Package ‘GWASTools’

February 2, 2026
Version 1.57.0

Type Package
Title Tools for Genome Wide Association Studies

Description Classes for storing very large GWAS data sets and annotation, and func-
tions for GWAS data cleaning and analysis.

Depends Biobase

Imports graphics, stats, utils, methods, gdsfmt, DBI, RSQLite,
GWASExactHW, DNAcopy, survival, sandwich, Imtest, logistf,
quantsmooth, data.table

Suggests ncdf4, GWASdata, BiocGenerics, RUnit, Biostrings,
GenomicRanges, IRanges, SNPRelate, snpStats, S4Vectors,
VariantAnnotation, parallel, BiocStyle, knitr

License Artistic-2.0

URL https://github.com/smgogarten/GWASTools
LazyData yes
biocViews SNP, GeneticVariability, QualityControl, Microarray

Collate utils.R AllGenerics.R AllClasses.R genotypeToCharacter.R
Methods-ScanAnnotationDataFrame.R
Methods-SnpAnnotationDataFrame.R Methods-ScanAnnotationSQLite.R
Methods-SnpAnnotationSQLite.R Methods-GdsReader.R
Methods-GdsGenotypeReader.R Methods-GdsIntensityReader.R
Methods-NcdfReader.R Methods-NcdfGenotypeReader.R
Methods-NcdfIntensityReader.R Methods-MatrixGenotypeReader.R
Methods-GenotypeData.R Methods-IntensityData.R
Methods-Iterator.R createDataUtils.R createDataFile.R
create AffyIntensityFile.R checkGenotypeFile.R
checklIntensityFile.R setMissingGenotypes.R imputedDosageFile.R
checkImputedDosageFile.R gdsSubset.R gdsSubsetCheck.R
plinkUtils.R snpStats.R vefWrite.R asVCER convertNcdfGds.R
BAFfromClusterMeans.R BAFfromGenotypes.R genoClusterPlot.R
genoClusterPlotByBatch.R chromlIntensityPlot.R
pseudoautolntensityPlot.R intensityOutliersPlot.R

1

https://github.com/smgogarten/GWASTools

sdByScanChromWindow.R medianSdOverAutosomes.R
meanSdByChromWindow.R findBAFvariance.R anomSegmentBAF.R
anomFilterBAF.R anomDetectBAF.R LOHfind.R LOHselectAnoms.R
anomDetectLOH.R anomSegStats.R anomStatsPlot.R
anomldentifyLowQuality.R alleleFrequency.R apartSnpSelection.R
hetByScanChrom.R hetBySnpSex.R missingGenotypeByScanChrom.R
missingGenotypeBySnpSex.R meanIntensityByScanChrom.R
qualityScoreByScan.R qualityScoreBySnp.R batchChisqTest.R
batchFisherTest.R duplicateDiscordanceAcrossDatasets.R
dupDosageCorAcrossDatasets.R duplicateDiscordance.R
duplicateDiscordanceProbability.R assocRegression.R

assocCoxPH.R exactHWE.R mendelErr.R qqPlot.R manhattanPlot.R
snpCorrelationPlot.R ibdAreasDraw.R ibdAssignRelatedness.R
ibdPlot.R findRelationsMeanVar.R pedigreeCheck.R
pedigreeDeleteDuplicates.R pedigreePairwiseRelatedness.R
pedigreeMaxUnrelated.R simulateGenotypeMatrix.R
simulateIntensityMatrix.R

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/GWASTools
git_branch devel

git_last_commit 224f71a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Stephanie M. Gogarten [aut],
Cathy Laurie [aut],
Tushar Bhangale [aut],
Matthew P. Conomos [aut],
Cecelia Laurie [aut],
Michael Lawrence [aut],
Caitlin McHugh [aut],
Ian Painter [aut],
Xiuwen Zheng [aut],
Jess Shen [aut],
Rohit Swarnkar [aut],
Adrienne Stilp [aut],
Sarah Nelson [aut],
David Levine [aut],
Sonali Kumari [ctb] (Converted vignettes from Sweave to RMarkdown /
HTML.),
Stephanie M. Gogarten [cre]

Maintainer Stephanie M. Gogarten <sdmorris@uw.edu>

Contents 3
Contents
GWASTools-package e 4
alleleFrequency L 5
allequal L 6
anomDetectBAFo 7
anomDetectLOH 12
anomldentifyLowQuality 17
anomSegStats e e e e e e e e e e 20
apartSnpSelectiono 25
asSnpMatrixo e e e e e e 26
assocCoxPH o o o 27
assocRegression 30
BAFfromClusterMeans e 33
BAFfromGenotypes e e e e 35
batchTest e 37
CENLIOMEIES . . .« .« v v v v e 40
chromIntensityPlot L 41
convertNcdfGds 43
createDataFile 44
duplicateDiscordance 50
duplicateDiscordanceAcrossDatasets 52
duplicateDiscordanceProbability o 57
exactHWE e 58
findBAFvariance 60
GdsGenotypeReader 63
GdsIntensityReader 66
GdsReader. e 68
gdsSubset e e 70
genoClusterPlot L 72
GenotypeData-class 74
Genotypelterator-class L 78
genotypeToCharacter 80
getob] . . . 81
getVariable 82
GWASTools-defunct 84
hetByScanChrom e 85
hetBySnpSex 86
HLA . . e 87
ibdPlot e 88
imputedDosageFile 91
IntensityData-class e 95
intensityOutliersPlot 98
manhattanPloto 100
MatrixGenotypeReader 101
meanlntensityByScanChrom 0oL 0oL 103
mendelErro 104

mendellList L e 107

4 GWASTools-package

missingGenotypeByScanChrom 109
missingGenotypeBySnpSex oL 110
NedfGenotypeReader 111
NedfIntensityReader e 113
NedfReader o oo e 116
pasteSorted L e 117
pecaSnpFilters L e e e e e 118
pedigreeCheck 119
pedigreeDeleteDuplicates L 122
pedigreeMaxUnrelated 123
pedigreePairwiseRelatedness L 126
plinkUtils e 127
pseudoautolntensityPlot 130
pseudoautosomal 131
qqPlot . . . e e 132
qualityScoreByScan e 133
qualityScoreBySnp 134
readWriteFirst L. e 135
relationsMeanVar 136
SAVEAS « v v v v e 137
ScanAnnotationDataFrame o oL 138
ScanAnnotationSQLite L e 140
SetMissingGenotypes L. e 142
simulateGenotypeMatrix e e 143
SnpAnnotationDataFrame oL o o 145
SnpAnnotationSQLite 148
snpCorrelationPlot L. 150
vefWrite L e 151
Index 154
GWASTools-package Tools for Genome Wide Association Studies
Description

This package contains tools for facilitating cleaning (quality control and quality assurance) and
analysis of GWAS data.

Details

GWASTools provides a set of classes for storing data and annotation from Genome Wide Associa-
tion studies, and a set of functions for data cleaning and analysis that operate on those classes.

Genotype and intensity data are stored in external files (GDS or NetCDF), so it is possible to
analyze data sets that are too large to be contained in memory. The GenotypeReader class and
IntensityReader class unions provide a common interface for GDS and NetCDF files.

alleleFrequency 5

Two sets of classes for annotation are provided. SnpAnnotationDataFrame and ScanAnnotationDataFrame
extend AnnotatedDataFrame and provide in-memory containers for SNP and scan annotation and
metadata. SnpAnnotationSQLite and ScanAnnotationSQL1ite provide interfaces to SNP and scan
annotation and metadata stored in SQLite databases.

The GenotypeData and IntensityData classes combine genotype or intensity data with SNP and
scan annotation, ensuring that the data in the NetCDF files is consistent with annotation through

unique SNP and scan IDs. A majority of the functions in the GWASTools package take GenotypeData
and/or IntensityData objects as arguments.

Author(s)

Stephanie M. Gogarten, Cathy Laurie, Tushar Bhangale, Matthew P. Conomos, Cecelia Laurie,
Caitlin McHugh, Ian Painter, Xiuwen Zheng, Jess Shen, Rohit Swarnkar, Adrienne Stilp

Maintainer: Stephanie M. Gogarten <sdmorris@u.washington.edu>

References

Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W,, Bierut, L. J., Bhangale, T., Boehm, F., Ca-
poraso, N. E., Cornelis, M. C., Edenberg, H. J., Gabriel, S. B., Harris, E. L., Hu, F. B., Jacobs, K. B.,
Kraft, P., Landi, M. T., Lumley, T., Manolio, T. A., McHugh, C., Painter, 1., Paschall, J., Rice, J. P.,
Rice, K. M., Zheng, X., and Weir, B. S., for the GENEVA Investigators (2010), Quality control and

quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology,
34: 591-602. doi: 10.1002/gepi.20516

alleleFrequency Allelic frequency

Description

Calculates the frequency of the A allele over the specifed scans.

Usage
alleleFrequency(genoData, scan.exclude,
verbose = TRUE)
Arguments

genoData GenotypeData object.
scan.exclude Integer vector with IDs of scans to exclude.

verbose Logical value specifying whether to show progress information.

6 allequal

Details

Counts male heterozygotes on the X and Y chromosomes as missing values, and any genotype for
females on the Y chromosome as missing values. A "sex" variable must be present in the scan
annotation slot of genoData.

Samples with missing sex are included in the allele counts for "all" and "MAF" for autosomes, but
not for sex chromosomes.

Value

A matrix with a row for each SNP. Columns "M" for males, "F" for females, and "all" for all scans
give frequencies of the A allele. Sample size for males, females, and all is returned as "n.M", "n.F",
and "n", respectively. "MAF" is the minor allele frequency over all scans.

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

need scan annotation with sex
data(illuminaScanADF)
genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

afreq <- alleleFrequency(genoData, scan.exclude=(illuminaScanADF$race != "CEU"))
close(genoData)
allequal Test if two objects have the same elements
Description

allequal tests if two objects have all the same elements, including whether they have NAs in the
same place.

Usage

allequal(x, y)

anomDetectBAF 7

Arguments

X first object to compare

y second object to compare
Details

Unlike all(x ==y), allequal will return FALSE if either object is NULL. Does not check class
types, so allequal will return TRUE in some cases where identical will return FALSE (e.g. if two
objects are identical when coerced to the same class). allequal always retuns a logical value, so it
can be used safely in if expressions.

Value

Returns TRUE if x and y exist and all elements are equal, FALSE if some elements are unequal. If
there are NA values, returns TRUE if is.na(x) == is.na(y) and all other elements are equal. Returns
FALSE if is.na(x) !=1is.na(y). Retuns FALSE if x or y (but not both) is NULL.

Author(s)

Stephanie Gogarten

See Also

identical, all, all.equal

Examples

x <= ¢c(1,2,NA,4); y <= c(1,2,NA,4);
allequal(x, y) ## TRUE

allequal(1, as.integer(1)) ## TRUE
allequal(1, "1") ## TRUE

anomDetectBAF BAF Method for Chromosome Anomaly Detection

Description

anomSegmentBAF for each sample and chromosome, breaks the chromosome up into segments
marked by change points of a metric based on B Allele Frequency (BAF) values.

anomFilterBAF selects segments which are likely to be anomalous.

anomDetectBAF is a wrapper to run anomSegmentBAF and anomFilterBAF in one step.

anomDetectBAF

anomSegmentBAF (intenData, genoData, scan.ids, chrom.ids, snp.ids,

smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
verbose = TRUE)

anomFilterBAF (intenData, genoData, segments, snp.ids, centromere,

low.qual.ids = NULL, num.mark.thresh = 15, long.num.mark.thresh = 200,
sd.reg = 2, sd.long = 1, low.frac.used = 0.1, run.size = 10,
inter.size = 2, low.frac.used.num.mark = 30, very.low.frac.used = 0.01,

low.qual.frac.num.mark = 150, lrr.cut = -2, ct.thresh = 10,
frac.thresh = 0.1, verbose=TRUE,
small.thresh=2.5, dev.sim.thresh=0.1, centSpan.fac=1.25, centSpan.nmark=50)

anomDetectBAF (intenData, genoData, scan.ids, chrom.ids, snp.ids,

centromere, low.qual.ids = NULL, ...)
Arguments
intenData An IntensityData object containing the B Allele Frequency. The order of the

rows of intenData and the snp annotation are expected to be by chromosome and
then by position within chromosome. The scan annotation should contain sex,
coded as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.

scan.ids vector of scan ids (sample numbers) to process

chrom. ids vector of (unique) chromosomes to process. Should correspond to integer chro-
mosome codes in intenData. Recommended to include all autosomes, and
optionally X (males will be ignored) and the pseudoautosomal (XY) region.

snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only SNPs. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres).

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

min.width minimum number of markers for a segment. See segment in the DNAcopy
package.

nperm number of permutations for deciding significance in segmentation. See segment
in the DNA copy package.

alpha significance level. See segment in the DNAcopy package.

verbose logical indicator whether to print information about the scan id currently being

processed. anomSegmentBAF prints each scan id; anomFilterBAF prints a mes-
sage after every 10 samples: "processing ith scan id out of n" where "ith" with
be 10, 10, etc. and "n" is the total number of samples

anomDetectBAF 9

segments data.frame of segments from anomSegmentBAF. Names must include "scanID",
"chromosome", "num.mark", "left.index", "right.index", "seg.mean". Here "left.index"
and "right.index" are row indices of intenData. Left and right refer to start and

end of anomaly,respectively, in position order.

centromere data.frame with centromere position information. Names must include "chrom",
"left.base", "right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY".
Here "left.base" and "right.base" are base positions of start and end of cen-
tromere location in position order. Centromere data tables are provided in centromeres.

low.qual.ids scan ids determined to be low quality for which some segments are filtered
based on more stringent criteria. Default is NULL. Usual choice are scan ids
for which median BAF across autosomes > 0.05. See sdByScanChromWindow
and medianSdOverAutosomes.

num.mark. thresh

minimum number of SNP markers in a segment to be considered for anomaly
long.num.mark. thresh
min number of markers for "long" segment to be considered for anomaly for
which significance threshold criterion is allowed to be less stringent
sd.reg number of baseline standard deviations of segment mean from a baseline mean
for "normal"” needed to declare segment anomalous. This number is given by
abs(mean of segment - baseline mean)/(baseline standard deviation)
sd.long same meaning as sd.reg but applied to "long" segments

low.frac.used if fraction of heterozygous or missing SNP markers compared with number of
eligible SNP markers in segment is below this, more stringent criteria are applied
to declare them anomalous.

run.size min length of run of missing or heterozygous SNP markers for possible deter-
mination of homozygous deletions

inter.size number of homozygotes allowed to "interrupt” run for possible determination of
homozygous deletions

low.frac.used.num.mark
number of markers threshold for low. frac.used segments (which are not de-
clared homozygous deletions

very.low.frac.used
any segments with (num.mark)/(number of markers in interval) less than this are
filtered out since they tend to be false positives

low.qual.frac.num.mark
minimum num.mark threshold for low quality scans (low.qual.ids) for seg-
ments that are also below low.frac.used threshold

lrr.cut look for runs of LRR values below 1lrr.cut to adjust homozygous deletion
endpoints

ct.thresh minimum number of LRR values below 1rr.cut needed in order to adjust

frac.thresh investigate interval for homozygous deletion only if 1rr.cut and ct.thresh

thresholds met and (# LRR values below 1rr.cut)/(# eligible SNPs in segment)
> frac.thresh

small.thresh sd.fac threshold use in making merge decisions involving small num.mark seg-
ments

10 anomDetectBAF

dev.sim.thresh relative error threshold for determining similarity in BAF deviations; used in
merge decisions

centSpan.fac thresholds increased by this factor when considering filtering/keeping together
left and right halves of centromere spanning segments

centSpan.nmark minimum number of markers under which centromere spanning segments are
automatically filtered out

arguments to pass to anomFilterBAF

Details

anomSegmentBAF uses the function segment from the DNAcopy package to perform circular bi-
nary segmentation on a metric based on BAF values. The metric for a given sample/chromosome
is sqrt(min(BAF,1-BAF,abs(BAF-median(BAF))) where the median is across BAF values on the
chromosome. Only BAF values for heterozygous or missing SNPs are used.

anomFilterBAF determines anomalous segments based on a combination of thresholds for number

of SNP markers in the segment and on deviation from a "normal" baseline. (See num.mark. thresh,long.num.mark. thresh,
sd.reg, and sd. long.) The "normal" baseline metric mean and standard deviation are found across

all autosomes not segmented by anomSegmentBAF. This is why it is recommended to include all

autosomes for the argument chrom. ids to ensure a more accurate baseline.

Some initial filtering is done, including possible merging of consecutive segments meeting sd.reg
threshold along with other criteria (such as not spanning the centromere) and adjustment for ac-
curate break points for possible homozygous deletions (see 1rr.cut, ct.thresh, frac.thresh,
run.size, and inter.size). Male samples for X chromosome are not processed.

More stringent criteria are applied to some segments (see low. frac.used,low. frac.used.num.mark,
very.low.frac.used, low.qual.ids, and low.qual.frac.num.mark).

anomDetectBAF runs anomSegmentBAF with default values and then runs anomFilterBAF. Addi-
tional parameters for anomFilterBAF may be passed as arguments.
Value

anomSegmentBAF returns a data.frame with the following elements: Left and right refer to start and
end of anomaly, respectively, in position order.

scanID integer id of scan

chromosome chromosome as integer code

left.index row index of intenData indicating left endpoint of segment
right.index row index of intenData indicating right endpoint of segment
num.mark number of heterozygous or missing SNPs in the segment
seg.mean mean of the BAF metric over the segment

anomFilterBAF and anomDetectBAF return a list with the following elements:

raw data.frame of raw segmentation data, with same output as anomSegmentBAF as
well as:

» left.base: base position of left endpoint of segment

anomDetectBAF

filtered

base.info

seg.info

Note

11

* right.base: base position of right endpoint of segment
¢ sex: sex of scan.id coded as "M" or "F"

* sd.fac: measure of deviation from baseline equal to abs(mean of segment
- baseline mean)/(baseline standard deviation); used in determining anoma-
lous segments

data.frame of the segments identified as anomalies, with the same columns as
raw as well as:

» merge: TRUE if segment was a result of merging. Consecutive segments
from output of anomSegmentBAF that meet certain criteria are merged.

* homodel.adjust: TRUE if original segment was adjusted to narrow in on
a homozygous deletion

* frac.used: fraction of (eligible) heterozygous or missing SNP markers
compared with total number of eligible SNP markers in segment

data frame with columns:

* scanlD: integer id of scan

* base.mean: mean of non-anomalous baseline. This is the mean of the BAF
metric for heterozygous and missing SNPs over all unsegmented autosomes
that were considered.

* base. sd: standard deviation of non-anomalous baseline

* chr.ct: number of unsegmented chromosomes used in determining the
non-anomalous baseline

data frame with columns:

* scanlD: integer id of scan
e chromosome: chromosome as integer

* num.segs: number of segments produced by anomSegmentBAF

It is recommended to include all autosomes as input. This ensures a more accurate determination
of baseline information.

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy. The BAF metric used is modified from It-
sara,A., et.al (2009) Population Analysis of Large Copy Number Variants and Hotspots of Human
Genetic Disease. American Journal of Human Genetics, 84, 148—-161.

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

12 anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)
blData <- IntensityData(bl, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

segment BAF

scan.ids <- illuminaScanADF$scanID[1:2]

chrom.ids <- unique(illuminaSnpADF$chromosome)

snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]

seg <- anomSegmentBAF (blData, genoData, scan.ids=scan.ids,
chrom.ids=chrom.ids, snp.ids=snp.ids)

filter segments to detect anomalies

data(centromeres.hgi18)

filt <- anomFilterBAF(blData, genoData, segments=seg, snp.ids=snp.ids,
centromere=centromeres.hgi8)

alternatively, run both steps at once
anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,
snp.ids=snp.ids, centromere=centromeres.hgi8)

close(blData)
close(genoData)

anomDetectLOH LOH Method for Chromosome Anomaly Detection

Description

anomDetectLOH breaks a chromosome up into segments of homozygous runs of SNP markers de-
termined by change points in Log R Ratio and selects segments which are likely to be anomalous.

Usage

anomDetectLOH(intenData, genoData, scan.ids, chrom.ids, snp.ids,
known.anoms, smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
run.size = 50, inter.size = 4, homodel.min.num = 10, homodel.thresh = 10,
small.num = 20, small.thresh = 2.25, medium.num = 50, medium.thresh = 2,
long.num = 100, long.thresh = 1.5, small.na.thresh = 2.5,
length.factor = 5, merge.fac = 0.85, min.lrr.num = 20, verbose = TRUE)

anomDetectLOH 13

Arguments

intenData An IntensityData object containing the Log R Ratio. The order of the rows
of intenData and the snp annotation are expected to be by chromosome and then
by position within chromosome. The scan annotation should contain sex, coded
as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.

scan.ids vector of scan ids (sample numbers) to process

chrom. ids vector of (unique) chromosomes to process. Should correspond to integer chro-
mosome codes in intenData. Recommended for use with autosomes, X (males
will be ignored), and the pseudoautosomal (XY) region.

snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only snps. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres).

known.anoms data.frame of known anomalies (usually from anomDetectBAF); must have "scanID","chromosome","left.
Here "left.index" and "right.index" are row indices of intenData. Left and right
refer to start and end of anomaly, respectively, in position order.

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

min.width minimum number of markers for segmenting. See segment in the DNAcopy
package.

nperm number of permutations. See segment in the DNAcopy package.

alpha significance level. See segment in the DNAcopy package.

run.size number of markers to declare a "homozygous’ run (here "homozygous’ includes
homozygous and missing)

inter.size number of consecutive heterozygous markers allowed to interrupt a ~homozy-

gous’ run
homodel.min.num

minimum number of markers to detect extreme difference in Irr (for homozy-
gous deletion)

homodel. thresh threshold for measure of deviation from non-anomalous needed to declare seg-
ment a homozygous deletion.

small.num minimum number of SNP markers to declare segment as an anomaly (other than
homozygous deletion)

small.thresh threshold for measure of deviation from non-anomalous to declare segment
anomalous if number of SNP markers is between small.num and medium. num.

medium.num threshold for number of SNP markers to identify *'medium’ size segment

medium.thresh threshold for measure of deviation from non-anomalous needed to declare seg-
ment anomalous if number of SNP markers is between medium. num and long. num.

long.num threshold for number of SNP markers to identify "long’ size segment

14 anomDetectLOH

long. thresh threshold for measure of deviation from non-anomalous when number of mark-
ers is bigger than long.num

small.na.thresh
threshold measure of deviation from non-anomalous when number of markers
is between small.num and medium.num and ’local mad.fac’ is NA. See Details
section for definition of ’local mad.fac’.

length.factor window around anomaly defined as length.factor*(no. of markers in seg-
ment) on either side of the given segment. Used in determining "local mad.fac’.
See Details section.

merge.fac threshold for ’sd.fac’= number of baseline standard deviations of segment mean
from baseline mean; consecutive segments with ’sd.fac’ above threshold are
merged
min.lrr.num if any 'non-anomalous’ interval has fewer markers than min.lrr.num, interval
is ignored in finding non-anomalous baseline unless it’s the only piece left
verbose logical indicator whether to print the scan id currently being processed
Details

Detection of anomalies with loss of heterozygosity accompanied by change in Log R Ratio. Male
samples for X chromosome are not processed.

Circular binary segmentation (CBS) (using the R-package DNAcopy) is applied to LRR values and,
in parallel, runs of homozygous or missing genotypes of a certain minimal size (run.size) (and
allowing for some interruptions by no more than inter.size heterozygous SNPs) are identified.
Intervals from known.anoms are excluded from the identification of runs. After some possible
merging of consecutive CBS segments (based on satisfying a threshold merge. fac for deviation
from non-anomalous baseline), the homozygous runs are intersected with the segments from CBS.

Determination of anomalous segments is based on a combination of number-of-marker thresh-
olds and deviation from a non-anomalous baseline. Segments are declared anomalous if devia-
tion from non-anomalous is above corresponding thresholds. (See small.num, small.thresh,
medium.num,medium. thresh, long.num,long. thresh,and small.na.thresh.) Non-anomalous
median and MAD are defined for each sample-chromosome combination. Intervals from known . anoms
and the homozygous runs identified are excluded; remaining regions are the non-anomalous base-
line.

Deviation from non-anomalous is measured by a combination of a chromosome-wide *mad.fac’
and a ’local mad.fac’ (both the average and the minimum of these two measures are used). Here
’mad.fac’ is (segment median-non-anomalous median)/(non-anomalous MAD) and ’local mad.fac’
is the same definition except the non-anomalous median and MAD are computed over a window
including the segment (see length.factor). Median and MADare found for eligible LRR values.

Value

A list with the following elements:

raw raw homozygous run data, not including any regions present in known.anoms.
A data.frame with the following columns: Left and right refer to start and end
of anomaly, respectively, in position order.

* left.index: row index of intenData indicating left endpoint of segment

anomDetectLOH 15

* right.index: row index of intenData indicating right endpoint of segment
» left.base: base position of left endpoint of segment
* right.base: base position of right endpoint of segment
* scanlD: integer id of scan
* chromosome: chromosome as integer code
raw.adjusted data.frame of runs after merging and intersecting with CBS segments, with the
following columns: Left and right refer to start and end of anomaly, respectively,
in position order.
* scanlD: integer id of scan
* chromosome: chromosome as integer code
e left.index: row index of intenData indicating left endpoint of segment
* right.index: row index of intenData indicating right endpoint of segment
» left.base: base position of left endpoint of segment
* right.base: base position of right endpoint of segment
* num.mark: number of eligible SNP markers in segment
* seg.median: median of eligible LRR values in segment
* seg.mean: mean of eligible LRR values in segment
* mad.fac: measure of deviation from non-anomalous baseline, equal to
abs(median of segment - baseline median)/(baseline MAD); used in de-
termining anomalous segments
* sd.fac: measure of deviation from non-anomalous baseline, equal to abs(mean
of segment - baseline mean)/(baseline standard deviation); used in deter-
mining whether to merge
* local: measure of deviation from non-anomalous baseline used equal to
abs(median of segment - local baseline median)/(local baseline MAD); lo-
cal baseline consists of eligible LRR values in a window around segment;
used in determining anomalous segments
* num.segs: number of segments found by CBS for the given chromosome

e chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous re-
gions across the chromosome

e chrom.nonanom.median: median of eligible LRR values in non-anomalous
regions across the chromosome

* chrom.nonanom.mean: mean of eligible LRR values in non-anomalous re-
gions across the chromosome

e chrom.nonanom.sd: standard deviation of eligible LRR values in non-
anomalous regions across the chromosome

¢ sex: sex of the scan id coded as "M" or "F"

filtered data.frame of the segments identified as anomalies. Columns are the same as in
raw.adjusted.

base.info data.frame with columns:

* chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous re-
gions across the chromosome

e chrom.nonanom.median: median of eligible LRR values in non-anomalous
regions across the chromosome

16 anomDetectLOH

* chrom.nonanom.mean: mean of eligible LRR values in non-anomalous re-
gions across the chromosome

* chrom.nonanom.sd: standard deviation of eligible LRR values in non-
anomalous regions across the chromosome

* sex: sex of the scan id coded as "M" or "F"
* num.runs: number of original homozygous runs found for given scan/chromosome

* num.segs: number of segments for given scan/chromosome produced by
CBS

* scanID: integer id of scan
* chromosome: chromosome as integer code
* sex: sex of the scan id coded as "M" or "F"
segments data.frame of the segmentation found by CBS with columns:
* scanlD: integer id of scan
* chromosome: chromosome as integer code
e left.index: row index of intenData indicating left endpoint of segment
* right.index: row index of intenData indicating right endpoint of segment
» left.base: base position of left endpoint of segment
* right.base: base position of right endpoint of segment
* num.mark: number of eligible SNP markers in the segment
* seg.mean: mean of eligible LRR values in the segment

* sd.fac: measure of deviation from baseline equal to abs(mean of segment
- baseline mean)/(baseline standard deviation) where the baseline is over
non-anomalous regions

merge data.frame of scan id/chromosome pairs for which merging occurred.

* scanlD: integer id of scan
* chromosome: chromosome as integer code

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy.

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)

anomldentifyLowQuality 17

blData <-

IntensityData(bl, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)

genoData <-

GenotypeData(geno, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

scan.ids <- illuminaScanADF$scanID[1:2]
chrom.ids <- unique(illuminaSnpADF$chromosome)
snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]

example for known.anoms, would get this from anomDetectBAF
known.anoms <- data.frame("”scanID"=scan.ids[1],"chromosome”=21,
"left.index"=100,"right.index"=200)

LOH.anom <- anomDetectLOH(blData, genoData, scan.ids=scan.ids,
chrom.ids=chrom.ids, snp.ids=snp.ids, known.anoms=known.anoms)

close(blData)
close(genoData)

anomIdentifylLowQuality

Identify low quality samples

Description

Identify low quality samples for which false positive rate for anomaly detection is likely to be high.
Measures of noise (high variance) and high segmentation are used.

Usage

anomIdentifylLowQuality(snp.annot, med.sd, seg.info,
sd.thresh, sng.seg.thresh, auto.seg.thresh)

Arguments

snp.annot

med. sd

seg.info

SnpAnnotationDataFrame with column "eligible", where "eligible" is a logical
vector indicating whether a SNP is eligible for consideration in anomaly detec-
tion (usually FALSE for HLA and XTR regions, failed SNPs, and intensity-only
SNPs). See HLA and pseudoautosomal.

data.frame of median standard deviation of BAlleleFrequency (BAF) or LogR-
Ratio (LRR) values across autosomes for each scan, with columns "scanID" and
"med.sd". Usually the result of medianSdOverAutosomes. Usually only eligible
SNPs are used in these computations. In addition, for BAF, homozygous SNPS
are excluded.

data.frame with segmentation information from anomDe tectBAF or anomDetectLOH.
Columns must include "scanID", "chromosome", and "num.segs". (For anomDetectBAF,
segmentation information is found in $seg.info from output. For anomDetectLOH,
segmentation information is found in $base.info from output.)

