Package ‘GenomicDataCommons’

February 1, 2026
Type Package
Title NIH / NCI Genomic Data Commons Access

Description Programmatically access the NIH / NCI Genomic Data Commons
RESTful service.

Version 1.35.1

Date 2025-05-12
License Artistic-2.0
Depends R (>=4.1.0)

Imports stats, httr, xml2, jsonlite, utils, rlang, readr,
GenomicRanges, IRanges, dplyr, rappdirs, tibble, tidyr

Suggests BiocStyle, knitr, rmarkdown, DT, testthat, listviewer,
ggplot2, GenomicAlignments, Rsamtools, BiocParallel,
TxDb.Hsapiens.UCSC.hg38.knownGene, VariantAnnotation, maftools,
R.utils, data.table

biocViews Datalmport, Sequencing

URL https://bioconductor.org/packages/GenomicDataCommons,
http://github.com/Bioconductor/GenomicDataCommons,

http://bioconductor.github.io/GenomicDataCommons/

BugReports https://github.com/Bioconductor/GenomicDataCommons/issues/new
Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/GenomicDataCommons

git_branch devel

git_last_commit 06edbb7

git_last_commit_date 2025-11-07

Repository Bioconductor 3.23

Date/Publication 2026-02-01

https://bioconductor.org/packages/GenomicDataCommons
http://github.com/Bioconductor/GenomicDataCommons
http://bioconductor.github.io/GenomicDataCommons/
https://github.com/Bioconductor/GenomicDataCommons/issues/new

2 Contents
Author Martin Morgan [aut],
Sean Davis [aut, cre],
Marcel Ramos [ctb]

Maintainer Sean Davis <seandavi@gmail.com>

Contents
GenomicDataCommons-package 3
AETEZALIONS . .+« . v v v i e e e e e e e e e e e e e e e e e e e 4
available_expand 5
available_fields 5
available_values e e e 6
COUNL . . v o e et e e e e e e e e e e e e e e e e e e 7
default_fields e 8
endpoints oL e 8
ENLLY_NAME o v it e e e e e e e e e e e e e e e 9
expand e e 10
facet e 11
field_description 12
filtering e e e 13
gdcdata 14
gdc_cache L e 16
gde_client e 17
gdc_clinical 18
gde_token e e 19
grep_fields. 20
S . . e e e e e 21
id_field e 22
make _filter s 23
manifest e e e e e e e e e e e e 23
MAPPING .+« o o o e e e e e e e e e e e e 25
QUETY o v o v e e e e e e e e e e e e e e e e e e 25
readDNACODY o e 27
readHTSeqFile e 28
TESPOMSE « « v v v v v e e e e e e e e e e e e e e e e e e e 29
results L e e e 30
results_all e 31
select . . . L e 32
slicing 33
STATUS . . . o e e e e e e e e e e e e e e e e 34
transfer L L e e e e e e 35
write_manifest L e e e 36

Index 38

GenomicDataCommons-package

GenomicDataCommons-package
GenomicDataCommons: A package for interfacing with the NCI GDC

Description

Programmatically access the NIH / NCI Genomic Data Commons RESTful service.

finding data

* query
* cases

* projects

e files

* annotations

* mapping

downloading data

data

Author(s)

Maintainer: Sean Davis <seandavi@gmail.com>

Authors:
* Martin Morgan <martin.morgan@roswellpark.org>
Other contributors:

e Marcel Ramos <marcel.ramos@sph. cuny.edu> [contributor]

See Also
Useful links:

* https://bioconductor.org/packages/GenomicDataCommons
e http://github.com/Bioconductor/GenomicDataCommons
e http://bioconductor.github.io/GenomicDataCommons/

* Report bugs at https://github.com/Bioconductor/GenomicDataCommons/issues/new

https://bioconductor.org/packages/GenomicDataCommons
http://github.com/Bioconductor/GenomicDataCommons
http://bioconductor.github.io/GenomicDataCommons/
https://github.com/Bioconductor/GenomicDataCommons/issues/new

4 aggregations

aggregations aggregations

Description

aggregations

Usage
aggregations(x)

S3 method for class 'GDCQuery'
aggregations(x)

S3 method for class 'GDCResponse'
aggregations(x)

Arguments

X a GDCQuery object

Value

a list of data.frame with one member for each requested facet. The data frames each have two
columns, key and doc_count.

Methods (by class)

* aggregations(GDCQuery):

* aggregations(GDCResponse):

Examples

Number of each file type
res = files() |> facet(c('type', 'data_type')) |> aggregations()
res$type

available_expand 5

available_expand Return valid values for "expand"

Description
The GDC allows a shorthand for specifying groups of fields to be returned by the metadata queries.
These can be specified in a select method call to easily supply groups of fields.

