scheme$GeneRegionTrack$col <- NULL
scheme$GeneRegionTrack$transcriptAnnotation <- "transcript”

replace default scheme with myScheme
addScheme (scheme, "myScheme")
options(Gviz.scheme = "myScheme")
getOption("Gviz.scheme")

data(geneModels)
grtrack <- GeneRegionTrack(geneModels, genome = "hg19", chromosome = "chr7", name = "Gene Model")
plotTracks(grtrack)
StackedTrack-class StackedTrack class and methods
Description

The virtual parent class for all track types in the Gviz package which contain potentially overlapping
annotation items that have to be stacked when plotted.

Usage

S4 method for signature 'StackedTrack'
initialize(.Object, stacking, ...)

S4 method for signature 'StackedTrack'
stacking(GdObject)

S4 replacement method for signature 'StackedTrack,character'
stacking(GdObject) <- value

S4 method for signature 'StackedTrack'
stacks(GdObject)

S4 method for signature 'StackedTrack'
setStacks(GdObject, ...)

S4 method for signature 'StackedTrack'
consolidateTrack(GdObject, ...)

S4 method for signature 'StackedTrack,ANY,ANY,ANY'

StackedTrack-class 121

x[1i,

j, ..., drop = TRUE]

S4 method for signature 'StackedTrack'
subset(x, from = NULL, to = NULL, sort = FALSE, stacks = FALSE, ...)

S4 method for signature 'StackedTrack'

drawGD(GdObject, ...)
Arguments

.Object .Object

stacking stacking

Additional arguments.

GdObject Object of GdObject-class.
value Value to be set.
X A valid track object class name, or the object itself, in which case the class is

i

derived directly from it.

Numeric scalar, index to subset.

j Numeric scalar, index to subset. Ignored.

drop logical, indicating if levels that do not occur should be dropped (if f is a fac-
tor).

from, to Numeric scalar, giving the range of genomic coordinates to limit the tracks in.
Note that to cannot be larger than from.

sort logical.

stacks logical. Set if stacking should be preserved.

Value

A virtual Class: No objects may be created from it.

Functions

initialize(StackedTrack): Initialize.
stacking(StackedTrack): return the current stacking type.

stacking(GdObject = StackedTrack) <- value: set the object’s stacking type to one in
c(hide, dense, squish, pack,full).

stacks(StackedTrack): return the stack indices for each track item.

setStacks(StackedTrack): recompute the stacks based on the available space and on the
object’s track items and stacking settings.

consolidateTrack(StackedTrack): Consolidate. a display parameter)

x[1i: subset the items in the StackedTrack object. This is essentially similar to subsetting of
the GRanges object in the range slot. For most applications, the subset method may be more
appropriate.

subset (StackedTrack): subset a StackedTrack by coordinates and sort if necessary.

122

StackedTrack-class

* drawGD(StackedTrack): plot the object to a graphics device. The return value of this method
is the input object, potentially updated during the plotting operation. Internally, there are two
modes in which the method can be called. Either in *prepare’ mode, in which case no plotting
is done but the stacking information is updated based on the available space, or in *plotting’
mode, in which case the actual graphical output is created. Note that the method for this
particular subclass is usually called through inheritance and not particularly useful on its own.

Slots

dp Object of DisplayPars-class, the display settings controlling the look and feel of a track. See
settings for details on setting graphical parameters for tracks.

name Object of class character, a human-readable name for the track that will be used in the
track’s annotation panel if necessary.

imageMap Object of ImageMap-class, containing optional information for an HTML image map.
This will be created by the drawGD methods when the track is plotted to a device and is usually
not set by the user.

range Object of class GRanges, the genomic ranges of the track items as well as additional annota-
tion information in its elementMetaData slot. Please not that the slot is actually implemented
as a class union between GRanges and IRanges to increase efficiency, for instance for Data-
Track objects. This usually does not concern the user.

chromosome Object of class character, the chromosome on which the track is defined. There can
only be a single chromosome for one track. For certain subclasses, the space of allowed chro-
mosome names is limited (e.g., only those chromosomes that exist for a particular genome).
Throughout the package, chromosome name have to be entered either as a single integer scalar
or as a character scalar of the form chrXYZ, where XYZ may be an arbitrary character string.

genome Object of class character, the genome for which the track is defined. For most sub-classes
this has to be valid UCSC genome identifier, however this may not always be formally checked
upon object instantiation.

stacking Object of class character, the stacking type of overlapping items on the final plot.
One in c(hide, dense, squish, pack, full). Currently, only hide (do not show the track
items at all), squish (make best use of the available space) and dense (no stacking at all) are
implemented.

stacks Object of class numeric, holding the stack indices for each track item. This slot is usually
populated by calling the setStacks method upon plotting, since the correct stacking is a
function of the available plotting space.