18 anomldentifyLowQuality

sd. thresh Threshold for med. sd above which scan is identified as low quality. Suggested
values are 0.1 for BAF and 0.25 for LOH.

sng.seg.thresh Threshold for segmentation factor for a given chromosome, above which the
chromosome is said to be highly segmented. See Details. Suggested values are
0.0008 for BAF and 0.0048 for LOH.

auto.seg. thresh
Threshold for segmentation factor across autosome, above which the scan is said
to be highly segmented. See Details. Suggested values are 0.0001 for BAF and
0.0006 for LOH.

Details

Low quality samples are determined separately with regard to each of the two methods of segmen-
tation, anomDetectBAF and anomDetectLOH. BAF anomalies (respectively LOH anomalies) found
for samples identified as low quality for BAF (respectively LOH) tend to have a high false positive
rate.

A scan is identified as low quality due to high variance (noise), i.e. if med.sd is above a certain
threshold sd. thresh.

High segmentation is often an indication of artifactual patterns in the B Allele Frequency (BAF)
or Log R Ratio values (LRR) that are not always captured by high variance. Here segmentation
information is determined by anomDetectBAF or anomDetectLOH which use circular binary seg-
mentation implemented by the R-package DNAcopy. The measure for high segmentation is a
"segmentation factor" = (number of segments)/(number of eligible SNPS). A single chromosome
segmentation factor uses information for one chromosome. A segmentation factor across autosomes
uses the total number of segments and eligible SNPs across all autosomes. See med. sd, sd. thresh,
sng.seg.thresh, and auto.seg. thresh.

Value

A data.frame with the following columns:

scanID integer id for the scan

chrX.num.segs number of segments for chromosome X
chrX.fac segmentation factor for chromosome X
max.autosome autosome with highest single segmentation factor

max.auto.fac segmentation factor for chromosome = max. autosome
max.auto.num.segs
number of segments for chromosome = max.autosome

num.ch. segd number of chromosomes segmented, i.e. for which change points were found
fac.all.auto segmentation factor across all autosomes

med. sd median standard deviation of BAF (or LRR values) across autosomes. See
med. sd in Arguments section.

type one of the following, indicating reason for identification as low quality:

* auto.seg: segmentation factor fac.all.auto above auto.seg.thresh
but med. sd acceptable

anomldentifyLowQuality 19

* sd: standard deviation factor med. sd above sd. thresh but fac.all.auto
acceptable

* both.sd.seg: both high variance and high segmentation factors, fac.all.auto
and med. sd, are above respective thresholds

* sng.seg: segmentation factor max.auto.fac is above sng.seg.thresh
but other measures acceptable

* sng.seg.X: segmentation factor chrX. fac is above sng.seg. thresh but
other measures acceptable

Author(s)

Cecelia Laurie

See Also

findBAFvariance, anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)
blData <- IntensityData(bl, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
geno <- GdsGenotypeReader (genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

initial scan for low quality with median SD

baf.sd <- sdByScanChromWindow(blData, genoData)

med.baf.sd <- medianSdOverAutosomes(baf.sd)

low.qual.ids <- med.baf.sd$scanID[med.baf.sd$med.sd > 0.05]

segment and filter BAF

scan.ids <- illuminaScanADF$scanID[1:2]

chrom.ids <- unique(illuminaSnpADF$chromosome)

snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]

data(centromeres.hgi18)

anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,
snp.ids=snp.ids, centromere=centromeres.hg18, low.qual.ids=low.qual.ids)

further screen for low quality scans

snp.annot <- illuminaSnpADF

snp.annot$eligible <- snp.annot$missing.n1 < 1

low.qual <- anomIdentifyLowQuality(snp.annot, med.baf.sd, anom$seg.info,
sd.thresh=0.1, sng.seg.thresh=0.0008, auto.seg.thresh=0.0001)

close(blData)
close(genoData)

20

anomSegStats

anomSegStats

Calculate LRR and BAF statistics for anomalous segments

Description

Calculate LRR and BAF statistics for anomalous segments and plot results

Usage

anomSegStats(intenData, genoData, snp.ids, anom, centromere,

lrr.cut = -2,

verbose = TRUE)

anomStatsPlot(intenData, genoData, anom.stats, snp.ineligible,

plot.ineligible = FALSE, centromere = NULL,
brackets = c("none”, "bases", "markers"), brkpt.pct = 10,
whole.chrom = FALSE, win = 5, win.calc = FALSE, win.fixed = 1,
zoom = c("both”, "left"”, "right"), main = NULL, info = NULL,
ideogram = TRUE, ideo.zoom = FALSE, ideo.rect = TRUE,
mult.anom = FALSE, cex = 0.5, cex.leg = 1.5,
colors = c("default”, "neon”, "primary"), ...)
Arguments
intenData An IntensityData object containing BAlleleFreq and LogRRatio. The order of
the rows of intenData and the snp annotation are expected to be by chromosome
and then by position within chromosome.
genoData A GenotypeData object. The order of the rows of intenData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.
snp.ids vector of eligible SNP ids. Usually exclude failed and intensity-only SNPS. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres). x
anom data.frame of detected chromosome anomalies. Names must include "scanID",
"chromosome", "left.index", "right.index", "sex", "method", "anom.id". Valid
values for "method" are "BAF" or "LOH" referring to whether the anomaly was
detected by BAF method (anomDetectBAF) or by LOH method (anomDetectLOH).
Here "left.index" and "right.index" are row indices of intenData with left.index
< right.index.
centromere data.frame with centromere position info. Names must include "chrom", "left.base",
"right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY". Here "left.base"
and "right.base" are start and end base positions of the centromere location, re-
spectively. Centromere data tables are provided in centromeres.
lrr.cut count the number of eligible LRR values less than 1rr.cut
verbose whether to print the scan id currently being processed

anomSegStats

anom.stats

snp.ineligible

plot.ineligible

brackets

brkpt.pct
whole.chrom

win

win.calc

win.fixed

zoom

main

info

ideogram

ideo.zoom

ideo.rect

mult.anom

cex

cex.leg

colors

21

data.frame of chromosome anomalies with statistics, usually the output of anomSegStats.

"non

Names must include "anom.id", "scanID", "chromosome", "left.index", "right.index",

non non

"method", "nmark.all", "nmark.elig", "left.base", "right.base", "nbase", "non.anom.baf.med",
"non.anom.lrr.med", "anom.baf.dev.med", "anom.baf.dev.5", "anom.lrr.med", "nmark.baf",
"nmark.Irr". Left and right refer to start and end, respectively, of the anomaly,

in position order.

vector of ineligible snp ids (e.g., intensity-only, failed snps, XTR and HLA re-
gions). See HLA and pseudoautosomal.

whether or not to include ineligible points in the plot for LogRRatio

type of brackets to plot around breakpoints - none, use base length, use number
of markers (note that using markers give asymmetric brackets); could be used,
along with brkpt.pct, to assess general accuracy of end points of the anomaly

percent of anomaly length in bases (or number of markers) for width of brackets
logical to plot the whole chromosome or not (overrides win and zoom)

size of the window (a multiple of anomaly length) surrounding the anomaly to
plot

logical to calculate window size from anomaly length; overrides win and gives
window of fixed length given by win. fixed

number of megabases for window size when win.calc=TRUE

indicates whether plot includes the whole anomaly ("both") or zooms on just the
left or right breakpoint; "both" is default

Vector of titles for upper (LRR) plots. If NULL, titles will include anom.id,
scanlD, sex, chromosome, and detection method.

character vector of extra information to include in the main title of the upper
(LRR) plot

logical for whether to plot a chromosome ideogram under the BAF and LRR
plots.

logical for whether to zoom in on the ideogram to match the range of the BAF/LRR
plots

logical for whether to draw a rectangle on the ideogram indicating the range of
the BAF/LRR plots

logical for whether to plot multiple anomalies from the same scan-chromosome
pair on a single plot. If FALSE (default), each anomaly is shown on a separate
plot.

cex value for points on the plots
cex value for the ideogram legend

Color scheme to use for genotypes. "default" is colorblind safe (colorbrewer
Set2), "neon" is bright orange/green/fuschia, and "primary" is red/green/blue.

Other parameters to be passed directly to plot.

22 anomSegStats

Details

anomSegStats computes various statistics of the input anomalies. Some of these are basic statistics
for the characteristics of the anomaly and for measuring deviation of LRR or BAF from expected.
Other statistics are used in downstrean quality control analysis, including detecting terminal anoma-
lies and investigating centromere-spanning anomalies.

anomStatsPlot produces separate png images of each anomaly in anom. stats. Each image con-
sists of an upper plot of LogRRatio values and a lower plot of BAlleleFrequency values for a zoomed
region around the anomaly or whole chromosome (depending up parameter choices). Each plot
has vertical lines demarcating the anomaly and horizontal lines displaying certain statistics from
anomSegStats. The upper plot title includes sample number and chromosome. Further plot anno-
tation describes which anomaly statistics are represented.

Value

anomSegStats produces a data.frame with the variables for anom plus the following columns: Left
and right refer to position order with left < right.

nmark.all total number of SNP markers on the array from left.index to right.index inclusive

nmark.elig total number of eligible SNP markers on the array from left.index to right.index,
inclusive. See snp. ids for definition of eligible SNP markers.

left.base base position corresponding to left.index

right.base base position corresponding to right.index

nbase number of bases from left.index to right.index, inclusive

non.anom.baf .med
BAF median of non-anomalous segments on all autosomes for the associated
sample, using eligible heterozygous or missing SNP markers

non.anom. lrr.med
LRR median of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

non.anom. lrr.mad
MAD for LRR of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

anom.baf.dev.med
BAF median of deviations from non.anom.baf.med of points used to detect
anomaly (eligible and heterozygous or missing)

anom.baf.dev.5 median of BAF deviations from 0.5, using eligible heterozygous or missing SNP
markers in anomaly

anom.baf.dev.mean
mean of BAF deviations from non.anom.baf.med, using eligible heterozygous
or missing SNP markers in anomaly

anom.baf. sd standard deviation of BAF deviations from non.anom.baf.med, using eligible
heterozygous or missing SNP markers in anomaly

anom. baf.mad MAD of BAF deviations from non.anom.baf . med, using eligible heterozygous
or missing SNP markers in anomaly

anom.lrr.med LRR median of eligible SNP markers within the anomaly

anomSegStats 23

anom.lrr.sd standard deviation of LRR for eligible SNP markers within the anomaly
anom.1lrr.mad MAD of LRR for eligible SNP markers within the anomaly

nmark.baf number of SNP markers within the anomaly eligible for BAF detection (eligible
markers that are heterozygous or missing)

nmark.1lrr number of SNP markers within the anomaly eligible for LOH detection (eligible
markers)

cent.rel position relative to centromere - left, right, span

left.most T/F for whether the anomaly is the left-most anomaly for this sample-chromosome,

i.e. no other anomalies with smaller start base position

right.most T/F whether the anomaly is the right-most anomaly for this sample-chromosome,
i.e. no other anomalies with larger end base position
left.last.elig T/F for whether the anomaly contains the last eligible SNP marker going to the
left (decreasing position)
right.last.elig
T/F for whether the anomaly contains the last eligible SNP marker going to the
right (increasing position)
left.term.1lrr.med
median of LRR for all eligible SNP markers from left-most eligible marker to
the left telomere (only calculated for the most distal anom)
right.term.lrr.med
median of LRR for all eligible markers from right-most eligible marker to the
right telomere (only calculated for the most distal anom)
left.term.1lrr.n
sample size for calculating left.term.1lrr.med
right.term.lrr.n
sample size for calculating right.term.1lrr.med
cent.span.left.elig.n
number of eligible markers on the left side of centromere-spanning anomalies
cent.span.right.elig.n
number of eligible markers on the right side of centromere-spanning anomalies
cent.span.left.bases
length of anomaly (in bases) covered by eligible markers on the left side of the

centromere

cent.span.right.bases
length of anomaly (in bases) covered by eligible markers on the right side of the
centromere

cent.span.left.index
index of eligible marker left-adjacent to centromere; recall that index refers to
row indices of intenData

cent.span.right.index
index of elig marker right-adjacent to centromere

bafmetric.anom.mean
mean of BAF-metric values within anomaly, using eligible heterozygous or
missing SNP markers BAF-metric values were used in the detection of anoma-
lies. See anomDetectBAF for definition of BAF-metric

24 anomSegStats

bafmetric.non.anom.mean
mean of BAF-metric values within non-anomalous segments across all auto-
somes for the associated sample, using eligible heterozygous or missing SNP
markers

bafmetric.non.anom.sd
standard deviation of BAF-metric values within non-anomalous segments across
all autosomes for the associated sample, using eligible heterozygous or missing
SNP markers

nmark.lrr.low number of eligible markers within anomaly with LRR values less than 1rr.cut

Note

The non-anomalous statistics are computed over all autosomes for the sample associated with an
anomaly. Therefore the accuracy of these statistics relies on the input anomaly data.frame including
all autosomal anomalies for a given sample.

Author(s)

Cathy Laurie

See Also

anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)
blData <- IntensityData(bl, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

scan.ids <- illuminaScanADF$scanID[1:2]

chrom.ids <- unique(illuminaSnpADF$chromosome)

snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]
snp.failed <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 == 1]

example results from anomDetectBAF

baf.anoms <- data.frame("”scanID"=rep(scan.ids[1],2), "chromosome"”=rep(21,2),
"left.index"=c(100,300), "right.index"=c(200,400), sex=rep("M",2),
method=rep("BAF",2), anom.id=1:2, stringsAsFactors=FALSE)

example results from anomDetectLOH

loh.anoms <- data.frame("”scanID"=scan.ids[2],"chromosome"=22,
"left.index"=400,"right.index"=500, sex="F", method="LOH",
anom.id=3, stringsAsFactors=FALSE)

apartSnpSelection 25

anoms <- rbind(baf.anoms, loh.anoms)

data(centromeres.hgi18)

stats <- anomSegStats(blData, genoData, snp.ids=snp.ids, anom=anoms,
centromere=centromeres.hg18)

anomStatsPlot(blData, genoData, anom.stats=stats,
snp.ineligible=snp.failed, centromere=centromeres.hgl8)

close(blData)
close(genoData)

apartSnpSelection Random selection of SNPs

Description

Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

Usage

apartSnpSelection(chromosome, position, min.dist = 1e+05,
init.sel = NULL, max.n.chromosomes = -1,
verbose = TRUE)

Arguments
chromosome An integer vector containing the chromosome for each SNP. Valid values are
1-26, any other value will be interpreted as missing and not selected.
position A numeric vector of the positions (in basepairs) of the SNPs.
min.dist A numeric value to specify minimum distance required (in basepairs).
init.sel A logical vector indicating the initial SNPs to be included.

max.n.chromosomes

A numeric value specifying the maximum number of SNPs to return per chro-
mosome, "-1" means no number limit.

verbose A logical value specifying whether to show progress information while running.

Details
apartSnpSelection selects SNPs randomly with the condition that they are at least as far apart as
min.dist in basepairs. The starting set of SNPs can be specified with init.sel.

Value

A logical vector indicating which SNPs were selected.

26

Author(s)

Xiuwen Zheng

Examples

library(GWASdata)

asSnpMatrix

data(affy_snp_annot)
pool <- affy_snp_annot$chromosome < 23
rsnp <- apartSnpSelection(affy_snp_annot$chromosome, affy_snp_annot$position,

min.dist=15000, init.sel=pool)

asSnpMatrix

Utilities for snpStats

Description

asSnpMatrix converts a GenotypeData object to a SnpMatrix-class object.

Usage

asSnpMatrix(genoData, snpNames="snpID", scanNames="scanID",
snp=c(1,-1), scan=c(1,-1))

Arguments

genoData

snpNames

scanNames

snp

scan

Details

A GenotypeData object.

The name of the SNP variable in genoData to use as the column (SNP) names
in the SnpMatrix-class object.

The name of the scan variable in genoData to use as the row (scan) names in the
SnpMatrix-class object.

An integer vector of the form (start, count), where start is the index of the first
data element to read and count is the number of elements to read. A value of
’-1’ for count indicates that all SNPs should be read.

An integer vector of the form (start, count), where start is the index of the first
data element to read and count is the number of elements to read. A value of
’-1’ for count indicates that all scans should be read.

The default is to extract all SNPs and scans from genoData, but for a large dataset this may exceed

R’s memory limit.

Alternatively, snp and scan may be used to specify (start, count) of SNPs

and scans to extract from genoData.

In the SnpMatrix object, genotypes are stored as 0 = missing, 1 = "A/A", 2= "A/B" or "B/A", and
3 ="B/B". (In a GenotypeData object, 0 = "B/B", 1 ="A/B" or "B/A", and 2 = "A/A".) Columns
are SNPs with names snpNames and rows are scans with names scanNames (the transpose of the
GenotypeData object).

assocCoxPH

Value

A SnpMatrix-class object.

Author(s)

Stephanie Gogarten

See Also

SnpMatrix-class, GenotypeData

Examples

library(snpStats)

library(GWASdata)

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")

gds <- GdsGenotypeReader(file)

data(illuminaSnpADF, illuminaScanADF)

genoData <- GenotypeData(gds, snpAnnot=illuminaSnpADF, scanAnnot=illuminaScanADF)
snpmat <- asSnpMatrix(genoData, snpNames="rsID", scanNames="scanID")

snpmat

as(snpmat[1:5, 1:5], "character")

summary (snpmat)

only chromosome 21

chr <- getChromosome(genoData)

c21 <- which(chr == 21)

snpmat <- asSnpMatrix(genoData, snpNames="rsID", scanNames="scanID",
snp=c(c21[1], length(c21)))

snpmat

close(genoData)

assocCoxPH Cox proportional hazards

Description

Fits Cox proportional hazards model

Usage

assocCoxPH(genoData,
event,
time.to.event,
gene.action = c("additive”, "dominant"”, "recessive"),
covar = NULL,
ivar = NULL,
strata = NULL,

28

assocCoxPH

cluster = NULL,
scan.exclude = NULL,

LRtest =

FALSE,

effectAllele = c("minor"”, "alleleA"),
snpStart = NULL,

snpEnd = NULL,

block.size = 5000,

verbose =

Arguments

genoData

event

time.to.event

gene.action

covar

ivar
strata

cluster

scan.exclude

LRtest

effectAllele

snpStart
snpEnd
block.size

verbose

TRUE)

a GenotypeData object

name of scan annotation variable in genoData for event to analyze (chould be
coded 0/1 or FALSE/TRUE)

name of scan annotation variable in genoData for time to event

"additive" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 1, and homozygous major allele samples = 0.
"dominant" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 2, and homozygous major allele samples = 0.
"recessive" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 0, and homozygous major allele samples = 0.
(If effectAllele="alleleA", the coding reflects alleleA instead of the minor
allele.)

a vector of the names of the covariates to adjust for (columns in the scan anno-
tation of genoData)

the name of the variable in covar to include as an interaction with genotype
a vector of names of variables to stratify on for a stratified analysis

the name of a column (in the scan annotation of genoData) which clusters the
observations for robust variance. See cluster

a vector of scanIDs for scans to exclude

logical for whether to perform Likelihood Ratio Tests in addition to Wald tests
(which are always performed).

whether the effects should be returned in terms of the minor allele for the tested

sample (effectAllele="minor") or the allele returned by getAlleleA(genoData)

(effectAllele="alleleA"). If the minor allele is alleleB for a given SNP, the
difference between these two options will be a sign change for the beta estimate.

index of the first SNP to analyze, defaults to first SNP
index of the last SNP to analyze, defaults to last SNP
number of SNPs to read in at once

logical for whether to print status updates

assocCoxPH 29

Details

This function performs Cox proportional hazards regression of a survival object (using the Surv
function) on SNP genotype and other covariates. It uses the coxph function from the R survival
library.

It is recommended to filter results returned using 2*MAF*(1-MAF)#*n.events > 75 where MAF =
minor allele frequency and n.events = number of events. This filter was suggested by Ken Rice
and Thomas Lumley, who found that without this requirement, at threshold levels of significance
for genome-wide studies, Cox regression p-values based on standard asymptotic approximations
can be notably anti-conservative.

Note: Y chromosome SNPs must be analyzed separately because they only use males.

Value

a data.frame with some or all of the following columns:

snpID the snpIDs

chr chromosome SNPs are on

n number of samples used to analyze each SNP
n.events number of events in complete cases for each SNP

effect.allele which allele ("A" or "B") is the effect allele

EAF effect allele frequency
MAF minor allele frequency
maf.filter TRUE if SNP passes the MAF filter (2xMAFx(1-MAF)*n.events > 75)
Est beta estimate for genotype
SE standard error of beta estimate for the genotype
Wald.Stat chi-squared test statistic for association
Wald.pval p-value for association
LR.Stat likelihood ratio test statistic for association
LR.pval p-value for association
GxE.Est beta estimate for the genotype*ivar interaction parameter (NA if this parameter
is a factor with >2 levels)
GxE.SE standard error of beta estimate for the genotype*ivar interaction parameter
GXE.Stat Likelihood ratio test statistic for the genotype*ivar interaction parameter
GXE.pval p-value for the likelihood ratio test statistic
Author(s)

Cathy Laurie, Matthew Conomos, Stephanie Gogarten, David Levine

See Also

GenotypeData, coxph

30

Examples

library(GWASdata)

data(illuminaScanADF)
scanAnnot <- illuminaScanADF

exclude duplicated subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$duplicated]

create some variables for the scans

scanAnnot$sex <- as.factor(scanAnnot$sex)

scanAnnot$age <- rnorm(nrow(scanAnnot), mean=40, sd=10)
scanAnnot$event <- rbinom(nrow(scanAnnot), 1, 0.4)
scanAnnot$ttoe <- rnorm(nrow(scanAnnot), mean=100, sd=10)

create data object
gdsfile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
gds <- GdsGenotypeReader(gdsfile)

genoData <- GenotypeData(gds, scanAnnot=scanAnnot)

res <- assocCoxPH(genoData,

event="event", time.to.event="ttoe",

covar=c("sex", "age"),
scan.exclude=scan.exclude,

assocRegression

snpStart=1, snpEnd=100)
close(genoData)
assocRegression Association testing with regression
Description

Run association testing with regression

Usage

assocRegression(genoData,

CI = 0.

outcome,

model.type = c("linear”, "logistic", "poisson”, "firth"),
gene.action = c("additive”, "dominant”, "recessive"),
covar = NULL,

ivar = NULL,

scan.exclude = NULL,

95,

robust = FALSE,
LRtest = FALSE,
PPLtest = TRUE,
effectAllele = c("minor”, "alleleA"),

assocRegression 31

snpStart = NULL,
snpEnd = NULL,
block.size = 5000,
verbose = TRUE)

Arguments
genoData a GenotypeData object
outcome the name of the phenotype of interest (a column in the scan annotation of genoData)
model . type the type of model to be run. "linear" uses 1m, "logistic" uses glm with family=binomial(),

gene.action

"poisson" uses glm with family=poisson(), and "firth" uses logistf.

"additive" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 1, and homozygous major allele samples = 0.
"dominant" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 2, and homozygous major allele samples = 0.
"recessive" coding sets the marker variable for homozygous minor allele sam-
ples = 2, heterozygous samples = 0, and homozygous major allele samples = 0.
(If effectAllele="alleleA", the coding reflects alleleA instead of the minor
allele.)

covar a vector of the names of the covariates to adjust for (columns in the scan anno-
tation of genoData)
ivar the name of the variable in covar to include as an interaction with genotype

scan.exclude

CI

robust

LRtest

PPLtest

effectAllele

snpStart
snpEnd
block.size

verbose

a vector of scanIDs for scans to exclude

a value between 0 and 1 defining the confidence level for the confidence interval
calculations

logical for whether to use sandwich-based robust standard errors for the "linear”
or "logistic" method. The default value is FALSE, and uses model based standard
errors. The standard error estimates are returned and also used for Wald Tests of
significance.

logical for whether to perform Likelihood Ratio Tests in addition to Wald tests
(which are always performed). Applies to linear, logistic, or poisson main ef-
fects only. NOTE: Performing the LR tests adds a noticeable amount of compu-
tation time.

logical for whether to use the profile penalized likelihood to compute p values
for the "firth" method (in addition to Wald tests, which are always performed).

whether the effects should be returned in terms of the minor allele for the tested

sample (effectAllele="minor") or the allele returned by getAlleleA(genoData)

(effectAllele="alleleA"). If the minor allele is alleleB for a given SNP, the
difference between these two options will be a sign change for the beta estimate.

index of the first SNP to analyze, defaults to first SNP
index of the last SNP to analyze, defaults to last SNP
number of SNPs to read in at once

logical for whether to print status updates

32 assocRegression

Details

When using models without interaction terms, the association tests compare the model including the
covariates and genotype value to the model including only the covariates (a test of genotype effect).
When using a model with an interaction term, tests are performed for the interaction term separately
as well as a joint test of all the genotype terms (main effects and interactions) to detect any genotype
effect. All tests and p-values are always computed using Wald tests with p-values computed from
Chi-Squared distribtuions. The option of using either sandwich based robust standard errors (which
make no model assumptions) or using model based standard errors for the confidence intervals
and Wald tests is specified by the robust parameter. The option of also performing equivalent
Likelihood Ratio tests is available and is specified by the LRtest parameter.

For logistic regression models, if the SNP is monomorphic in either cases or controls, then the slope
parameter is not well-defined, and the result will be NA.

Note: Y chromosome SNPs must be analyzed separately because they only use males.

Value

a data.frame with some or all of the following columns:

snpID the snpIDs

chr chromosome SNPs are on

effect.allele which allele ("A" or "B") is the effect allele

EAF effect allele frequency

MAF minor allele frequency

n number of samples used to analyze each SNP

no number of controls (outcome=0) used to analyze each SNP

ni number of cases (outcome=1) used to analyze each SNP

Est beta estimate for genotype

SE standard error of beta estimate for the genotype

LL Lower limit of confidence interval for Est

uL Upper limit of confidence interval for Est

Wald.Stat chi-squared test statistic for association

Wald.pval p-value for association

LR.Stat likelihood ratio test statistic for association

LR.pval p-value for association

PPL.Stat profile penalized likelihood test statistic for association

PPL.pval p-value for association

GxE.Est beta estimate for the genotype*ivar interaction parameter (NA if this parameter
is a factor with >2 levels)

GXE.SE standard error of beta estimate for the genotype*ivar interaction parameter

GxE.Stat Wald test statistic for the genotype*ivar interaction parameter

GXE.pval Wald test p-value for the genotype*ivar interaction parameter

Joint.Stat Wald test statistic for jointly testing all genotype parameters

Joint.pval Wald test p-value for jointly testing all genotype parameters

BAFfromClusterMeans 33

Author(s)

Tushar Bhangale, Matthew Conomos, Stephanie Gogarten

See Also

GenotypeData, 1m, glm, logistf, vcovHC, 1rtest

Examples

library(GWASdata)
data(illuminaScanADF)
scanAnnot <- illuminaScanADF

exclude duplicated subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$duplicated]

create some variables for the scans

scanAnnot$sex <- as.factor(scanAnnot$sex)

scanAnnot$age <- rnorm(nrow(scanAnnot), mean=40, sd=10)

scanAnnot$case.cntl.status <- rbinom(nrow(scanAnnot), 1, 0.4)

scanAnnot$blood. pressure[scanAnnot$case.cntl.status==1] <- rnorm(sum(scanAnnot$case.cntl.status==1), mean=100, :
scanAnnot$blood.pressure[scanAnnot$case.cntl.status==0] <- rnorm(sum(scanAnnot$case.cntl.status==0), mean=90, s

create data object

gdsfile <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader (gdsfile)

genoData <- GenotypeData(gds, scanAnnot=scanAnnot)

linear regression
res <- assocRegression(genoData,
outcome="blood.pressure”,
model.type="linear"”,
covar=c("sex", "age"),
scan.exclude=scan.exclude,
snpStart=1, snpEnd=100)

logistic regression
res <- assocRegression(genoData,
outcome="case.cntl.status”,
model. type="logistic",
covar=c("sex", "age"),
scan.exclude=scan.exclude,
snpStart=1, snpEnd=100)

close(genoData)

BAFfromClusterMeans B Allele Frequency & Log R Ratio Calculation

34 BAFfromClusterMeans

Description

This function calculates the B allele frequency and the log R ratio values from the mean R and theta
values for each cluster.

Usage

BAFfromClusterMeans(intenData, filename, file.type = c("gds"”, "ncdf"),
clusterMeanVars = c("tAA","tAB","tBB","rAA","rAB","rBB"),
precision="single", compress="LZMA_RA:1M",
verbose = TRUE)

Arguments
intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.
filename The name of the genotype GDS or netCDF file to create
file.type The type of file to create ("gds" or "ncdf")
clusterMeanVars
Character vector indicating the names of the cluster mean columns in the SNP
annotation of intenData. Must be in order (tAA,tAB,tBB,rAA,rAB,rBB).
precision A character value indicating whether floating point numbers should be stored as
"double" or "single" precision.
compress The compression level for variables in a GDS file (see add. gdsn for options.
verbose Logical value specifying whether to show progress information.
Details

This function calculates the B allele frequency and the log R ratio values from the mean R and theta
values for each cluster and writes them to a GDS or NetCDF file.

Author(s)

Stephanie Gogarten, Caitlin McHugh

References

Peiffer D.A., Le .M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

See Also

IntensityData, BAFfromClusterMeans

BAFfromGenotypes 35

Examples

create IntensityData object from GDS

library(GWASdata)

xyfile <- system.file("extdata”, "illumina_gxy.gds", package="GWASdata")
xy <- GdsIntensityReader(xyfile)

data(illuminaSnpADF)

xyData <- IntensityData(xy, snpAnnot=illuminaSnpADF)

calculate BAF and LRR and store in GDS file
blfile <- tempfile()
BAFfromClusterMeans(xyData, blfile, file.type="gds", verbose=FALSE)

read output

bl <- GdsIntensityReader(blfile)
baf <- getBAlleleFreq(bl)

1rr <- getlLogRRatio(bl)

close(xy)
close(bl)
file.remove(blfile)

BAFfromGenotypes B Allele Frequency & Log R Ratio Calculation

Description

This function calculates the B allele frequency and the log R ratio values for samples by either plate
or by study.