Usage

available_expand(entity)

S3 method for class 'character'
available_expand(entity)

S3 method for class 'GDCQuery'
available_expand(entity)

Arguments
entity Either a GDCQuery object or a character(1) specifying a GDC entity (’cases’,
"files’, “annotations’, ’projects’)
Value

A character vector

See Also

See https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#expand for de-
tails

Examples

head(available_expand('files'))

available_fields S3 Generic to return all GDC fields

Description

S3 Generic to return all GDC fields

https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#expand

6 available_values
Usage
available_fields(x)

S3 method for class 'GDCQuery'
available_fields(x)

S3 method for class 'character'
available_fields(x)

Arguments
X A character(1) string (’cases’, files’, projects’, ’annotations’) or an subclass of
GDCQuery.
Value

a character vector of the default fields

Methods (by class)
* available_fields(GDCQuery): GDCQuery method

e available_fields(character): character method

Examples

available_fields('projects')
projQuery = query('projects')
available_fields(projQuery)

available_values Find common values for a GDC field

Description

Find common values for a GDC field

Usage

available_values(entity, field)

Arguments

"non non

entity character(1), a GDC entity ("cases", "files", "annotations", "projects")

field character(1), a field that is present in the entity record

count

Value

character vector of the top 100 (or fewer) most frequent values for a the given field

Examples

available_values('files', 'cases.project.project_id')[1:5]

count provide count of records in a GDCQuery

Description

provide count of records in a GDCQuery
Usage
count(x, ...)

S3 method for class 'GDCQuery'
count(x, ...)

S3 method for class 'GDCResponse'

count(x, ...)
Arguments
X a GDCQuery object
passed to httr (good for passing config info, etc.)
Value

integer(1) representing the count of records that will be returned by the current query

Methods (by class)

e count(GDCQuery):
e count(GDCResponse):

Examples

total number of projects
projects() |> count()

total number of cases
cases() |> count()

8 endpoints

default_fields S3 Generic to return default GDC fields

Description

S3 Generic to return default GDC fields

Usage
default_fields(x)

S3 method for class 'character'
default_fields(x)

S3 method for class 'GDCQuery'
default_fields(x)
Arguments

X A character string (’cases’, files’, projects’, *annotations’) or an subclass of GDCQuery.

Value

a character vector of the default fields

Methods (by class)

e default_fields(character): character method

e default_fields(GDCQuery): GDCQuery method

Examples

default_fields('projects')
projQuery = query('projects')
default_fields(projQuery)

endpoints Endpoints and Parameters

Description

endpoints() returns available endpoints.

entity_name 9

Usage

endpoints()

parameters()

Value

endpoints() returns a character vector of possible endpoints.

parameters() returns a list of possible parameters and their default values.

Examples

endpoints()
parameters()

entity_name Get the entity name from a GDCQuery object

Description
An "entity" is simply one of the four medata endpoints.

* cases
* projects
* files

* annotations
All GDCQuery objects will have an entity name. This S3 method is simply a utility accessor for
those names.
Usage

entity_name(x)

S3 method for class 'GDCQuery'
entity_name(x)

S3 method for class 'GDCResults'
entity_name(x)
Arguments

X a GDCQuery object

Value

"non "non

character(1) name of an associated entity; one of "cases", "files", "projects"”, "annotations".

10

Examples

gcases = cases()
gprojects = projects()

entity_name(qgcases)
entity_name(gprojects)

expand

expand Set the expand parameter

Description

S3 generic to set GDCQuery expand parameter
Usage
expand(x, expand)

S3 method for class 'GDCQuery'
expand(x, expand)

Arguments
X the objects on which to set fields
expand a character vector specifying the fields
Value

A GDCQuery object, with the expand member altered.

Methods (by class)

* expand(GDCQuery): set expand fields on a GDCQuery object

Examples

gProj = projects()
gProj$fields
head(available_fields(gProj))
default_fields(gProj)

gProj |>
select(default_fields(gProj)[1:2]) |>
response() |>
str(max_level=2)

facet 11

facet Set facets for a GDCQuery

Description

Set facets for a GDCQuery
Get facets for a GDCQuery

Usage
facet(x, facets)
get_facets(x)

S3 method for class 'GDCQuery'
get_facets(x)

Arguments
X a GDCQuery object
facets a character vector of fields that will be used for forming aggregations (facets).
Default is to set facets for all default fields. See default_fields for details
Value

returns a GDCQuery object, with facets field updated.