Author(s)

Florian Hahne

See Also

DisplayPars
GdObject
GRanges
HighlightTrack

UcscTrack 123

ImageMap
IRanges
RangeTrack
DataTrack
collapsing
grouping
panel.grid
plotTracks

settings

Examples

This is a reference class therefore we show below
an example from AnnotationTrack

An empty object
AnnotationTrack()

Construct from individual arguments

st <- c(2000000, 2070000, 2100000, 2160000)

ed <- c(2050000, 2130000, 2150000, 2170000)

str <- c("=", "+", =M,

gr <- c("Group1”, "Group2", "Groupl1”, "Group3")

annTrack <- AnnotationTrack(
start = st, end = ed, strand = str, chromosome = 7,

genome = "hg19", feature = "test", group = gr,
id = paste(”annTrack item”, 1:4),
name = "generic annotation”, stacking = "squish”

Plotting
plotTracks(annTrack)

Stacking

stacking(annTrack)
stacking(annTrack) <- "dense"
plotTracks(annTrack)
UcscTrack Meta-constructor for Gviz tracks fetched directly from the various

UCSC data sources.

124 UcscTrack

Description

The UCSC data base provides a wealth of annotation information. This function can be used to
access UCSC, to retrieve the data available there and to return it as an annotation track object
amenable to plotting with plotTracks.

Usage

UcscTrack(
track,
table = NULL,
trackType = c("AnnotationTrack”, "GeneRegionTrack”, "DataTrack”, "GenomeAxisTrack"),
genome,
chromosome,
name = NULL,
from,
to,

Arguments

track Character, the name of the track to fetch from UCSC. To find out about available
tracks please consult the online table browser at http://genome.ucsc.edu/
cgi-bin/hgTables?command=start.

table Character, the name of the table to fetch from UCSC, or NULL, in which case
the default selection of tables is used. To find out about available tables for a
given track please consult the online table browser at http://genome.ucsc.
edu/cgi-bin/hgTables?command=start.

trackType Character, one in c("AnnotationTrack"”, "GeneRegionTrack"”, "DataTrack”,
"GenomeAxisTrack"”). The function will try to coerce the downloaded data in
an object of this class. See below for details.

genome Character, a valid USCS genome identifier for which to fetch the data.
chromosome Character, a valid USCS character identifier for which to fetch the data.
name Character, the name to use for the resulting track object.

from, to A range of genomic locations for which to fetch data.

All additional named arguments are expected to be either display parameters for
the resulting objects, or character scalars of column names in the downloaded
UCSC data tables that are matched by name to available arguments in the respec-
tive constructor functions as defined by the trackType argument. See Details
section for more information.

Details
clearSessionCache is can be called to remove all cached items from the session which are gener-
ated when connecting with the UCSC data base.

The data stored at the UCSC data bases can be of different formats: gene or transcript model data,
simple annotation features like CpG Island locations or SNPs, or numeric data like conservation

http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
http://genome.ucsc.edu/cgi-bin/hgTables?command=start

UcscTrack 125

or mapability. This function presents a unified API to download all kinds of data and to map
them back to one of the annotation track objects defined in this package. The type of object to
hold the data has to be given in the trackType argument, and subsequently the function passes all
data on to the respective object constructor. All additional named arguments are considered to be
relevant for the constructor of choice, and single character scalars are replaced by the respective
data columns in the downloaded UCSC tables if available. For instance, assuming the table for
track *foo’ contains the columns ’id’, ’type’, *fromLoc’ and "toLoc’, giving the feature identifier,
type, start end end location. In order to create an AnnotationTrack object from that data, we
have to pass the additional named arguments id="1id", feature="type", start="fromLoc” and
codeend="toLoc" to the UcscTrack function. The complete function call could look like this:

UcscTrack(track="foo", genome="mm9", chromosome=3, from=1000,t0=10000, trackType="AnnotationTrack",
id="id", feature="type",start="from", end="to")

To reduce the bandwidth, some caching of the UCSC connection takes place. In order to remove
these cached session items, call clearSessionCache.