Usage

BAFfromGenotypes(intenData, genoData,
filename, file.type = c("gds", "ncdf"),
min.n.genotypes = 2,
call.method = c("by.plate”, "by.study"),
plate.name = "plate”,
block.size = 5000,

precision="single", compress="LZMA_RA:1M",

verbose = TRUE)

Arguments
intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.
genoData GenotypeData object.
filename The name of the genotype GDS or netCDF file to create

file.type The type of file to create ("gds" or "ncdf")

36

min.n.genotypes

call.method

BAFfromGenotypes

The minimum number of samples for each genotype at any SNP in order to have
non-missing B allele freqency and log R ratio. Setting this parameter to 2 or a
similar value is recommended.

If call.method is ’by.plate’, the B allele frequency and log R ratio are calculated
for samples delineated by plates. This is the default method. If call.method is
"by.study’, the calculation uses all samples at once. If a study does not have
plate specifications, "by.study’ is the call.method that must be used.

plate.name Character string specifying the name of the plate variable in intenData or gen-
oData. By default, the plate.name is simply ’plate’ but oftentimes there are
variations, such as ’plateID’ or *plate.num’.

block.size An integer specifying the number of SNPs to be loaded at one time. The recom-
mended value is around 1000, but should vary depending on computing power.

precision A character value indicating whether floating point numbers should be stored as
"double" or "single" precision.

compress The compression level for variables in a GDS file (see add. gdsn for options.

verbose Logical value specifying whether to show progress information.

Details

Because this function can take a considerable amount of time and space, sufficient attention should
be given to the value used for block.size.

Author(s)
Caitlin McHugh

References

Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

See Also

IntensityData, GenotypeData, chromIntensityPlot, BAFfromClusterMeans

Examples

Not run:

create IntensityData and GenotypeData objects from netCDF

library(GWASdata)
data(affySnpADF)
data(affyScanADF)
nsamp <- nrow(affyScanADF)

xyfile <- system.file("extdata”, "affy_gxy.nc”, package="GWASdata")
xyNC <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xyNC, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

batchTest 37

genofile <- system.file("extdata”, "affy_geno.nc”, package="GWASdata")
genoNC <- NcdfGenotypeReader (genofile)
genoData <- GenotypeData(genoNC, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

calculate BAF and LRR

blfile <- tempfile()

BAFfromGenotypes(xyData, genoData, blfile, file.type="ncdf"”, min.n.genotypes=2,
call.method="by.plate"”, plate.name="plate")

bINC <- NcdfIntensityReader(blfile)
baf <- getBAlleleFreq(bINC)
lrr <- getLogRRatio(b1lNC)

close(xyData)
close(genoData)
close(bINC)
file.remove(blfile)

End(Not run)

batchTest Batch Effects of Genotyping

Description

batchChisqTest calculates Chi-square values for batches from 2-by-2 tables of SNPs, comparing
each batch with the other batches. batchFisherTest calculates Fisher’s exact test values.

Usage

batchChisqTest(genoData, batchVar, snp.include = NULL,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = FALSE,
correct = TRUE, verbose = TRUE)

batchFisherTest(genoData, batchVar, snp.include = NULL,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = FALSE,
conf.int = FALSE, verbose = TRUE)

Arguments
genoData GenotypeData object
batchvar A character string indicating which annotation variable should be used as the

batch.

snp.include A vector containing the IDs of SNPs to include.

38

batchTest

chrom.include Integer vector with codes for chromosomes to include. Ignored if snp.include
is not NULL. Default is 1:22 (autosomes). Use 23, 24, 25, 26, 27 for X, XY, Y,
M, Unmapped respectively

sex.include Character vector with sex to include. Default is c("M", "F"). If sex chromo-
somes are present in chrom. include, only one sex is allowed.

scan.exclude A vector containing the IDs of scans to be excluded.

return.by.snp Logical value to indicate whether snp-by-batch matrices should be returned.

conf.int Logical value to indicate if a confidence interval should be computed.
correct Logical value to specify whether to apply the Yates continuity correction.
verbose Logical value specifying whether to show progress information.

Details

Because of potential batch effects due to sample processing and genotype calling, batches are an
important experimental design factor.

batchChisqTest calculates the Chi square values from 2-by-2 table for each SNP, comparing each
batch with the other batches.

batchFisherTest calculates Fisher’s Exact Test from 2-by-2 table for each SNP, comparing each
batch with the other batches.

For each SNP and each batch, batch effect is evaluated by a 2-by-2 table: # of A alleles, and # of
B alleles in the batch, versus # of A alleles, and # of B alleles in the other batches. Monomorphic
SNPs are set to NA for all batches.

The default behavior is to combine allele frequencies from males and females and return results
for autosomes only. If results for sex chromosomes (X or Y) are desired, use chrom. include with
values 23 and/or 25 and sex.include="M" or "F".

If there are only two batches, the calculation is only performed once and the values for each batch
will be identical.

Value

batchChisqTest returns a list with the following elements:

mean.chisq a vector of mean chi-squared values for each batch.

lambda a vector of genomic inflation factor computed as median(chisq) / @.456 for
each batch.

chisq a matrix of chi-squared values with SNPs as rows and batches as columns. Only

returned if return.by.snp=TRUE.
batchFisherTest returns a list with the following elements:

mean.or a vector of mean odds-ratio values for each batch. mean.or is computed as
1/mean(pmin(or, 1/or)) since the odds ratio is >1 when the batch has a higher
allele frequency than the other batches and <1 for the reverse.

lambda a vector of genomic inflation factor computed as median(-2xlog(pval) / 1.39
for each batch.

batchTest 39

Each of the following is a matrix with SNPs as rows and batches as columns, and is only returned
if return.by.snp=TRUE:

pval P value
oddsratio Odds ratio
confint.low Low value of the confidence interval for the odds ratio. Only returned if conf. int=TRUE.

confint.high High value of the confidence interval for the odds ratio. Only returned if conf. int=TRUE.
batchChisqTest and batchFisherTest both also return the following if return.by. snp=TRUE:

allele.counts matrix with total number of A and B alleles over all batches.

min.exp.freq matrix of minimum expected allele frequency with SNPs as rows and batches as
columns.

Author(s)

Xiuwen Zheng, Stephanie Gogarten

See Also

GenotypeData, chisq. test, fisher.test

Examples

library(GWASdata)

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

data(illuminaScanADF)

genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

autosomes only, sexes combined (default)

res.chisq <- batchChisqTest(genoData, batchVar="plate")
res.chisqg$mean.chisq

res.chisg$lambda

X chromosome for females

res.chisq <- batchChisqTest(genoData, batchVar="status",
chrom.include=23, sex.include="F", return.by.snp=TRUE)

head(res.chisq$chisq)

Fisher exact test of "status” on X chromosome for females
res.fisher <- batchFisherTest(genoData, batchVar="status",
chrom.include=23, sex.include="F", return.by.snp=TRUE)

gqPlot(res.fisher$pval)

close(genoData)

40 centromeres

centromeres Centromere base positions

Description

Centromere base positions from the GRCh36/hgl18, GRCh37/hgl9 and GRCh38/hg38 genome
builds.

Usage

data(centromeres.hgl8)
data(centromeres.hgl9)
data(centromeres.hg38)

Format

A data frame with the following columns.

chrom chromosome (1-22, X, Y)
left.base starting base position of centromere

right.base ending base position of centromere

Note

The UCSC genome browser lists two regions for the Y chromosome centromere in build hg18. We
removed the positions (12208578, 12308578) from the centromere table to avoid problems with
duplicate entries in the code.

Source

hg18 and hg19: UCSC genome browser (http://genome.ucsc.edu)

hg38: Genome Reference Consortium (http://www.ncbi.nlm.nih.gov/projects/genome/assembly/
grc/human/).

Examples

data(centromeres.hgi18)
data(centromeres.hg19)
data(centromeres.hg38)

http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

chromlIntensityPlot 41

chromIntensityPlot Plot B Allele Frequency and/or Log R Ratio, R or Theta values for
samples by probe position on a chromosome

Description

This function creates plots for one or more of the B AlleleFreq’, ’Log R Ratio’, 'R’ or "Theta’
values for given sample by chromosome combinations.

Usage

chromIntensityPlot(intenData, scan.ids, chrom.ids,
type = c("BAF/LRR", "BAF", "LRR", "R", "Theta”, "R/Theta"),
main = NULL, info = NULL, abln = NULL,
horizln = c(1/2, 1/3, 2/3),
colorGenotypes = FALSE, genoData
colorBatch = FALSE, batch.column
snp.exclude = NULL,
ideogram=TRUE, ideo.zoom=TRUE, ideo.rect=FALSE,
cex=0.5, cex.leg=1.5,

NULL,
NULL,

colors = c("default”, "neon”, "primary"”), ...)
Arguments

intenData IntensityData object, must contain at least one of ’BAlleleFreq’, ’LogRRa-
tio’, ’X’,’Y’.

scan.ids A vector containing the scan IDs to plot.

chrom. ids A vector containing the chromosomes to plot for each scanID (should have same
length as scan. ids).

type The type of plot to be created. "BAF/LRR’ creates both B Allele Freq’ and
’Log R Ratio’ plots. ’R/Theta’ creates both 'R’ and *Theta’ plots.

main Vector of plot titles. If NULL then the title will include scanID, sex, and chromo-
some.

info A character vector containing extra information to include in the main title.

abln A vector of values that is of length 2*length(scan.ids). Each pair of entries

specifies where vertical lines will be drawn in each plot. This is especially useful
when drawing the start and end breakpoints for anomalies, for example. Use -1
as one pair value for plots that warrant only one line. By default, no lines will
be drawn.

horizln A vector containing the y-axis values at which a horizontal line will be drawn in
B Allele Frequency plots.

colorGenotypes A logical value specifying whether to color-code the points by called genotype.
if TRUE, genoData must be given also.

genoData GenotypeData object, required if colorGenotypes=TRUE.

42 chromIntensityPlot

colorBatch A logical value specifying whether to color-code the points by sample batch
(e.g, plate). If TRUE, batch.column must also be specified.

batch.column A character string indicating which annotation variable in intenData should be
used as the batch.

snp.exclude An integer vector giving the IDs of SNPs to exclude from the plot.

ideogram logical for whether to plot a chromosome ideogram under the BAF and LRR
plots.

ideo.zoom logical for whether to zoom in on the ideogram to match the range of the BAF/LRR
plots.

ideo.rect logical for whether to draw a rectangle on the ideogram indicating the range of
the BAF/LRR plots.

cex cex value for points on the plots.

cex.leg cex value for the ideogram legend.

colors Color scheme to use for genotypes. "default" is colorblind safe (colorbrewer

Set2), "neon" is bright orange/green/fuschia, and "primary" is red/green/blue.
Other parameters to be passed directly to plot.

Details

For all plots, a vertical line is drawn every one eigth of the chromosome. For the Log R Ratio plot,
the y-axis has been given the range of (-2,2).

Author(s)
Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromGenotypes

Examples

library(GWASdata)
data(illuminaScanADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)
intenData <- IntensityData(bl, scanAnnot=illuminaScanADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF)

scanlD <- getScanID(illuminaScanADF, index=1)
chromIntensityPlot(intenData=intenData, scan.ids=scanID,
chrom.ids=22, type="BAF/LRR", info="interesting sample”,
colorGenotypes=TRUE, genoData=genoData)
close(genoData)
close(intenData)

convertNcdfGds 43

convertNcdfGds Convert between NetCDF and GDS format

Description

convertNcdfGds converts a NetCDF file to GDS format.
convertGdsNcdf converts a GDS file to NetCDF format.
checkNcdfGds checks whether a genotype NetCDF file and a GDS file contain identical data.

Usage

convertNcdfGds(ncdf.filename, gds.filename, snp.annot = NULL,
precision = "single", compress = "LZMA_RA", verbose = TRUE)

convertGdsNcdf (gds.filename, ncdf.filename,
precision = "single", verbose = TRUE)

checkNcdfGds(ncdf.filename, gds.filename, verbose = TRUE)

Arguments

ncdf.filename name of the NetCDF file
gds.filename name of the GDS file

snp.annot a SnpAnnotationDataFrame with SNP annotation. The column named "snpName"
will be written to "snp.rs.id" in the GDS file.
precision A character value indicating whether floating point numbers should be stored as
"double" or "single" precision.
compress The compression level for variables in a GDS file (see add. gdsn for options.
verbose whether to show progress information
Details

convertNcdfGds assumes any variables other than "sampleID", "chromosome", and "position"
have dimensions SNP x sample.

If snp.annot has columns "rsID", "alleleA", "alleleB", these will be stored in the GDS file as
"snp.rs.id" and "snp.allele" (the latter has the format "A/B").

Chromosome codes from snp.annot (for autosomes, X, Y, etc.) will be stored in the GDS file.

convertGdsNcdf assumes any variables not starting with "snp" or "sample" have dimensions SNP
X sample.

Value

checkNcdfGds returns TRUE if the NetCDF and GDS files contain identical data. If the files differ,
it will print a diagnostic message and return FALSE.

44 createDataFile

Author(s)

Xiuwen Zheng, Stephanie Gogarten

See Also
gdsfmt, ncdf4-package

Examples

library(GWASdata)
ncfile <- system.file("extdata”, "illumina_geno.nc", package="GWASdata")

data(illuminaSnpADF)

gdsfile <- tempfile()
convertNcdfGds(ncfile, gdsfile, snp.annot=illuminaSnpADF)

checkNcdfGds(ncfile, gdsfile)

ncfile2 <- tempfile()
convertGdsNcdf (gdsfile, ncfile2)

file.remove(gdsfile, ncfile2)

createDataFile Write genotypic calls and/or associated metrics to a GDS or netCDF

file.

Description

Genotypic calls and/or associated quantitative variables (e.g. quality score, intensities) are read
from text files and written to a GDS or netCDF file.

Usage
createDataFile(path=".", filename, file.type=c("gds", "ncdf"),
variables="genotype”, snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums, scan.name.in.file,
allele.coding=c("AB", "nucleotide"),
precision="single", compress="LZMA_RA:1M", compress.geno="", compress.annot="LZMA_RA",
array.name=NULL, genome.build=NULL,
diagnostics.filename="createDataFile.diagnostics.RData",
verbose=TRUE)
createAffyIntensityFile(path=".", filename, file.type=c("gds", "ncdf"),

snp.annotation, scan.annotation,
precision="single", compress="LZMA_RA:1M", compress.annot="LZMA_RA",
array.name=NULL, genome.build=NULL,

createDataFile 45

diagnostics.filename="createAffyIntensityFile.diagnostics.RData",
verbose=TRUE)
checkGenotypeFile(path=".", filename, file.type=c("gds"”, "ncdf"),
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums, scan.name.in.file,
check.scan.index, n.scans.loaded,
allele.coding=c("AB"”, "nucleotide"),
diagnostics.filename="checkGenotypeFile.diagnostics.RData",
verbose=TRUE)
checkIntensityFile(path=".", filename, file.type=c("gds", "ncdf”),
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums, scan.name.in.file,
check.scan.index, n.scans.loaded, affy.inten=FALSE,
diagnostics.filename="checkIntensityFile.diagnostics.RData",
verbose=TRUE)

Arguments
path Path to the raw text files.
filename The name of the genotype GDS or netCDF file to create
file.type The type of file to create ("gds" or "ncdf")
variables A character vector containing the names of the variables to create (must be one

or more of c("genotype”, "quality”, "X", "Y", "rawX", "rawY", "R", "Theta”,
"BAlleleFreq”, "LogRRatio"))

non

snp.annotation Snp annotation dataframe with columns "snpID", "chromosome", "position" and
"snpName". snpID should be a unique integer vector, sorted with respect to
chromosome and position. snpName should match the snp identifiers inside the
raw genoypic data files If file.type="gds", optional columns "alleleA", and
"alleleB" will be written if present.

scan.annotation
Scan annotation data.frame with columns "scanID" (unique id of genotyping
instance), "scanName", (sample name inside the raw data file) and "file" (corre-
sponding raw data file name).

sep.type Field separator in the raw text files.

skip.num Number of rows to skip, which should be all rows preceding the genotypic or
quantitative data (including the header).

col.total Total number of columns in the raw text files.

col.nums An integer vector indicating which columns of the raw text file contain variables

for input. names(col.nums) must be a subset of c("snp", "sample", "geno",
"al", "a2", "quality”, "X", "Y", "rawX", "rawY", "R", "Theta", "BAlleleFreq",
"LogRRatio"). The element "snp" is the column of SNP ids, "sample" is sam-
ple ids, "geno" is diploid genotype (in AB format), "al" and "a2" are alleles 1
and 2 (in AB format), "quality" is quality score, "X" and "Y" are normalized in-
tensities, "rawX" and "rawY" are raw intensities, "R" is the sum of normalized

46 createDataFile

intensities, "Theta" is angular polar coordinate, "BAlleleFreq" is the B allele
frequency, and "LogRRatio" is the Log R Ratio.

scan.name.in.file
An indicator for the presence of sample name within the file. A value of 1
indicates a column with repeated values of the sample name (Illumina format),
-1 indicates sample name embedded in a column heading (Affymetrix format)
and 0 indicates no sample name inside the raw data file.

allele.coding Whether the genotypes in the file are coded as "AB" (recognized characters are
A,B) or "nucleotide" (recognized characters are A,C,G,T). If allele.coding="nucelotide”,
the columns "alleleA" and "alleleB" must be present in snp.annotation to map
the genotypes to integer format (number of A alleles).

check.scan.index

An integer vector containing the indices of the sample dimension of the GDS or
netCDF file to check.

n.scans.loaded Number of scans loaded in the GDS or netCDF file.

affy.inten Logical value indicating whether intensity files are in Affymetrix format (two
lines per SNP).
precision A character value indicating whether floating point numbers should be stored as

"double" or "single" precision.

compress The compression level for floating-point variables in a GDS file (see add.gdsn
for options.

compress.geno The compression level for genotypes in a GDS file (see add. gdsn for options.

compress.annot The compression level for annotation variables in a GDS file (see add. gdsn for
options.

array.name Name of the array, to be stored as an attribute in the netCDF file.

genome.build Genome build used in determining chromosome and position, to be stored as an
attribute in the netCDF file.

diagnostics.filename
Name of the output file to save diagnostics.

verbose Logical value specifying whether to show progress information.

Details

These functions read genotypic and associated data from raw text files. The files to be read and
processed are specified in the sample annotation. createDataFile expects one file per sample,
with each file having one row of data per SNP probe. The col.nums argument allows the user to
select and identify specific fields for writing to the GDS or netCDF file. Illumina text files and
Affymetrix ".CHP" files can be used here (but not Affymetrix "ALLELE_SUMMARY" files).

A SNP annotation data.frame is a pre-requisite for this function. It has the same number of rows
(one per SNP) as the raw text file and a column of SNP names matching those within the raw text
file. It also has a column of integer SNP ids to be used as a unique key for each SNP in the GDS or
netCDF file.

A sample annotation data.frame is also a pre-requisite. It has one row per sample with columns
corresponding to sample name (as it occurs within the raw text file), name of the raw text file for

createDataFile 47

that sample and a unique sample id (to be written as the "sampleID" variable in the GDS or netCDF
file). If file. type="ncdf", the unique id must be an integer.

The genotype calls in the raw text file may be either one column of diploid calls or two columns
of allele calls. The function takes calls in "AB" or "nucleotide" format and converts them to a
numeric code indicating the number of "A" alleles in the genotype (i.e. AA=2, AB=1, BB=0 and
missing=-1). If the genotype calls are nucleotides (A,C,G,T), the columns "alleleA" and "alleleB"
in snp.annotation are used to map to AB format.

While each raw text file is being read, the functions check for errors and irregularities and records
the results in a list of vectors. If any problem is detected, that raw text file is skipped.

createAffyIntensityFile create an intensity data file from Affymetrix "ALLELE_SUMMARY"
files. The "ALLELE_SUMMARY" files have two rows per SNP, one for X (A allele) and one for
Y (B allele). These are reformatted to one row per SNP and and ordered according to the SNP
integer id. The correspondence between SNP names in the "ALLELE_SUMMARY" file and the
SNP integer ids is made using the SNP annotation data.frame.

checkGenotypeFile and checkIntensityFile check the contents of GDS or netCDF files against
raw text files.

Value

The GDS or netCDF file specified in argument filename is populated with genotype calls and/or
associated quantitative variables. A list of diagnostics with the following components is returned.
Each vector has one element per raw text file processed.

read.file A vector indicating whether (1) or not (0) each file was read successfully.

row.num A vector of the number of rows read from each file. These should all be the
same and equal to the number of rows in the SNP annotation data.frame.

samples A list of vectors containing the unique sample names in the sample column of
each raw text file. Each vector should have just one element.

sample.match A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame

missg A list of vectors containing the unique character string(s) for missing genotypes
(i.e. not AA,AB or BB) for each raw text file.
snp.chk A vector indicating whether (1) or not (0) the raw text file has the expected set

of SNP names (i.e. matching those in the SNP annotation data.frame).

chk A vector indicating whether (1) or not (0) all previous checks were successful
and the data were written to the netCDF file.

checkGenotypeFile returns the following additional list items.

snp.order A vector indicating whether (1) or not (0) the snp ids are in the same order in
each file.
geno.chk A vector indicating whether (1) or not (0) the genotypes in the netCDF match

the text file.
checkIntensityFile returns the following additional list items.

gs.chk A vector indicating whether (1) or not (0) the quality scores in the netCDF match
the text file.

48

read.file.inten

createDataFile

A vector indicating whether (1) or not (0) each intensity file was read success-
fully (if intensity files are separate).

sample.match.inten

rows.equal

snp.chk.inten

inten.chk

Author(s)

A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame (if intensity files are sepa-
rate).

A vector indicating whether (1) or not (0) the number of rows read from each file
are the same and equal to the number of rows in the SNP annotation data.frame
(if intensity files are separate).

A vector indicating whether (1) or not (0) the raw text file has the expected set of
SNP names (i.e. matching those in the SNP annotation data.frame) (if intensity
files are separate).

A vector for each intensity variable indicating whether (1) or not (0) the intensi-
ties in the netCDF match the text file.

Stephanie Gogarten, Cathy Laurie

See Also

gdsfmt, ncdf4-package

Examples

library(GWASdata)

I

Illumina - genotype file

I

gdsfile <- tempfile()
path <- system.file("extdata”, "illumina_raw_data”, package="GWASdata")
data(illumina_snp_annot, illumina_scan_annot)

snpAnnot <- illumina_snp_annot[,c("snpID”, "rsID", "chromosome",
"position”, "alleleA", "alleleB")]

names(snpAnnot)[2] <- "snpName"

subset of samples for testing

scanAnnot <- illumina_scan_annot[1:3, c(”scanID", "genoRunID", "file")]

names(scanAnnot)[2] <- "scanName"

col.nums <- as.integer(c(1,2,12,13))

names(col.nums) <- c(”"snp”, "sample”, "al”, "a2")

diagfile <- tempfile()

res <- createDataFile(path, gdsfile, file.type="gds", variables="genotype”,

non

snpAnnot, scanAnnot, sep.type=",",
skip.num=11, col.total=21, col.nums=col.nums,
scan.name.in.file=1, diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(gdsfile)

createDataFile

S

Affymetrix - genotype file

WA

gdsfile <- tempfile()

path <- system.file("extdata"”, "affy_raw_data”, package="GWASdata")

data(affy_snp_annot, affy_scan_annot)

snpAnnot <- affy_snp_annot[,c("snpID”, "probelID", "chromosome”, "position”)]

names (snpAnnot)[2] <- "snpName"”

subset of samples for testing

scanAnnot <- affy_scan_annot[1:3, c("scanID”, "genoRunID"”, "chpFile")]

names(scanAnnot)[2:3] <- c("scanName", "file")

col.nums <- as.integer(c(2,3)); names(col.nums) <- c("snp”, "geno")

diagfile <- tempfile()

res <- createDataFile(path, gdsfile, file.type="gds", variables="genotype",
snpAnnot, scanAnnot, sep.type="\t",
skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, diagnostics.filename=diagfile)

file.remove(diagfile)

check

diagfile <- tempfile()

res <- checkGenotypeFile(path, gdsfile, file.type="gds", snpAnnot, scanAnnot,

sep.type="\t", skip.num=1, col.total=6, col.nums=col.nums,

scan.name.in.file=-1,
check.scan.index=1:3, n.scans.loaded=3,
diagnostics.filename=diagfile)

file.remove(diagfile)

file.remove(gdsfile)

AR

Affymetrix - intensity file

HHHHHHHEHEEE

gdsfile <- tempfile()

path <- system.file("extdata"”, "affy_raw_data”, package="GWASdata")

data(affy_snp_annot, affy_scan_annot)

snpAnnot <- affy_snp_annot[,c("snpID", "probeID", "chromosome”, "position")]

names(snpAnnot)[2] <- "snpName"

subset of samples for testing

scanAnnot <- affy_scan_annot[1:3, c(”scanID"”, "genoRunID"”, "alleleFile")]

names(scanAnnot)[2:3] <- c("scanName”, "file")

diagfile <- tempfile()

res <- createAffylIntensityFile(path, gdsfile, file.type="gds", snpAnnot, scanAnnot,
diagnostics.filename=diagfile)

file.remove(diagfile)

check
diagfile <- tempfile()
res <- checkIntensityFile(path, gdsfile, file.type="gds", snpAnnot, scanAnnot,
sep.type="\t", skip.num=1, col.total=2,
col.nums=setNames(as.integer(c(1,2,2)), c("snp", "X", "Y")),

49

50 duplicateDiscordance

scan.name.in.file=-1, affy.inten=TRUE,
check.scan.index=1:3, n.scans.loaded=3,
diagnostics.filename=diagfile)
file.remove(diagfile)
file.remove(gdsfile)

duplicateDiscordance Duplicate discordance

Description

A function to compute pair-wise genotype discordances between multiple genotyping instances of
the same subject.

Usage

duplicateDiscordance(genoData, subjName.col,
one.pair.per.subj=TRUE, corr.by.snp=FALSE,
minor.allele.only=FALSE, allele.freq=NULL,
scan.exclude=NULL, snp.exclude=NULL,
snp.block.size=5000, verbose=TRUE)

Arguments

genoData GenotypeData object
subjName.col A character string indicating the name of the annotation variable that will be
identical for duplicate scans.

one.pair.per.subj
A logical indicating whether a single pair of scans should be randomly selected
for each subject with more than 2 scans.

corr.by.snp A logical indicating whether correlation by SNP should be computed (may sig-
nificantly increase run time).

minor.allele.only
A logical indicating whether discordance should be calculated only between
pairs of scans in which at least one scan has a genotype with the minor allele
(i.e., exclude major allele homozygotes).

allele.freq A numeric vector with the frequency of the A allele for each SNP in genoData.
Required if minor.allele.only=TRUE.

scan.exclude An integer vector containing the ids of scans to be excluded.
snp.exclude An integer vector containing the ids of SNPs to be excluded.
snp.block.size Integer block size for SNPs if corr.by.snp=TRUE.

verbose Logical value specifying whether to show progress information.

duplicateDiscordance 51

Details

duplicateDiscordance calculates discordance metrics both by scan and by SNP. If one.pair.per.subj=TRUE
(the default), each subject with more than two duplicate genotyping instances will have two scans

randomly selected for computing discordance. If one.pair.per.subj=FALSE, discordances will

be calculated pair-wise for all possible pairs for each subject.

Value
A list with the following components:

discordance.by.snp
data frame with 5 columns: 1. snpID, 2. discordant (number of discordant pairs),
3. npair (number of pairs examined), 4. n.disc.subj (number of subjects with at
least one discordance), 5. discord.rate (discordance rate i.e. discordant/npair)
discordance.by.subject
a list of matrices (one for each subject) with the pair-wise discordance between
the different genotyping instances of the subject
correlation.by.subject
a list of matrices (one for each subject) with the pair-wise correlation between
the different genotyping instances of thesubject

If corr.by.snp=TRUE, discordance.by. snp will also have a column "correlation" with the corre-
lation between duplicate subjects. For this calculation, the first two samples per subject are selected.

Author(s)

Tushar Bhangale, Cathy Laurie, Stephanie Gogarten, Sarah Nelson

See Also

GenotypeData, duplicateDiscordanceAcrossDatasets, duplicateDiscordanceProbability,
alleleFrequency

Examples

library(GWASdata)

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

data(illuminaScanADF)

genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

disc <- duplicateDiscordance(genoData, subjName.col="subjectID")

minor allele discordance

afreq <- alleleFrequency(genoData)

minor.disc <- duplicateDiscordance(genoData, subjName.col="subjectID",

minor.allele.only=TRUE, allele.freq=afreql,"all"])

close(genoData)

52 duplicateDiscordanceAcrossDatasets

duplicateDiscordanceAcrossDatasets

Functions to check discordance and allelic dosage correlation across
datasets

Description

These functions compare genotypes in pairs of duplicate scans of the same sample across multiple
datasets. ’duplicateDiscordanceAcrossDatasets’ finds the number of discordant genotypes both by
scan and by SNP. "dupDosageCorAcrossDatasets’ calculates correlations between allelic dosages
both by scan and by SNP, allowing for comparision between imputed datasets or between imputed
and observed - i.e., where one or more of the datasets contains continuous dosage [0,2] rather than
discrete allele counts {0,1,2}.