Examples

create a new GDCQuery against the projects endpoint
gProj = projects()

default facets are NULL
get_facets(gProj)

set facets and save result
gProjFacet = facet(gProj)

check facets
get_facets(gProjFacet)

and get a response, noting that

the aggregations list member contains

tibbles for each facet
str(response(gProjFacet,size=2),max.level=2)

12 field_description

field_description S3 Generic that returns the field description text, if available

Description

S3 Generic that returns the field description text, if available

Usage

field_description(entity, field)

S3 method for class 'GDCQuery'
field_description(entity, field)

S3 method for class 'character'
field_description(entity, field)

Arguments
entity character(1) string ("cases’, files’,’projects’, ’annotations’, etc.) or an subclass
of GDCQuery.
field character(1), the name of the field that will be used to look up the description.
Value

character(1) descriptive text or character(0) if no description is available.

Methods (by class)

* field_description(GDCQuery): GDCQuery method

e field_description(character): character method

Examples

field_description('cases', 'annotations.category')
casesQuery = query('cases')
field_description(casesQuery, 'annotations.category')
field_description(cases(), 'annotations.category')

filtering 13

filtering Manipulating GDCQuery filters

Description

Manipulating GDCQuery filters
The filter is simply a safe accessor for the filter element in GDCQuery objects.

The get_filter is simply a safe accessor for the filter element in GDCQuery objects.
Usage
filter(x, expr)

S3 method for class 'GDCQuery'
filter(x, expr)

get_filter(x)

S3 method for class 'GDCQuery'
get_filter(x)

Arguments
X the object on which to set the filter list member
expr a filter expression in the form of the right hand side of a formula, where bare
names (without quotes) are allowed if they are available fields associated with
the GDCQuery object, x
Value

A GDCQuery object with the filter field replaced by specified filter expression

Examples

make a GDCQuery object to start
#

Projects

#

pQuery = projects()

check for the default fields

so that we can use one of them to build a filter
default_fields(pQuery)

pQuery = filter(pQuery,~ project_id == 'TCGA-LUAC")
get_filter(pQuery)

#

14

Files

#

fQuery = files()
default_fields(fQuery)

fQuery = filter(fQuery,~ data_format == 'VCF')
OR

with recent GenomicDataCommons versions:

no "~" needed

fQuery = filter(fQuery, data_format == 'VCF')

get_filter(fQuery)

fQuery = filter(fQuery,~ data_format == 'VCF'
& experimental_strategy == 'WXS'
& type == 'simple_somatic_mutation')
files() |> filter(~ data_format == 'VCF'
& experimental_strategy=='WXS'
& type == 'simple_somatic_mutation') [> count()
files() |> filter(data_format == 'VCF'
& experimental_strategy=="WXS'
& type == 'simple_somatic_mutation') |> count()

Filters may be chained for the

equivalent query

#

When chained, filters are combined with logical AND

files() |>
filter(~ data_format == 'VCF') |>
filter(~ experimental_strategy == 'WXS') |>
filter(~ type == 'simple_somatic_mutation') |>
count ()

OR

files() |>
filter(data_format == 'VCF') |>
filter(experimental_strategy == 'WXS') [|>
filter(type == 'simple_somatic_mutation') [>
count()

Use str() to get a cleaner picture
str(get_filter(fQuery))

gdcdata

gdcdata Download GDC files

gdcdata

Description

15

Download one or more files from GDC. Files are downloaded using the UUID and renamed to the
file name on the remote system. By default, neither the uuid nor the file name on the remote system

can exist.

Usage

gdcdata(
uuids,

use_cached = TRUE,
progress = interactive(),

token = NULL,
access_method
transfer_args

Arguments

uuids
use_cached

progress

token

access_method
transfer_args

Details

”api” ,
= character(),

character() of GDC file UUIDs.

logical(1) default TRUE indicating that, if found in the cache, the file will not
be downloaded again. If FALSE, all supplied uuids will be re-downloaded.

logical(1) default TRUE in interactive sessions, FALSE otherwise indicating
whether a progress par should be produced for each file download.

(optional) character(1) security token allowing access to restricted data. See
https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_
Authorization/.

character(1), either ’api’ or "client’. See details.

character(1), additional arguments to pass to the gdc-client command line. See
gdc_client and transfer_help for details.

further arguments passed to files

This function is appropriate for one or several files; for large downloads use manifest to create a
manifest for and the GDC Data Transfer Tool.

When access_method is "api", the GDC "data" endpoint is the transfer mechanism used. The al-
ternative access_method, "client", will utilize the gdc-client transfer tool, which must be down-
loaded separately and available. See gdc_client for details on specifying the location of the gdc-

client executable.