The Gviz.ucscUrl option controls which URL is being used to connect to UCSC. For instance, one
could switch to the European UCSC mirror by calling options(Gviz.ucscUrl="http://genome-euro.ucsc.edu/cgi-bir

Value

An annotation track object as determined by trackType.

Author(s)

Florian Hahne

See Also

AnnotationTrack
DataTrack

GeneRegionTrack
GenomeAxisTrack

plotTracks

Examples

Not run:

Create UcscTrack for Known Genes from mm9 genome
from <- 65921878

to <- 65980988

knownGenes <- UcscTrack(

genome = "mm9", chromosome = "chrX", track = "knownGene",
from = from, to = to, trackType = "GeneRegionTrack”,
rstarts = "exonStarts”, rends = "exonEnds", gene = "name”,
symbol = "name”, transcript = "name”, strand = "strand”,

fill = "#8282d2", name = "UCSC Genes"

126 UcscTrack

End(Not run)

if the UCSC is not accessible load prepared object
data(ucscItems)

knownGenes is essentially GeneRegionTrack
knownGenes

plotting
plotTracks(knownGenes, chromosome = "chrX", from = 65920688, to = 65960068)

Index

+ datasets
datasets, 31
+ internal
AnnotationTrack-class, 10
DataTrack-class, 31
GdObject-class, 44
GenomeAxisTrack-class, 62
ImageMap-class, 74
OverlayTrack-class, 77
.DisplayPars (DisplayPars-class), 39
[,DataTrack,ANY,ANY,ANY-method
(DataTrack-class), 31
[,GenomeAxisTrack,ANY,ANY, ANY-method
(GenomeAxisTrack-class), 62
[,IdeogramTrack,ANY,ANY, ANY-method
(IdeogramTrack-class), 71
[,IdeogramTrack,ANY,ANY-method
(IdeogramTrack-class), 71
[,IdeogramTrack-method
(IdeogramTrack-class), 71
[,RangeTrack,ANY,ANY, ANY-method
(RangeTrack-class), 83
[,StackedTrack, ANY,ANY, ANY-method
(StackedTrack-class), 120

addScheme (settings), 95
AlignmentsTrack
(AlignmentsTrack-class), 3
AlignmentsTrack-class, 3
AnnotationTrack, 28, 66, 67, 95, 119, 125
AnnotationTrack
(AnnotationTrack-class), 10
AnnotationTrack-class, 10
as.list,DisplayPars-method
(DisplayPars-class), 39
as.list,InferredDisplayPars-method
(DisplayPars-class), 39
availableDefaultMapping, 21
availableDisplayPars, 95, 119

127

availableDisplayPars
(DisplayPars-class), 39
axTrack (datasets), 31

BiomartGeneRegionTrack, 66, 67
BiomartGeneRegionTrack

(BiomartGeneRegionTrack-class),

23
BiomartGeneRegionTrack-class, 23
biomTrack (datasets), 31
biomTrack?2 (datasets), 31
bmt (datasets), 31
bmTrack (datasets), 31
BSgenome, 91

chromosome (GdObject-class), 44
chromosome, GdObject-method
(GdObject-class), 44
chromosome,OverlayTrack-method
(OverlayTrack-class), 77
chromosome,RangeTrack-method
(RangeTrack-class), 83
chromosome, SequenceTrack-method
(SequenceTrack-class), 88
chromosome<- (GdObject-class), 44
chromosome<-,AlignmentsTrack-method
(AlignmentsTrack-class), 3
chromosome<-,GdObject-method
(GdObject-class), 44
chromosome<-,HighlightTrack-method
(HighlightTrack-class), 68
chromosome<-, IdeogramTrack-method
(IdeogramTrack-class), 71
chromosome<-,0verlayTrack-method
(OverlayTrack-class), 77
chromosome<-,RangeTrack-method
(RangeTrack-class), 83
chromosome<-, SequenceTrack-method
(SequenceTrack-class), 88
clearSessionCache, 72

