
Package ‘GenomicFiles’
February 1, 2026

Title Distributed computing by file or by range

Version 1.47.0

Description This package provides infrastructure for parallel
computations distributed 'by file' or 'by range'. User defined MAPPER
and REDUCER functions provide added flexibility for data combination
and manipulation.

License Artistic-2.0

Depends BiocGenerics, BiocParallel, GenomicRanges, MatrixGenerics,
methods, Rsamtools (>= 2.25.1), rtracklayer (>= 1.69.1),
SummarizedExperiment (>= 1.39.1)

Imports BiocBaseUtils, GenomeInfoDb (>= 1.45.7), GenomicAlignments (>=
1.45.1), IRanges, S4Vectors, Seqinfo, VariantAnnotation (>=
1.55.1)

Suggests BiocStyle, Biostrings, deepSNV, genefilter, Homo.sapiens,
knitr, RNAseqData.HNRNPC.bam.chr14, RUnit, snpStats

VignetteBuilder knitr

biocViews Genetics, Infrastructure, DataImport, Sequencing, Coverage

RoxygenNote 6.1.0

URL https://github.com/Bioconductor/GenomicFiles

BugReports https://github.com/Bioconductor/GenomicFiles/issues

Video https://www.youtube.com/watch?v=3PK_jx44QTs

Collate 'GenomicFiles-class.R' 'VcfStack-class.R'
'reduceByFile-methods.R' 'reduceByRange-methods.R'
'reduceFiles.R' 'reduceRanges.R' 'reduceByYield.R'
'pack-methods.R' 'unpack-methods.R' 'registry.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/GenomicFiles

git_branch devel

git_last_commit 76a7462

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

1

https://github.com/Bioconductor/GenomicFiles
https://github.com/Bioconductor/GenomicFiles/issues

2 GenomicFiles

Date/Publication 2026-02-01

Author Bioconductor Package Maintainer [aut, cre],
Valerie Obenchain [aut],
Michael Love [aut],
Lori Shepherd [aut],
Martin Morgan [aut],
Sonali Kumari [ctb] (Converted 'GenomicFiles' vignettes from Sweave to
RMarkdown / HTML.)

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Contents

GenomicFiles . 2
GenomicFiles-deprecated . 5
pack . 5
reduceByFile . 6
reduceByRange . 10
reduceByYield . 13
registry-utils . 17
unpack . 18
VcfStack . 19

Index 23

GenomicFiles GenomicFiles objects

Description

The GenomicFiles class is a matrix-like container where rows represent ranges of interest and
columns represent files. The class is designed for byFile or byRange queries.

Constructor

GenomicFiles(rowRanges, files, colData=DataFrame(), metadata=list(), ...):

Details

GenomicFiles inherits from the RangedSummarizedExperiment class in the SummarizedExperiment
package. Currently, no use is made of the elementMetadat and assays slots. This may change in
the future.

GenomicFiles 3

Accessors

In the code below, x is a GenomicFiles object.

rowRanges, rowRanges(x) <- value Get or set the rowRanges on x. value can be a GRanges or
GRangesList representing ranges or indices defined on the spaces (position) of the files.

files(x), files(x) <- value Get or set the files on x. value can be a character() of file paths or a List
of file objects such as BamFile, BigWigFile, FaFile, etc.

colData, colData(x) <- value Get or set the colData on x. value must be a DataFrame instance
describing the files. The number of rows must match the number of files. Row names, if
present, become the column names of the GenomicFiles.

metadata, metadata(x) <- value Get or set the metadata on x. value must be a SimpleList of
arbitrary content describing the overall experiment.

dimnames, dimnames(x) <- value Get or set the row and column names on x.

Methods

In the code below, x is a GenomicFiles object.

[Subset the object by fileRange or fileSample.

show Compactly display the object.

reduceByFile Extract, manipulate and combine data defined in rowRanges within the files speci-
fied in files. See ?reduceByFile for details.

reduceByRange Extract, manipulate and combine data defined in rowRanges across the files spec-
ified in files. See ?reduceByRange for details.

Author(s)

Martin Morgan and Valerie Obenchain

See Also

• reduceByFile and reduceByRange methods.

• SummarizedExperiment objects in the SummarizedExperiment package.

Examples

Basic Use

if (require(RNAseqData.HNRNPC.bam.chr14)) {
fl <- RNAseqData.HNRNPC.bam.chr14_BAMFILES
rd <- GRanges("chr14",

IRanges(c(62262735, 63121531, 63980327), width=214700))
cd <- DataFrame(method=rep("RNASeq", length(fl)),

format=rep("bam", length(fl)))

Construct an instance of the class:

4 GenomicFiles

gf <- GenomicFiles(files = fl, rowRanges = rd, colData = cd)
gf

Subset on ranges or files for different experimental runs.
dim(gf)
gf_sub <- gf[2, 3:4]
dim(gf_sub)

When summarize = TRUE and no REDUCE is provided the reduceBy*
functions output a SummarizedExperiment object.
MAP <- function(range, file, ...) {

requireNamespace("GenomicFiles", quietly=TRUE) ## for coverage()
requireNamespace("Rsamtools", quietly=TRUE) ## for ScanBamParam()
param = Rsamtools::ScanBamParam(which=range)
GenomicFiles::coverage(file, param=param)[range]

}
se <- reduceByRange(gf, MAP=MAP, summarize=TRUE)
se

Data from the rowRanges, colData and metadata slots in the
GenomicFiles are transferred to the SummarizedExperiment.
colData(se)

Results are in the assays slot.
assays(se)

}

Managing cached or remote files with GenomicFiles

The GenomicFiles class can manage cached or remote files and their
associated ranges.