Value

a named vector with file uuids as the names and paths as the value

See Also

manifest for downloading large data.

https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_Authorization/
https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_Authorization/

16 gdc_cache

Examples

get some example file uuids
uuids <- files() |>

filter(~ access == 'open' & file_size < 100000) |>
results(size = 3) |>
ids()

and get the data, placing it into the gdc_cache() directory
gdcdata(uuids, use_cached=TRUE)

gdc_cache Work with gdc cache directory

Description

The GenomicDataCommons package will cache downloaded files to minimize network and allow
for offline work. These functions are used to create a cache directory if one does not exist, set a
global option, and query that option. The cache directory will default to the user "cache" directory
according to specifications in app_dir. However, the user may want to set this to another direcotory
with more or higher performance storage.

Usage

gdc_cache()

gdc_set_cache(

directory = rappdirs::app_dir(appname = "GenomicDataCommons")$cache(),
verbose = TRUE,
create_without_asking = !interactive()

)

Arguments
directory character(1) directory path, will be created recursively if not present.
verbose logical(1) whether or not to message the location of the cache directory after
creation.

create_without_asking
logical(1) specifying whether to allow the function to create the cache directory
without asking the user first. In an interactive session, if the cache directory does
not exist, the user will be prompted before creation.

Details

The cache structure is currently just a directory with each file being represented by a path con-
structed as: CACHEDIR/UUID/FILENAME. The cached files can be manipulated using standard
file system commands (removing, finding, etc.). In this sense, the cache sytem is minimalist in
design.

gdc_client 17

Value

character(1) directory path that serves as the base directory for GenomicDataCommons downloads.

the created directory (invisibly)

Functions

* gdc_set_cache(): (Re)set the GenomicDataCommons cache directory

Examples

gdc_cache()
Not run:
gdc_set_cache(getwd())

End(Not run)

gdc_client return gdc-client executable path

Description

This function is a convenience function to find and return the path to the GDC Data Transfer Tool
executable assumed to be named ’gdc-client’. The assumption is that the appropriate version of
the GDC Data Transfer Tool is a separate download available from https://gdc.cancer.gov/access-
data/gdc-data-transfer-tool and as a backup from https://github.com/NCI-GDC/gdc-client.

Usage

gdc_client()

Details
The path is checked in the following order:
1. an R option("gdc_client")
2. an environment variable GDC_CLIENT
3. from the search PATH

4. in the current working directory

Value

character(1) the path to the gdc-client executable.

18 gdc_clinical

Examples

this cannot run without first
downloading the GDC Data Transfer Tool
gdc_client = try(gdc_client(),silent=TRUE)

gdc_clinical Get clinical information from GDC

Description

The NCI GDC has a complex data model that allows various studies to supply numerous clinical and
demographic data elements. However, across all projects that enter the GDC, there are similarities.
This function returns four data.frames associated with case_ids from the GDC.

Usage

gdc_clinical(case_ids, include_list_cols = FALSE)

Arguments

case_ids a character() vector of case_ids, typically from "cases" query.

include_list_cols
logical(1), whether to include list columns in the "main" data.frame. These list
columns have values for aliquots, samples, etc. While these may be useful for
some situations, they are generally not that useful as clinical annotations.

Details

Note that these data.frames can, in general, have different numbers of rows (or even no rows at all).
If one wishes to combine to produce a single data.frame, using the approach of left joining to the
"main" data.frame will yield a useful combined data.frame. We do not do that directly given the
potential for 1:many relationships. It is up to the user to determine what the best approach is for
any given dataset.

Value

A list of four data.frames:

1. main, representing basic case identification and metadata (update date, etc.)
2. diagnoses
3. esposures

4. demographic

gdc_token 19

Examples

case_ids = cases() |> results(size=10) |> ids()
clinical_data = gdc_clinical(case_ids)

overview of clinical results
class(clinical_data)
names(clinical_data)
sapply(clinical_data, class)
sapply(clinical_data, nrow)

available data
head(clinical_data$main)
head(clinical_data$demographic)
head(clinical_data$diagnoses)
head(clinical_data$exposures)

gdc_token return a gdc token from file or environment

Description

The GDC requires an auth token for downloading data that are "controlled access". For example,

BAM files for human datasets, germline variant calls, and SNP array raw data all are protected as

"controlled access". For these files, a GDC access token is required. See the https://docs.gdc.cancer.gov/Data_Portal/Users_G
authentication-tokens. Note that this function simply returns a string value. It is possible to keep the

GDC token in a variable in R or to pass a string directly to the appropriate parameter. This function

is simply a convenience function for alternative approaches to get a token from an environment

variable or a file.