128

clearSessionCache (UcscTrack), 123
collapseTrack,AnnotationTrack-method
(AnnotationTrack-class), 10
collapseTrack,DataTrack-method
(DataTrack-class), 31
collapseTrack,GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
collapsing, 9, 18, 23, 26, 28, 30, 38, 51, 59,
65,71, 72,76,79,88, 93,97, 98,
103-110, 112-114, 119, 123
conservation (datasets), 31
consolidateTrack (GdObject-class), 44
consolidateTrack,AnnotationTrack-method
(AnnotationTrack-class), 10
consolidateTrack,GdObject-method
(GdObject-class), 44
consolidateTrack,HighlightTrack-method
(HighlightTrack-class), 68
consolidateTrack,OverlayTrack-method
(OverlayTrack-class), 77
consolidateTrack,RangeTrack-method
(RangeTrack-class), 83
consolidateTrack, SequenceTrack-method
(SequenceTrack-class), 88
consolidateTrack, StackedTrack-method
(StackedTrack-class), 120
coords (ImageMap-class), 74
coords, GdObject-method
(GdObject-class), 44
coords, ImageMap-method
(ImageMap-class), 74
coords,NULL-method (ImageMap-class), 74
cpglslands (datasets), 31
ctrack (datasets), 31
CustomTrack (CustomTrack-class), 29
CustomTrack-class, 29
cyp2b10 (datasets), 31

datasets, 31

DataTrack, 9, 18, 23, 26, 28, 30, 38, 51, 59,
65,71,72,76,79,87,93,97-105,
107,110, 111,114, 115,118, 119,
123,125

DataTrack (DataTrack-class), 31

DataTrack-class, 31

denseAnnTrack (datasets), 31

DetailsAnnotationTrack
(AnnotationTrack-class), 10

INDEX

DetailsAnnotationTrack-class
(AnnotationTrack-class), 10
DisplayPars, 9, 17, 22, 26, 30, 38, 51, 59, 65,
70,72,76,79,87,93,95, 119, 122
DisplayPars (DisplayPars-class), 39
displayPars (DisplayPars-class), 39
displayPars,DisplayPars,character-method
(DisplayPars-class), 39
displayPars,DisplayPars,missing-method
(DisplayPars-class), 39
displayPars,GdObject,character-method
(GdObject-class), 44
displayPars,GdObject,missing-method
(GdObject-class), 44
DisplayPars-class, 39
displayPars<- (DisplayPars-class), 39
displayPars<-,DisplayPars,list-method
(DisplayPars-class), 39
displayPars<-,GdObject,list-method
(GdObject-class), 44
displayPars<-,HighlightTrack,list-method
(HighlightTrack-class), 68
displayPars<-,0verlayTrack,list-method
(OverlayTrack-class), 77
DNAString, 91
DNAStringSet, 91
drawAxis (GdObject-class), 44
drawAxis,AlignmentsTrack-method
(AlignmentsTrack-class), 3
drawAxis,DataTrack-method
(DataTrack-class), 31
drawAxis,GdObject-method
(GdObject-class), 44
drawAxis,NumericTrack-method
(NumericTrack-class), 75
drawGD (GdObject-class), 44
drawGD,AlignmentsTrack-method
(AlignmentsTrack-class), 3
drawGD, AnnotationTrack-method
(AnnotationTrack-class), 10
drawGD, CustomTrack-method
(CustomTrack-class), 29
drawGD,DataTrack-method
(DataTrack-class), 31
drawGD,DetailsAnnotationTrack-method
(AnnotationTrack-class), 10
drawGD, GeneRegionTrack-method
(GeneRegionTrack-class), 52