Usage

duplicateDiscordanceAcrossDatasets(genoDatal, genoData2,
match.snps.on=c("position”, "alleles"”),
subjName.cols, snpName.cols=NULL,
one.pair.per.subj=TRUE, minor.allele.only=FALSE,
missing.fail=c(FALSE, FALSE),
scan.exclude1=NULL, scan.exclude2=NULL,
snp.exclude1=NULL, snp.exclude2=NULL,
snp.include=NULL,
verbose=TRUE)

minorAlleleDetectionAccuracy(genoDatal, genoData2,
match.snps.on=c("position”, "alleles"),
subjName.cols, snpName.cols=NULL,
missing.fail=TRUE,
scan.excludel1=NULL, scan.exclude2=NULL,
snp.exclude1=NULL, snp.exclude2=NULL,
snp.include=NULL,
verbose=TRUE)

dupDosageCorAcrossDatasets(genoDatal, genoData2,
match.snps.on=c("position”, "alleles"),
subjName.cols="subjectID"”, snpName.cols=NULL,
scan.exclude1=NULL, scan.exclude2=NULL,
snp.excludel1=NULL, snp.exclude2=NULL,
snp.include=NULL,
snp.block.size=5000, scan.block.size=100,
verbose=TRUE)

Arguments

genoDatal GenotypeData object containing the first dataset.

duplicateDiscordanceAcrossDatasets 53

genoData2

match.snps.on

subjName.cols

snpName. cols

GenotypeData object containing the second dataset.

non non

One or more of ("position"”, "alleles", "name") indicating how to match SNPs.
"position" will match SNPs on chromosome and position, "alleles" will also re-
quire the same alleles (but A/B designations need not be the same), and "name"
will match on the columns give in snpName. cols.

2-element character vector indicating the names of the annotation variables that
will be identical for duplicate scans in the two datasets. (Alternatively, one
character value that will be recycled).

2-element character vector indicating the names of the annotation variables that
will be identical for the same SNPs in the two datasets. (Alternatively, one
character value that will be recycled).

one.pair.per.subj

A logical indicating whether a single pair of scans should be randomly selected
for each subject with more than 2 scans.

minor.allele.only

missing.fail

scan.excludel

scan.exclude?

snp.excludel

snp.exclude2

snp.include

A logical indicating whether discordance should be calculated only between
pairs of scans in which at least one scan has a genotype with the minor allele
(i.e., exclude major allele homozygotes).

For duplicateDiscordanceAcrossDatasets, a 2-element logical vector indi-
cating whether missing values in datasets 1 and 2, respectively, will be con-
sidered failures (discordances with called genotypes in the other dataset). For
minorAlleleDetectionAccuracy, a single logical indicating whether missing
values in dataset 2 will be considered false negatives (missing.fail=TRUE) or
ignored (missing.fail=FALSE).

An integer vector containing the ids of scans to be excluded from the first
dataset.

An integer vector containing the ids of scans to be excluded from the second
dataset.

An integer vector containing the ids of SNPs to be excluded from the first
dataset.

An integer vector containing the ids of SNPs to be excluded from the second
dataset.

List of SNPs to include in the comparison. Should match the contents of the
columns referred to by snpName.cols. Only valid if match. snps.on includes
"name".

snp.block.size Block size for SNPs

scan.block.size

verbose

Details

Block size for scans

Logical value specifying whether to show progress information.

duplicateDiscordanceAcrossDatasets calculates discordance metrics both by scan and by SNP.
If one.pair.per.subj=TRUE (the default), each subject with more than two duplicate genotyping
instances will have one scan from each dataset randomly selected for computing discordance. If

54

duplicateDiscordanceAcrossDatasets

one.pair.per.subj=FALSE, discordances will be calculated pair-wise for all possible cross-dataset
pairs for each subject.

dupDosageCorAcrossDatasets calculates dosage correlation (Pearson correlation coefficient) both
by scan and by SNP. Note it only allows for one pair of duplicate scans per sample. For this function
only, genoDatal and genoData2 must have been created with GdsGenotypeReader objects.

By default, overlapping variants are identified based on position and alleles. Alleles are determined
via ’getAlleleA’ and ’getAlleleB’ accessors, so users should ensure these variables are referring to
the same strand orientation in both datests (e.g., both plus strand alleles). It is not necessary for the
A/B ordering to be consistent across datasets. For example, two variants at the same position with
alleleA="C" and alleleB="T" in genoDatal and alleleA="T" and alleleB="C" in genoData2 will stil
be identified as overlapping.

If minor.allele.only=TRUE, the allele frequency will be calculated in genoDatal, using only
samples common to both datasets.

If snp.include=NULL (the default), discordances will be found for all SNPs common to both
datasets.

genoDatal and genoData2 should each have "alleleA" and "alleleB" defined in their SNP annota-
tion. If allele coding cannot be found, the two datasets are assumed to have identical coding. Note
that *dupDosageCorAcrossDatasets’ can NOT detect where strand-ambiguous (A/T or C/G) SNPs
are annotated on different strands, although the r2 in these instances would be unaffected: r may be
negative but r2 will be positive.

minorAlleleDetectionAccuracy summarizes the accuracy of minor allele detection in genoData2
with respect to genoDatal (the "gold standard"). TP=number of true positives, TN=number of true
negatives, FP=number of false positives, and FN=number of false negatives. Accuracy is represented
by four metrics:

* sensitivity for each SNP as TP/ (TP+FN)

* specificity for each SNP as TN/ (TN+FP)

* positive predictive value for each SNP as TP/ (TP+FP)

* negative predictive value for each SNP as TN/ (TN+FN).

TP, TN, FP, and FN are calculated as follows:

genoDatal
mm Mm MM
mm 2TP ITP + 1FP 2FP
genoData2 Mm 1TP+1FN 1TN+ 1TP 1TN + 1FP
MM 2FN IFN + 1TN 2TN
- 2FN IFN

"M" is the major allele and "m" is the minor allele (as calculated in genoDatal). is a missing
call in genoData2. Missing calls in genoDatal are ignored. If missing. fail=FALSE, missing calls
in genoData?2 (the last row of the table) are also ignored.

duplicateDiscordanceAcrossDatasets 55

Value

SNP annotation columns returned by all functions are:

chromosome chromosome
position base pair position
snpID1 snpID from genoDatal
snpID2 snpID from genoData2

If matching on "alleles":

alleles alleles sorted alphabetically
alleleAl allele A from genoDatal
alleleB1 allele B from genoData2
alleleA2 allele A from genoData2
alleleB2 allele B from genoData2

If matching on "name":
name the common SNP name given in snpName. cols

duplicateDiscordanceAcrossDatasets returns a list with two data frames: The data.frame "dis-
cordance.by.snp" contains the SNP annotation columns listed above as well as:

discordant number of discordant pairs
npair number of pairs examined
n.disc.subj number of subjects with at least one discordance

discord.rate discordance rate i.e. discordant/npair
The data.frame "discordance.by.subject" contains a list of matrices (one for each subject) with the
pair-wise discordance between the different genotyping instances of the subject.
minorAlleleDetectionAccuracy returns a data.frame with the SNP annotation columns listed
above as well as:
npair number of sample pairs compared (non-missing in genoData1)
sensitivity sensitivity
specificity specificity
positivePredictiveValue
Positive predictive value
negativePredictiveValue
Negative predictive value
dupDosageCorAcrossDatasets returns a list with two data frames:
The data.frame "snps" contains the by-SNP correlation (r) values with the SNP annotation columns

listed above as well as:

nsamp.dosageR number of samples in r calculation (i.e., non missing data in both genoDatal and
genoData2)

56

duplicateDiscordanceAcrossDatasets

dosageR dosage correlation

The data.frame "samps" contains the by-sample r values with the following columns:

subjectID subject-level identifier for duplicate sample pair

scanlD1 scanID from genoDatal

scanID2 scanID from genoData2

nsnp.dosageR number of SNPs in r calculation (i.e., non missing data in both genoDatal and
genoData2)

dosageR dosage correlation

If no duplicate scans or no common SNPs are found, these functions issue a warning message and
return NULL.

Author(s)

Stephanie Gogarten, Jess Shen, Sarah Nelson

See Also

GenotypeData, duplicateDiscordance, duplicateDiscordanceProbability

Examples

first set
snp1 <- data.frame(snpID=1:10, chromosome=1L, position=101:110,
rsID=paste("rs”, 101:110, sep=""),
alleleA="A", alleleB="G", stringsAsFactors=FALSE)
scanl <- data.frame(scanID=1:3, subjectID=c("A","B","C"), sex="F", stringsAsFactors=FALSE)
mgr <- MatrixGenotypeReader (genotype=matrix(c(@,1,2), ncol=3, nrow=1@), snpID=snpl1$snplID,
chromosome=snp1$chromosome, position=snpl$position, scanID=1:3)
genoDatal <- GenotypeData(mgr, snpAnnot=SnpAnnotationDataFrame(snpl),
scanAnnot=ScanAnnotationDataFrame(scan1))

second set
snp2 <- data.frame(snpID=1:5, chromosome=1L,
position=as.integer(c(101,103,105,107,107)),
rsID=c("rs101", "rs103", "rs105", "rs107", "rsXXX"),
alleleA= c("A","C","G","A","A"),
alleleB=c("G","T","A","G","G"),
stringsAsFactors=FALSE)
scan2 <- data.frame(scanID=1:3, subjectID=c("A","C","C"), sex="F", stringsAsFactors=FALSE)
mgr <- MatrixGenotypeReader(genotype=matrix(c(1,2,0), ncol=3, nrow=5), snpID=snp2$snplD,
chromosome=snp2$chromosome, position=snp2$position, scanID=1:3)
genoData2 <- GenotypeData(mgr, snpAnnot=SnpAnnotationDataFrame(snp2),
scanAnnot=ScanAnnotationDataFrame(scan2))

duplicateDiscordanceAcrossDatasets(genoDatal, genoData2,
match.snps.on="position”,
subjName.cols="subjectID")

duplicateDiscordanceProbability 57

duplicateDiscordanceAcrossDatasets(genoDatal, genoData2,
match.snps.on=c("position”, "alleles"),
subjName.cols="subjectID")

duplicateDiscordanceAcrossDatasets(genoDatal, genoData2,
match.snps.on=c("position”, "alleles”, "name"),
subjName.cols="subjectID",
snpName.cols="rsID")

duplicateDiscordanceAcrossDatasets(genoDatal, genoData2,
subjName.cols="subjectID",
one.pair.per.subj=FALSE)

minorAlleleDetectionAccuracy(genoDatal, genoData2,
subjName.cols="subjectID")

dupDosageCorAcrossDatasets(genoDatal, genoData2,
scan.exclude2=scan2$scanID[duplicated(scan2$subjectID)])

duplicateDiscordanceProbability
Probability of duplicate discordance

Description
duplicateDiscordanceProbability calculates the probability of observing discordant genotypes
for duplicate samples.

Usage

duplicateDiscordanceProbability(npair,
error.rate = c(le-5, le-4, 1e-3, le-2),
max.disc = 7)

Arguments
npair The number of pairs of duplicate samples.
error.rate A numeric vector of error rates (i.e., the rate at which a genotype will be called
incorrectly).
max.disc The maximum number of discordances for which to compute the probability.
Details

Since there are three possible genotypes, one call is correct and the other two are erroneous, so
theoretically there are two error rates, a and b. The probability that duplicate genotyping instances
of the same subject will give a discordant genotype is 2[(1 - a - b)(a + b) + ab]. When a and b are
very small, this is approximately 2(a + b) or twice the total error rate. This function assumes that a
== Db, and the argument error.rate is the total error rate a + b.

Any negative values for the probability (due to precision problems for very small numbers) are set
to 0.

58 exactHWE

Value

This function returns a matrix of probabilities, where the column names are error rates and the row
names are expected number of discordant genotypes (>0 through >max.disc).

Author(s)

Cathy Laurie

See Also

duplicateDiscordance, duplicateDiscordanceAcrossDatasets
Examples
disc <- duplicateDiscordanceProbability(npair=10, error.rate=c(le-6, le-4))

#probability of observing >0 discordant genotypes given an error rate le-6
disc[1,1]

#probability of observing >1 discordant genotypes given an error rate le-4
disc[2,2]

exactHWE Hardy-Weinberg Equilibrium testing

Description

This function performs exact Hardy-Weinberg Equilibrium testing (using Fisher’s Test) over a se-
lection of SNPs. It also counts genotype, calculates allele frequencies, and calculates inbreeding
coefficients.

Usage

exactHWE (genoData,
scan.exclude = NULL,
geno.counts = TRUE,
snpStart = NULL,
snpEnd = NULL,
block.size = 5000,
verbose = TRUE,
permute = FALSE)

Arguments

genoData a GenotypeData object
scan.exclude a vector of scanIDs for scans to exclude

geno.counts if TRUE (default), genotype counts are returned in the output data.frame.

exactHWE 59

snpStart index of the first SNP to analyze, defaults to first SNP

snpEnd index of the last SNP to analyze, defaults to last SNP

block.size number of SNPs to read in at once

verbose logical for whether to print status updates

permute logical indicator for whether to permute alleles before calculations
Details

HWE calculations are performed with the HWExact function in the GWASExactHW package.

For the X chromosome, only female samples will be used in all calculations (since males are ex-
cluded from HWE testing on this chromosome). The X chromosome may not be included in a block
with SNPs from other chromosomes. If the SNP selection includes the X chromosome, the scan
annotation of genoData should include a "sex" column.

Y and M and chromsome SNPs are not permitted in the SNP selection, since the HWE test is not
valid for these SNPs.

If permute=TRUE, alleles will be randomly shuffled before the HWE calculations. Running permu-
tation can yield the expected distribution of p-values and corresponding confidence intervals.

Value

a data.frame with the following columns

snpID the snpIDs

chr chromosome SNPs are on

If geno. counts=TRUE:

nAA number of AA genotypes in samples
nAB number of AB genotypes in samples
nBB number of BB genotypes in samples
MAF minor allele frequency

minor.allele which allele ("A" or "B") is the minor allele
f the inbreeding coefficient

pval exact Hardy-Weinberg Equilibrium (using Fisher’s Test) p-value. pval will be
NA for monomorphic SNPs (MAF=0).

Author(s)

Ian Painter, Matthew P. Conomos, Stephanie Gogarten, Adrienne Stilp

See Also

HWExact

60 findBAFvariance

Examples

library(GWASdata)
data(illuminaScanADF)

run only on YRI subjects
scan.exclude <- illuminaScanADF$scanID[illuminaScanADF$race != "YRI"]

create data object

gdsfile <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader (gdsfile)

genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

chr <- getChromosome(genoData)

autosomal SNPs

auto <- range(which(is.element(chr, 1:22)))

hwe <- exactHWE(genoData, scan.exclude=scan.exclude,
snpStart=auto[1], snpEnd=auto[2])

permutation

perm <- exactHWE(genoData, scan.exclude=scan.exclude,
snpStart=auto[1], snpEnd=auto[2],
permute=TRUE)

X chromosome SNPs must be run separately since they only use females

Xchr <- range(which(chr == 23))

hweX <- exactHWE(genoData, scan.exclude=scan.exclude,
snpStart=Xchr[1], snpEnd=Xchr[2])

close(genoData)
findBAFvariance Find chromosomal areas with high BAlleleFreq (or LogRRatio) stan-
dard deviation
Description

sdByScanChromWindow uses a sliding window algorithm to calculate the standard deviation of the
BAlleleFreq (or LogRRatio) values for a user specified number of bins across each chromosome of
each scan.

medianSdOverAutosomes calculates the median of the BAlleleFreq (or LogRRatio) standard devi-
ation over all autosomes for each scan.

meanSdByChromWindow calculates the mean and standard deviation of the BAlleleFreq standard
deviation in each window in each chromosome over all scans.

findBAFvariance flags chromosomal areas with high BAlleleFreq standard deviation using previ-
ously calculated means and standard deviations over scans, typically results from sdByScanChromWindow.

findBAFvariance 61

Usage

sdByScanChromWindow(intenData, genoData=NULL, var="BAlleleFreq"”, nbins=NULL,
snp.exclude=NULL, return.mean=FALSE, incl.miss=TRUE, incl.het=TRUE, incl.hom=FALSE)

medianSdOverAutosomes(sd.by.scan.chrom.window)
meanSdByChromWindow(sd.by.scan.chrom.window, sex)

findBAFvariance(sd.by.chrom.window, sd.by.scan.chrom.window,
sex, sd.threshold)

Arguments

intenData A IntensityData object. The order of SNPs is expected to be by chromosome
and then by position within chromosome.

genoData A GenotypeData object. May be omitted if incl.miss, incl.het, and incl.hom
are all TRUE, as there is no need to distinguish between genotype calls in that
case.

var The variable for which to calculate standard deviations, typically "BAlleleFreq"
(the default) or "LogRRatio."

nbins A vector with integers corresponding to the number of bins for each chromo-
some. The values all must be even integers.

snp.exclude An integer vector containing the snpIDs of SNPs to be excluded.

return.mean a logical. If TRUE, return mean as well as standard deviation.

incl.miss a logical. If TRUE, include SNPs with missing genotype calls.

incl.het a logical. If TRUE, include SNPs called as heterozygotes.

incl.hom a logical. If TRUE, include SNPs called as homozygotes. This is typically FALSE

(the default) for BAlleleFreq calculations.
sd.by.scan.chrom.window
A list of matrices of standard deviation for each chromosome, with dimen-
sions of number of scans x number of windows. This is typically the output
of sdByScanChromWindow.
sd.by.chrom.window
A list of matrices of the standard deviations, as generated by meanSdByChromWindow.

sex A character vector of sex ("M"/"F") for the scans.

sd. threshold A value specifying the threshold for the number of standard deviations above
the mean at which to flag.

Details

sdByScanChromWindow calculates the standard deviation of BAlleleFreq (or LogRRatio) values
across chromosomes 1-22 and chromosome X for a specified number of ’bins’ in each chromosome
as passed to the function in the 'nbins’ argument. The standard deviation is calculated using win-
dows of width equal to 2 bins, and moves along the chromosome by an offset of 1 bin (or half a

62

findBAFvariance

window). Thus, there will be a total of nbins-1 windows per chromosome. If nbins=NULL (the
default), there will be 2 bins (one window) for each chromosome.

medianSdOverAutosomes calulates the median over autosomes of BAlleleFreq (or LogRRatio)
standard deviations calculated for sliding windows within each chromosome of each scan. The
standard deviations should be a list with one element for each chromosome, and each element con-
sisting of a matrix with scans as rows.

meanSdByChromWindow calculates the mean and standard deviation over scans of BAlleleFreq stan-
dard deviations calculated for sliding windows within each chromosome of each scan. The BAllele-
Freq standard deviations should be a list with one element for each chromosome, and each element
consisting of a matrix containing the BAlleleFreq standard deviation for the i’th scan in the j’th
bin. This is typically created using the sdByScanChromWindow function. For the X chromosome
the calculations are separated out by sex.

findBAFvariance determines which chromosomes of which scans have regions which are at least
a given number of SDs from the mean, using BAlleleFreq means and standard deviations calculated
from sliding windows over each chromosome by scan.

Value

sdByScanChromWindow returns a list of matrices containing standard deviations. There is a matrix
for each chromosome, with each matrix having dimensions of number of scans x number of win-
dows. If return.mean=TRUE, two lists to matrices are returned, one with standard deviations and
one with means.

medianSdOverAutosomes returns a data frame with colums "scanID" and "med.sd" containing the
median standard deviations over all autosomes for each scan.

meanSdByChromWindow returns a list of matrices, one for each chromosome. Each matrix contains
two columns called "Mean" and "SD", containing the mean and SD of the BAlleleFreq standard
devations over scans for each bin. For the X chromosome the matrix has four columns "Female
Mean", "Male Mean", "Female SD" and "Male SD".

findBAFvariance returns a matrix with columns "scanID", "chromosome", "bin", and "sex" con-
taining those scan by chromosome combinations with BAlleleFreq standard deviations greater than
those specified by sd. threshold.

Author(s)

Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromClusterMeans, BAFfromGenotypes

Examples

library(GWASdata)
data(illuminaScanADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
bl <- GdsIntensityReader(blfile)
blData <- IntensityData(bl, scanAnnot=illuminaScanADF)

GdsGenotypeReader 63

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader (genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF)

nbins <- rep(8, 3) # need bins for chromosomes 21,22,23
baf.sd <- sdByScanChromWindow(blData, genoData, nbins=nbins)

close(blData)
close(genoData)

med.res <- medianSdOverAutosomes(baf.sd)

sex <- illuminaScanADF$sex
sd.res <- meanSdByChromWindow(baf.sd, sex)

var.res <- findBAFvariance(sd.res, baf.sd, sex, sd.threshold=2)

GdsGenotypeReader Class GdsGenotypeReader

Description

The GdsGenotypeReader class is an extension of the GdsReader class specific to reading genotype
data stored in GDS files. GDS files with both snp x scan and scan x snp dimensions are supported.

Extends

GdsReader

Constructor

¢ GdsGenotypeReader (filename, genotypeDim, allow.fork=FALSE, ...):
filename must be the path to a GDS file or a gds object. The GDS file must contain the
following variables:
— ’snp.id’: a unique integer vector of snp ids
— ’snp.chromosome’: integer chromosome codes
— ’snp.position’: integer position values
— ’sample.id’: a unique integer vector of scan ids
— ’genotype’: a matrix of bytes with dimensions (’snp’,’sample’). The byte values must be
the number of A alleles : 2=AA, 1=AB, 0=BB.
The optional variable "snp.allele" stores the A and B alleles in a character vector with format
"A/B".
Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The

defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

The constructor automatically detects whether the GDS file is in snp x scan or scan x snp
order using the dimensions of snp.id and sample.id. In the case of GDS files with equal

64 GdsGenotypeReader

SNP and scan dimensions, genotypeDimis a required input to the function and can take values
"snp,scan” or "scan,snp”.

allow. fork is a logical to enable multiple forks to access the gds file simultaneously.

The GdsGenotypeReader constructor creates and returns a GdsGenotypeReader instance point-
ing to this file.

Accessors

In the code snippets below, object is a GdsGenotypeReader object. See GdsReader for additional
methods.

¢ nsnp(object): The number of SNPs in the GDS file.
¢ nscan(object): The number of scans in the GDS file.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getAlleleA(object, index): A character vector of A alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

* getAlleleB(object, index): A character vector of B alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

* getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getGenotype(object, snp=c(1,-1), scan=c(1,-1), drop=TRUE, use.names=FALSE, transpose=FALSE,

...): Extracts genotype values (number of A alleles). snp and scan indicate which elements
to return along the snp and scan dimensions. They must be integer vectors of the form (start,
count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read.
If drop=TRUE, the result is coerced to the lowest possible dimension. If use.names=TRUE,
names of the resulting vector or matrix are set to the SNP and scan IDs. Missing values are
represented as NA. Genotypes are returned in SNP x scan order if transpose=FALSE, otherwise
they are returned in scan x SNP order.

* getGenotypeSelection(object, snp=NULL, scan=NULL, snpID=NULL, scanID=NULL, drop=TRUE,

use.names=TRUE,order=c("file"”, "selection"), transpose=FALSE, ...): Extracts geno-

type values (number of A alleles). snp and scan may be integer or logical vectors indicating

which elements to return along the snp and scan dimensions. snpID and scanID allow section

by values of snpID and scanID. Unlike getGenotype, the values requested need not be in
contiguous blocks. If order=="file", genotypes are returned in the order they are stored in

the file. If order="selection”, the order of SNPs and scans will match the index selection
provided in snp and scan respectively. Other arguments are identical to getGenotype.

GdsGenotypeReader 65

e getVariable(object, varname, index, drop=TRUE, ...): Extracts the contents of the vari-
able varname. The optional index is a logical or integer vector (if varname is 1D) or list (if
varname is 2D or higher) specifying elements to extract. If drop=TRUE, the result is coerced
to the lowest possible dimension. Missing values are represented as NA. If the variable is not
found, returns NULL.

* XchromCode (object): Returns the integer code for the X chromosome.
* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode(object): Returns the integer code for the Y chromosome.

* MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

GdsReader, GenotypeData

Examples

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

dimensions

nsnp(gds)
nscan(gds)

get snpID and chromosome
snpID <- getSnpID(gds)
chrom <- getChromosome(gds)

get positions only for chromosome 22
pos22 <- getPosition(gds, index=(chrom == 22))

get all snps for first scan
geno <- getGenotype(gds, snp=c(1,-1), scan=c(1,1))
length(geno)

starting at snp 100, get 10 snps for the first 5 scans
getGenotype(gds, snp=c(100,10), scan=c(1,5))

get snps 1-10, 25-30 for scans 3,5,7

snp.index <- c(1:10, 25:30)

scan.index <- c(3,5,7)

getGenotypeSelection(gds, snp=snp.index, scan=scan.index)

illustrate drop argument
getGenotypeSelection(gds, snp=5, scan=1:10, drop=TRUE, use.names=FALSE)
getGenotypeSelection(gds, snp=5, scan=1:10, drop=FALSE, use.names=FALSE)

illustrate order="file" vs order="selection”

66 GdslntensityReader

snp.index <- c¢(9,3,5)

scan.index <- c(3,2,1)

getGenotypeSelection(gds, snp=snp.index, scan=scan.index, order="file")
getGenotypeSelection(gds, snp=snp.index, scan=scan.index, order="selection")

close(gds)

GdsIntensityReader Class GdsiIntensityReader

Description

The GdsIntensityReader class is an extension of the GdsReader class specific to reading intensity
data stored in GDS files.

Extends

GdsReader

Constructor
* GdsIntensityReader(filename, allow.fork=FALSE, ...):
filename must be the path to a GDS file. The GDS file must contain the following variables:

— ’snp’: a coordinate variable with a unique integer vector of snp ids

— ’chromosome’: integer chromosome values of dimension ’snp’

’position’: integer position values of dimension ’snp’

’sampleID’: a unique integer vector of scan ids with dimension ’sample’

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

The GDS file should also contain at least one of the following variables with dimensions
(’snp’,’sample’):

’quality’: quality score
- ’'X’: X intensity
- ’Y’: Y intensity
— 'BAlleleFreq’: B allele frequency
- 'LogRRatio’: Log R Ratio
allow. fork is a logical to enable multiple forks to access the gds file simultaneously.

The GdsIntensityReader constructor creates and returns a GdsIntensityReader instance point-
ing to this file.

GdslntensityReader 67

Accessors

In the code snippets below, object is a GdsIntensityReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

See GdsReader for additional methods.

¢ nsnp(object): The number of SNPs in the GDS file.
e nscan(object): The number of scans in the GDS file.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

» getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getQuality(object, snp, scan, drop=TRUE): Extracts quality scores. The result is a vec-
tor or matrix, depending on the number of dimensions in the returned values and the value of
drop. Missing values are represented as NA.

* hasQuality(object): Returns TRUE if the GDS file contains a variable ’quality’.

* getX(object, snp, scan, drop=TRUE): Extracts X intensity. The result is a vector or matrix,
depending on the number of dimensions in the returned values and the value of drop. Missing
values are represented as NA.

¢ hasX(object): Returns TRUE if the GDS file contains a variable *X’.

* getY(object, snp, scan, drop=TRUE): Extracts Y intensity. The result is a vector or matrix,
depending on the number of dimensions in the returned values and the value of drop. Missing
values are represented as NA.

¢ hasY(object): Returns TRUE if the GDS file contains a variable "Y’.

* getBAlleleFreq(object, snp, scan, drop=TRUE): Extracts B allele frequency. The result
is a vector or matrix, depending on the number of dimensions in the returned values and the
value of drop. Missing values are represented as NA.

* hasBAlleleFreq(object): Returns TRUE if the GDS file contains a variable 'BAlleleFreq’.

* getLogRRatio(object, snp, scan, drop=TRUE): Extracts Log R Ratio. The result is a vec-
tor or matrix, depending on the number of dimensions in the returned values and the value of
drop. Missing values are represented as NA.

* hasLogRRatio(object): Returns TRUE if the GDS file contains a variable 'LogRRatio’.

68 GdsReader

e getVariable(object, varname, snp, scan, drop=TRUE): Returns the contents of the vari-
able varname. The result is a vector or matrix, depending on the number of dimensions in the
returned values and the value of drop. Missing values are represented as NA. If the variable is
not found in the GDS file, returns NULL.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode(object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

GdsReader, GdsGenotypeReader, GenotypeData, IntensityData

Examples

file <- system.file("extdata”, "illumina_gxy.gds"”, package="GWASdata")
gds <- GdsIntensityReader(file)

dimensions

nsnp(gds)
nscan(gds)

get snpID and chromosome
snpID <- getSnpID(gds)

chrom <- getChromosome(gds)

get positions only for chromosome 22
pos22 <- getPosition(gds, index=(chrom == 22))

get all snps for first scan
x <- getX(gds, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(gds, snp=c(100,10), scan=c(1,5))

close(gds)

GdsReader Class GdsReader

Description

The GdsReader class provides an interface for reading GDS files.

GdsReader 69

Constructor

e GdsReader(filename, allow.fork=FALSE):
filename must be the path to a GDS file or an already opened gds object.
allow. fork is a logical to enable multiple forks to access the gds file simultaneously.
The GdsReader constructor creates and returns a GdsReader instance pointing to this file.

Accessors

In the code snippets below, object is a GdsReader object.

e getVariable(object, varname, start, count, sel=NULL, drop=TRUE): Returns the con-
tents of the variable varname.

— start is a vector of integers indicating where to start reading values. The length of this
vector must equal the number of dimensions the variable has. If not specified, reading
starts at the beginning of the file (1,1,...).

— count is a vector of integers indicating the count of values to read along each dimension.
The length of this vector must equal the number of dimensions the variable has. If not
specified and the variable does NOT have an unlimited dimension, the entire variable
is read. As a special case, the value "-1" indicates that all entries along that dimension
should be read.

— sel may be specified instead of start and count. It is a list of m logical vectors, where
m is the number of dimensions of varname and each logical vector should have the same
size as the corresponding dimension in varname.

— drop is a logical for whether the result will be coerced to the lowest possible dimension.

The result is a vector, matrix, or array, depending on the number of dimensions in the returned
values and the value of drop. Missing values (specified by a "missing.value" attribute, see
put.attr.gdsn) are represented as NA. If the variable is not found in the GDS file, returns
NULL.

* getVariableNames(object): Returns names of variables in the GDS file.
e getDimension(object, varname): Returns dimension for GDS variable varname.
* getNodeDescription(object, varname): Returns description for GDS variable varname.

e getAttribute(object, attname, varname): Returns the attribute attname associated with
the variable varname.