Usage
gdc_token()

Details
This function will resolve locations of the GDC token in the following order:

 from the environment variable, GDC_TOKEN, expected to contain the token downloaded from
the GDC as a string

* using readlLines to read a file named in the environment variable, GDC_TOKEN_FILE

* using readlLines to read from a file called . gdc_token in the user’s home directory

If all of these fail, this function will return an error.

Value

character(1) (invisibly, to protect against inadvertently printing) the GDC token.

20 grep_fields

References

https://docs.gdc.cancer.gov/Data_Portal/Users_Guide/Cart/#gdc-authentication-tokens

Examples

This will not run before a GDC token
is in place.
token = try(gdc_token(),silent=TRUE)

grep_fields Find matching field names

Description

This utility function allows quick text-based search of available fields for using grep

Usage
grep_fields(entity, pattern, ..., value = TRUE)
Arguments
entity one of the available gdc entities (’files’, cases’,...) against which to gather avail-
able fields for matching
pattern A regular expression that will be used in a call to grep
passed on to grep
value logical(1) whether to return values as opposed to indices (passed along to grep)
Value

character() vector of field names matching pattern

Examples

grep_fields('files', 'analysis')

https://docs.gdc.cancer.gov/Data_Portal/Users_Guide/Cart/#gdc-authentication-tokens

ids 21

ids Get the ids associated with a GDC query or response

Description
The GDC assigns ids (in the form of uuids) to objects in its database. Those ids can be used for
relationships, searching on the website, and as unique ids. All

Usage

ids(x)

S3 method for class 'GDCManifest'
ids(x)

S3 method for class 'GDCQuery'
ids(x)

S3 method for class 'GDCResults'
ids(x)

S3 method for class 'GDCResponse'
ids(x)
Arguments

X A GDCQuery or GDCResponse object

Value

a character vector of all the entity ids

Examples

use with a GDC query, in this case for "cases”
ids(cases() |> filter(~ project.project_id == "TCGA-CHOL"))
also works for responses

ids(response(files()))

and results

ids(results(cases()))

22 id_field

id_field get the name of the id field

Description

In many places in the GenomicDataCommons package, the entity ids are stored in a column or a
vector with a specific name that corresponds to the field name at the GDC. The format is the entity
name (singular) "_id". This generic simply returns that name from a given object.

Usage
id_field(x)

S3 method for class 'GDCQuery'
id_field(x)

S3 method for class 'GDCResults'
id_field(x)

Arguments
X An object representing the query or results of an entity from the GDC ("cases",
"files", "annotations", "projects")
Value

character(1) such as "case_id", "file_id", etc.

Methods (by class)

e id_field(GDCQuery): GDCQuery method
e id_field(GDCResults): GDCResults method

Examples

id_field(cases())

make_filter 23

make_filter Create NCI GDC filters for limiting GDC query results

Description

Searching the NCI GDC allows for complex filtering based on logical operations and simple com-
parisons. This function facilitates writing such filter expressions in R-like syntax with R code
evaluation.

Usage

make_filter(expr, available_fields)

Arguments

expr a lazy-wrapped expression or a formula RHS equivalent

available_fields
a character vector of the additional names that will be injected into the filter
evaluation environment

Details

If used with available_fields, "bare" fields that are named in the available_fields character vector
can be used in the filter expression without quotes.

Value

a list that represents an R version of the JSON that will ultimately be used in an NCI GDC search
or other query.

manifest Prepare GDC manifest file for bulk download

Description

The manifest function/method creates a manifest of files to be downloaded using the GDC Data
Transfer Tool. There are methods for creating manifest data frames from GDCQuery objects that
contain file information ("cases" and "files" queries).

24 manifest
Usage
manifest(x, from = @, size = count(x), ...)
S3 method for class 'gdc_files'
manifest(x, from = @, size = count(x), ...)
S3 method for class 'GDCfilesResponse'
manifest(x, from = @, size = count(x), ...)
S3 method for class 'GDCcasesResponse'
manifest(x, from = @, size = count(x), ...)
Arguments
X An GDCQuery object of subclass "gdc_files" or "gdc_cases".
from Record number from which to start when returning the manifest.
size The total number of records to return. Default will return the usually desirable
full set of records.
passed to PUT.
Value

A tibble, also of type "gdc_manifest", with five columns:

e id

* filename
* md5

* size

* state

Methods (by class)
* manifest(gdc_files):
* manifest(GDCfilesResponse):

e manifest(GDCcasesResponse):

Examples

gFiles = files()
shortManifest = gFiles |> manifest(size=10)
head(shortManifest,n=3)

mapping 25

mapping Query GDC for available endpoint fields

Description

Query GDC for available endpoint fields

Usage
mapping(endpoint)
Arguments
endpoint character(1) corresponding to endpoints for which users may specify additional
or alternative fields. Endpoints include “projects”, “cases”, “files”, and “anno-
tations”.
Value

A data frame describing the field (field name), full (full data model name), type (data type), and four
additional columns describing the "set" to which the fields belong—“default”, “expand”, “multi”, and
“nested”.