INDEX

drawGD, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
drawGD, IdeogramTrack-method
(IdeogramTrack-class), 71
drawGD, OverlayTrack-method
(OverlayTrack-class), 77
drawGD, SequenceTrack-method
(SequenceTrack-class), 88
drawGD, StackedTrack-method
(StackedTrack-class), 120
drawGrid (GdObject-class), 44
drawGrid,NumericTrack-method
(NumericTrack-class), 75
dtHoriz (datasets), 31

end, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
end, IdeogramTrack-method
(IdeogramTrack-class), 71
end,RangeTrack-method
(RangeTrack-class), 83
end, SequenceTrack-method
(SequenceTrack-class), 88
end<-,GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
end<-,IdeogramTrack-method
(IdeogramTrack-class), 71
end<-,RangeTrack-method
(RangeTrack-class), 83
ensGenes (datasets), 31
exon (GdObject-class), 44
exon,GeneRegionTrack-method
(GeneRegionTrack-class), 52
exon<- (GdObject-class), 44

exon<-,GeneRegionTrack, character-method

(GeneRegionTrack-class), 52
exportTracks, 43

feature (GdObject-class), 44
feature,DataTrack-method
(DataTrack-class), 31
feature,RangeTrack-method
(RangeTrack-class), 83
feature<- (GdObject-class), 44
feature<-,DataTrack,character-method
(DataTrack-class), 31
feature<-,RangeTrack, character-method
(RangeTrack-class), 83
from (datasets), 31

129

gcContent (datasets), 31

GdObject, 9, 17, 22, 26, 30, 38, 51, 59, 65, 70,
72,76,79-81,87,93,95,119, 122

GdObject-class, 44

gene (GdObject-class), 44

gene, GeneRegionTrack-method
(GeneRegionTrack-class), 52

gene<- (GdObject-class), 44

gene<-,GeneRegionTrack, character-method
(GeneRegionTrack-class), 52

geneDetails (datasets), 31

geneModels (datasets), 31

GeneRegionTrack, 66, 67, 125

GeneRegionTrack
(GeneRegionTrack-class), 52

GeneRegionTrack-class, 52

genome, GdObject-method
(GdObject-class), 44

genome, RangeTrack-method
(RangeTrack-class), 83

genome, SequenceTrack-method
(SequenceTrack-class), 88

genome<-,GdObject-method
(GdObject-class), 44

genome<-, IdeogramTrack-method
(IdeogramTrack-class), 71

genome<-,RangeTrack-method
(RangeTrack-class), 83

GenomeAxisTrack, 125

GenomeAxisTrack
(GenomeAxisTrack-class), 62

GenomeAxisTrack-class, 62

getBM, 25

getPar (DisplayPars-class), 39

getPar,DisplayPars, character-method
(DisplayPars-class), 39

getPar,DisplayPars,missing-method
(DisplayPars-class), 39

getPar,GdObject,character-method
(GdObject-class), 44

getPar,GdObject,missing-method
(GdObject-class), 44

getScheme (settings), 95

GRanges, 9, 17, 22, 26, 30, 38, 51, 57-59, 65,
70,72,76,79,87,93, 122

group (GdObject-class), 44

group,AnnotationTrack-method
(AnnotationTrack-class), 10

130

group, GdObject-method (GdObject-class),
44

group, GeneRegionTrack-method
(GeneRegionTrack-class), 52

group<- (GdObject-class), 44

group<-,AnnotationTrack, character-method
(AnnotationTrack-class), 10

group<-,GeneRegionTrack, character-method
(GeneRegionTrack-class), 52

grouping, 9, 18, 23, 26, 30, 38, 51, 56, 59, 65,
66,71,73,76,79,88, 93, 105, 106,
108, 109, 112, 113,119, 123

Gviz-defunct, 67

Gviz-deprecated, 67

HighlightTrack, 9, 17, 22, 26, 30, 38, 51, 59,
65,71,72,76,79,87,93, 122

HighlightTrack (HighlightTrack-class),
68

HighlightTrack-class, 68

horizonplot, 36, 99, 100, 119

identifier (GdObject-class), 44
identifier,AnnotationTrack-method
(AnnotationTrack-class), 10
identifier,GeneRegionTrack-method
(GeneRegionTrack-class), 52
identifier<- (GdObject-class), 44

identifier<-,AnnotationTrack,character-method

(AnnotationTrack-class), 10

identifier<-,GeneRegionTrack, character-method

(GeneRegionTrack-class), 52
IdeogramTrack (IdeogramTrack-class), 71
IdeogramTrack-class, 71
ideoTrack (datasets), 31
idTrack (datasets), 31
idxTrack (datasets), 31
ImageMap, 9, 18, 22, 26, 30, 38, 51, 59, 65, 71,