Not run:
Files from AnnotationHub can be downloaded and cached locally.
library(AnnotationHub)
hub = AnnotationHub()
hublet = query(hub, c("files I'm", "interested in"))
cache (if need) and return local path to files
fls = cache(hublet)

An alternative to the local file paths is to use urls to a remote file.
This approach could be used with something like rtracklayer::bigWig which
supports remote file queries.
urls = hublet$sourceurls

Define ranges of interest and use GenomicFiles to manage.
rngs = GRanges("chr10", IRanges(c(100000, 200000), width=1))
gf = GenomicFiles(rngs, fls)

As an example, one could create a matrix from data extracted
across multiple BED files.

GenomicFiles-deprecated 5

MAP = function(rng, fl) {
requireNamespace("rtracklayer", quietly=TRUE) ## import, BEDFile
rtracklayer::import(rtracklayer::BEDFile(fl), which=rng)$name

}
REDUCE = unlist
xx = reduceFiles(gf, MAP=MAP, REDUCE=REDUCE)
mcols(rngs) = simplify2array(xx)

Data and ranges can be stored in a SummarizedExperiment.
SummarizedExperiment(list(my=simplify2array(xx)), rowRanges=rngs)

End(Not run)

GenomicFiles-deprecated

Deprecated functions in package ‘GenomicFiles’

Description

These functions are provided for compatibility with older versions of ‘GenomicFiles’ only, and will
be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

• getVCFPath(vs, chrtok): files(vs)[chrtok]

pack Range transformations of a GenomicRanges object for optimal file
queries.

Description

Given a GRanges object, pack produces a GRangesList of the same ranges grouped and re-ordered.

Usage

S4 method for signature 'GRanges'
pack(x, ..., range_len = 1e9, inter_range_len = 1e7)

Arguments

x A GRanges object.
range_len A numeric specifying the max length allowed for ranges in x.
inter_range_len

A numeric specifying the max length allowed between ranges in x.
... Arguments passed to other methods.

6 reduceByFile

Details

Packing ranges: The pack method attempts to re-package ranges in optimal form for extracting
data from files. Ranges are not modified (made shorter or longer) but re-ordered and / or re-
grouped according to the following criteria.

• order: Ranges are ordered by genomic position within chromosomes.
• distance: Ranges separted by a distance greater than the inter_range_len are packed in

groups around the gap separating the distant ranges.
• length: Ranges longer than range_len are packed ‘individually’ (i.e., retrived from the file

as a single range vs grouped with other ranges).

Utilities:

isPacked(x, ...): Returns a logical indicating if the ranges in x are packed. x must be a
GRangesList object.

Value

A GRanges object.

See Also

• unpack for unpacking the result obtained with ‘packed’ ranges.

Examples

Ranges are ordered by position within chromosome.
gr1 <- GRanges("chr1", IRanges(5:1*5, width = 3))
pack(gr1)

Ranges separated by > inter_range_len are partitioned
into groups defined by the endpoints of the gap.
gr2 <- GRanges("chr2", IRanges(c(1:3, 30000:30003), width = 1000))
pack(gr2, inter_range_len = 20000)

Ranges exceeding 'range_len' are isolated in a single element
of the GRangesList.
gr3 <- GRanges("chr3", IRanges(c(1:4), width=c(45, 1e8, 45, 45)))
width(gr3)
pack(gr3, range_len = 1e7)

reduceByFile Parallel computations by files

Description

Computations are distributed in parallel by file. Data subsets are extracted and manipulated (MAP)
and optionally combined (REDUCE) within a single file.

reduceByFile 7

Usage

S4 method for signature 'GRanges,ANY'
reduceByFile(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)
S4 method for signature 'GRangesList,ANY'
reduceByFile(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)
S4 method for signature 'GenomicFiles,missing'
reduceByFile(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)

reduceFiles(ranges, files, MAP, REDUCE, ..., init)

Arguments

ranges A GRanges, GrangesList or GenomicFiles object.
A GRangesList implies a grouping of the ranges; MAP is applied to each element
of the GRangesList vs each range when ranges is a GRanges.
When ranges is a GenomicFiles the files argument is missing; both ranges
and files are extracted from the object.

files A character vector or List of filenames. A List implies a grouping of the
files; MAP is applied to each element of the List vs each file individually.

MAP A function executed on each worker. The signature must contain a minimum
of two arguments representing the ranges and files. There is no restriction on
argument names and additional arguments can be provided.

• MAP = function(range, file, ...)

REDUCE An optional function that combines output from the MAP step. The signature
must contain at least one argument representing the list output from MAP. There
is no restriction on argument names and additional arguments can be provided.

• REDUCE = function(mapped, ...)

Reduction combines data from a single worker and is always performed as part
of the distributed step. When iterate=TRUE REDUCE is applied after each MAP
step; depending on the nature of REDUCE, iterative reduction can substantially
decrease the data stored in memory. When iterate=FALSE reduction is applied
to the list of MAP output applied to all files / ranges.
When REDUCE is missing, output is a list from MAP.

iterate A logical indicating if the REDUCE function should be applied iteratively to the
output of MAP. When REDUCE is missing iterate is set to FALSE. This argument
applies to reduceByFile only (reduceFiles calls MAP a single time on each
worker).
Collapsing results iteratively is useful when the number of records to be pro-
cessed is large (maybe complete files) but the end result is a much reduced rep-
resentation of all records. Iteratively applying REDUCE reduces the amount of
data on each worker at any one time and can substantially reduce the memory
footprint.