Examples

map <- mapping("projects"”)

head(map)

get only the "default” fields

subset(map,defaults)

And get just the text names of the "default” fields
subset(map,defaults)$field

query Start a query of GDC metadata

Description

The basis for all functionality in this package starts with constructing a query in R. The GDCQuery
object contains the filters, facets, and other parameters that define the returned results. A token is
required for accessing certain datasets.

26 query

Usage

query(
entity,
filters = NULL,
facets = NULL,
expand = NULL,
fields = default_fields(entity),

)
cases(...)
files(...)

projects(...)
annotations(...)
ssms(...)
ssm_occurrences(...)
cnvs(...)

cnv_occurrences(...)

genes(...)
Arguments
entity character vector, including one of the entities in .gdc_entities
filters a filter list, typically created using make_filter, or added to an existing GDCQuery
object using filter.
facets a character vector of facets for counting common values. See available_fields
In general, one will not specify this parameter but will use facet instead.
expand a character vector of "expands" to include in returned data. See available_expand
fields a character vector of fields to return. See available_fields. In general, one
will not specify fields directly, but instead use select
passed through to query
Value

An S3 object, the GDCQuery object. This is a list with the following members.

e filters

* facets
* fields

readDNAcopy

* expand
e archive

¢ token

Functions

* cases(): convenience constructor for a GDCQuery for cases

* files(): convenience contructor for a GDCQuery for files

* projects(): convenience contructor for a GDCQuery for projects

* annotations(): convenience contructor for a GDCQuery for annotations

* ssms(): convenience contructor for a GDCQuery for ssms

* ssm_occurrences(): convenience contructor for a GDCQuery for ssm_occurrences
* cnvs(): convenience contructor for a GDCQuery for cnvs

* cnv_occurrences(): convenience contructor for a GDCQuery for cnv_occurrences

* genes(): convenience contructor for a GDCQuery for genes

Examples

gcases = query('cases')
equivalent to:
gcases = cases()

27

readDNAcopy Read DNAcopy results into GRanges object

Description

Read DNAcopy results into GRanges object

Usage
readDNAcopy(fname, ...)
Arguments
fname The path to a DNAcopy-like file.
passed to read_tsv
Value

a GRanges object

28 readHTSeqFile

Examples

fname = system.file(package='GenomicDataCommons',
'extdata/dnacopy.tsv.gz')

dnac = readDNAcopy (fname)

class(dnac)

length(dnac)

readHTSeqFile Read a single htseq-counts result file.

Description

The htseq package is used extensively to count reads relative to regions (see http://www-huber.
embl.de/HTSeq/doc/counting.html). The output of htseq-count is a simple two-column table
that includes features in column 1 and counts in column 2. This function simply reads in the data
from one such file and assigns column names.

Usage
readHTSeqFile(fname, samplename = "sample”, ...)
Arguments
fname character(1), the path of the htseq-count file.
samplename character(1), the name of the sample. This will become the name of the second
column on the resulting data. frame, making for easier merging if necessary.
passed to read_tsv)
Value

a two-column data frame

Examples

fname = system.file(package='GenomicDataCommons',
'extdata/example.htseq.counts.gz')

dat = readHTSeqFile(fname)

head(dat)

http://www-huber.embl.de/HTSeq/doc/counting.html
http://www-huber.embl.de/HTSeq/doc/counting.html

response 29

response Fetch GDCQuery metadata from GDC

Description

Fetch GDCQuery metadata from GDC

Usage

response(x, ...)

S3 method for class 'GDCQuery'

response(x, from = @, size = 10, ..., response_handler = jsonlite::fromJSON)
response_all(x, ...)
Arguments
X a GDCQuery object
passed to httr (good for passing config info, etc.)
from integer index from which to start returning data
size number of records to return

response_handler

a function that processes JSON (as text) and returns an R object. Default is
fromJSON.