72,76,79,81,87,93,123
imageMap (GdObject-class), 44
imageMap,GdObject-method

(GdObject-class), 44
ImageMap-class, 74
imageMap<- (GdObject-class), 44
imageMap<-,GdObject, ImageMapOrNULL-method

(GdObject-class), 44
initialize,AlignmentsTrack-method

(AlignmentsTrack-class), 3

INDEX

initialize,AnnotationTrack-method
(AnnotationTrack-class), 10
initialize,BiomartGeneRegionTrack-method
(BiomartGeneRegionTrack-class),
23
initialize,CustomTrack-method
(CustomTrack-class), 29
initialize,DataTrack-method
(DataTrack-class), 31
initialize,DetailsAnnotationTrack-method
(AnnotationTrack-class), 10
initialize,GdObject-method
(GdObject-class), 44
initialize,GeneRegionTrack-method
(GeneRegionTrack-class), 52
initialize,GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
initialize,HighlightTrack-method
(HighlightTrack-class), 68
initialize,IdeogramTrack-method
(IdeogramTrack-class), 71
initialize,OverlayTrack-method
(OverlayTrack-class), 77
initialize,RangeTrack-method
(RangeTrack-class), 83
initialize,ReferenceAlignmentsTrack-method
(AlignmentsTrack-class), 3
initialize,ReferenceAnnotationTrack-method
(AnnotationTrack-class), 10
initialize,ReferenceDataTrack-method
(DataTrack-class), 31
initialize,ReferenceGeneRegionTrack-method
(GeneRegionTrack-class), 52
initialize,ReferenceSequenceTrack-method
(SequenceTrack-class), 88
initialize,ReferenceTrack-method
(availableDefaultMapping), 21
initialize, SequenceBSgenomeTrack-method
(SequenceTrack-class), 88
initialize, SequenceDNAStringSetTrack-method
(SequenceTrack-class), 88
initialize,SequenceRNAStringSetTrack-method
(SequenceTrack-class), 88
initialize, SequenceTrack-method
(SequenceTrack-class), 88
initialize,StackedTrack-method
(StackedTrack-class), 120
IRanges, 6, 9, 12, 18, 22, 26, 30, 34, 38, 51,

INDEX

55,59,65,69,71,72,76,79,87, 93,
123

iTrack (datasets), 31

itrack (datasets), 31

knownGenes (datasets), 31

length, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
length,HighlightTrack-method
(HighlightTrack-class), 68
length, IdeogramTrack-method
(IdeogramTrack-class), 71
length,OverlayTrack-method
(OverlayTrack-class), 77
length,RangeTrack-method
(RangeTrack-class), 83
length, SequenceTrack-method
(SequenceTrack-class), 88

Mart, 24, 25

max,RangeTrack-method
(RangeTrack-class), 83

min,RangeTrack-method
(RangeTrack-class), 83

names, GdObject-method (GdObject-class),
44

names<-,GdObject, character-method
(GdObject-class), 44

NumericTrack-class, 75

OverlayTrack (OverlayTrack-class), 77
OverlayTrack-class, 77

panel.bwplot, 36, 99-101, 119
panel.grid, 9, 18, 23, 26, 30, 38, 51, 59, 65,
71,73,76,79,88, 93,98, 102-105,
107, 108, 110, 111,115,118, 119,
123
panel.loess, 35, 36, 99, 101, 119
panel.xyplot, 98-100, 119
plotTracks, 5, 9, 18, 23, 26, 30, 38, 51, 59,
65,71,73,76,79,79, 88, 93, 95, 97,
101, 103, 104, 106, 108, 109, 111,
114,115,119, 123-125
position (GdObject-class), 44
position,IdeogramTrack-method
(IdeogramTrack-class), 71