8 reduceByFile

summarize A logical indicating if results should be returned as a SummarizedExperiment
object instead of a list; data are returned in the assays slot named ‘data‘. This
argument applies to reduceByFile only.
When REDUCE is provided summarize is ignored (i.e., set to FALSE). A SummarizedExperiment
requires the number of rows in rowRanges and assays to match. Because
REDUCE collapses the data across ranges, the dimension of the result no longer
matches that of the original ranges.

init An optional initial value for REDUCE when iterate=TRUE. init must be an
object of the same type as the elements returned from MAP. REDUCE logically
adds init to the start (when proceeding left to right) or end of results obtained
with MAP.

... Arguments passed to other methods.

Details

reduceByFile extracts, manipulates and combines multiple ranges within a single file. Each file
is sent to a worker where MAP is invoked on each file / range combination. This approach allows
multiple ranges extracted from a single file to be kept separate or combined with REDUCE.

In contrast, reduceFiles treats the output of all MAP calls as a group and reduces them together.
REDUCE usually plays a minor role by concatenating or unlisting results.

Both MAP and REDUCE are applied in the distributed step (“on the worker“). Results are not combined
across workers in the distributed step.

Value

• reduceByFile: When summarize=FALSE the return value is a list or the value from the final
invocation of REDUCE. When summarize=TRUE output is a SummarizedExperiment. When
ranges is a GenomicFiles object data from rowRanges, colData and metadata are trans-
ferred to the SummarizedExperiment.

• reduceFiles: A list or the value returned by the final invocation of REDUCE.

Author(s)

Martin Morgan and Valerie Obenchain

See Also

• reduceRanges

• reduceByRange

• GenomicFiles-class

Examples

if (requireNamespace("RNAseqData.HNRNPC.bam.chr14", quietly=TRUE)) {

Count junction reads in BAM files

fls <- ## 8 bam files

reduceByFile 9

RNAseqData.HNRNPC.bam.chr14::RNAseqData.HNRNPC.bam.chr14_BAMFILES

Ranges of interest.
gr <- GRanges("chr14", IRanges(c(19100000, 106000000), width=1e7))

MAP outputs a table of junction counts per range.
MAP <- function(range, file, ...) {

for readGAlignments(), Rsamtools::ScanBamParam()
requireNamespace("GenomicAlignments", quietly=TRUE)
param = Rsamtools::ScanBamParam(which=range)
gal = GenomicAlignments::readGAlignments(file, param=param)
table(GenomicAlignments::njunc(gal))

}

reduceByFile:

With no REDUCE, counts are computed for each range / file combination.
counts1 <- reduceByFile(gr, fls, MAP)
length(counts1) ## 8 files
elementNROWS(counts1) ## 2 ranges each

Tables of counts for each range:
counts1[[1]]

With a REDUCE, results are combined on the fly. This reducer sums the
number of records in each range with exactly 1 junction.
REDUCE <- function(mapped, ...)

sum(sapply(mapped, "[", "1"))

reduceByFile(gr, fls, MAP, REDUCE)

reduceFiles:

All ranges are treated as a single group:
counts2 <- reduceFiles(gr, fls, MAP)

Counts are for all ranges grouped:
counts2[[1]]

Contrast the above with that from reduceByFile() where counts
are for each range separately:
counts1[[1]]

Methods for the GenomicFiles class:

Both reduceByFiles() and reduceFiles() can operate on a GenomicFiles
object.
colData <- DataFrame(method=rep("RNASeq", length(fls)),

format=rep("bam", length(fls)))
gf <- GenomicFiles(files=fls, rowRanges=gr, colData=colData)

10 reduceByRange

gf

Subset on ranges or files for different experimental runs.
dim(gf)
gf_sub <- gf[2, 3:4]
dim(gf_sub)

When summarize = TRUE and no REDUCE is given, the output is a
SummarizedExperiment object.
se <- reduceByFile(gf, MAP=MAP, summarize=TRUE)
se

Data from the rowRanges, colData and metadata slots in the
GenomicFiles are transferred to the SummarizedExperiment.
colData(se)

Results are in the assays slot named 'data'.
assays(se)

}

reduceByRange Parallel computations by ranges

Description

Computations are distributed in parallel by range. Data subsets are extracted and manipulated
(MAP) and optionally combined (REDUCE) across all files.

Usage

S4 method for signature 'GRanges,ANY'
reduceByRange(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)
S4 method for signature 'GRangesList,ANY'
reduceByRange(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)
S4 method for signature 'GenomicFiles,missing'
reduceByRange(ranges, files, MAP,

REDUCE, ..., summarize=FALSE, iterate=TRUE, init)

reduceRanges(ranges, files, MAP, REDUCE, ..., init)

Arguments

ranges A GRanges, GrangesList or GenomicFiles object.
A GRangesList implies a grouping of the ranges; MAP is applied to each element
of the GRangesList vs each range when ranges is a GRanges.
When ranges is a GenomicFiles the files argument is missing; both ranges
and files are extracted from the object.

reduceByRange 11

files A character vector or List of filenames. A List implies a grouping of the
files; MAP is applied to each element of the List vs each file individually.