¢ hasVariable(object, varname): Returns TRUE if varname is a variable in the GDS file.

Standard Generic Methods

In the code snippets below, object is a GdsReader object.

* open(object): Opens a connection to a GDS file.
e close(object): Closes the connection to a GDS file.

¢ show(object): Summarizes the contents of a GDS file.

Author(s)

Stephanie Gogarten

70 gdsSubset

See Also

gdsfmt

Examples

library(SNPRelate)
gds <- GdsReader (snpgdsExampleFileName())

getVariableNames(gds)

hasVariable(gds, "genotype")
geno <- getVariable(gds, "genotype”, start=c(1,1), count=c(10,10))

close(gds)

gdsSubset Write a subset of data in a GDS file to a new GDS file

Description

gdsSubset takes a subset of data (snps and samples) from a GDS file and write it to a new GDS
file. gdsSubsetCheck checks that a GDS file is the desired subset of another GDS file.

Usage

gdsSubset(parent.gds, sub.gds,
sample.include=NULL, snp.include=NULL,
sub.storage=NULL,
compress="LZMA_RA",
block.size=5000,
verbose=TRUE,
allow. fork=FALSE)

gdsSubsetCheck(parent.gds, sub.gds,
sample.include=NULL, snp.include=NULL,
sub.storage=NULL,
verbose=TRUE,
allow. fork=FALSE)

Arguments
parent.gds Name of the parent GDS file
sub.gds Name of the subset GDS file

sample.include Vector of samplelDs to include in sub. gds
snp.include Vector of snplIDs to include in sub.gds

sub.storage storage type for the subset file; defaults to original storage type

gdsSubset 71

compress The compression level for variables in a GDS file (see add. gdsn for options.

block.size for GDS files stored with scan,snp dimensions, the number of SNPs to read from
the parent file at a time. Ignored for snp,scan dimensions.

verbose Logical value specifying whether to show progress information.
allow. fork Logical value specifying whether to enable multiple forks to access the gds file
simultaneously.
Details

gdsSubset can select a subset of snps for all samples by setting snp. include, a subset of samples
for all snps by setting sample. include, or a subset of snps and samples with both arguments. The
GDS nodes "snp.id", "snp.position", "snp.chromosome", and "sample.id" are copied, as well as any
2-dimensional nodes. Other nodes are not copied. The attributes of the 2-dimensional nodes are
also copied to the subset file. If sub.storage is specified, the subset gds file will have a different
storage mode for any 2-dimensional array. In the special case where the 2-dimensional node has an
attribute named "missing.value” and the sub.storage type is "bit2", the missing.value attribute
for the subset node is automatically set to 3. At this point, no checking is done to ensure that the
values will be properly stored with a different storage type, but gdsSubsetCheck will return an
error if the values do not match. If the nodes in the GDS file are stored with scan,snp dimensions,
then block.size allows you to loop over a block of SNPs at a time. If the nodes are stored with

snp,scan dimensions, then the function simply loops over samples, one at a time.

gdsSubsetCheck checks that a subset GDS file has the expected SNPs and samples of the parent
file. It also checks that attributes were similarly copied, except for the above-mentioned special
case of missing.value for sub.storage="bit2".

Author(s)

Adrienne Stilp

See Also

gdsfmt, createDataFile

Examples

gdsfile <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader (gdsfile)

sample.sel <- getScanID(gds, index=1:10)

snp.sel <- getSnpID(gds, index=1:100)

close(gds)

subfile <- tempfile()
gdsSubset(gdsfile, subfile, sample.include=sample.sel, snp.include=snp.sel)

gdsSubsetCheck(gdsfile, subfile, sample.include=sample.sel, snp.include=snp.sel)

file.remove(subfile)

72 genoClusterPlot

genoClusterPlot SNP cluster plots

Description

Generates either X,Y or R, Theta cluster plots for specified SNP’s.

Usage

genoClusterPlot(intenData, genoData, plot.type = c("RTheta”, "XY"),
snpID, main.txt = NULL, by.sex = FALSE,
scan.sel = NULL, scan.hilite = NULL,
start.axis.at.® = FALSE,
colors = c("default”, "neon", "primary"),
verbose = TRUE, ...)

genoClusterPlotByBatch(intenData, genoData, plot.type = c("RTheta”, "XY"),
snpID, batchVar, main.txt = NULL, scan.sel = NULL,

colors = c("default”, "neon”, "primary"),
verbose = TRUE, ...)
Arguments
intenData IntensityData object containing "X’ and *Y’ values.
genoData GenotypeData object
plot.type The type of plots to generate. Possible values are "RTheta" (default) or "XY".
snpID A numerical vector containing the SNP number for each plot.
batchvar A character string indicating which annotation variable should be used as the
batch.
main.txt A character vector containing the title to give to each plot.
by.sex Logical value specifying whether to indicate sex on the plot. If TRUE, sex must
be present in intenData or genoData.
scan.sel integer vector of scans to include in the plot. If NULL, all scans will be included.

scan.hilite integer vector of scans to highlight in the plot with different colors. If NULL, all
scans will be plotted with the same colors.

start.axis.at.o
Logical for whether the min value of each axis should be 0.

colors Color scheme to use for genotypes. "default" is colorblind safe (colorbrewer
Set2), "neon" is bright orange/green/fuschia, and "primary" is red/green/blue.

verbose Logical value specifying whether to show progress.

Other parameters to be passed directly to plot.

genoClusterPlot 73

Details

Either 'RTheta’ (default) or *XY’ plots can be generated. R and Theta values are computed from X
and Y using the formulas r <- x+y and theta <- atan(y/x)*(2/pi).

If by . sex==TRUE, females are indicated with circles and males with crosses.

Author(s)
Caitlin McHugh

See Also

IntensityData, GenotypeData

Examples

create data object
library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

xyfile <- system.file("extdata”, "illumina_gxy.gds", package="GWASdata")
xy <- GdsIntensityReader(xyfile)
xyData <- IntensityData(xy, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

select first 9 snps
snpID <- illuminaSnpADF$snpID[1:9]
rsID <- illuminaSnpADF$rsID[1:9]

par(mfrow=c(3,3)) # plot 3x3
genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID)

select samples

scan.sel <- illuminaScanADF$scanID[illuminaScanADF$race == "CEU"]

genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,
scan.sel=scan.sel, by.sex=TRUE)

genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,
scan.hilite=scan.sel)

close(xyData)

close(genoData)

affy data - cluster plots by plate
data(affyScanADF, affySnpADF)

xyfile <- system.file("extdata”, "affy_gxy.nc"”, package="GWASdata")
xy <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xy, scanAnnot=affyScanADF, snpAnnot=affySnpADF)

74

GenotypeData-class

genofile <- system.file("extdata”, "affy_geno.nc"”, package="GWASdata")
geno <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=affyScanADF, snpAnnot=affySnpADF)

select first 9 snps
snpID <- affySnpADF$snpID[1:9]
rsID <- affySnpADF$rsID[1:9]

genoClusterPlotByBatch(xyData, genoData, snpID=snpID, main.txt=rsID,
batchVar="plate")

close(xyData)

close(genoData)

GenotypeData-class Class GenotypeData

Description

The GenotypeData class is a container for storing genotype data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The GenotypeData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included in
the GenotypeData object, their unique integer ids (snpID and scanlD) are checked against the ids
stored in the data slot to ensure consistency (identical ids in the same order in both objects).

Constructor

e GenotypeData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be an NcdfGenotypeReader, GdsGenotypeReader, or MatrixGenotypeReader
object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite ob-
ject.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The GenotypeData constructor creates and returns a GenotypeData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

Accessors

In the code snippets below, object is a GenotypeData object.

¢ nsnp(object): The number of SNPs in the data.

¢ nscan(object): The number of scans in the data.

GenotypeData-class 75

e getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getAlleleA(object, index): A character vector of A alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

* getAlleleB(object, index): A character vector of B alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

» getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getSex(object, index): A character vector of sex, with values "M’ or 'F’. The optional
index is a logical or integer vector specifying elements to extract.

* hasSex(object): Returns TRUE if the column ’sex’ is present in object.

e getGenotype(object, snp=c(1,-1), scan=c(1,-1), char=FALSE, sort=TRUE, drop=TRUE,
use.names=FALSE, ...): Extracts genotype values (number of A alleles). snp and scan in-
dicate which elements to return along the snp and scan dimensions. They must be integer
vectors of the form (start, count), where start is the index of the first data element to read and
count is the number of elements to read. A value of ’-1’ for count indicates that the entire di-
mension should be read. If drop=TRUE, the result is coerced to the lowest possible dimension.

If use.names=TRUE, names of the resulting vector or matrix are set to the SNP and scan IDs.
Missing values are represented as NA. If char=TRUE, genotypes are returned as characters of
the form "A/B". If sort=TRUE, alleles are lexographically sorted ("G/T" instead of "T/G").

* getGenotypeSelection(object, snp=NULL, scan=NULL, snpID=NULL, scanID=NULL, char=FALSE,
sort=TRUE, drop=TRUE, use.names=TRUE, ...): May be used only if the data slot contains
a GdsGenotypeReader or MatrixGenotypeReader object. Extracts genotype values (number
of A alleles). snp and scan may be integer or logical vectors indicating which elements to re-
turn along the snp and scan dimensions. snpID and scanID allow section by values of snpID
and scanID. Unlike getGenotype, the values requested need not be in contiguous blocks.
Other arguments are identical to getGenotype.

* getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

* getSnpVariableNames(object): Returns a character vector with the names of the columns
in the snp annotation.

* hasSnpVariable(object, varname): Returns TRUE if the variable varname is present in the
snp annotation.

e getScanVariable(object, varname, index): Returns the scan annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

e getScanVariableNames(object): Returns a character vector with the names of the columns
in the scan annotation.

* hasScanVariable(object, varname): Returns TRUE if the variable varname is present in
the scan annotation.

76

GenotypeData-class

e getVariable(object, varname, drop=TRUE, ...): Extracts the contents of the variable
varname from the data. If drop=TRUE, the result is coerced to the lowest possible dimension.
Missing values are represented as NA. If the variable is not found, returns NULL.

e hasVariable(object, varname): Returns TRUE if the data contains contains varname, FALSE
if not.

* getSnpAnnotation(object): Returns the snp annotation.

* hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

e getScanAnnotation(object): Returns the scan annotation.

e hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.
* open(object): Opens a connection to the data.

* close(object): Closes the data connection.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.

* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame, ScanAnnotationSQLite,
GdsGenotypeReader, NcdfGenotypeReader, MatrixGenotypeReader, IntensityData

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

object without annotation
genoData <- GenotypeData(gds)

object with annotation

data(illuminaSnpADF)

data(illuminaScanADF)

need to rebuild old SNP annotation object to get allele methods

snpAnnot <- SnpAnnotationDataFrame(pData(illuminaSnpADF))

genoData <- GenotypeData(gds, snpAnnot=snpAnnot, scanAnnot=illuminaScanADF)

dimensions
nsnp(genoData)

nscan(genoData)

get snpID and chromosome

GenotypeData-class 77

snpID <- getSnpID(genoData)
chrom <- getChromosome(genoData)

get positions only for chromosome 22
pos22 <- getPosition(genoData, index=(chrom == 22))

get other annotations

if (hasSex(genoData)) sex <- getSex(genoData)
plate <- getScanVariable(genoData, "plate")
rsID <- getSnpVariable(genoData, "rsID")

get all snps for first scan
geno <- getGenotype(genoData, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(genoData, snp=c(100,10), scan=c(1,5))
geno

return genotypes as "A/B" rather than number of A alleles
geno <- getGenotype(genoData, snp=c(100,10), scan=c(1,5), char=TRUE)
geno

close(genoData)

Chicken has 38 autosomes, Z, and W. Male is 7ZZ, female is ZW.

Define sex chromosomes as X=Z and Y=W.

gdsfile <- tempfile()

simulateGenotypeMatrix(n.snps=10, n.chromosomes=40, n.samples=5,

filename=gdsfile, file.type="gds")

gds <- GdsGenotypeReader(gdsfile, autosomeCode=1:38L,
XchromCode=39L, YchromCode=40L,
XYchromCode=41L, MchromCode=42L)

table(getChromosome(gds))

table(getChromosome(gds, char=TRUE))

SNP annotation
snpdf <- data.frame(snpID=getSnpID(gds),
chromosome=getChromosome(gds),
position=getPosition(gds))
snpAnnot <- SnpAnnotationDataFrame(snpdf, autosomeCode=1:38L,
XchromCode=39L, YchromCode=40L,
XYchromCode=41L, MchromCode=42L)
varMetadata(snpAnnot)[, "labelDescription”] <-
c("unique integer ID",
"chromosome coded as 1:38=autosomes, 39=Z, 40=W",
"base position”)

reverse sex coding to get proper counting of sex chromosome SNPs
scandf <- data.frame(scanID=1:5, sex=c("M","M","F" "F","F"),
stringsAsFactors=FALSE)

78 Genotypelterator-class

scanAnnot <- ScanAnnotationDataFrame(scandf)
varMetadata(scanAnnot)[, "labelDescription”] <-
c("unique integer ID",
"sex coded as M=female and F=male")

genoData <- GenotypeData(gds, snpAnnot=snpAnnot, scanAnnot=scanAnnot)
afreq <- alleleFrequency(genoData)

frequency of Z chromosome in females ("M") and males ("F")
afreqlsnpAnnot$chromosome == 39, c("M","F")]

frequency of W chromosome in females ("M") and males ("F")
afreg[snpAnnot$chromosome == 40, c("M","F")]

close(genoData)
unlink(gdsfile)

Genotypelterator-class
Class Genotypelterator

Description

Extends GenotypeData to provide iterators over SNPs.

Details

Iterator classes allow for iterating over blocks of SNPs.

For GenotypeBlockIterator, each call to iterateFilter will select the next unit of snpBlock
SNPs.

Constructor
e GenotypeBlockIterator(genoData, snpBlock=10000, snpInclude=NULL: Returns a GenotypeBlockIterator
object with the filter set to the first block.
genoData is a GenotypeData object.
snpBlock is an integer specifying the number of SNPs in an iteration block.

snpInclude is a vector of snpIDs to include in the filter. If NULL (default), all SNPs are
included.

Accessors

e iterateFilter(x): Advance the filter to the next block, range, or set of ranges. Returns
TRUE while there are still variants left to be read, FALSE if the end of iteration is reached.

e lastFilter(x), lastFilter(x)<- value: Get or set the last filter index from the previous
call to iterateFilter.

e snpFilter(x): Get the list of SNP indices.

e currentFilter(x): Get the indices of SNPs selected in the current iteration.

Genotypelterator-class 79

e resetlterator(x): Set the filter to the first block (the same SNPs that are selected when the
iterator object is created).

* getSnpID(object, ...): A unique integer vector of snp IDs.

e getChromosome(object, ...): A vector of chromosomes.

* getPosition(object, ...): An integer vector of base pair positions.

e getAlleleA(object, ...): A character vector of A alleles.

e getAlleleB(object, ...): A character vector of B alleles.

* getGenotypeSelection(object, ...): Extracts genotype values (number of A alleles).

e getSnpVariable(object, varname, ...): Returns the snp annotation variable varname.

Additional arguments for these accessors are passed to the corresponding methods for GenotypeData
objects.

Other methods are inherited from GenotypeData.

Author(s)

Stephanie Gogarten

See Also

GenotypeData

Examples

library(GWASdata)

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

genoData <- GenotypeData(gds)

iterator <- GenotypeBlockIterator(genoData, snpBlock=100)
id <- getSnpID(iterator)

length(id)

head(id)

geno <- getGenotypeSelection(iterator)

dim(geno)

geno <- getGenotypeSelection(iterator, scan=1:10)
dim(geno)

head(geno)

iterateFilter(iterator)

id <- getSnpID(iterator)

length(id)

head(id)

geno <- getGenotypeSelection(iterator, scan=1:10)
dim(geno)

head(geno)

close(iterator)

80 genotypeToCharacter

genotypeToCharacter Convert number of A alleles to character genotypes

Description

Converts a vector or matrix of genotypes encoded as number of A alleles to character strings of the
form "A/B".

Usage

genotypeToCharacter(geno, alleleA=NULL, alleleB=NULL, sort=TRUE)

Arguments
geno Vector or matrix of genotype values, encoded as number of A alleles. If a matrix,
dimensions should be (snp, sample).
alleleA Character vector with allele A.
alleleB Character vector with allele B.
sort Logical for whether to sort alleles lexographically ("G/T" instead of "T/G").
Details

If geno is a vector, alleleA and alleleB should have the same length as geno or length 1 (in the
latter case the values are recycled).

If geno is a matrix, length of alleleA and alleleB should be equal to the number of rows of geno.
If alelleA or alleleB is NULL, returned genotypes will have values "A/A", "A/B", or "B/B".

Value

Character vector or matrix of the same dimensions as geno.

Author(s)

Stephanie Gogarten

See Also

GenotypeData

Examples

geno <- matrix(c(0,1,2,0,1,2,1,NA), nrow=4)
alleleA <- c("A","T","C","T")
alleleB <_ C(”C”,”G“,“G",”A“)
genotypeToCharacter(geno, alleleA, alleleB)

getobj 81

getobj Get an R object stored in an Rdata file

Description

Returns an R object stored in an Rdata file

Usage

getobj(Rdata)

Arguments

Rdata path to an Rdata file containing a single R object to load

Details

Loads an R object and stores it under a new name without creating a duplicate copy. If multiple
objects are stored in the same file, only the first one will be returned

Value

The R object stored in Rdata.

Author(s)

Stephanie Gogarten

See Also

saveas

Examples

X <= 1:10

file <- tempfile()
save(x, file=file)
y <- getobj(file)
unlink(file)

82 getVariable

getVariable Accessors for variables in GenotypeData and IntensityData classes
and their component classes

Description

These generic functions provide access to variables associated with GWAS data cleaning.

Usage

getScanAnnotation(object, ...)
getScanVariable(object, varname, ...)
getScanVariableNames(object, ...)
getScanID(object, ...)
getSex(object, ...)
getSnpAnnotation(object, ...)
getSnpVariable(object, varname, ...)
getSnpVariableNames(object, ...)
getSnpID(object, ...)
getChromosome(object, ...)
getPosition(object, ...)
getAlleleA(object, ...)
getAlleleB(object, ...)

getVariable(object, varname, ...)
getVariableNames(object, ...)
getGenotype(object, ...)
getGenotypeSelection(object, ...)
getQuality(object, ...)

getX(object, ...)

getY(object, ...)

getBAlleleFreq(object, ...)
getlLogRRatio(object, ...)
getDimension(object, varname, ...)
getAttribute(object, attname, varname, ...)
getNodeDescription(object, varname, ...)

getAnnotation(object, ...)
getMetadata(object, ...)
getQuery(object, statement, ...)

hasScanAnnotation(object)
hasScanVariable(object, varname)
hasSex(object)
hasSnpAnnotation(object)
hasSnpVariable(object, varname)
hasVariable(object, varname)

getVariable 83

hasQuality(object)
hasX(object)
hasY(object)
hasBAlleleFreq(object)
hasLogRRatio(object)

nsnp(object)
nscan(object)

autosomeCode (object)
XchromCode (object)
XYchromCode (object)
YchromCode (object)
MchromCode (object)

writeAnnotation(object, value, ...)
writeMetadata(object, value, ...)

Arguments

object Object, possibly derived from or containing NcdfReader-class, GdsReader-class,
ScanAnnotationDataFrame-class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-clas
or SnpAnnotationSQLite-class.

varname Name of the variable (single character string, or a character vector for multiple
variables).

attname Name of an attribute.

statement SQL statement to query ScanAnnotationSQLite-class or SnpAnnotationSQLite-class
objects.

value data.frame with annotation or metadata to write to ScanAnnotationSQLite-class

or SnpAnnotationSQLite-class objects.

Additional arguments.

Value

get methods return vectors or matrices of the requested variables (with the exception of getQuery,
which returns a data frame).

has methods return TRUE if the requested variable is present in object.
nsnp and nscan return the number of SNPs and scans in the object, repectively.

autosomeCode, XchromCode, XYchromCode, YchromCode, and MchromCode return the integer chro-
mosome codes associated with autosomal, X, pseudoautosomal, Y, and mitochondrial SNPs.

Author(s)

Stephanie Gogarten

84 GWASTools-detunct

See Also

ScanAnnotationDataFrame-class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-class
SnpAnnotationSQLite-class, NcdfReader-class, NcdfGenotypeReader-class, NcdfIntensityReader-class,
GdsReader-class, GdsGenotypeReader-class, GdsIntensityReader-class, GenotypeData-class,
IntensityData-class

GWASTools-defunct Defunct Functions in Package ‘GWASTools’

Description

These functions are defunct and no longer available.

Details

The following functions are defunct; use the replacement indicated below:

* pedigreeClean: pedigreeCheck

* pedigreeFindDuplicates: pedigreeCheck

* ncdfCreate: createDataFile

* ncdfAddData: createDataFile

e ncdfAddIntensity: createAffyIntensityFile

* ncdfCheckGenotype: checkGenotypeFile

e ncdfCheckIntensity: checkIntensityFile

* ncdfSetMissingGenotypes: setMissingGenotypes
* gdsSetMissingGenotypes: setMissingGenotypes
* ncdfImputedDosage: imputedDosageFile

e gdsImputedDosage: imputedDosageFile

e gdsCheckImputedDosage: checkImputedDosageFile
* assocTestRegression: assocRegression

* assocTestCPH: assocCoxPH

* assocTestFisherExact: batchFisherTest

* gwasExactHW: exactHWE

* ncdfSubset: gdsSubset

* ncdfSubsetCheck: gdsSubsetCheck

¢ plinkToNcdf: snpgdsBED2GDS

e convertVcfGds: snpgdsVCF2GDS

hetByScanChrom 85

hetByScanChrom Heterozygosity rates by scan and chromosome

Description

This function calculates the fraction of heterozygous genotypes for each chromosome for a set of
scans.

Usage

hetByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

Arguments
genoData GenotypeData object. Chromosomes are expected to be in contiguous blocks.
snp.exclude An integer vector containing the id’s of SNPs to be excluded.
verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of heterozygous and missing genotypes in each chromosome
of each scan given in genoData.

Value
The result is a matrix containing the heterozygosity rates with scans as rows and chromosomes as
columns, including a column "A" for all autosomes.

Author(s)

Cathy Laurie

See Also

GenotypeData, hetBySnpSex

Examples

file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

genoData <- GenotypeData(gds)

het <- hetByScanChrom(genoData)

close(genoData)

86 hetBySnpSex

hetBySnpSex Heterozygosity by SNP and sex

Description

This function calculates the percent of heterozygous genotypes for males and females for each SNP.

Usage

hetBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

Arguments
genoData GenotypeData object
scan.exclude An integer vector containing the id’s of scans to be excluded.
verbose Logical value specifying whether to show progress information.
Details

This function calculates the percent of heterozygous genotypes for males and females for each SNP
given in genoData. A "sex" variable must be present in the scan annotation slot of genoData.
Value
The result is a matrix containing the heterozygosity rates with snps as rows and 2 columns ("M" for
males and "F" for females).
Author(s)

Cathy Laurie

See Also
GenotypeData, hetByScanChrom

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

need scan annotation with sex
data(illuminaScanADF)
genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

het <- hetBySnpSex(genoData)
close(genoData)

HLA 87

HLA HILA region base positions

Description

HLA region base positions from the GRCh36/hg18, GRCh37/hgl9 and GRCh38/hg38 genome
builds.

Usage

HLA.hg18
HLA.hg19
HLA.hg38

Format

A data.frame with the following columns.

chrom chromsome
start.base starting base position of region

end.base ending base position of region

Source

UCSC genome browser (http://genome.ucsc.edu).

References

Mehra, Narinder K. and Kaur, Gurvinder (2003), MHC-based vaccination approaches: progress and
perspectives. Expert Reviews in Molecular Medicine, Vol. 5: 24. doi:10.1017/S1462399403005957

Examples

data(HLA.hg18)
data(HLA.hg19)
data(HLA.hg38)

http://genome.ucsc.edu

88

ibdPlot

ibdPlot Plot theoretical and observed identity by descent values and assign

relationships

Description

ibdPlot produces an IBD plot showing observed identity by descent values color coded by ex-
pected relationship. Theoretical boundaries for full-sibling, second-degree, and third-degree rel-
atives are plotted in orange. ibdAreasDraw overlays relationship areas for IBD analysis on the
plot. ibdAssignRelatedness identifies observed relatives. ibdAssignRelatednessKing identi-
fies observed relatives using the kinship coefficients and IBSO estimates from the KING model.

kingIBS@FSCI returns a confidence interval for expected IBSO for full siblings.

Usage

Arguments

ko A vector of kO values.

k1 A vector of k1 values.

kc A vector of kinship coefficient values (KING model).

ibso0 A vector of IBSO values (KING model).

alpha significance level - finds 100(1-alpha)% prediction intervals for second and third
degree relatives and 100(1-alpha)% prediction ellipse for full siblings.

relation A vector of relationships. Recognized values are "PO"=parent/offspring, "FS"=full
siblings, "HS"=half siblings, "Av"=avuncular, "GpGc"=grandparent-grandchild,
"Deg2"=any second-degree, "FC"=first cousins, "HAv"=half-avuncular, "Deg3"=any
third degree, "U"=unrelated, and "Q"=unknown.

color A vector of colors for (kO,k1) points.

ibdPlot(ko, k1, alpha=0.05, relation=NULL, color=NULL,
rel.lwd=2, rel.draw=c("FS", "Deg2", "Deg3"), ...)

ibdAreasDraw(alpha=0.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25, rel.lwd=2,

xcol=c("cyan"”,"red"”,"blue”,"lightgreen”, "magenta”, "black"))

ibdAssignRelatedness(k@, ki1, alpha=0.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25)

ibdAssignRelatednessKing(ibs@, kc, cut.kc.dup=1/(2%(3/2)),
cut.kc.fs=1/(2(5/2)), cut.kc.deg2=1/(2*(7/2)),
cut.kc.deg3=1/(2%(9/2)), cut.ibs@.err=0.003)

kingIBSOFSCI(freq, alpha=0.01)

rel.lwd Line width for theoretical full-sib, Deg2, and Deg3 boundaries.

ibdPlot 89

rel.draw Which theoretical boundaries to plot: one or more of "FS" (full-sib), "Deg2"
(second-degree), "Deg3" (third-degree). If NULL, no boundaries are drawn.

Other graphical parameters to pass to plot and points.

m width of rectangle along diagonal line

po.w width of parent-offspring rectangle

po.h height of parent-offspring rectangle

dup.w width of duplicate rectangle

dup.h height of duplicate rectangle

un.w width of unrelated rectangle

un.h height of unrelated rectangle

xcol colors for parent-offspring, full-sib, Deg2, Deg3, dup & unrelated areas

cut.kc.dup Kinship coefficient threshold for dividing duplicates and first degree relatives.

cut.kc.fs Kinship coefficient threshold for dividing full siblings and second degree rela-
tives.

cut.kc.deg? Kinship coefficient threshold for dividing second and third degree relatives.
cut.kc.deg3 Kinship coefficient threshold for dividing third degree relatives and unrelated.

cut.ibs@.err IBSO threshold for dividing parent-offsprings pairs from other relatives. Should
be 0, but is usually slightly higher due to genotyping errors.

freq vector of allele frequencies at the variants used in the KING analysis

Details

ibdPlot produces an IBD plot showing observed identity by descent values color coded by expected
relationship, typically as deduced from pedigree data. Points are plotted according to their corre-
sponding value in the color vector, and the relation vector is used to make the plot legend. In ad-
dition to the relationships listed above, any relationships output from pedigreePairwiseRelatedness
will be recognized.

Theoretical boundary for full-sibs is indicated by ellipse and boundaries for second and third degree
intervals are indicated in orange. For full-sibs, 100(1-alpha)% prediction ellipse is based on assum-
ing bivariate normal distribution with known mean and covariance matrix. For second degree (half
siblings, avuncular, grandparent-grandchild) and third degree (first cousins), 100(1-alpha)% pre-
diction intervals for k1 are based on assuming normal distribution with known mean and variance,
computed as in Hill and Weir (2011).

ibdAreasDraw overlays relationship areas on the plot to help with analyzing observed relationships.
ibdAssignRelatedness identifies relatives based on their (kO, k1) coordinates.
ibdAssignRelatednessKing identifies relatives based on their (ibs0, kc) coordinates (KING model).

kingIBS@FSCI uses allele frequencies to find the confidence interval for expected IBSO for full sib-
lings. We condition on the three possible IBD states: IBDO, IBD1, or IBD2; but P(AA, aa|IBD1) =
P(AA,aa|IBD2) = 0.

P(IBSO|FS) = P(AA,aa|FS)+P(aa, AA|FS) = P(AA, aa|IBDO)P(IBD0)+P(aa, AA|IBD0)P(IBD0) = p*x¢

Knowing a pair’s value of kO and the allele frequencies at each variant, we can get an estimate of
P(IBSO0|F'S) by averaging across all the markers used in the analysis. Siblings have kO = 0.25 on
average.

90 ibdPlot

Value

ibdAssignRelatedness and ibdAssignRelatednessKing return a vector of relationships with
values "Dup"=duplicate, "PO"=parent-offspring, "FS"=full sibling, "Deg2"=second degree, "Deg3"=third
degree, "U"=unrelated, and "Q"=unknown.

kingIBS@FSCI returns a vector with 3 values: the point estimate, the lower bound of the CI, the
upper bound of the CI

Author(s)

Cathy Laurie, Cecelia Laurie, Adrienne Stilp, Matthew Conomos

References

Hill, W.G. and B.S. Weir, Variation in actual relationship as a consequence of mendelian sampling
and linkage, Genet. Res. Camb. (2011), 93, 47-64.

Manichaikul, A., Mychaleckyj J.C., Rich S.S., Daly K., Sale M., and Chen W.M., Robust relation-
ship inference in genome-wide association studies, Bioinformatics (2010), 26(22), 2867-2873.