131

position,RangeTrack-method
(RangeTrack-class), 83

range, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
range,RangeTrack-method
(RangeTrack-class), 83
ranges,GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
ranges,RangeTrack-method
(RangeTrack-class), 83
RangeTrack, 9, 18, 22, 26, 30, 38, 51, 59, 65,
71,72,76,79,87,93, 123
RangeTrack-class, 83
ReferenceAlignmentsTrack-class
(AlignmentsTrack-class), 3
ReferenceAnnotationTrack-class
(AnnotationTrack-class), 10
ReferenceDataTrack-class
(DataTrack-class), 31
ReferenceGeneRegionTrack-class
(GeneRegionTrack-class), 52
ReferenceSequenceTrack-class
(SequenceTrack-class), 88
ReferenceTrack-class
(availableDefaul tMapping), 21
refGenes (datasets), 31
RNASequenceTrack (SequenceTrack-class),
88

seqinfo,RangeTrack-method
(RangeTrack-class), 83
seqglevels,RangeTrack-method
(RangeTrack-class), 83
seqlevels, SequenceBSgenomeTrack-method
(SequenceTrack-class), 88
seqlevels, SequenceTrack-method
(SequenceTrack-class), 88
segnames,RangeTrack-method
(RangeTrack-class), 83
seqgnames, SequenceBSgenomeTrack-method
(SequenceTrack-class), 88
seqnames, SequenceTrack-method
(SequenceTrack-class), 88
SequenceBSgenomeTrack-class
(SequenceTrack-class), 88
SequenceDNAStringSetTrack-class
(SequenceTrack-class), 88

132

SequenceRNAStringSetTrack-class
(SequenceTrack-class), 88
SequenceTrack, 5
SequenceTrack (SequenceTrack-class), 88
SequenceTrack-class, 88
setCoverage (GdObject-class), 44
setPar (DisplayPars-class), 39
setPar,DisplayPars,character-method
(DisplayPars-class), 39
setPar,DisplayPars,list-method
(DisplayPars-class), 39
setPar,GdObject, character-method
(GdObject-class), 44
setPar,GdObject,list-method
(GdObject-class), 44
setStacks (GdObject-class), 44
setStacks,AlignmentsTrack-method
(AlignmentsTrack-class), 3
setStacks,AnnotationTrack-method
(AnnotationTrack-class), 10
setStacks,GdObject-method
(GdObject-class), 44
setStacks,HighlightTrack-method
(HighlightTrack-class), 68
setStacks,OverlayTrack-method
(OverlayTrack-class), 77
setStacks, StackedTrack-method
(StackedTrack-class), 120
settings, 5, 9, 18, 23, 25, 26, 28, 30, 38, 51,
54,59,65,70,71,73,76, 78-81, 88,
90, 93,95, 123
show,AlignmentsTrack-method
(AlignmentsTrack-class), 3
show, AnnotationTrack-method
(AnnotationTrack-class), 10
show, CustomTrack-method
(CustomTrack-class), 29
show,DataTrack-method
(DataTrack-class), 31
show,DisplayPars-method
(DisplayPars-class), 39
show, GeneRegionTrack-method
(GeneRegionTrack-class), 52
show, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
show,HighlightTrack-method
(HighlightTrack-class), 68
show, IdeogramTrack-method

INDEX

(IdeogramTrack-class), 71
show, InferredDisplayPars-method
(DisplayPars-class), 39
show,OverlayTrack-method
(OverlayTrack-class), 77
show,ReferenceAlignmentsTrack-method
(AlignmentsTrack-class), 3
show,ReferenceAnnotationTrack-method
(AnnotationTrack-class), 10
show, ReferenceDataTrack-method
(DataTrack-class), 31
show,ReferenceGeneRegionTrack-method
(GeneRegionTrack-class), 52
show,ReferenceSequenceTrack-method
(SequenceTrack-class), 88
show, SequenceBSgenomeTrack-method
(SequenceTrack-class), 88
show, SequenceDNAStringSetTrack-method
(SequenceTrack-class), 88
show, SequenceRNAStringSetTrack-method
(SequenceTrack-class), 88
snpLocations (datasets), 31
split,DataTrack,ANY-method
(DataTrack-class), 31
split,RangeTrack, ANY-method
(RangeTrack-class), 83
StackedTrack, 81
StackedTrack-class, 120
stacking (GdObject-class), 44
stacking,StackedTrack-method
(StackedTrack-class), 120
stacking<- (GdObject-class), 44

stacking<-,StackedTrack,character-method

(StackedTrack-class), 120
stacks (GdObject-class), 44
stacks,AlignmentsTrack-method
(AlignmentsTrack-class), 3
stacks, StackedTrack-method
(StackedTrack-class), 120
start,GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
start,IdeogramTrack-method
(IdeogramTrack-class), 71
start,RangeTrack-method
(RangeTrack-class), 83
start, SequenceTrack-method
(SequenceTrack-class), 88
start<-,GenomeAxisTrack-method