MAP A function executed on each worker. The signature must contain a minimum
of two arguments representing the ranges and files. There is no restriction on
argument names and additional arguments can be provided.

• MAP = function(range, file, ...)

REDUCE An optional function that combines output from the MAP step applied across all
files. The signature must contain at least one argument representing the list
output from MAP. There is no restriction on argument names and additional ar-
guments can be provided.

• REDUCE = function(mapped, ...)

Reduction combines data from a single worker and is always performed as part
of the distributed step. When iterate=TRUE REDUCE is applied after each MAP
step; depending on the nature of REDUCE, iterative reduction can substantially
decrease the data stored in memory. When iterate=FALSE reduction is applied
to the list of MAP outputs for a single range, applied to all files.
When REDUCE is missing, output is a list from MAP.

iterate A logical that, when TRUE, indicates that the REDUCE function should be ap-
plied iteratively to the output of MAP. When REDUCE is missing iterate is set to
FALSE. This argument applies to reduceByRange only.
Collapsing results iteratively is useful when the number of records to be pro-
cessed is large (maybe complete files) but the end result is a much reduced rep-
resentation of all records. Iteratively applying REDUCE reduces the amount of
data on each worker at any one time and can substantially reduce the memory
footprint.

summarize A logical indicating if results should be returned as a SummarizedExperiment
object instead of a list; data are returned in the assays slot named ‘data‘. This
argument applies to reduceByRange only.
When REDUCE is provided summarize is ignored (i.e., set to FALSE). A SummarizedExperiment
requires the number of rows in colData and the columns in assays to match.
Because REDUCE collapses the data across files, the dimension of the result no
longer matches that of the original ranges.

init An optional initial value for REDUCE when iterate=TRUE. init must be an
object of the same type as the elements returned from MAP. REDUCE logically
adds init to the start (when proceeding left to right) or end of results obtained
with MAP.

... Arguments passed to other methods. Currently not used.

Details

reduceByRange extracts, manipulates and combines ranges across different files. Each element of
ranges is sent to a worker; this is a single range when ranges is a GRanges and may be mul-
tiple ranges when ranges is a GRangesList. The worker then iterates across all files, applying
MAP(range, file, ...) to each. When iterate=FALSE, REDUCE is applied to the list of results
from MAP applied to all files. When iterate = TRUE, the argument to REDUCE is always a list of

12 reduceByRange

length 2. REDUCE is first invoked after the second file has been processed. The first element of the
list to REDUCE is the result of calling MAP on the first file; the second element is the result of calling
MAP on the second file. For the nth file, the first element is the result of the call to REDUCE for the
n-1th file, and the second element is the result of calling MAP on the nth file.

reduceRanges is essentially equivalent to reduceByRange, but with iterate = FALSE.

Both MAP and REDUCE are applied in the distributed step (“on the worker“). REDUCE provides a way
to summarize results for a single range across all files; REDUCE does not provide a mechanism to
summarize results across ranges.

Value

• reduceByRange: When summarize=FALSE the return value is a list or the value from the fi-
nal invocation of REDUCE. When summarize=TRUE output is a SummarizedExperiment. When
ranges is a GenomicFiles object data from rowRanges, colData and metadata are trans-
ferred to the SummarizedExperiment.

• reduceRanges: A list or the value returned by the final invocation of REDUCE.

Author(s)

Martin Morgan and Valerie Obenchain

See Also

• reduceFiles

• reduceByFile

• GenomicFiles-class

Examples

if (all(requireNamespace("RNAseqData.HNRNPC.bam.chr14", quietly=TRUE) &&
require(GenomicAlignments))) {

Compute coverage across BAM files.

fls <- ## 8 bam files

RNAseqData.HNRNPC.bam.chr14::RNAseqData.HNRNPC.bam.chr14_BAMFILES

Regions of interest.
gr <- GRanges("chr14", IRanges(c(62262735, 63121531, 63980327),

width=214700))

The MAP computes the coverage ...
MAP <- function(range, file, ...) {

requireNamespace("GenomicFiles", quietly=TRUE)
for coverage(), Rsamtools::ScanBamParam()
param = Rsamtools::ScanBamParam(which=range)
GenomicFiles::coverage(file, param=param)[range]

}
and REDUCE adds the last and current results.
REDUCE <- function(mapped, ...)

reduceByYield 13

Reduce("+", mapped)

reduceByRange:

With no REDUCE, coverage is computed for each range / file combination.
cov1 <- reduceByRange(gr, fls, MAP)
cov1[[1]]

Each call to coverage() produces an RleList which accumulate on the
workers. We can use a reducer to combine these lists either iteratively
or non-iteratively. When iterate = TRUE the current result
is collapsed with the last resulting in a maximum of 2 RleLists on
a worker at any given time.
cov2 <- reduceByRange(gr, fls, MAP, REDUCE, iterate=TRUE)
cov2[[1]]

If memory use is not a concern (or if MAP output is not large) the
REDUCE function can be applied non-iteratively.
cov3 <- reduceByRange(gr, fls, MAP, REDUCE, iterate=FALSE)

Results match those obtained with the iterative REDUCE.
cov3[[1]]

When 'ranges' is a GRangesList, the list elements are sent to the
workers instead of a single range as in the case of a GRanges.
grl <- GRangesList(gr[1], gr[2:3])
grl

cov4 <- reduceByRange(grl, fls, MAP)
length(cov4) ## length of GRangesList
elementNROWS(cov4) ## number of files

reduceRanges:

This function passes the character vector of all file names to MAP.
MAP must handle each file separately or invoke a method that operates
on a list of files.