Value
A GDCResponse object which is a list with the following members:

e results
* query
* aggregations

* pages

Examples

basic class stuff
gCases = cases()

resp = response(gCases)
class(resp)

names(resp)

And results from query
resp$results[[1]]

30 results

results results

Description

results

Usage
results(x, ...)

S3 method for class 'GDCQuery'
results(x, ...)

S3 method for class 'GDCResponse'

results(x, ...)
Arguments
X a GDCQuery object
passed on to response
Value

A (typically nested) 1ist of GDC records

Methods (by class)

* results(GDCQuery):

¢ results(GDCResponse):

Examples

gcases = cases() |> results()
length(gcases)

results_all

31

results_all results_all

Description

results_all

Usage
results_all(x)

S3 method for class 'GDCQuery'
results_all(x)

S3 method for class 'GDCResponse'
results_all(x)

Arguments

X a GDCQuery object

Value

A (typically nested) 1ist of GDC records

Methods (by class)

* results_all(GDCQuery):

* results_all(GDCResponse):

Examples

details of all available projects
projResults = projects() |> results_all()
length(projResults)

count(projects())

32 select

select S3 generic to set GDCQuery fields

Description

S3 generic to set GDCQuery fields

Usage

select(x, fields)

S3 method for class 'GDCQuery'
select(x, fields)

Arguments
X the objects on which to set fields
fields a character vector specifying the fields
Value

A GDCQuery object, with the fields member altered.

Methods (by class)

* select(GDCQuery): set fields on a GDCQuery object

Examples

gProj = projects()
gProj$fields
head(available_fields(gProj))
default_fields(gProj)

gProj |>
select(default_fields(gProj)[1:2]) |>
response() |>
str(max_level=2)

slicing

33

slicing

Query GDC for data slices

Description

This function returns a BAM file representing reads overlapping regions specified either as chromo-
somal regions or as gencode gene symbols.

Usage

slicing(
uuid,
regions,
symbols,

destination

file.path(tempdir(), paste@(uuid, ".bam")),

overwrite = FALSE,
progress = interactive(),
token = gdc_token()

Arguments
uuid

regions

symbols
destination
overwrite
progress

token

Details

character(1) identifying the BAM file resource

character() vector describing chromosomal regions, e.g., c("chr1”, "chr2:10000",
"chr3:10000-20000") (all of chromosome 1, chromosome 2 from position
10000 to the end, chromosome 3 from 10000 to 20000).

character() vector of gencode gene symbols, e.g., c("BRCA1", "PTEN")
character(1) default tempfile() file path for BAM file slice

logical(1) default FALSE can destination be overwritten?

logical(1) default interactive() should a progress bar be used?

character(1) security token allowing access to restricted data. Almost all BAM
data is restricted, so a token is usually required. See https://docs.gdc.
cancer.gov/Data/Data_Security/Data_Security/#authentication-tokens.

This function uses the Genomic Data Commons "slicing" API to get portions of a BAM file specified
either using "regions" or using HGNC gene symbols.

Value

character(1) destination to the downloaded BAM file

https://docs.gdc.cancer.gov/Data/Data_Security/Data_Security/#authentication-tokens
https://docs.gdc.cancer.gov/Data/Data_Security/Data_Security/#authentication-tokens

34 status

Examples

Not run:
slicing("df80679e-c4d3-487b-934c-fcc782e5d46e”,
regions="chr17:75000000-76000000" ,
token=gdc_token())

Get 10 BAM files.

bamfiles = files() |>
filter(data_format=='BAM') |>
results(size=10) |> ids()

Current alignments at the GDC are to GRCh38
library('TxDb.Hsapiens.UCSC.hg38.knownGene')
all_genes = genes(TxDb.Hsapiens.UCSC.hg38.knownGene)

first3genes = all_genes[1:3]
remove strand info
strand(first3genes) = 'x'

We can get our regions easily now
as.character(first3genes)

Use parallel downloads to speed processing
library(BiocParallel)

register(MulticoreParam())

fnames = bplapply(bamfiles, slicing, overwrite = TRUE,
regions=as.character(first3genes))

10 BAM files
fnames

library(GenomicAlignments)
lapply(unlist(fnames), readGAlignments)

End(Not run)

status Query the GDC for current status

Description

Query the GDC for current status

Usage

status(version = NULL)

transfer 35

Arguments

version (optional) character(1) version of GDC

Value

List describing current status.

Examples

status()

transfer Bulk data download

Description

The GDC maintains a special tool, https://docs.gdc.cancer.gov/Data_Transfer_Tool/Users_Guide/Getting_Started/,
that enables high-performance, potentially parallel, and resumable downloads. The Data Transfer

Tool is an external program that requires separate download. Due to recent changes in the GDC API,

the transfer function now validates the version of the ‘gdc-client to ensure reliable downloads.