INDEX

(GenomeAxisTrack-class), 62
start<-,IdeogramTrack-method
(IdeogramTrack-class), 71
start<-,RangeTrack-method
(RangeTrack-class), 83
strand,DataTrack-method
(DataTrack-class), 31
strand, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
strand,RangeTrack-method
(RangeTrack-class), 83
strand<-,DataTrack,ANY-method
(DataTrack-class), 31
strand<-,RangeTrack, ANY-method
(RangeTrack-class), 83
subset,AlignmentsTrack-method
(AlignmentsTrack-class), 3
subset,AnnotationTrack-method
(AnnotationTrack-class), 10
subset,BiomartGeneRegionTrack-method
(BiomartGeneRegionTrack-class),
23
subset,DataTrack-method
(DataTrack-class), 31
subset,GdObject-method
(GdObject-class), 44
subset, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
subset,HighlightTrack-method
(HighlightTrack-class), 68
subset, IdeogramTrack-method
(IdeogramTrack-class), 71
subset,OverlayTrack-method
(OverlayTrack-class), 77
subset,RangeTrack-method
(RangeTrack-class), 83
subset,ReferenceAlignmentsTrack-method
(AlignmentsTrack-class), 3
subset,ReferenceAnnotationTrack-method
(AnnotationTrack-class), 10
subset,ReferenceDataTrack-method
(DataTrack-class), 31
subset,ReferenceGeneRegionTrack-method
(GeneRegionTrack-class), 52
subset,StackedTrack-method
(StackedTrack-class), 120
symbol (GdObject-class), 44
symbol, GeneRegionTrack-method

133

(GeneRegionTrack-class), 52
symbol<- (GdObject-class), 44
symbol<-,GeneRegionTrack,character-method

(GeneRegionTrack-class), 52

tags (ImageMap-class), 74

tags,GdObject-method (GdObject-class),
44

tags, ImageMap-method (ImageMap-class),
74

tags,NULL-method (ImageMap-class), 74

to (datasets), 31

transcript (GdObject-class), 44

transcript,GeneRegionTrack-method
(GeneRegionTrack-class), 52

transcript<- (GdObject-class), 44

transcript<-,GeneRegionTrack, character-method

(GeneRegionTrack-class), 52
twoGroups (datasets), 31

UcscTrack, 123

values,AlignmentsTrack-method
(AlignmentsTrack-class), 3
values,DataTrack-method
(DataTrack-class), 31
values, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
values,RangeTrack-method
(RangeTrack-class), 83
values<-,DataTrack-method
(DataTrack-class), 31

width, GenomeAxisTrack-method
(GenomeAxisTrack-class), 62
width, IdeogramTrack-method
(IdeogramTrack-class), 71
width,RangeTrack-method
(RangeTrack-class), 83
width, SequenceTrack-method
(SequenceTrack-class), 88
width<-,IdeogramTrack-method
(IdeogramTrack-class), 71
width<-,RangeTrack-method
(RangeTrack-class), 83

	AlignmentsTrack-class
	AnnotationTrack-class
	availableDefaultMapping
	BiomartGeneRegionTrack-class
	collapsing
	CustomTrack-class
	datasets
	DataTrack-class
	DisplayPars-class
	exportTracks
	GdObject-class
	GeneRegionTrack-class
	GenomeAxisTrack-class
	grouping
	Gviz-defunct
	Gviz-deprecated
	HighlightTrack-class
	IdeogramTrack-class
	ImageMap-class
	NumericTrack-class
	OverlayTrack-class
	plotTracks
	RangeTrack-class
	SequenceTrack-class
	settings
	StackedTrack-class
	UcscTrack
	Index