See Also

relationsMeanVar, pedigreePairwiseRelatedness

Examples

ko <- c(0, 0, 0.25, 0.5, 9.75, 1)

k1 <- c(o, 1, 0.5, 0.5, 0.25, @)

exp.rel <- c("Dup”, "PO", "FS", "HS", "FC", "U")
ibdPlot(ke@, k1, relation=exp.rel)

ibdAreasDraw()

obs.rel <- ibdAssignRelatedness(k@, k1)

kc <- c(0.5, 0.25, 0.25, 0.125, 0.063, 0)
ibs@® <- c(0, 0, 0.25, 0.5, 0.75, 1)
obs.rel.king <- ibdAssignRelatednessKing(ibs@, kc)

library(SNPRelate)

library(GWASdata)

gdsfile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
gds <- snpgdsOpen(gdsfile)

ibd <- snpgdsIBDKING(gds)

ibd <- snpgdsIBDSelection(ibd, kinship.cutoff=1/32)

snpgdsClose(gds)

gds <- GdsGenotypeReader (gdsfile)

data(illuminaScanADF)

genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)
freq <- alleleFrequency(genoData)

close(genoData)

fs <- kingIBSOFSCI(freql, "MAF"])

imputedDosageFile 91

plot(ibd$IBS@, ibd$kinship)

abline(v=fs)

obs.rel.king <- ibdAssignRelatednessKing(ibd$IBS@, ibd$kinship,
cut.ibs@.err=fs["LL"])

imputedDosageFile Create and check a GDS or NetCDF file with imputed dosages

Description

These functions create or check a GDS or NetCDF file and corresponding annotation for imputed
dosages from IMPUTE2, BEAGLE, or MaCH.

Usage

imputedDosageFile(input.files, filename, chromosome,

input.type=c("IMPUTE2", "BEAGLE", "MaCH"),

input.dosage=FALSE,

output.type = c("dosage”, "genotype"),

file.type=c("gds", "ncdf"),

snp.annot.filename="dosage.snp.RData",

scan.annot.filename="dosage.scan.RData",

compress="LZMA_RA:1M",

compress.annot="LZMA_RA",

genotypeDim="scan, snp”,

scan.df=NULL,

snp.exclude=NULL,

snp.id.start=1,

block.size=5000,

prob.threshold=0.9, verbose=TRUE)

checkImputedDosageFile(genoData, snpAnnot, scanAnnot,

input.files, chromosome,
input.type=c("IMPUTE2", "BEAGLE", "MaCH"),
input.dosage=FALSE,
output.type=c("dosage”, "genotype"),
snp.exclude=NULL, snp.id.start=1,
tolerance=1e-4, na.logfile=NULL,
block.size=5000,
prob.threshold=0.9,
verbose=TRUE)

Arguments

input.files A character vector of input files. The first file should always be genotypes (either
probabilities or dosages). Files for each input type should be as follows:
e IMPUTE2: 1) .gens, 2) .samples
* BEAGLE: 1) .grobs or .dose, 2) .markers

92

filename

chromosome

input. type

input.dosage

file.type

imputedDosageFile

e MaCH: 1) .mlprob or .mldose, 2) .mlinfo, 3) file with columns named
"SNP" and "position" giving base pair position of all SNPs

Character string with name of output GDS or NetCDF file.

Chromosome corresponding to the SNPs in the genotype file. Character codes
will be mapped to integer values as follows: "X"->23, "XY"->24, "Y"-> 25,
||M||,HMT"_>26.

Format of input files. Accepted file types are "IMPUTE2", "BEAGLE", and
"MaCH".

Logical for whether the genotype file (input.files[1]) contains dosages. If
FALSE (default), the genotype file is assumed to contain genotype probabilities.

The type of file to create ("gds" or "ncdf")

snp.annot.filename

Output .RData file for storing a SnpAnnotationDataFrame.

scan.annot.filename

compress

compress.annot

genotypeDim

scan.df

snp.exclude
snp.id.start
block.size
verbose
genoData
snpAnnot
scanAnnot
tolerance
na.logfile
output.type

prob.threshold

Details

Output .RData file for storing a ScanAnnotationDataFrame.

The compression level for dosage variables in a GDS file (see add.gdsn for
options.

The compression level for annotation variables in a GDS file (see add. gdsn for
options.

character string specifying genotype dimensions of output file. Either "snp,scan"
or "scan,snp". "scan,snp" is usually much faster to create for GDS files, but
"snp,scan" is required for NetCDF files.

data frame specifying which samples to include in the output GDS files, with
optional scanIDs already assigned. See details.

vector of integers specifying which SNPs to exclude from the GDS file.
Starting index for snpID.

Number of lines to read at once.

Logical for whether to print progress messages.

A GenotypeData object from a GDS file created with imputedDosageFile.
The SnpAnnotationDataFrame created by imputedDosageFile

The ScanAnnotationDataFrame created by imputedDosageFile

tolerance for checking differences against input files

filename for recording snpID and scanID of missing dosages

output to record in gds file (either "dosage” or "genotype")

if output.type="genotype"”, SNP/sample combinations with a maximum prob-
abilityless than prob. threshold will be set to missing

Input files can contain either imputed dosages or genotype probabilities, specified by the input.dosage
flag. In either case, the GDS/NetCDF file will store dosage of the A allele in the "genotype" vari-
able. All SNPs are assumed to be on the same chromosome, which is indicated by the chromosome

argument.

imputedDosageFile 93

If the input file contains genotype probabilities for all three genotypes, the dosage is set to missing
if the genotype probability strings (before numerical conversion) are equal (e.g., (0,0,0), (0.33, 0.33,
0.33), or (-1, -1, -1)). The dosage is also normalized by the sum of all three genotype probabilities.

The scan.df argument allows the user to specify what samples should be included in the GDS
files and an optional sampleID-scanID mapping. scan.df is a data frame with required column
sampleID. The function attempts to match the given samplelD in the scan.df data frame with a
unique samplelD in the input files. The format of samplelD is different for different input types:

o IMPUTE2: "ID_1 ID_2" as given in the sample file, where IDs are separated by a space

* BEAGLE: Column header names corresponding to that sample in .dose or .gprobs file

* MaCH: The first column of the .mlprob or .mlprob file
The snp.names argument allows the user to specify the which SNPs should be included in the GDS
files. However, snp.names must be in the same order as SNPs occur in the imputation files; this
option therefore only allows selection of SNPs, not reordering of SNPs. The ordering is checked and
an error is thrown if the SNP names are not in order, but due to the design of imputation files, this
may not occur until well into the GDS file population. The user can specify the starting snpID by

setting snp.id. start, and included SNPs are numbered sequentially starting with snp.id.start.
For IMPUTE?2 data, snp.names must correspond to the second column of the .gprobs file.

Minimal SNP and scan annotation are created from the input files and stored in RData format in
snp.annot.filename and scan.annot.filename.

If requested with na.logfile, checkImputedDosageFile will output a file with scanIDs and
snpIDs of missing genotype calls.

Either dosage or genotypes can be output using output. type. If dosage is requested, the dosages
will be 2*AAprob + ABprob. If genotype is requested, the value will be set to the genotype with
the maximum probability, unless all probabilities are less than prob.threshold. In that case, the
genotype will be set to missing. SNPs with max probabilities that are the same for two genotypes
(ie, AA=0.5, AB=0.5, BB=0) will also be set to missing.

Currently supported input file types are IMPUTE2, BEAGLE, and MaCH.

Author(s)

Adrienne Stilp, Stephanie Gogarten

References

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
BEAGLE: http://faculty.washington.edu/browning/beagle/beagle.html
MaCH: http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html

See Also

createDataFile, GdsGenotypeReader, NcdfGenotypeReader, GenotypeData, assocRegression

http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://faculty.washington.edu/browning/beagle/beagle.html
http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html

94 imputedDosageFile

Examples

gdsfile <- tempfile()
snpfile <- tempfile()
scanfile <- tempfile()
logfile <- tempfile()

IMPUTE2
probfile <- system.file("extdata”, "imputation”, "IMPUTE2", "example.chr22.study.gens",
package="GWASdata")
sampfile <- system.file("extdata”, "imputation”, "IMPUTE2", "example.study.samples”,
package="GWASdata")
imputedDosageFile(input.files=c(probfile, sampfile), filename=gdsfile, chromosome=22,
input.type="IMPUTE2", input.dosage=FALSE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

gds <- GdsGenotypeReader (gdsfile)

scanAnnot <- getobj(scanfile)

snpAnnot <- getobj(snpfile)

genoData <- GenotypeData(gds, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

checkImputedDosageFile(genoData, snpAnnot, scanAnnot,
input.files=c(probfile, sampfile), chromosome=22,
input.type="IMPUTE2", input.dosage=FALSE, na.logfile=logfile)

geno <- getGenotype(genoData)
getAlleleA(genoData)
getAlleleB(genoData)

log <- read.table(logfile)
head(log)

association test with imputed dosages

scanAnnot$status <- sample(@:1, nrow(scanAnnot), replace=TRUE)

genoData <- GenotypeData(gds, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

assoc <- assocRegression(genoData, outcome="status"”, model.type="logistic")
head(assoc)

close(genoData)

BEAGLE - genotype probabilities
probfile <- system.file("extdata”, "imputation”, "BEAGLE", "example.hapmap.unphased.bgl.gprobs”,
package="GWASdata")
markfile <- system.file("extdata”, "imputation”, "BEAGLE", "hapmap.markers”,
package="GWASdata")

imputedDosageFile(input.files=c(probfile, markfile), filename=gdsfile, chromosome=22,
input.type="BEAGLE", input.dosage=FALSE, file.type="gds",
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

BEAGLE - dosage

dosefile <- system.file("extdata”, "imputation”, "BEAGLE", "example.hapmap.unphased.bgl.dose",
package="GWASdata")

imputedDosageFile(input.files=c(dosefile, markfile), filename=gdsfile, chromosome=22,

IntensityData-class 95

input.type="BEAGLE", input.dosage=TRUE, file.type="gds",
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

MaCH - genotype probabilities
probfile <- system.file("extdata”, "imputation”, "MaCH"”, "mach1l.out.mlprob”,
package="GWASdata")

markfile <- system.file("extdata”, "imputation”, "MaCH", "machl.out.mlinfo",
package="GWASdata")
posfile <- system.file("extdata”, "imputation”, "MaCH", "machl.snp.position”,

package="GWASdata")
imputedDosageFile(input.files=c(probfile, markfile, posfile), filename=gdsfile, chromosome=22,
input.type="MaCH", input.dosage=FALSE, file.type="gds",
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

MaCH - dosage
dosefile <- system.file("extdata”, "imputation”, "MaCH”, "mach1l.out.mldose"”,
package="GWASdata")
imputedDosageFile(input.files=c(dosefile, markfile, posfile), filename=gdsfile, chromosome=22,
input.type="MaCH", input.dosage=TRUE, file.type="gds",
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

unlink(c(gdsfile, snpfile, scanfile))

IntensityData-class Class IntensityData

Description

The IntensityData class is a container for storing intensity data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The IntensityData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included
in the IntensityData object, their unique integer ids (snpID and scanID) are checked against the ids
stored in the data file to ensure consistency.

Constructor

* IntensityData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be a GdsIntensityReader or NcdfIntensityReader object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite ob-
ject.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The IntensityData constructor creates and returns a IntensityData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

96 IntensityData-class

Accessors

In the code snippets below, object is an IntensityData object. snp and scan indicate which ele-
ments to return along the snp and scan dimensions. They must be integer vectors of the form (start,
count), where start is the index of the first data element to read and count is the number of elements
to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp and/or is
scan omitted, the entire variable is read.

* nsnp(object): The number of SNPs in the data.
e nscan(object): The number of scans in the data.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

» getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getSex(object, index): A character vector of sex, with values "M’ or 'F’. The optional
index is a logical or integer vector specifying elements to extract.

* hasSex(object): Returns TRUE if the column ’sex’ is present in object.

* getQuality(object, snp, scan): Extracts quality scores. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

* getX(object, snp, scan): Extracts X intensity values. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

* getY(object, snp, scan): Extracts Y intensity values. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

» getBAlleleFreq(object, snp, scan): Extracts B allele frequency values. The result is a
vector or matrix, depending on the number of dimensions in the returned values. Missing
values are represented as NA.

* getLogRRatio(object, snp, scan): Extracts Log R Ratio values. The result is a vector or
matrix, depending on the number of dimensions in the returned values. Missing values are
represented as NA.

* getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

e getSnpVariableNames(object): Returns a character vector with the names of the columns
in the snp annotation.

* hasSnpVariable(object, varname): Returns TRUE if the variable varname is present in the
snp annotation.

e getScanVariable(object, varname, index): Returns the scan annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

IntensityData-class 97

e getScanVariableNames(object): Returns a character vector with the names of the columns
in the scan annotation.

* hasScanVariable(object, varname): Returns TRUE if the variable varname is present in
the scan annotation.

e getVariable(object, varname, snp, scan): Extracts the contents of the variable varname
from the data. The result is a vector or matrix, depending on the number of dimensions in
the returned values. Missing values are represented as NA. If the variable is not found, returns
NULL.

e hasVariable(object, varname): Returns TRUE if the data contains contains varname, FALSE
if not.

* hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

¢ hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.
* open(object): Opens a connection to the data.

e close(object): Closes the data connection.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.

* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame, ScanAnnotationSQLite,
ScanAnnotationDataFrame, GdsIntensityReader, NcdfIntensityReader, GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_gxy.gds"”, package="GWASdata")
gds <- GdsIntensityReader(file)

object without annotation
intenData <- IntensityData(gds)

object with annotation
data(illuminaSnpADF, illuminaScanADF)
intenData <- IntensityData(gds, snpAnnot=illuminaSnpADF, scanAnnot=illuminaScanADF)

dimensions
nsnp(intenData)

nscan(intenData)

get snpID and chromosome

98

intensityOutliersPlot

snpID <- getSnpID(intenData)
chrom <- getChromosome(intenData)

get positions only for chromosome 22
pos22 <- getPosition(intenData, index=(chrom == 22))

get other annotations

if (hasSex(intenData)) sex <- getSex(intenData)
plate <- getScanVariable(intenData, "plate”)
rsID <- getSnpVariable(intenData, "rsID")

get all snps for first scan
x <- getX(intenData, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(intenData, snp=c(100,10), scan=c(1,5))

close(intenData)

intensityOutliersPlot Plot mean intensity and highlight outliers

Description

intensityOutliersPlot is a function to plot mean intensity for chromosome i vs mean of inten-
sities for autosomes (excluding i) and highlight outliers

Usage

intensityOutliersPlot(mean.intensities, sex, outliers,
sep = FALSE, label, ...)

Arguments

mean.intensities
scan x chromosome matrix of mean intensities

sex vector with values of "M" or "F" corresponding to scans in the rows of mean. intensities

outliers list of outliers, each member corresponds to a chromosome (member "X" is itself
a list of female and male outliers)

sep plot outliers within a chromosome separately (TRUE) or together (FALSE)
label list of plot labels (to be positioned below X axis) corresponding to list of outliers

additional arguments to plot

intensityOutliersPlot 99

Details

Outliers must be determined in advance and stored as a list, with one element per chromosome. The
X chromosome must be a list of two elements, "M" and "F". Each element should contain a vector
of ids corresponding to the row names of mean.intensities.

If sep=TRUE, labels must also be specified. 1labels should be a list that corresponds exactly to the
elements of outliers.

Author(s)

Cathy Laurie

See Also

meanIntensityByScanChrom

Examples

calculate mean intensity

library(GWASdata)

file <- system.file("extdata”, "illumina_gxy.gds"”, package="GWASdata")
gds <- GdsIntensityReader(file)

data(illuminaScanADF)

intenData <- IntensityData(gds, scanAnnot=illuminaScanADF)

meanInten <- meanIntensityByScanChrom(intenData)

intenMatrix <- meanInten$mean.intensity

find outliers
outliers <- list()
sex <- illuminaScanADF$sex
id <- illuminaScanADF$scanID
allequal(id, rownames(intenMatrix))
for (i in colnames(intenMatrix)) {

if (1= "xX") {

imean <- intenMatrix[,i]

imin <- id[imean == min(imean)]
imax <- id[imean == max(imean)]
outliers[[i]] <- c(imin, imax)

} else {
idf <- id[sex == "F"]
fmean <- intenMatrix[sex == "F", i]
fmin <- idf[fmean == min(fmean)]
fmax <- idf[fmean == max(fmean)]
outliers[[iJI[["F"]1] <- c(fmin, fmax)
idm <- id[sex == "M"]
mmean <- intenMatrix[sex == "M", 1i]
mmin <- idm[mmean == min(mmean)]
mmax <- idm[mmean == max(mmean)]
outliers[[i]J[["M"]1] <- c(mmin, mmax)

100 manbhattanPlot

par(mfrow=c(2,4))
intensityOutliersPlot(intenMatrix, sex, outliers)
close(intenData)

manhattanPlot Manhattan plot for genome wide association tests

Description

Generates a manhattan plot of the results of a genome wide association test.

Usage

manhattanPlot(p, chromosome,
ylim = NULL, trunc.lines = TRUE,

signif = 5e-8, thinThreshold=NULL, pointsPerBin=10000, col=NULL, ...)
Arguments
p A vector of p-values.
chromosome A vector containing the chromosome for each SNP.
ylim The limits of the y axis. If NULL, the y axis is (@, log10(length(p)) + 4).
trunc.lines Logical value indicating whether to show truncation lines.
signif Genome-wide significance level for plotting horizontal line. If signif=NULL,

no line will be drawn.
thinThreshold if not NULL, -log1@(pval) threshold for thinning points.

pointsPerBin number of points to plot in each bin if thinThreshold is given. Ignored other-
wise.

col vector containing colors of points; defaults to coloring by chromosome using
the colorbrewer Dark?2 palette with 8 colors

Other parameters to be passed directly to plot.

Details

Plots -log10(p) versus chromosome. Point size is scaled so that smaller p values have larger points.

p must have the same length as chromosome and is assumed to be in order of position on each
chromosome. Values within each chromosome are evenly spaced along the X axis.

Plot limits are determined as follows: if ylim is provided, any points with -1log10(p) > ylim[2]
are plotted as triangles at the maximum y value of the plot. A line will be drawn to indicate trunc-
tation (if trunc.lines == TRUE, the default). If ylim == NULL, the maximum y value is defined as
logi@(length(p)) + 4).

If requested with thinThreshold, points with -logl1@(pval) < thinThreshold are thinned be-
fore plotting. All points with -log1@(pval) >= thinThreshold are displayed. P-values with
-logl@(pval) < thinThreshold are sampled such that pointsPerBin points are randomly se-
lected from 10 bins with uniform spacing in -log1@(pval) space.

MatrixGenotypeReader 101

Author(s)

Cathy Laurie, Adrienne Stilp

See Also

snpCorrelationPlot

Examples

n <- 1000

pvals <- sample(-log1@((1:n)/n), n, replace=TRUE)

chromosome <- c(rep(1,400), rep(2,350), rep("X",200), rep("Y",50))
manhattanPlot(pvals, chromosome, signif=1e-7)
manhattanPlot(pvals, chromosome, thinThreshold=2)

MatrixGenotypeReader Class MatrixGenotypeReader

Description

The MatrixGenotypeReader class stores a matrix of genotypes as well as SNP and scan IDs, chro-
mosome, and position.

Constructor

* MatrixGenotypeReader (genotype=genotype, snpID=snpID, chromosome=chromosome, position=position,
scanID=scanlID):

genotype must be a matrix with dimensions (’snp’,’scan’) containing the number of A alleles
: 2=AA, 1=AB, 0=BB.
snp must be a unique integer vector of SNP ids.

chromosome must be an integer vector of chromosomes. Default values for chromosome
codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The defaults may be changed with
the arguments autosomeCode, XchromCode, XYchromCode, YchromCode, and MchromCode.

position must be an integer vector of base positions
scanID must be a unique integer vector of scan ids .

The MatrixGenotypeReader constructor creates and returns a MatrixGenotypeReader in-
stance.

Accessors
In the code snippets below, object is a MatrixGenotypeReader object.
e nsnp(object): The number of SNPs.

* nscan(object): The number of scans.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

102 MatrixGenotypeReader

» getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getGenotype(object, snp=c(1,-1), scan=c(1,-1), drop=TRUE, use.names=FALSE): Ex-
tracts genotype values (number of A alleles). snp and scan indicate which elements to return
along the snp and scan dimensions. They must be integer vectors of the form (start, count),
where start is the index of the first data element to read and count is the number of ele-
ments to read. A value of -1’ for count indicates that the entire dimension should be read.
If drop=TRUE, the result is coerced to the lowest possible dimension. If use.names=TRUE,
names of the resulting vector or matrix are set to the SNP and scan IDs. Missing values are
represented as NA.

* getGenotypeSelection(object, snp=NULL, scan=NULL, snpID=NULL, scanID=NULL, drop=TRUE,

use.names=TRUE): Extracts genotype values (number of A alleles). snp and scan may be in-
teger or logical vectors indicating which elements to return along the snp and scan dimensions.
snpID and scanlD allow section by values of snpID and scanID. Unlike getGenotype, the val-
ues requested need not be in contiguous blocks. If order=="file", genotypes are returned in
the order they are stored in the object. If order="selection”, the order of SNPs and scans
will match the index selection provided in snp and scan respectively. Other arguments are
identical to getGenotype.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode(object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfGenotypeReader, GenotypeData

Examples

snpID <- 1:100

chrom <- rep(1:20, each=5)

pos <- 1001:1100

scanID <- 1:20

geno <- matrix(sample(c(@,1,2,NA), 2000, replace=TRUE), nrow=100, ncol=20)

meanlIntensityByScanChrom 103

mgr <- MatrixGenotypeReader (genotype=geno, snpID=snplID,
chromosome=chrom, position=pos, scanID=scanlD)

dimensions
nsnp(mgr)
nscan(mgr)

get snpID and chromosome
snpID <- getSnpID(mgr)
chrom <- getChromosome(mgr)

get positions only for chromosome 10
pos10 <- getPosition(mgr, index=(chrom == 10))

get all snps for first scan
geno <- getGenotype(mgr, snp=c(1,-1), scan=c(1,1))

starting at snp 50, get 10 snps for the first 5 scans
geno <- getGenotype(mgr, snp=c(50,10), scan=c(1,5))

meanIntensityByScanChrom
Calculate Means and Standard Deviations of Intensities

Description

Function to calculate the mean and standard deviation of the intensity for each chromosome for

each scan.
Usage
meanIntensityByScanChrom(intenData, vars = c("X", "Y"),
snp.exclude = NULL, verbose = TRUE)
Arguments
intenData IntensityData object. Chromosomes are expected to be in contiguous blocks.
vars Character vector with the names of one or two intensity variables.
snp.exclude An integer vector containing SNPs to be excluded.
verbose Logical value specifying whether to show progress information.
Details

The names of two intensity variables in intenData may be supplied. If two variables are given, the
mean of their sum is computed as well. The default is to compute the mean and standard deviation
for X and Y intensity.

104 mendelErr

Value

A list with two components for each variable in "vars": *'mean.var’ and ’sd.var’. If two variables are
given, the first two elements of the list will be mean and sd for the sum of the intensity variables:

mean.intensity A matrix with one row per scan and one column per chromosome containing the
means of the summed intensity values for each scan and chromosome.

sd.intensity A matrix with one row per scan and one column per chromosome containing the
standard deviations of the summed intensity values for each scan and chromo-
some.

mean.var A matrix with one row per scan and one column per chromosome containing the
means of the intensity values for each scan and chromosome.

sd.var A matrix with one row per scan and one column per chromosome containing the
standard deviations of the intensity values for each scan and chromosome.
Author(s)

Cathy Laurie

See Also

IntensityData, mean, sd

Examples

file <- system.file("extdata"”, "illumina_gxy.gds"”, package="GWASdata")
gds <- GdsIntensityReader(file)
intenData <- IntensityData(gds)

meanInten <- meanIntensityByScanChrom(intenData)
close(intenData)

mendelErr Mendelian Error Checking

Description

Mendelian and mtDNA inheritance tests.

Usage

mendelErr(genoData, mendel.list, snp.exclude=NULL,
error.by.snp=TRUE, error.by.snp.trio=FALSE,
verbose=TRUE)

mendelErr 105

Arguments
genoData GenotypeData object, must have scan variable "sex"
mendel.list A mendellList object, to specify trios.
snp.exclude An integer vector with snpIDs of SNPs to exclude. If NULL (default), all SNPs

are used.

error.by.snp Whether or not to output Mendelian errors per SNP. This will only return the
total number of trios checked and the total number of errors for each SNP. The
default value is TRUE.

error.by.snp.trio
Whether or not to output Mendelian errors per SNP for each trio. This will
return the total number of trios checked and the total number of errors for each
SNP as well as indicators of which SNPs have an error for each trio. The default
value is FALSE. NOTE: error.by.snp must be set to TRUE as well in order to
use this option. NOTE: Using this option causes the output to be very large that
may be slow to load into R.

verbose If TRUE (default), will print status updates while the function runs.

Details

genoData must contain the scan annotation variable "sex". Chromosome index: 1..22 autosomes,
23 X,24 XY, 25 Y, 26 mtDNA, 27 missing.

If a trio has one parent missing, Mendelian errors are still calculated for the available pair. In other
words, "trio" here also inludes duos.

Value

mendelErr returns an object of class "mendelClass". The object contains two data frames: "trios"
and "all.trios", and a list: "snp" (if error.by. snp is specified to be TRUE). If there are no duplicate
samples in the dataset, "trios" will be the same as "all.trios". Otherwise, "all.trios" contains the
results of all combinations of duplicate samples, and "trios" only stores the average values of unique
trios. i.e: "trios" averages duplicate samples for each unique subject trio. "trios" and "all.trios"
contain the following components:

fam. id Specifying the family ID from the mendel.list object used as input.
child.id Specifying the offspring ID from the mendel.list object used as input.

child.scanID Specifying the offspring scanID from the mendel.list object used as input. (only
in "all.trios")

father.scanID Specifying the father scanID from the mendel.list object used as input. (only in
"all.trios")

mother.scanID Specifying the mother scanID from the mendel.list object used as input. (only
in "all.trios")

Men.err.cnt The number of SNPs with Mendelian errors in this trio.

Men.cnt The total number of SNPs checked for Mendelian errors in this trio. It excludes
those cases where the SNP is missing in the offspring and those cases where it is
missing in both parents. Hence, Mendelian error rate =Men.err.cnt /Men.cnt.

106 mendelErr

mtDNA.err The number of SNPs with mtDNA inheritance errors in this trio.

mtDNA.cnt The total number of SNPs checked for mtDNA inheritance errors in this trio.
It excludes those cases where the SNP is missing in the offspring and in the
mother. Hence, mtDNA error rate = mtDNA.err / mtDNA.cnt .

chr1, ..., chr25 The number of Mendelian errors in each chromosome for this trio.

"snp" is a list that contains the following components:

check.cnt A vector of integers, indicating the number of trios valid for checking on each
SNP.
error.cnt A vector of integers, indicating the number of trios with errors on each SNP.

familyid.childid
A vector of indicators (0/1) for whether or not any of the duplicate trios for the
unique trio, "familyid.childid", have a Mendelian error on each SNP. (Only if
error.by.snp.trio is specified to be TRUE).

Author(s)

Xiuwen Zheng, Matthew P. Conomos

See Also

mendellList

Examples

library(GWASdata)
data(illuminaScanADF)
scanAnnot <- illuminaScanADF

generate trio list

men.list <- mendellList(scanAnnot$family, scanAnnot$subjectID,
scanAnnot$father, scanAnnot$mother, scanAnnot$sex,
scanAnnot$scanID)

create genoData object

gdsfile <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(gdsfile)

genoData <- GenotypeData(gds, scanAnnot=scanAnnot)

Run!
R <- mendelErr(genoData, men.list, error.by.snp.trio = TRUE)

names(R)

[1] "trios” "all.trios” "snp”

names(R$trios)

[1] "fam.id” "child.id" "Men.err.cnt” "Men.cnt” "mtDNA.err"”
[6] "mtDNA.cnt” "chr1” "chr2" "chr3” "chr4"

[11] "chr5” "chre” "chr7” "chrg” "chr9”

[16] "chrie” "chr11” "chr12"” "chr13” "chr14”

mendelList

[21] "chri1s”
[26] "chr20”
[31] "chrY”

Mendelian error
data.frame(fam.id

Mendel

names(R$snp)

107

"chr16” "chr17” "chr18” "chr19”
"chr21" "chr22" "chrx" "chrxy”

rate = Men.err.cnt / Men.cnt
= R$trios$fam.id, child.id = R$trios$child.id,
.err.rate = R$trios$Men.err.cnt / R$trios$Men.cnt)

summary (Rsnpcheck.cnt)

summary Mendelian error for first family

summary (R$snp[[1]

close(genoData)

D

mendellList

Mendelian Error Checking

Description

mendellList creates a "mendelList" object (a list of trios). mendelListAsDataFrame converts a
"mendelList" object to a data frame.

Usage

mendellList(familyid, offspring, father, mother, sex, scanID)

mendellListAsDataFrame(mendel.list)

Arguments
familyid
of fspring
father
mother
sex

scanlD

mendel.list

A vector of family identifiers.

A vector of offspring subject identifiers.

A vector of father identifiers.

A vector of mother identifiers.

A vector to specify whether each subject is male "M" or female "F".

A vector of scanIDs indicating unique genotyping instances for the of fspring
vector. In the case of duplicate samples, the same offspring identifier may
correspond to multiple scanID values.

An object of class "mendelList".

108 mendelList

Details

The lengths of familyid, offspring, father, mother, sex, and scanID must all be identical.
These vectors should include all genotyped samples, i.e., samples present in the father and mother
vectors should also appear in the of fspring vector if there are genotypes for these samples, and
their unique scan IDs should be given in the scanID vector.

Identifiers may be character strings or integers, but not factors.

The "mendelList" object is required as input for the mendelErr function.