TODO: example
}

reduceByYield Iterate through a BAM (or other) file, reducing output to a single re-
sult.

Description

Rsamtools files can be created with a ‘yieldSize’ argument that influences the number of records
(chunk size) input at one time (see, e.g,. BamFile). reduceByYield iterates through the file, pro-

14 reduceByYield

cessing each chunk and reducing it with previously input chunks. This is a memory efficient way to
process large data files, especially when the final result fits in memory.

Usage

reduceByYield(X, YIELD, MAP = identity, REDUCE = `+`,
DONE = function(x) is.null(x) || length(x) == 0L,
..., parallel = FALSE, iterate = TRUE, init)

REDUCEsampler(sampleSize=1000000, verbose=FALSE)

Arguments

X A BamFile instance (or other class for which isOpen, open, close methods are
defined, and which support extraction of sequential chunks).

YIELD A function name or user-supplied function that operates on X to produce a VALUE
that is passed to DONE and MAP. Generally YIELD will be a data extractor such as
readGAlignments, scanBam, yield, etc. and VALUE is a chunk of data.

• YIELD(X)

MAP A function of one or more arguments that operates on the chunk of data from
YIELD.

• MAP(VALUE, ...)

REDUCE A function of one (iterate=FALSE or two (iterate=TRUE) arguments, return-
ing the reduction (e.g., sum, mean, concatenate) of the arguments.

• REDUCE(mapped, ...) ## iterate=FALSE
• REDUCE(x, y, ...) ## iterate=TRUE

DONE A function of one argument, the VALUE output of the most recent call to YIELD(X,
...). If missing, DONE is function(VALUE) length(VALUE) == 0.

... Additional arguments, passed to MAP.

iterate logical(1) determines whether the call to REDUCE is iterative (iterate=TRUE) or
cumulative (iterate=FALSE).

parallel logical(1) determines if the MAP step is run in parallel. bpiterate is used under
the hood and is currently supported for Unix/Mac only. For Windows machines,
parallel is ignored.

init (Optional) Initial value used for REDUCE when iterate=TRUE.

sampleSize Initial value used for REDUCEsampler.

verbose logical(1) determines if total records sampled are reported at each iteration. Ap-
plicable to REDUCEsampler only.

Details

reduceByYield: When iterate=TRUE, REDUCE requires 2 arguments and is invoked with init
and the output from the first call to MAP. If init is missing, it operates on the first two outputs
from MAP.
When iterate=FALSE, REDUCE requires 1 argument and is is invoked with a list containing a
list containing all results from MAP.

reduceByYield 15

REDUCEsampler: REDUCEsampler creates a function that can be used as the REDUCE argument to
reduceByYield.
Invoking REDUCEsampler with sampleSize returns a function (call it myfun) that takes two
arguments, x and y. As with any iterative REDUCE function, x represents records that have been
yield’ed and y is the new chunk of records. myfun samples records from consecutive chunks
returned by the YIELD function. (Re)sampling takes into consideration the total number of
records yield’ed, the sampleSize, and the size of the new chunk.

Value

The value returned by the final invocation of REDUCE, or init if provided and no data were yield’ed,
or list() if init is missing and no data were yield’ed.

Author(s)

Martin Morgan and Valerie Obenchain

See Also

• BamFile and TabixFile for examples of ‘X‘.

• reduceByFile and reduceByRange

Examples

if (all(require(RNAseqData.HNRNPC.bam.chr14) &&
require(GenomicAlignments))) {

Nucleotide frequency of mapped reads

In this example nucleotide frequency of mapped reads is computed
for a single file. The MAP step is run in parallel and REDUCE
is iterative.

Create a BamFile and set a 'yieldSize'.
fl <- system.file(package="Rsamtools", "extdata", "ex1.bam")
bf <- BamFile(fl, yieldSize=500)

Define 'YIELD', 'MAP' and 'REDUCE' functions.
YIELD <- function(X, ...) {

flag = scanBamFlag(isUnmappedQuery=FALSE)
param = ScanBamParam(flag=flag, what="seq")
scanBam(X, param=param, ...)[[1]][['seq']]

}
MAP <- function(value, ...) {

requireNamespace("Biostrings", quietly=TRUE) ## for alphabetFrequency()
Biostrings::alphabetFrequency(value, collapse=TRUE)

}
REDUCE <- `+` # add successive alphabetFrequency matrices

16 reduceByYield

'parallel=TRUE' runs the MAP step in parallel and is currently
implemented for Unix/Mac only.
register(MulticoreParam(3))
reduceByYield(bf, YIELD, MAP, REDUCE, parallel=TRUE)

Coverage

If sufficient resources are available coverage can be computed
across several large BAM files by combining reduceByYield() with
bplapply().