Usage

transfer(uuids, args = character(), token = NULL, overwrite = FALSE)
gdc_client_version_validate(valid_version = .GDC_COMPATIBLE_VERSION)

transfer_help()

Arguments

uuids character() vector of GDC file UUIDs

args character() vector specifying command-line arguments to be passed to gdc-client.
See transfer_help for possible values. The arguments --manifest, --dir,
and --token-file are determined by manifest, destination_dir, and token,
respectively, and should NOT be provided as elements of args.

token character(1) containing security token allowing access to restricted data. See
https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_
Authorization/. Note that the GDC transfer tool requires a file for data trans-
fer. Therefore, this token will be written to a temporary file (with appropriate
permissions set).

overwrite logical(1) default FALSE indicating whether existing files with identical name

should be over-written.

valid_version character(1) The last known version that works for the current data release for
which to validate against, not typically changed by the end-user.

https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_Authorization/
https://gdc-docs.nci.nih.gov/API/Users_Guide/Authentication_and_Authorization/

36 write_manifest

Value

character(1) directory path to which the files were downloaded.

Functions

e gdc_client_version_validate(): If you are using the ’client’ option, your ‘gdc-client
should be up-to-date (>= 1.3.0).

e transfer_help():

Examples

Not run:

uuids = files() |>
filter(access == "open") |>
results() |>
ids()

file_paths <- transfer(uuids)

file_paths

names(file_paths)

and with authenication

REQUIRES gdc_token

destination <- transfer(uuids, token=gdc_token())

End(Not run)

write_manifest write a manifest data.frame to disk

Description

The manifest method creates a data.frame that represents the data for a manifest file needed by the
GDC Data Transfer Tool. While the file format is nothing special, this is a simple helper function
to write a manifest data.frame to disk. It returns the path to which the file is written, so it can be
used "in-line" in a call to transfer.

Usage

write_manifest(manifest, destfile = tempfile())

Arguments
manifest A data.frame with five columns, typically created by a call to manifest
destfile The filename for saving the manifest.

Value

character(1) the destination file name.

write_manifest

Examples

mf = files() |> manifest(size=10)
write_manifest(mf)

37

Index

* internal
endpoints, 8

aggregations, 4
annotations, 3
annotations (query), 25
app_dir, 16
available_expand, 5, 26
available_fields, 5, 26
available_values, 6

cases, 3

cases (query), 25
cnv_occurrences (query), 25
cnvs (query), 25

count, 7

default_fields, 8, 1/

endpoints, 8
entity_name, 9
expand, 10

facet, 11, 26
field_description, 12
files, 3

files (query), 25
filter, 26

filter (filtering), 13
filtering, 13
fromJSON, 29

gdc_cache, 16
gdc_client, 15,17

gdc_client_version_validate (transfer),

35
gdc_clinical, 18

gdc_set_cache (gdc_cache), 16

gdc_token, 19
gdcdata, 14

GDCQuery, 4-13, 21, 23, 24, 29-32

GDCQuery (query), 25
GDCResponse, 21
GDCResponse (response), 29
genes (query), 25
GenomicDataCommons

(GenomicDataCommons-package), 3
GenomicDataCommons-package, 3

get_facets (facet), 11
get_filter (filtering), 13
GRanges, 27

grep, 20

grep_fields, 20

id_field, 22
ids, 21

make_filter, 23, 26
manifest, 15, 23, 36
mapping, 3, 25

parameters (endpoints), 8
projects, 3

projects (query), 25

PUT, 24

query, 3, 25, 26

read_tsv, 27, 28
readDNAcopy, 27
readHTSeqgFile, 28
response, 29, 30
response_all (response), 29
results, 30

results_all, 31

select, 5, 26, 32
slicing, 33
ssm_occurrences (query), 25
ssms (query), 25

status, 34

INDEX

tibble, 24

transfer, 35, 36
transfer_help, 15, 35
transfer_help (transfer), 35

write_manifest, 36

39

	GenomicDataCommons-package
	aggregations
	available_expand
	available_fields
	available_values
	count
	default_fields
	endpoints
	entity_name
	expand
	facet
	field_description
	filtering
	gdcdata
	gdc_cache
	gdc_client
	gdc_clinical
	gdc_token
	grep_fields
	ids
	id_field
	make_filter
	manifest
	mapping
	query
	readDNAcopy
	readHTSeqFile
	response
	results
	results_all
	select
	slicing
	status
	transfer
	write_manifest
	Index