Value

mendellList returns a "mendelList" object. A "mendelList" object is a list of lists. The first level
list is all the families. The second level list is offspring within families who have one or both par-
ents genotyped. Within the second level are data.frame(s) with columns "offspring”, "father", and
"mother" which each contain the scanID for each member of the trio (a missing parent is denoted
by -1). When replicates of the same offsping ID occur (duplicate scans for the same subject), this
data.frame has multiple rows representing all combinations of scanIDs for that trio.

mendellListAsDataFrame returns a data.frame with variables "offspring"”, "father", and "mother"
which each contain the scanID for each member of the trio (a missing parent is denoted by -1). This
takes every data.frame from the "mendelList" object and puts them all into one large data frame.
This can be easier to work with for certain analyses.

Author(s)

Xiuwen Zheng, Matthew P. Conomos

See Also

mendelErr

Examples

data frame of sample information. No factors!

dat <- data.frame(family=c(1,1,1,1,2,2,2), offspring=c(”a”,”a","b"”,"c","d","e","f"),
father=c("b","b",0,0,"e",0,0), mother=c("c","c",0,0,"f",0,0),
sex=c("M","M" "M" "F" "E" "M" "F") scanID=1:7,
stringsAsFactors=FALSE)

dat

men.list <- mendellList(dat$family, dat$offspring, dat$father, dat$mother,
datsex, datscanID)
men.list

If fathers and mothers do not have separate entries in each vector,

mendellList returns a "NULL":

dat <- dat[c(1,5),]

dat

mendellist(dat$family, dat$offspring, dat$father, dat$mother,
datsex, datscanID)

missingGenotypeByScanChrom 109

men.df <- mendellListAsDataFrame(men.list)
men.df

missingGenotypeByScanChrom
Missing Counts per Scan per Chromosome

Description

This function tabulates missing genotype calls for each scan for each chromosome.

Usage

missingGenotypeByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object. Chromosomes are expected to be in contiguous blocks.

snp.exclude A vector of IDs corresponding to the SNPs that should be excluded from the
overall missing count.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of missing genotypes in each chromosome of each scan given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

non

This function returns a list with three components: "missing.counts,
ing.fraction."

snps.per.chr", and "miss-

missing.counts A matrix with rows corresponding to the scans and columns indicating unique
chromosomes containing the number of missing SNP’s for each scan and chro-
mosome.

snps.per.chr A vector containing the number of non-excluded SNPs for each chromosome.
missing.fraction
A vector containing the fraction of missing counts for each scan over all chro-
mosomes, excluding the Y chromosome for females.

Author(s)
Cathy Laurie

See Also

GenotypeData, missingGenotypeBySnpSex

110 missingGenotypeBySnpSex

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

need scan annotation with sex
data(illuminaScanADF)
genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

missingRate <- missingGenotypeByScanChrom(genoData)
close(genoData)

missingGenotypeBySnpSex
Missing Counts per SNP by Sex

Description

For all SNPs for each sex tabulates missing SNP counts, allele counts and heterozygous counts.

Usage

missingGenotypeBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object.

scan.exclude A vector containing the scan numbers of scans that are to be excluded from the
total scan list.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the fraction of missing genotypes for males and females for each SNP given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

non

This function returns a list with three components: "missing.counts,
ing.fraction."

scans.per.sex," and "miss-

missing.counts A matrix with one row per SNP and one column per sex containing the number
of missing SNP counts for males and females, respectively.

scans.per.sex A vector containing the number of males and females respectively.

missing.fraction

A vector containing the fraction of missing counts for each SNP, with females
excluded for the Y chromosome.

NcdfGenotypeReader 111

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

GenotypeData, missingGenotypeByScanChrom

Examples

library(GWASdata)
file <- system.file("extdata”, "illumina_geno.gds"”, package="GWASdata")
gds <- GdsGenotypeReader(file)

need scan annotation with sex
data(illuminaScanADF)
genoData <- GenotypeData(gds, scanAnnot=illuminaScanADF)

missingRate <- missingGenotypeBySnpSex(genoData)
close(genoData)

NcdfGenotypeReader Class NcdfGenotypeReader

Description
The NcdfGenotypeReader class is an extension of the NcdfReader class specific to reading genotype
data stored in NetCDF files.

Extends

NcdfReader

Constructor

¢ NcdfGenotypeReader (filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:
— ’snp’: a coordinate variable with a unique integer vector of snp ids
’chromosome’: integer chromosome codes of dimension ’snp’

’position’: integer position values of dimension ’snp’
’samplelD’: a unique integer vector of scan ids with dimension ’sample’

’genotype’: a matrix of bytes with dimensions (’snp’,’sample’). The byte values must be
the number of A alleles : 2=AA, 1=AB, 0=BB.

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

The NcdfGenotypeReader constructor creates and returns a NcdfGenotypeReader instance
pointing to this file.

112 NcdfGenotypeReader

Accessors

In the code snippets below, object is a NcdfGenotypeReader object.

See NcdfReader for additional methods.

* nsnp(object): The number of SNPs in the NetCDF file.
e nscan(object): The number of scans in the NetCDF file.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

» getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getGenotype(object, snp=c(1,-1), scan=c(1,-1), drop=TRUE, use.names=FALSE, ...):
Extracts genotype values (number of A alleles). snp and scan indicate which elements to re-
turn along the snp and scan dimensions. They must be integer vectors of the form (start,
count), where start is the index of the first data element to read and count is the number of el-
ements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If
drop=TRUE, the result is coerced to the lowest possible dimension. If use.names=TRUE and the
result is a matrix, dimnames are set to the SNP and scan IDs. Missing values are represented
as NA,

e getVariable(object, varname, ...): Extracts the contents of the variable varname. If the
variable is not found in the NetCDF file, returns NULL.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfReader, NcdfIntensityReader, GenotypeData, IntensityData

NcdfIntensityReader 113

Examples

file <- system.file("extdata”, "illumina_geno.nc"”, package="GWASdata")
nc <- NcdfGenotypeReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)

chrom <- getChromosome(nc)

get positions only for chromosome 22
pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
geno <- getGenotype(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(nc, snp=c(100,10), scan=c(1,5))

close(nc)

NcdfIntensityReader Class NcdfIntensityReader

Description

The NcdfIntensityReader class is an extension of the NcdfReader class specific to reading intensity
data stored in NetCDF files.

Extends

NcdfReader

Constructor

* NcdfIntensityReader(filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:
— ’snp’: a coordinate variable with a unique integer vector of snp ids
— ’chromosome’: integer chromosome values of dimension ’snp’

’position’: integer position values of dimension ’snp’

’samplelD’: a unique integer vector of scan ids with dimension ’sample’

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

114 NcdfIntensityReader

The NetCDF file should also contain at least one of the following variables with dimensions
(’snp’,’sample’):

— ’quality’: quality score

- ’'X’: X intensity

- ’Y’: Y intensity

— ’BAlleleFreq’: B allele frequency

- 'LogRRatio’: Log R Ratio
The NcdfIntensityReader constructor creates and returns a NcdfIntensityReader instance
pointing to this file.

Accessors

In the code snippets below, object is a NcdfIntensityReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read. If drop=TRUE the result is coerced to the lowest
possible dimension.

See NcdfReader for additional methods.

¢ nsnp(object): The number of SNPs in the NetCDF file.
¢ nscan(object): The number of scans in the NetCDF file.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

» getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getQuality(object, snp, scan, drop=TRUE): Extracts quality scores. The result is a vec-

tor or matrix, depending on the number of dimensions in the returned values and the value of
drop. Missing values are represented as NA.

* hasQuality(object): Returns TRUE if the GDS file contains a variable ’quality’.

* getX(object, snp, scan, drop=TRUE): Extracts X intensity. The result is a vector or matrix,
depending on the number of dimensions in the returned values and the value of drop. Missing
values are represented as NA.

¢ hasX(object): Returns TRUE if the GDS file contains a variable *X’.

* getY(object, snp, scan, drop=TRUE): Extracts Y intensity. The result is a vector or matrix,
depending on the number of dimensions in the returned values and the value of drop. Missing
values are represented as NA.

NcdfIntensityReader 115

¢ hasY(object): Returns TRUE if the GDS file contains a variable "Y".

» getBAlleleFreq(object, snp, scan, drop=TRUE): Extracts B allele frequency. The result
is a vector or matrix, depending on the number of dimensions in the returned values and the
value of drop. Missing values are represented as NA.

* hasBAlleleFreq(object): Returns TRUE if the GDS file contains a variable "BAlleleFreq’.

* getLogRRatio(object, snp, scan, drop=TRUE): Extracts Log R Ratio. The result is a vec-
tor or matrix, depending on the number of dimensions in the returned values and the value of
drop. Missing values are represented as NA.

* hasLogRRatio(object): Returns TRUE if the GDS file contains a variable ’LogRRatio’.

e getVariable(object, varname, snp, scan, drop=TRUE): Returns the contents of the vari-
able varname. The result is a vector or matrix, depending on the number of dimensions in the
returned values and the value of drop. Missing values are represented as NA. If the variable is
not found in the NetCDF file, returns NULL.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode(object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfReader, NcdfGenotypeReader, GenotypeData, IntensityData

Examples

file <- system.file("extdata”, "illumina_gxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)
chrom <- getChromosome(nc)

get positions only for chromosome 22
pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
x <- getX(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(nc, snp=c(100,10), scan=c(1,5))

116 NcdfReader

close(nc)

NcdfReader Class NcdfReader

Description

The NcdfReader class is a wrapper for the ncdf4-package that provides an interface for reading
NetCDF files.

Constructor

¢ NcdfReader(filename):
filename must be the path to a NetCDF file.
The NcdfReader constructor creates and returns a NcdfReader instance pointing to this file.

Accessors

In the code snippets below, object is a NcdfReader object.

e getVariable(object, varname, start, count, drop=TRUE): Returns the contents of the
variable varname.

— start is a vector of integers indicating where to start reading values. The length of this
vector must equal the number of dimensions the variable has. If not specified, reading
starts at the beginning of the file (1,1,...).

— count is a vector of integers indicating the count of values to read along each dimension.
The length of this vector must equal the number of dimensions the variable has. If not
specified and the variable does NOT have an unlimited dimension, the entire variable
is read. As a special case, the value "-1" indicates that all entries along that dimension
should be read.

— drop is a logical for whether the result will be coerced to the lowest possible dimension.

The result is a vector, matrix, or array, depending on the number of dimensions in the returned
values and the value of drop. Missing values (specified by a "missing_value" attribute, see
ncvar_change_missval) are represented as NA. If the variable is not found in the NetCDF
file, returns NULL.

e getVariableNames(object): Returns names of variables in the NetCDF file.
e getDimension(object, varname): Returns dimension for NetCDF variable varname.

e getDimensionNames(object, varname): Returns names of dimensions in the NetCDF file.
If varname is provided, returns dimension names for NetCDF variable varname.

e getAttribute(object, attname, varname): Returns the attribute attname associated with
the variable varname. If varname is not specified, attname is assumed to be a global attribute.

e hasCoordVariable(object, varname): Returns TRUE if varname is a coordinate variable (a
variable with the same name as a dimension).

e hasVariable(object, varname): Returns TRUE if varname is a variable in the NetCDF file
(including coordinate variables).

pasteSorted 117

Standard Generic Methods

In the code snippets below, object is a NcdfReader object.

* open(object): Opens a connection to a NetCDF file.
e close(object): Closes the connection to a NetCDF file.

* show(object): Summarizes the contents of a NetCDF file.

Author(s)

Stephanie Gogarten

See Also

ncdf4-package, NcdfGenotypeReader, NcdfIntensityReader

Examples

file <- system.file("extdata”, "affy_geno.nc”, package="GWASdata")
nc <- NcdfReader(file)

getDimensionNames(nc)
getVariableNames(nc)

hasVariable(nc, "genotype")
geno <- getVariable(nc, "genotype”, start=c(1,1), count=c(10,10))

close(nc)

pasteSorted Paste two vectors sorted pairwise

Description

Read a configuration file

Usage

pasteSorted(a, b, sep="/")

Arguments

a vector 1

b vector 2

sep a character string to separate the terms.
Value

A character vector of the concatenated values, sorted pairwise.

118 pcaSnpFilters

Author(s)

Stephanie Gogarten

See Also

paste

Examples
a <= c("A","C","G","T")
b <_ C(”C”, IIAII’ ”TII’IIGII)
pasteSorted(a,b)

pcaSnpFilters Regions of SNP-PC correlation to filter for Principal Component
Analysis

Description
Base positions for the LCT (2q21), HLA (including MHC), and inversion (8p23, 17q21.31) regions
from the GRCh36/hg18, GRCh37/hg19 and GRCh38/hg38 genome genome builds.
Usage
pcaSnpFilters.hg18
pcaSnpFilters.hg19
pcaSnpFilters.hg38
Format

A data.frame with the following columns.

chrom chromsome
start.base starting base position of region
end.base ending base position of region

comment description of the region

Details

These regions result in high SNP-PC correlation if they are included in Principal Component Anal-
ysis (PCA). The pcaSnpFilters datasets can be used to filter SNPs prior to running PCA to avoid
correlations.

Source

UCSC genome browser (http://genome.ucsc.edu).

http://genome.ucsc.edu

pedigreeCheck 119

References

Novembre, John et al. (2008), Genes mirror geography within Europe. Nature, 456: 98-101.
doi:10.1038/nature07331

See Also

snpCorrelationPlot, SNPRelate

Examples

data(pcaSnpFilters.hgl8)
data(pcaSnpFilters.hg19)
data(pcaSnpFilters.hg38)

pedigreeCheck Testing for internal consistency of pedigrees

Description

Find inconsistencies within pedigrees.

Usage

pedigreeCheck(pedigree)

Arguments
pedigree A dataframe containing the pedigree information for the samples to be examined

with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers of the family, individual, individual’s mother, individual’s fa-
ther and individual’s sex (coded as "M" or "F") . Identifiers can be integer, nu-
meric or character but identifiers for mother and father for founders are assumed
to be 0.

Details

The function pedigreeCheck finds any of a number of possible errors and inconsistencies within
pedigree data. If no problems are encountered, the output is NULL. If problems are encountered,
output contains information for the errors encountered (a sub-list of the output values described
below) and the following message is printed: "All row numbers refer to rows in the full pedigree (not
just within a family). Correct current problems and rerun pedigreeCheck. There may be additional
problems not investigated because of the current problems."

120 pedigreeCheck

Value
The output for pedigreeCheck is NULL or a sub-list of the following:

family.missing.rows
A vector of integers containing the row positions of entries in the full pedigree
where family id’s are missing (NA) or blank

individ.missing_or_0.rows
A vector of integers containing the row positions of entries in the full pedigree
where individual id’s are missing (NA), blank, or 0

father.missing.rows
A vector of integers containing the row positions of entries in the full pedigree
where father id’s are missing (NA) or blank

mother.missing.rows
A vector of integers containing the row positions of entries in the full pedigree
where mother id’s are missing (NA) or blank

sexcode.error.rows
A vector of integers containing the row positions of entries in the full pedigree
where the ’sex’ variable is mis-coded

both.mother.father
A data.frame with the variables *family’, parentID’,’mother.row’,and ’father.row’
where *family’ = family identifier, *parentID’ = identifier of parent that appears
as both mother and father, *father.row’ = row positions(s) in full pedigree in
which parent appears as father, and *mother.row’ = row position(s) in full pedi-
gree in which parent appears as mother (if mutliple rows, row numbers are con-
catenated with separator = ;")

parent.no.individ.entry
A data.frame with the variables ‘row.num’, ’family’, 'no_individ_entry’, and
“parentID’, where ‘row.num’ = row position of entry in the full pedigree where
mother and/or father IDs are not included in the pedigree, *family’ = family
identifier, 'no_individ_entry’ has values ’father’, mother’ or ’both’ indicating
which parent is not in the pedigree, and ’parentID’ = the identifier(s) for indi-
viduals not in the pedigree (if more than one, identifiers are concatenated with
separator =’;)

unknown.parent.rows
A data.frame with variables ‘row.num’ = row position in full pedigree where one
parent is known and one parent is unknown and *family’ = family identifier.

duplicates A data.frame with variables *family’ = family identifier, ’individ’ = individual
identifier, copies’ = number of copies of individual and *'match’= T/F depending
upon whether all copies have identical pedigree information

one.person. fams
A data.frame identifying singeltons (one person families) with variables ’family’
= family identifier and *founder’ = T/F depending up whether the singleton is a
founder or not

mismatch.sex A data.frame with variables ’family’ = family identifier and ’individ’ = individ-
ual identifier for individuals that occur as mothers but sex is "M" or occur as
fathers but sex is "F"

pedigreeCheck 121

impossible.related.rows
A list where each entry in the list contains a set of row positions in the full
pedigree which together indicate impossible relationships: where either a child
is mother of self or an individual is both child and mother of the same person.
Names of list entries are associated family identifiers.

subfamilies.ident
A data.frame with variables ’family’ = family identifier, "subfamily" = sub-
family identifier within family, and *individ’ = individual identifier of members
of identified sub-family.

If no inconsistencies are found, the output is NULL.

Note

All row numbers in output refer to row positions in the full pedigree (not just within family). User
should correct current problems and rerun pedigreeCheck. There may be additional problems not
investigated because of the current problems.

Author(s)

Cecelia Laurie

See Also

pedigreeDeleteDuplicates, pedigreePairwiseRelatedness

Examples

#basic errors

family <- c("a","a","a","b","b","c","")

individ <- c("A","B","C","A","B",0,"")

mother <- c("B","C",0,0,0,NA,Q)

father <- c("C","D",0,0,"",0,"D")

sex <= c("F","2","M" "F" "F","M" "F")

samp <- data.frame(family, individ, mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck(samp)

there are other problems not investigated since

the above are basic problems to be cleared up first

'duplicates', 'both.mother.father', 'parent.no.individ.entry'

family <- c("b","b","b","b","c","c",rep("d",5))

individ <- c("A","B","C","A" "B","B",1:5)

mother <- ¢("B",0,0,"D",0,0,0,0,1,2,1)

father <- c¢("C",90,0,"C",0,0,0,0,2,1,2)

sex <= c("F","F","M" "M" "F" "F" "F",6"M","F","F","M")

samp <- data.frame(family, individ, mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck (samp)

there are other problems (such as mismatch.sex) but not investigated

directly because already had both.mother.father inconsistency

'parent.no.individ.entry', 'one.person.fams', 'unknown.parent.rows',
'mismatch.sex', 'impossible.related.rows'

122 pedigreeDeleteDuplicates

family <- ¢(1,1,1,2,2,2,3,4,4,4,5,5,5,5,6,6,6)
individ <- ¢(1,2,3,1,2,3,1,1,3,2,1,2,3,4,1,2,3)
mother <- ¢(2,0,1,2,1,0,1,2,0,2,2,4,0,0,2,1,0)
father <- c¢(3,9,3,9,3,0,2,3,1,0,3,1,0,0,3,3,0)
sex <= c("F","F","M","F","F", "M" "F" "E", "E", "FE","M" "F" "M" "FE" "F","M" "F")
samp <- data.frame(family, individ,mother,father,sex,stringsAsFactors=FALSE)

pedigreeCheck (samp)
'mismatch.sex' and 'impossible.related.rows' are only investigated
for families where there are no other inconsistencies

'subfamilies.ident'

family <- rep(1,12)

individ <- 1:12

mother <- ¢(0,0,2,2,0,0,5,0,7,0,0,10)

father <- ¢(0,0,1,1,0,0,6,0,8,0,0,11)

sex <= c("M",rep("F",4),"M" "F" "M" "M" "F" "M" "M")

samp <- data.frame(family,individ,mother,father,sex,stringsAsFactors=FALSE)

pedigreeCheck(samp)
'subfamilies.ident' is only investigated for families
where there are no other inconsistencies

pedigreeDeleteDuplicates
Remove duplicates from a pedigree

Description

pedigreeDeleteDuplicates removes duplicates from a pedigree.

Usage

pedigreeDeleteDuplicates(pedigree, duplicates)

Arguments
pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers of the family, individual, individual’s mother, individual’s fa-
ther and individual’s sex (coded as "M" or "F") .
duplicates dataframe with columns "family" (family id) and "individ" (individual id).
Details

The output of pedigreeCheck can be provided to pedigreeDeleteDuplicates in order to generate
a new pedigree with duplicates removed.
Value

The output of pedigreeDeleteDuplicates is a pedigree identical to pedigree, but with duplicates
removed.

pedigreeMaxUnrelated 123

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreePairwiseRelatedness

Examples

family <- ¢(1,1,1,1,2,2,2,2)

individ <- ¢(1,2,3,3,4,5,6,6)

mother <- ¢(0,0,1,1,0,0,4,4)

father <- c(0,90,2,2,0,0,5,5)

sex <= c("F","M","F","F","F","F","M" "M")

pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
duplicates <- pedigreeCheck(pedigree)$duplicates

pedigree.no.dups <- pedigreeDeleteDuplicates(pedigree, duplicates)

pedigreeMaxUnrelated Find a maximal set of unrelated individuals in a subset of a pedigree.

Description

Given a full pedigree (with no duplicates and no one-person families), this function finds a maximal
set of unrelated individuals in a specified subset of the pedigree. This is done family by family.
The full pedigree is checked for inconsistencies and an error message is given if inconsistencies are
found (see pedigreeCheck). Maximal sets are not unique; there is an option for the user to identify
preference(s) in the choice of individuals.

Usage

pedigreeMaxUnrelated(pedigree, pref = NULL)

Arguments

pedigree A dataframe containing the full pedigree with columns ’family’, ’individ’, 'mother’,

"father’, ’sex’, and ’selset’. The variables family’, ’individ’, mother’, ’father’
contain the identifiers for family, individual, individual’s mother and individ-
ual’s father. Identifiers can be integer, numeric or character but identifiers for
mother and father for founders are assumed to be 0. The variable ’sex’ contains
the individual’s sex (coded as "M" or "F"). The varible ’selset’ is coded as 1
= if individual is in the subset of interest and O otherwise. The dataframe can
contain an optional variable indicating preferences for choosing individuals. See
the item pref below.

pref pref = the name of the (optional) preference column in samp. Preferences can
be layered. This variable must have integer or numeric values greater than or
equal to 1 where a lower value indicates higher preference. If pref is missing,
the default is to prefer choosing founders.

124 pedigreeMaxUnrelated

Details

Commonly used for selecting a maximal unrelated set of genotyped individuals from a pedigree
(’selset’ = 1 if individual is genotyped and O otherwise).

An example of the use of a layered preference variable: if one wanted to prefer cases over controls
and then prefer founders, the preference variable would = 1 for cases, 2 = founder, 3 = otherwise.

Value

A dataframe with variables ’family’ = family identifier and ’Individ’ = individual identifier of indi-
viduals in the maximal unrelated set.

Note

Since pedigreeMaxUnrelated does not accept one-person families included in the input pedigree,
to get a complete maximal set of unrelated individuals from a specified subset of the pedigree,
the user will need to append to the output from the function the one-person family (singleton)
individuals from the specified subset.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreePairwiseRelatedness

Examples

Example set 1

family <- rep("A",8)

individ <- c("a","b","c","d","e"," "f","g","h")

mother <- c(0,"a","b",0,"f",0,0,"f")

father <- c(0,"d","e",0,"g",0,0,"g")

sex <= c(rep("F",3),"M" "M" "F" "M" "F")

pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)

preference default (i.e. choose founders if possible)
pedigree$selset <- 1 # all selected
pedigreeMaxUnrelated(pedigree) # chose the founders

family Individ

#1 A a
#2 A d
#3 A f
#4 A g

sel <- is.element(pedigree$individ,c(”a”,"f","g"))
pedigree$selset[sel] <- @ #only one founder 'd' in desired subset

default preference of founders
pedigreeMaxUnrelated(pedigree)
family Individ

pedigreeMaxUnrelated 125

#1 A d #founder
#2 A e

preference choice

pedigree$pref <- 2

sel2 <- is.element(pedigree$individ, c("c”,"h")) # preferred choices
pedigree$pref[sel2] <- 1

pedigreeMaxUnrelated(pedigree,pref="pref")

family Individ

#1 A h

#2 A b

add preference layer of secondary choice of founders
pedigree$pref <- 3

sel2 <- pedigree$mother==0 & pedigree$father==

sell <- is.element(pedigree$individ, c(”"c","h"))
pedigree$pref[sel2] <- 2

pedigree$pref[sell] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")

family Individ

#1 A h #top pref

#2 A d #founder

#Note that the other top preference 'c' is related to everyone so not chosen

Example Set 2

family <- c¢(1,1,1,1,2,2,2,2,2)

individ <- c(2,1,3,4,"A5","A6","A7" "A8" "A9")

mother <- ¢(3,3,0,0,0,0,"A5","A5",0)

father <- c(4,4,0,0,0,0,"A6","A9",0)

sex <= c("F","M","F" "M","F","M", "M" ,"M" "M")

pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigree$selset <- 1
pedigree$selset[is.element(pedigree$individ, c(”A5",4))] <- 0
pedigree$pref <- 2
pedigree$pref[is.element(pedigree$individ,c("A8","A7"))] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")

family Individ

#1 1 2
#2 2 A6
#3 2 A8

NOTE: in using the pref option there is NO preference for family 1
so will select one unrelated from family 1:
individual 2 is selected since it is first in selset to be listed in pedigree

pedigree$pref <- 2

pedigree$pref[is.element(pedigree$individ,c("A8","A7"))] <- 1

sel <- pedigree$family==1 & pedigree$mother==0 & pedigree$father==0 #founders
pedigree$pref[sel] <- 1

pedigreeMaxUnrelated(pedigree,pref="pref")

family Individ

#1 1 3

#2 2 A6

#3 2 A8

126 pedigreePairwiseRelatedness

pedigreePairwiseRelatedness
Assign relatedness from pedigree data

Description
This function assigns relationships from pedigree data. Output includes the theoretical pairwise
kinship coefficients.

Usage

pedigreePairwiseRelatedness(pedigree)

Arguments
pedigree A dataframe containing the pedigree information for the samples to be examined

with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers for family, individual, individual’s mother, individual’s father
and individual’s sex (coded as "M" or "F") . Identifiers can be integer, numeric or
character but identifiers for mother and father for founders are assumed to be 0.
Error messages are returned for pedigree inconsistencies. See pedigreeCheck

Details

Assigns relationships between individuals in a pedigree, including "U" = unrelated, "PO" = par-
ent/offspring, "FS" = full siblings, "HS" = half siblings, "Av" = avuncular, "FC" = first cousins,
"GpGce" = grandparent-grandchild, "HAv" = half-avuncular, "HFC" = half-first-cousin, "GGp" =
great-grandparent-great-grandchild, "GAv" = grand-avuncular, "HSFC" = half-sib-first-cousin, "DFC"
= double first cousin, among others. Relatedness is not calculated for inbred families but kinship
coefficients are.

Value

A list with the following components:

inbred. fam A vector of id’s of families with inbreeding (relationships are not assigned).

inbred.KC A dataframe for inbred families with columns "Individ1","Individ2", "kinship"
and "family" containing the id’s of the pair of individuals, kinship coefficient
and family id.

relativeprs A dataframe with columns "Individ1", "Individ2", "relation", "kinship" and "fam-

ily" containing the id’s of the pair of individuals, the relationship between the
individuals if closely related (possible values are "U" = unrelated, "PO" = par-
ent/offspring, "FS" = full siblings, "HS" = half siblings, "Av" = avuncular,
"GpGc" = grandparent-grandchild, and "FC" = first cousins, among others), kin-
ship coefficient and family id.

plinkUtils 127

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreeMaxUnrelated

Examples

family <- c¢(1,1,1,1,2,2,2,2,2,2,2)

individ <- c¢(1,2,3,4,5,6,7,8,9,10,11)

mother <- ¢(0,0,1,1,0,0,5,5,0,0,10)

father <- c(0,90,2,2,0,0,6,9,0,0,7)

sex <= c("F","M" "F" "F" "M, UMT UMY UMY MY UET M)

pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigreePairwiseRelatedness(pedigree)

inbred family

family <- rep(2,7)

individ <- paste("I",c(1,2,3,4,5,6,7),sep="")

mother <- c¢(0,0,0,"11","I11","I3","1I5")

father <- c(0,0,0,"I2","I2","14","14")

SeX <_ C(IIFII , IlMll, IVFII, IIMII’ IIFII s HFII, IIFII)

samp2 <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigreePairwiseRelatedness(samp2)

plinkUtils Utilities to create and check PLINK files

Description

plinkWrite creates ped and map format files (used by PLINK) from a GenotypeData object.
plinkCheck checks whether a set of ped and map files has identical data to a GenotypeData object.

Usage

plinkWrite(genoData, pedFile="testPlink"”, family.col="family",
individual.col="scanID"”, father.col="father"”, mother.col="mother",
phenotype.col=NULL,
rs.col="rsID", mapdist.col=NULL, scan.exclude=NULL,
scan.chromosome.filter=NULL, blockSize=100, verbose=TRUE)

plinkCheck(genoData, pedFile, logFile="plinkCheck.txt"”, family.col="family",
individual.col="scanID"”, father.col="father"”, mother.col="mother",
phenotype.col=NULL,
rs.col="rsID"”, map.alt=NULL, check.parents=TRUE, check.sex=TRUE,
scan.exclude=NULL, scan.chromosome.filter=NULL, verbose=TRUE)

128 plinkUtils

Arguments
genoData A GenotypeData object with scan and SNP annotation.
pedFile prefix for PLINK files (pedFile.ped, pedFile.map)
logFile Name of the output file to log the results of plinkCheck
family.col name of the column in the scan annotation that contains family ID of the sample
individual.col name of the column in the scan annotation that contains individual ID of the
sample
father.col name of the column in the scan annotation that contains father ID of the sample
mother.col name of the column in the scan annotation that contains mother ID of the sample

phenotype.col name of the column in the scan annotation that contains phenotype variable (e.g.
case control statue) of the sample

rs.col name of the column in the SNP annotation that contains rs ID (or some other
ID) for the SNP

mapdist.col name of the column in the SNP annotation that contains genetic distance in
Morgans for the SNP

map.alt data frame with alternate SNP mapping for genoData to PLINK. If not NULL, this

annotation will be used to compare SNP information to the PLINK file, rather
than the default conversion from the SNP annotation embedded in genoData.