Create a BamFileList with a few sample files and a Snow cluster
with the same number of workers as files.
bfl <- BamFileList(RNAseqData.HNRNPC.bam.chr14_BAMFILES[1:3])
bpparam <- SnowParam(length(bfl))

'FUN' is run on each worker. Because these are Snow workers each
variable used in 'FUN' must be explicitly passed. (This is not the case
when using Multicore.)
FUN <- function(bf, YIELD, MAP, REDUCE, parallel, ...) {

requireNamespace("GenomicFiles", quietly=TRUE) ## for reduceByYield()
GenomicFiles::reduceByYield(bf, YIELD, MAP, REDUCE, parallel=parallel)

}

Passing parallel=FALSE to reduceByYield() runs the MAP step in serial on
each worker. In this example, parallel dispatch is at the file-level
only (bplapply()).
YIELD <- `readGAlignments`
MAP <- function(value, ...) {

requireNamespace("GenomicAlignments", quietly=TRUE)
GenomicAlignments::coverage(value)[["chr14"]]

}
bplapply(bfl, FUN, YIELD=YIELD, MAP=MAP, REDUCE=`+`,

parallel=FALSE, BPPARAM = bpparam)

Sample records from a Bam file

fl <- system.file(package="Rsamtools", "extdata", "ex1.bam")
bf <- BamFile(fl, yieldSize=1000)

yield <- function(x)
readGAlignments(x, param=ScanBamParam(what=c("qwidth", "mapq")))

map <- identity

Samples records from successive chunks of aligned reads.
reduceByYield(bf, yield, map, REDUCEsampler(1000, TRUE))

}

registry-utils 17

registry-utils Functions for creating and searching a registry of file types.

Description

Functions for creating and searching a registry of file types based on file extension.

Usage

registerFileType(type, package, regex)
findTypeRegistry(fnames)
makeFileType(fnames, ..., regex=findTypeRegistry(fnames))

Arguments

type The List class the file is associated with such as BamFileList, BigWigFileList,
FaFileList.

package The package where the List class (type) is defined.

regex A regular expression that uniquely identifies the file extension.

fnames A character vector of file names.

... Additional arguments passed to the List-class constructor (e.g., yieldSize for
BamFileList).

Details

registerFileType: The registerFileType function adds entries to the file type register created
at load time. The point of the register is for discovery of file type (class) by file extension.
These are List-type classes (e.g., BamFileList) that occupy the fileList slot of a Genomic-
Files class.
Each List class entry in the register is associated with (1) a regular expression that identifies
the file extension, (2) a class and (3) the package where the class is defined. At load time
the register is populated with classes known to GenomicFiles. New classes / file types can be
added to the register with registerFileType by providing these three pieces of information.

findTypeRegistry: Searches the registry for a match to the extension of fname. Internal use only.

makeFileType: Performs a look-up in the file registry based on the supplied regular expression;
returns an object of the associated class. Internal use only.

Value

registerFileType: NULL

findTypeRegistry: The regular expression associated with the file.

makeFileType: A List-type object defined in the registry.

18 unpack

Examples

At load time the registry is populated with file types
known to GenomicFiles.
sapply(as.list(.fileTypeRegistry), "[", "type")

Add a new class to the file register.
Not run: registerFileType(NewClassList, NewPackage, "\.NewExtension$")

unpack Un-pack results obtained with a pack()ed group of ranges

Description

unpack returns results obtained with pack()ed ranges to the geometry of the original, unpacked
ranges.

Usage

S4 method for signature 'list,GRangesList'
unpack(flesh, skeleton, ...)
S4 method for signature 'List,GRangesList'
unpack(flesh, skeleton, ...)

Arguments

flesh A List object to be unpacked; the result from querying a file with skeleton.

skeleton The GRangesList created with ‘pack(x)‘.

... Arguments passed to other methods.

Details

unpack returns a List obtained with packed ranges to the geometry and order of the original,
unpacked ranges.

Value

A unpacked form of flesh.

See Also

• pack for packing ranges.

VcfStack 19

Examples

fl <- system.file("extdata", "ex1.bam", package = "Rsamtools")
gr <- GRanges(c(rep("seq2", 3), "seq1"),

IRanges(c(75, 1, 100, 1), width = 2))

Ranges are packed by order within chromosome and grouped
around gaps greater than 'inter_range_len'. See ?pack for details.
pk <- pack(gr, inter_range_len = 25)

FUN computes coverage for the range passed as 'rng'.
FUN <- function(rng, fl, param) {

requireNamespace("GenomicAlignments") ## for bamWhich() and coverage()
Rsamtools::bamWhich(param) <- rng
GenomicAlignments::coverage(Rsamtools::BamFile(fl), param=param)[rng]

}

Compute coverage on the packed ranges.
dat <- bplapply(as.list(pk), FUN, fl = fl, param = ScanBamParam())

The result list contains RleLists of coverage.
lapply(dat, class)

unpack() transforms the results back to the order of
the original ranges (i.e., unpacked 'gr').
unpack(dat, pk)

VcfStack VcfStack and RangedVcfStack Objects

Description

The VcfStack class is a vector of related VCF files, for instance each file representing a separate
chromosome. The class helps manage these files as a group. The RangedVcfStack class extends
VcfStack by associating genomic ranges of interest to the collection of VCF files.

Constructor

VcfStack(files=NULL, seqinfo=NULL, colData=NULL, index=TRUE, check=TRUE): Creates a
VcfStack object.

files A VcfFilelist object. If a VcfFile or character vector is given a VcfFileList will be
coerced. The character vector should be files paths pointing to VCF files. The character
vector must be named, with names correspond to seqnames in each VCF file.

seqinfo A Seqinfo object describing the levels genome and circularity of each sequence.
colData An optional DataFrame describing each sample in the VcfStack. When present, row

names must correspond to sample names in the VCF file.
index A logical indicating if the vcf index files should be created.
check A logical indicating if the check across samples should be performed

20 VcfStack

RangedVcfStack(vs=NULL, rowRanges=NULL): Creates a RangedVcfStack object.

vs A VcfStack object.

rowRanges An optional GRanges object associating the genomic ranges of interest to the
collection of VCF files. The seqnames of rowRanges are a subset of seqnames(vs). If
missing, a default is created from the seqinfo object of the provided VcfStack.

Accessors

In the code below, x is a VcfStack or RangedVcfStack object.

dim(x) Get the number of files and samples in the VcfStack object.

colnames(x, do.NULL=TRUE, prefix="col") Get the sample names in the VcfStack.

rownames(x), do.NULL=TRUE, prefix="row") Get the names of the files in VcfStack.

dimnames(x)) Get the names of samples and the names of files in VcfStack.

files(x, . . .), files(x, . . . , check=TRUE) <- value Get or set the files on x. value can be a named
character() of file paths or a VcfFileList. The return value will be a VcfFileList.

seqinfo(x), seqinfo(x, new2old = NULL, pruning.mode = c("error", "coarse", "fine", "tidy")) <- value
Get or set the seqinfo on x. See seqinfo<- for details on new2old and pruning.mode.

seqlevelsStyle(x) <- value Set the seqlevels according to the supplied style. File names and rowRanges
will also be updated if applicable. See seqlevelsStyle<- for more details.

colData(x), colData(x, . . .) <- value Get or set the colData on x. value is a DataFrame.

rowRanges(x), rowRanges(x, . . .) <- value Get or set the rowRanges on x. x has to be a RangedVcfStack
object. value is a GRanges.

Methods

In the code below, x is a VcfStack or RangedVcfStack object. i is a GRanges object, character()
vector of seqnames, numeric() vector, logical() vector, or can be missing. For a RangedVcfStack
object, assay and readVcfStack will use the associated rowRanges object for i.

vcfFields(x) Returns a CharacterList of all available VCF fields, with names of fixed, info,
geno and samples indicating the four categories. Each element is a character() vector of
available VCF field names within each category.

assay(x, i, . . . , BPPARAM=bpparam()) Get matrix of genotype calls from the VCF files. See
genotypeToSnpMatrix. Argument i specifies which files to read. BPPARAM is the argument to
the bpmapply.

readVcfStack(x, i, j=colnames(x), param=ScanVcfParam()) Get content of VCF files in the Vcf-
Stack. i indicates which files to read. j can be missing or a character() vector of sample names
(see samples) present in the VCF files. param is a ScanVcfParam object. If param is used i
and j are ignored.

show(object) Display abbreviated information about VcfStack or RangedVcfStack object.

VcfStack 21

Subsetting

In the code below, x is a VcfStack or RangedVcfStack object.

x[i, j] Get elements from ranges i and samples j as a VcfStack or RangedVcfStack object. Note:
for a RangedVcfStack, the rowRanges object will also be subset.
i can be missing, a character() vector of seqnames, numeric() vector of indexes, logical() or
GRanges object. When i is a GRanges object, seqnames(i) is then used to subset the files in
the VcfStack.
j can be missing, a character() vector of sample names, a numeric(), logical() vector.

Helpers

getVCFPath(vs, chrtok) Deprecated. Use files(vs)[chrtok] instead.

paths1kg(chrtoks) Translate seqnames chrtoks to 1000 genomes genotype VCF urls.

Author(s)

Lori Shepherd mailto:Lori.Shepherd@RoswellPark.org and Martin Morgan mailto:Martin.
Morgan@RoswellPark.org

See Also

VcfFile, VcfFileList.

Examples

CONSTRUCTION

point to VCF files and add names corresponding to the sequence
present in the file
extdata <- system.file(package="GenomicFiles", "extdata")
files <- dir(extdata, pattern="^CEUtrio.*bgz$", full=TRUE)
names(files) <- sub(".*_([0-9XY]+).*", "\\1", basename(files))

input data.frame describing the length of each sequence, coerce to
'Seqinfo' object
seqinfo <- as(readRDS(file.path(extdata, "seqinfo.rds")), "Seqinfo")

stack <- VcfStack(files, seqinfo)
stack

Use seqinfo from VCF files instead of explict value
stack2 <- VcfStack(files)

rstack <- RangedVcfStack(stack)
gr <- GRanges(c("7:1-159138000", "X:1-155270560"))
rstack2 <- RangedVcfStack(stack, gr)
rstack2

mailto:Lori.Shepherd@RoswellPark.org
mailto:Martin.Morgan@RoswellPark.org
mailto:Martin.Morgan@RoswellPark.org

22 VcfStack

ACCESSORS

dim(stack)
colnames(stack)
rownames(stack)
dimnames(stack)
head(files(stack))
seqinfo(stack)
colData(stack)

METHODS

readVcfStack(stack, i=GRanges("20:862167-62858306"))
i <- GRanges(c("20:862167-62858306", "7:1-159138000"))
readVcfStack(stack, i=i, j="NA12891")

head(assay(stack, gr))
head(assay(rstack2))

seqlevels(stack2)
rownames(stack2)

library(GenomeInfoDb) # for seqlevelsStyle()
seqlevelsStyle(stack2)
seqlevelsStyle(stack2) <- "UCSC"
seqlevelsStyle(stack2)
seqlevels(stack2)
rownames(stack2)
vcfFields(stack2)

SUBSETTING

select rows 4, 5, 6 and samples 1, 2
stack[4:6, 1:2]
select rownames "7", "11" and sample "NA12891"
stack[c("7", "11"), "NA12891"]
stack[c("7", "11", "X"), 2:3]
subset with GRanges
stack[GRanges("20:862167-62858306")]

rstack2[]
rstack2[,1]

HELPERS

paths1kg(1:3)

Index

∗ classes
GenomicFiles, 2

∗ manip
reduceByYield, 13

∗ methods
GenomicFiles, 2
pack, 5
reduceByFile, 6
reduceByRange, 10
registry-utils, 17
unpack, 18

[,GenomicFiles,ANY,ANY,ANY-method
(GenomicFiles), 2

[,GenomicFiles,ANY,ANY-method
(GenomicFiles), 2

[,RangedVcfStack,ANY,ANY,ANY-method
(VcfStack), 19

[,RangedVcfStack,ANY,ANY-method
(VcfStack), 19

[,VcfStack,ANY,ANY,ANY-method
(VcfStack), 19

[,VcfStack,ANY,ANY-method (VcfStack), 19

assay,RangedVcfStack,ANY-method
(VcfStack), 19

assay,VcfStack,ANY-method (VcfStack), 19

BamFile, 13–15
bpmapply, 20

CharacterList, 20
class:GenomicFiles (GenomicFiles), 2
class:VcfStack (VcfStack), 19
colData,VcfStack-method (VcfStack), 19
colData<-,GenomicFiles,DataFrame-method

(GenomicFiles), 2
colData<-,VcfStack,DataFrame-method

(VcfStack), 19
colnames,VcfStack-method (VcfStack), 19

DataFrame, 19, 20

dim,VcfStack-method (VcfStack), 19
dimnames,VcfStack-method (VcfStack), 19
dimnames<-,GenomicFiles,list-method

(GenomicFiles), 2

files (GenomicFiles), 2
files,GenomicFiles-method

(GenomicFiles), 2
files,VcfStack-method (VcfStack), 19
files<- (GenomicFiles), 2
files<-,GenomicFiles,character-method

(GenomicFiles), 2
files<-,GenomicFiles,List-method

(GenomicFiles), 2
files<-,VcfStack,character-method

(VcfStack), 19
files<-,VcfStack,VcfFile-method

(VcfStack), 19
files<-,VcfStack,VcfFileList-method

(VcfStack), 19
findTypeRegistry (registry-utils), 17

GenomicFiles, 2
GenomicFiles,GenomicRanges_OR_GRangesList,character-method

(GenomicFiles), 2
GenomicFiles,GenomicRanges_OR_GRangesList,List-method

(GenomicFiles), 2
GenomicFiles,GenomicRanges_OR_GRangesList,list-method

(GenomicFiles), 2
GenomicFiles,missing,ANY-method

(GenomicFiles), 2
GenomicFiles,missing,missing-method

(GenomicFiles), 2
GenomicFiles-class, 8, 12
GenomicFiles-class (GenomicFiles), 2
GenomicFiles-deprecated, 5
genotypeToSnpMatrix, 20
getVCFPath (GenomicFiles-deprecated), 5
GRanges, 20

isPacked (pack), 5

23

24 INDEX

makeFileType (registry-utils), 17

pack, 5, 18
pack,GRanges-method (pack), 5
paths1kg (VcfStack), 19

RangedVcfStack (VcfStack), 19
RangedVcfStack-class (VcfStack), 19
readVcfStack (VcfStack), 19
reduceByFile, 3, 6, 12
reduceByFile,GenomicFiles,missing-method

(reduceByFile), 6
reduceByFile,GRanges,ANY-method

(reduceByFile), 6
reduceByFile,GRangesList,ANY-method

(reduceByFile), 6
reduceByRange, 3, 8, 10
reduceByRange,GenomicFiles,missing-method

(reduceByRange), 10
reduceByRange,GRanges,ANY-method

(reduceByRange), 10
reduceByRange,GRangesList,ANY-method

(reduceByRange), 10
reduceByYield, 13
reduceFiles, 12
reduceFiles (reduceByFile), 6
reduceRanges, 8
reduceRanges (reduceByRange), 10
REDUCEsampler (reduceByYield), 13
registerFileType (registry-utils), 17
registry-utils, 17
rownames,VcfStack-method (VcfStack), 19
rowRanges,RangedVcfStack-method

(VcfStack), 19
rowRanges<-,RangedVcfStack,GRanges-method

(VcfStack), 19

samples, 20
ScanVcfParam, 20
Seqinfo, 19
seqinfo,VcfStack-method (VcfStack), 19
seqinfo<-, 20
seqinfo<-,RangedVcfStack-method

(VcfStack), 19
seqinfo<-,VcfStack-method (VcfStack), 19
seqlevelsStyle<-, 20
seqlevelsStyle<-,RangedVcfStack-method

(VcfStack), 19

seqlevelsStyle<-,VcfStack-method
(VcfStack), 19

seqnames, 20, 21
show,GenomicFiles-method

(GenomicFiles), 2
show,VcfStack-method (VcfStack), 19
SummarizedExperiment, 3

TabixFile, 15

unpack, 6, 18
unpack,List,GRangesList-method

(unpack), 18
unpack,list,GRangesList-method

(unpack), 18

vcfFields,VcfStack-method (VcfStack), 19
VcfFile, 21
VcfFileList, 20, 21
VcfStack, 19
VcfStack-class (VcfStack), 19

	GenomicFiles
	GenomicFiles-deprecated
	pack
	reduceByFile
	reduceByRange
	reduceByYield
	registry-utils
	unpack
	VcfStack
	Index