Columns should include "snpID", "rsID", "chromosome", "position".
check.parents logical for whether to check the father and mother columns
check. sex logical for whether to check the sex column

scan.exclude vector of scanIDs to exclude from PLINK file

scan.chromosome.filter
a logical matrix that can be used to zero out (set to missing) some chromosomes,
some scans, or some specific scan-chromosome pairs. Entries should be TRUE
if that scan-chromosome pair should have data in the PLINK file, FALSE if not.
The number of rows must be equal to the number of scans in genoData. The
column labels must be in the set ("1":"22", "X", "XY", "Y", "M", "U").

blockSize Number of samples to read from genoData at a time
verbose logical for whether to show progress information.
Details

If "alleleA" and "alleleB" columns are not found in the SNP annotation of genoData, genotypes are
written as "A A", "A B", "B B" (or "0 0" for missing data).

If phenotype.col=NULL, plinkWrite will use "-9" for writing phenotype data and plinkCheck
will omit checking this column.

If mapdist.col=NULL, plinkWrite will use "0" for writing this column in the map file and plinkCheck
will omit checking this column.

plinkCheck first reads the map file and checks for SNP mismatches (chromosome, rsID, and/or
position). Any mismatches are written to logFile. plinkCheck then reads the ped file line by
line, recording all mismatches in logFile. SNPs and sample order is not required to be the same

plinkUtils 129

as in genoData. In the case of genotype mismatches, for each sample the log file output gives the
position of the first mismatched SNP in the PLINK file, as well as the genotypes of the first six
mismatched SNPs (which may not be consecutive).

These utilities convert between chromosome coding in GenotypeData, which by default is 24=XY,
25=Y, and PLINK chromosome coding, which is 24=Y, 25=XY.

Larger blockSize will improve speed but will require more RAM.

Value

plinkCheck returns TRUE if the PLINK files contain identical data to genoData, and FALSE if a
mismatch is encountered.

Author(s)

Stephanie Gogarten, Tushar Bhangale

References

Please see http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped for more infor-
mation on the ped and map files.

See Also
snpgdsBED2GDS

Examples

library(GWASdata)

ncfile <- system.file("extdata”, "illumina_geno.nc", package="GWASdata")

data(illuminaSnpADF, illuminaScanADF)

genoData <- GenotypeData(NcdfGenotypeReader(ncfile),
scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

pedfile <- tempfile()
plinkWrite(genoData, pedfile)

logfile <- tempfile()
plinkCheck(genoData, pedfile, logfile)

exclude samples

plinkWrite(genoData, pedfile, scan.exclude=c(281, 283),
blockSize=10)

plinkCheck(genoData, pedfile, logfile)

readLines(logfile)

#tsamples not found in Ped:

#281

#283

close(genoData)
unlink(c(logfile, paste(pedfile, "*x", sep=".")))

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped

130 pseudoautolntensityPlot

pseudoautoIntensityPlot
Plot B Allele Frequency and Log R Ratio for the X and Y chromo-
somes, overlaying XY SNPs

Description

This function plots X, Y and pseudoautosomal SNPs on BAF/LRR plots.

Usage

pseudoautoIntensityPlot(intenData, scan.ids, main=NULL,
plotY=FALSE, hg.build=c("hg18", "hg19"),

snp.exclude = NULL, cex=0.5, ...)
Arguments
scan.ids A vector containing the sample indices of the plots.
intenData IntensityData object, must contain 'BAlleleFreq’ and *LogRRatio’
main A character vector containing the titles to be used for each plot. If NULL then the
title will be the sample number and the chromosome.
plotY If plotY is TRUE, the Y chromosome will be plotted in addition to X.
hg.build Human genome bulid number
snp.exclude An integer vector giving the IDs of SNPs to exclude from the plot.
cex cex value for points on the plots

Other parameters to be passed directly to plot.

Details

The pseudoautosomal regions are highlighted on the plots (PAR1 and PAR2 in gray, XTR in yellow),
and the X, Y, and XY SNPs are plotted in different colors. The base positions for these regions
depend on genome build (hg.build). Currently hg18 and hg19 are supported.

By default the output is a 2-panel plot with LRR and BAF for the X chromosome. if plotY is TRUE,
the output is a 4-panel plot with the Y chromosome plotted as well.

Author(s)
Caitlin McHugh

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

Mumm, S., Molini, B., Terrell, J., Srivastava, A., and Schlessinger, D. (1997), Evolutionary features
of the 4-Mb Xq21.3 XY homology region revealed by a map at 60-kb resolution. Genome Res. 7:
307-314.

pseudoautosomal 131

See Also

pseudoautosomal, IntensityData, GenotypeData, BAFfromGenotypes

Examples

library(GWASdata)

data(illuminaScanADF)

blfile <- system.file("extdata”, "illumina_bl.gds"”, package="GWASdata")
blgds <- GdsIntensityReader(blfile)

intenData <- IntensityData(blgds, scanAnnot=illuminaScanADF)

scanID <- getScanID(illuminaScanADF, index=1)
pseudoautoIntensityPlot(intenData=intenData, scan.ids=scanID)
close(intenData)

pseudoautosomal Pseudoautosomal region base positions

Description

Pseudoautosomal region (XTR, PAR1, PAR2) base positions for the X and Y chromsosomes from
the GRCh36/hg18, GRCh37/hg19 and GRCh38/hg38 genome builds.

Usage

pseudoautosomal.hg18
pseudoautosomal.hgl19
pseudoautosomal.hg38

Format
A data.frame with the following columns.

chrom chromosome (X or Y)
region region (XTR, PARI, or PAR2)
start.base starting base position of region

end.base ending base position of region

Details

The XTR region on X is defined as DXS1217 to DXS3. The XTR region on Y is defined as SY20
to DXYSI.

Source

hg18 and hg19: UCSC genome browser (http://genome.ucsc.edu)

hg38: Genome Reference Consortium (http://www.ncbi.nlm.nih.gov/projects/genome/assembly/
grc/human/).

http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

132 qqPlot

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

Mumm, S., Molini, B., Terrell, J., Srivastava, A., and Schlessinger, D. (1997), Evolutionary features
of the 4-Mb Xq21.3 XY homology region revealed by a map at 60-kb resolution. Genome Res. 7:
307-314.

Examples

data(pseudoautosomal.hgi8)
data(pseudoautosomal.hg19)
data(pseudoautosomal.hg38)

qgPlot QQ plot for genome wide assocation studies

Description

Generates a Quantile-Quantile plot for -log10 p-values from genome wide association tests.

Usage
ggPlot(pval, truncate = FALSE, ylim = NULL, thinThreshold = NULL, ci=TRUE, ...)
Arguments
pval Vector of p-values
truncate Either a logical value indicating whether the y-axis should be truncted to the
same range as the x-axis, or a numeric value indicating where to truncate the
y-axis. See details.
ylim Limits for the y axis. Ignored if truncate=TRUE or truncate is numeric.
thinThreshold if not NULL, -log1@(pval) threshold for thinning points.
ci logical indicator for whether to add confidence intervals to plots?
Other parameters to be passed directly to plot.
Details

The function generates a Quantile-Quantile plot of p-values on a -log10 scale, with the option of
truncating the y-axis to the range of the x-axis (@, -log10(1/length(pval)). If the y-axis is
truncated, then points off the top of the plot are denoted by triangles at the upper edge. The 95%
confidence interval is shaded in gray.

If truncate is set to a numeric value, then ylimis set to c(@, truncate) only if the value of truncate
is bigger than the maximum -logl1@(pval). (Use the ylim argument if alternatve behavior is
desired.)

If requested with thinThreshold, points with p-values < -log1@(thinThreshold) are thinned be-
fore plotting. All points with -1og1@(pval) >= thinThreshold plus 10,000 points with -1og10(pval)
< thinThreshold (randomly selected in uniformly-spaced bins of -log10(pval)) are displayed.

qualityScoreByScan 133

Author(s)

Cathy Laurie, Matthew P. Conomos, Adrienne Stilp

Examples

pvals <- seq(@, 1, 0.001)
qgPlot(pvals)

ggPlot(pvals, thinThreshold=2)
ggPlot(pvals, truncate=TRUE)
qgPlot(pvals, truncate=10)

qualityScoreByScan Mean and median quality score for scans

Description

This function calculates the mean and median quality score, over all SNPs with a non-missing
genotype call, for each scan.

Usage

qualityScoreByScan(intenData, genoData,
snp.exclude = NULL,
verbose = TRUE)

Arguments
intenData IntensityData object
genoData GenotypeData object
snp.exclude An integer vector containing the id’s of SNPs to be excluded.
verbose Logical value specifying whether to show progress information.
Details

intenData and genoData must have matching snpID and scanID. Y chromosome SNPs are ex-
cluded for females. A "sex" variable must be present in the scan annotation slot of intenData or
genoData.

Value

The function returns a matrix with the following columns:

mean.quality A vector of mean quality scores for each scan

median.quality A vector of median quality scores for each scan.

Author(s)

Cathy Laurie

134 qualityScoreBySnp

See Also

IntensityData, GenotypeData, qualityScoreBySnp

Examples

library(GWASdata)

qualfile <- system.file("extdata”, "illumina_gxy.gds", package="GWASdata")
qual <- GdsIntensityReader(qualfile)

need scan annotation with sex

data(illuminaScanADF)

qualData <- IntensityData(qual, scanAnnot=illuminaScanADF)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno, scanAnnot=illuminaScanADF)

quality <- qualityScoreByScan(qualData, genoData)
close(qualData)
close(genoData)

qualityScoreBySnp Mean and median quality score for SNPs

Description

This function calculates the mean and median quality score, over all scans with a non-missing
genotype call, for each SNP.

Usage

qualityScoreBySnp(intenData, genoData, scan.exclude = NULL,
block.size = 5000, verbose = TRUE)

Arguments
intenData IntensityData object
genoData GenotypeData object

scan.exclude An integer vector containing the id’s of scans to be excluded.

block.size Number of SNPs to be read from intenData and genoData at once.
verbose Logical value specifying whether to show progress information.
Details

intenData and genoData must have matching snpID and scanID.

readWriteFirst 135

Value
The function returns a matrix with the following columns:

mean.quality A vector of mean quality scores for each snp.

median.quality A vector of median quality scores for each snp.

Author(s)

Cathy Laurie

See Also

IntensityData, GenotypeData, qualityScoreByScan

Examples

qualfile <- system.file("”extdata”, "illumina_gxy.gds", package="GWASdata")
qual <- GdsIntensityReader(qualfile)
qualData <- IntensityData(qual)

genofile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
geno <- GdsGenotypeReader(genofile)
genoData <- GenotypeData(geno)

quality <- qualityScoreBySnp(qualData, genoData)
close(qualData)
close(genoData)

readWriteFirst Read and write the first n lines of a file

Description

Read first n lines of filein and write them to fileout, where filein and fileout are file names.

Usage

readWriteFirst(filein, fileout, n)

Arguments

filein input file

fileout output file

n number of lines to write
Author(s)

Cathy Laurie

136 relationsMean Var

Examples

path <- system.file("extdata"”, "affy_raw_data”, package="GWASdata")
file <- paste(path, list.files(path)[1]1, sep="/")

outf <- tempfile()

readWriteFirst(file, outf, 20)

file.remove(outf)

relationsMeanVar Mean and Variance information for full-sibs, half-sibs, first-cousins

Description
Computes theoretical mean and covariance matrix for kO vs. k1 ibd coefficients for full-sib rela-
tionship along with inverse and eigenvalues/vectors of the covariance matrix.

Computes theoretical means and variances for half-sib relationship and for first-cousin relationship.

Usage

relationsMeanVar

Format
A list with the following entries:

FullSibs list with following entries:
¢ mean: mean of (k0,k1) for full-sibs
e cov: covariance matrix for full-sibs
¢ invCov: inverse of the covariance matrix
e eigvals: eigenvalues of the inverse covariance matrix
* eigvectors: eigenvectors of the inverse covariance matrix
HalfSibs list with following entries:
¢ mean: mean of (k0,k1) for half-sibs
 var: variance for half-sibs
FirstCousins list with following entries:
¢ mean: mean of (k0,k1) for first-cousins
 var: variance for first-cousin

Source

computed by Cecelia Laurie using the referenced papers

References
Hill, W.G. and B.S. Weir (2011) Variation in actual relationship as a consequence of Mendelian
sampling and linkage,Genet. Res., Camb., 93, 47-64.

Kong, X., et al (2004) A combined physical-linkage map of the human genome, American Journal
of Human Genetics, 75, 1143—-1148.

saveas 137

Examples

data(relationsMeanVar)

FS<-relationsMeanVar$FullSibs

FScov<-FS$cov #gives covariance matrix for full-sibs
HS<-relationsMeanVar$HalfSibs

HSvar<-HS$var #gives variance for half-sibs

saveas Save an R object with a new name

Description

Saves an R object as name in an Rdata file called path/name.RData.

Usage

saveas(obj, name, path=".")
Arguments

obj R object to save

name character string with the new name for the R object

path path for the Rdata file (saved file will be path/name.RData)
Details

The suffix ".RData" will be appended to the new object name to create the file name, and the file
will be written to the path directory.

Author(s)

Stephanie Gogarten

See Also

getobj

Examples

x <= 1:10

path <- tempdir()

saveas(x, "myx", path)

newfile <- paste(path, "/myx"”, ".RData"”, sep="")
load(newfile) # myx now loaded

unlink(newfile)

138 ScanAnnotationDataFrame

ScanAnnotationDataFrame
Class ScanAnotationDataFrame

Description

The ScanAnnotationDataFrame class stores annotation data associated with subjects in a genotyp-
ing study, where there may be multiple scans per subject, as well as metadata describing each
column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

Constructor

e ScanAnnotationDataFrame(data, metadata):

data must be a data.frame containing the scan annotation. It must contain at least the follow-
ing column:

— "scanID": vector containing unique scan ids.
If a column representing sex is present, it must have the following format:
— "sex": character vector with values "M’ or "F’.

metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription"”, with row.names(metadata) == names(data).

The ScanAnnotationDataFrame constructor creates and returns a ScanAnnotationDataFrame
instance.

Accessors

In the code snippets below, object is a ScanAnnotationDataFrame object.

* getScanID(object, index): A unique vector of scan IDs. The optional index is a logical
or integer vector specifying elements to extract.

» getSex(object, index): A character vector of sex, with values "M’ or "F’. The optional
index is a logical or integer vector specifying elements to extract.

* hasSex(object): Returns TRUE if the column ’sex’ is present in object.

* getVariable(object, varname, index): A vector of the column varname. The optional
index is a logical or integer vector specifying elements to extract. If varname is itself a
vector, returns a data.frame. Returns NULL if varname is not found in object.

e hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if
not.

e getVariableNames(object): Returns a character vector with the names of all columns in
object.

e getAnnotation(object): Returns all annotation variables as a data frame.

ScanAnnotationDataFrame 139

* getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

e varLabels(object): Returns a character vector with the names of all columns in object.

e pData(object): Returns all annotation variables as a data frame, or sets the annotation vari-
ables with pData(object) <- df.

* varMetadata(object): Returns metadata describing the annotation variables as a data frame,
or sets the metadata with varMetadata(object) <- df.

* The operators $ and [work just as they do in standard data frames, for both retrieval and
assignment.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)

scanID <- getScanID(scanAnnot)

sex <- getSex(scanAnnot)

if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID", index=(sex == "M"))

list columns
varLabels(scanAnnot)

add metadata

meta <- varMetadata(scanAnnot)

meta["scanID”, "labelDescription”] <- "unique scan ID"
varMetadata(scanAnnot) <- meta

display data
head(pData(scanAnnot))

standard operators

scanID <- scanAnnot$scanlD

sex <- scanAnnot[["sex"]]

subset <- scanAnnot[1:10, 1:5]
scanAnnot$newVar <- rep(1, nrow(scanAnnot))

replace data
df <- pData(scanAnnot)
pData(scanAnnot) <- df

140 ScanAnnotationSQLite

ScanAnnotationSQLite Class ScanAnotationSQLite

Description

The ScanAnnotationSQLite class stores annotation data associated with scans, as well as metadata
describing each column, in an SQLite database.

Constructor

e ScanAnnotationSQLite(dbpath):

dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following column:

— "scanID": vector containing unique scan ids.

If a column representing sex is present, it must have the following format:
— "sex": character vector with values "M’ or "F’.

"Metadata" must contain at least the following columns:

— "varname": name of variable in annotation
— "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."

The ScanAnnotationSQLite constructor creates and returns a ScanAnnotationSQLite in-
stance.

Accessors

In the code snippets below, object is a ScanAnnotationSQLite object.

* open(object): Opens a connection to the database.
e close(object): Closes the database connection.
* nscan(object): The number of scans in the database.

* getScanID(object, index, condition): A unique vector of scan IDs. The optional index
is a logical or integer vector specifying elements to extract. The optional condition is a char-
acter string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE sex="M"").

e getSex(object, index, condition): A character vector of sex, with values "M’ or ’F’. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data.

* hasSex(object): Returns TRUE if the column ’sex’ is present in object.

e getVariable(object, varname, index, condition): A vector of the column varname.
The optional index is a logical or integer vector specifying elements to extract. The op-
tional condition is a character string with an SQL clause used to select data (e.g., "LIMIT
10", "WHERE sex="M’""). Returns NULL if varname is not found in object.

ScanAnnotationSQLite 141

¢ hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if
not.

e getVariableNames(object): Returns a character vector with the names of all columns in
object.

e getAnnotation(object): Returns all annotation variables as a data frame.
* getMetadata(object): Returns metadata describing the annotation variables as a data frame.
* getQuery(object, statement): Returns result of the SQL query statement.

e writeAnnotation(object, value, append=FALSE,overwrite=TRUE): Writes value to the
scan annotation table. value must be a data.frame containing a column "scanID".

e writeMetadata(object, value, append=FALSE,overwrite=TRUE): Writes value to the meta-
data table. value should be a data.frame containing columns "varname" and "description".

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationSQLite, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
scanAnnot <- ScanAnnotationSQLite(dbpath)

data(illumina_scan_annot)
writeAnnotation(scanAnnot, illumina_scan_annot)

list columns
vars <- getVariableNames(scanAnnot)

add metadata

metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),
row.names=vars, stringsAsFactors=FALSE)

metadf["”scanID”, "description”] <- "unique id”

writeMetadata(scanAnnot, metadf)

scanID <- getScanID(scanAnnot)

sex <- getSex(scanAnnot)

if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID"”, condition="WHERE sex='M'")

display data
head(getAnnotation(scanAnnot))
getMetadata(scanAnnot)

close(scanAnnot)
file.remove(dbpath)

142 setMissingGenotypes

setMissingGenotypes Write a new netCDF or GDS file, setting certain SNPs to missing

Description

setMissingGenotypes copies an existing GDS or netCDF genotype file to a new one, setting SNPs
in specified regions to missing.

Usage

setMissingGenotypes(parent.file, new.file, regions, file.type=c("gds"”, "ncdf"),
sample.include=NULL, compress="LZMA_RA",
copy.attributes=TRUE, verbose=TRUE)

Arguments

parent.file Name of the parent file
new.file Name of the new file

regions Data.frame of chromosome regions with columns "scanID”, "chromosome”,
"left.base"”, "right.base"”, "whole.chrom”.

file.type The type of parent.file and new.file ("gds" or "ncdf")
sample.include Vector of samplelDs to include in new.file

compress The compression level for variables in a GDS file (see add. gdsn for options).

copy.attributes
Logical value specifying whether to copy chromosome attributes to the new file.

verbose Logical value specifying whether to show progress information.

Details

setMissingGenotypes removes chromosome regions by setting SNPs that fall within the anomaly
regions to NA (i.e., the missing value in the netCDF/GDS file). Optionally, entire samples may be
excluded from the netCDF/GDS file as well: if the sample.include argument is given, only the
scanIDs in this vector will be written to the new file, so the sample dimension will be length(sample.include).

For regions with whole. chrom=TRUE, the entire chromosome will be set to NA for that sample. For
other regions, only the region between left.base and right.base will be set to NA.

Author(s)

Stephanie Gogarten

See Also

gdsSubset, anomSegStats for chromosome anomaly regions

simulateGenotypeMatrix 143

Examples

gdsfile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")
gds <- GdsGenotypeReader (gdsfile)
sample.sel <- getScanID(gds, index=1:10)

close(gds)

regions <- data.frame("scanID"=sample.sel[1:3], "chromosome"=c(21,22,23),
"left.base”=c(14000000, 30000000, NA), "right.base"=c(28000000, 450000000, NA),
whole.chrom=c(FALSE, FALSE, TRUE))

newgds <- tempfile()
setMissingGenotypes(gdsfile, newgds, regions, file.type="gds", sample.include=sample.sel)
file.remove(newgds)

simulateGenotypeMatrix

Simulate Genotype or Intensity Matrix & Load into GDS/NetCDF File

Description

These functions create a simulated genotype or intensity file for test and examples.

Usage

simulateGenotypeMatrix(n.snps=10, n.chromosomes=10,

Arguments

n.snps

n.chromosomes

n.samples

filename

file.type

silent

n.samples=1000, filename,
file.type=c("gds", "ncdf"), silent=TRUE)

An integer corresponding to the number of SNPs per chromosome, the default
value is 10. For this function, the number of SNPs is assumed to be the same for
every chromosome.

An integer value describing the total number of chromosomes with default value
10.

An integer representing the number of samples for our data. The default value
is 1000 samples.

A string that will be used as the name of the file. This is to be used later when
opening and retrieving data generated from this function.

The type of file to create ("gds" or "ncdf")

Logical value. If FALSE, the function returns a table of genotype counts gener-
ated. The default is TRUE; no data will be returned in this case.

144 simulateGenotypeMatrix

Details

The resulting netCDF file will have the following characteristics:
Dimensions:

’snp’: n.snps*n.chromosomes length

’sample’: n.samples length

Variables:

’samplelD’: sample dimension, values 1-n.samples

’position’: snp dimension, values [1,2,...,n.chromosomes] n.snps times

’chromosome’: snp dimension, values [1,1,...]n.snps times, [2,2,...]n.snps times, ..., [n.chromosomes,n.chromosomes,...]n.sng
times

’genotype’: 2-dimensional snp x sample, values O, 1, 2 chosen from allele frequencies that were
generated from a uniform distribution on (0,1). The missing rate is 0.05 (constant across all SNPs)
and is denoted by -1.

OR

’quality’: 2-dimensional snp x sample, values between O and 1 chosen randomly from a uniform
distribution. There is one quality value per snp, so this value is constant across all samples.

’X’: 2-dimensional snp x sample, value of X intensity taken from a normal distribution. The mean
of the distribution for each SNP is based upon the sample genotype. Mean is 0,2 if sample is
homozygous, 1 if heterozygous.

’Y’: 2-dimensional snp x sample, value of Y intensity also chosen from a normal distribution, where
the mean is chosen according to the mean of X so that sum of means = 2.
Value

simulateGenotypeMatrix returns a table of genotype calls if the silent variable is set to FALSE,
where 2 indicates an AA genotype, 1 is AB, 0 is BB and -1 corresponds to a missing genotype call.

simulateIntensityMatrix returns a list if the silent variable is set to FALSE, which includes:

het Heterozygosity table

nmiss Number of missing values

A file is created and written to disk.

Author(s)

Caitlin McHugh

See Also

GdsGenotypeReader, GdsIntensityReader, NcdfGenotypeReader, NcdfIntensityReader

SnpAnnotationDataFrame 145

Examples

filenm <- tempfile()
simulateGenotypeMatrix(filename=filenm)

file <- GdsGenotypeReader (filenm)
file #notice the dimensions and variables listed

genot <- getGenotype(file)
table(genot) #can see the number of missing calls

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)
simulateIntensityMatrix(filename=filenm, silent=FALSE)

file <- GdsIntensityReader(filenm)
file #notice the dimensions and variables listed

xint <- getX(file)
yint <- getY(file)

print(”"Number missing is: "); sum(is.na(xint))

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)

unlink(filenm)

SnpAnnotationDataFrame
Class SnpAnotationDataFrame

Description
The SnpAnnotationDataFrame class stores annotation data associated with SNPs, as well as meta-
data describing each column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

Constructor

e SnpAnnotationDataFrame(data, metadata):

data must be a data.frame containing the SNP annotation. It must contain at least the follow-
ing columns:

146 SnpAnnotationDataFrame

— "snpID": integer vector containing unique SNP ids.

— "chromosome": integer vector containing chromosome codes.

— "position": integer vector containing position (in base pairs) on the chromosome.
Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The

defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription”, with row.names (metadata) == names(data).

The SnpAnnotationDataFrame constructor creates and returns a SnpAnnotationDataFrame
instance.

Accessors

In the code snippets below, object is a SnpAnnotationDataFrame object.

* getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

* getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional
index is a logical or integer vector specifying elements to extract. If char=FALSE (default), re-
turns an integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

* getPosition(object, index): An integer vector of base pair positions. The optional index
is a logical or integer vector specifying elements to extract.

* getAlleleA(object, index): A character vector of A alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

e getAlleleB(object, index): A character vector of B alleles. The optional index is a logi-
cal or integer vector specifying elements to extract.

» getVariable(object, varname, index): A vector of the column varname. The optional
index is a logical or integer vector specifying elements to extract. If varname is itself a
vector, returns a data.frame. Returns NULL if varname is not found in object.

* hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if
not.

e getVariableNames(object): Returns a character vector with the names of all columns in
object.

e getAnnotation(object): Returns all annotation variables as a data frame.

* getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

e varLabels(object): Returns a character vector with the names of all columns in object.

e pData(object): Returns all annotation variables as a data frame, or sets the annotation vari-
ables with pData(object) <- df.

* varMetadata(object): Returns metadata describing the annotation variables as a data frame,
or sets the metadata with varMetadata(object) <- df.

SnpAnnotationDataFrame 147

* The operators [, $, and [[work just as they do in standard data frames, for both retrieval and
assignment.

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode(object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

list columns
varLabels(snpAnnot)

add metadata

meta <- varMetadata(snpAnnot)

metal["snpID", "labelDescription”] <- "unique integer ID"
varMetadata(snpAnnot) <- meta

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome (snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, index=(chrom == 22))

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(pData(snpAnnot))

standard operators

snpID <- snpAnnot$snpID

chrom <- snpAnnot[["chromosome"”]]

subset <- snpAnnot[1:10, 1:5]
snpAnnot$newVar <- rep(1, nrow(snpAnnot))

replace data

148 SnpAnnotationSQLite

df <- pData(snpAnnot)
pData(snpAnnot) <- df

PLINK chromosome coding

snpID <- 1:10

chrom <- c(rep(1L,5), 23:27)

pos <- 101:110

df <- data.frame(snpID=snpID, chromosome=chrom, position=pos)

snpAnnot <- SnpAnnotationDataFrame(df, YchromCode=24L, XYchromCode=25L)
getChromosome (snpAnnot, char=TRUE)

SnpAnnotationSQLite Class SnpAnotationSQLite

Description

The SnpAnnotationSQLite class stores annotation data associated with SNPs, as well as metadata
describing each column, in an SQLite database.

Constructor

e SnpAnnotationSQLite(dbpath):
dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following columns:

— "snpID": integer vector containing unique SNP ids.
— "chromosome": integer vector containing chromosome codes.

— "position": integer vector containing position (in base pairs) on the chromosome.

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.

"Metadata" must contain at least the following columns:

— "varname": name of variable in annotation

— "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."

The SnpAnnotationSQLite constructor creates and returns a SnpAnnotationSQLite instance.

Accessors
In the code snippets below, object is a SnpAnnotationSQLite object.
* open(object): Opens a connection to the database.

e close(object): Closes the database connection.

¢ nsnp(object): The number of SNPs in the database.

SnpAnnotationSQLite 149

* getSnpID(object, index, condition): A unique integer vector of snp IDs. The optional
index is a logical or integer vector specifying elements to extract. The optional condition
is a character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE
chromosome=1").

e getChromosome(object, index, condition, char=FALSE): A vector of chromosomes. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1"). If char=FALSE (default), returns an integer vector. If char=TRUE,
returns a character vector with elements in (1:22,X,XY,Y,M,U). "U" stands for "Unknown"
and is the value given to any chromosome code not falling in the other categories.

» getPosition(object, index, condition): An integer vector of base pair positions. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1").

* getAlleleA(object, index): A character vector of A alleles. The optional condition is a
character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE chromo-
some=1").

* getAlleleB(object, index): A character vector of B alleles. The optional condition is a
character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE chromo-
some=1").

e getVariable(object, varname, index, condition): A vector of the column varname.
The optional index is a logical or integer vector specifying elements to extract. The op-
tional condition is a character string with an SQL clause used to select data (e.g., "LIMIT
10", "WHERE chromosome=1"). Returns NULL if varname is not found in object.

* hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if
not.

e getVariableNames(object): Returns a character vector with the names of all columns in
object.

e getAnnotation(object): Returns all annotation variables as a data frame.
* getMetadata(object): Returns metadata describing the annotation variables as a data frame.
» getQuery(object, statement): Returns result of the SQL query statement.

e writeAnnotation(object, value, append=FALSE,overwrite=TRUE): Writes value to the
SNP annotation table. value must be a data.frame containing columns "snpID", "chromo-
some", and "position".

e writeMetadata(object, value, append=FALSE,overwrite=TRUE): Writes value to the meta-
data table. value should be a data.frame containing columns "varname" and "description".

* autosomeCode(object): Returns the integer codes for the autosomes.

* XchromCode (object): Returns the integer code for the X chromosome.

* XYchromCode (object): Returns the integer code for the pseudoautosomal region.
* YchromCode (object): Returns the integer code for the Y chromosome.

* MchromCode (object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

150 snpCorrelationPlot

See Also

ScanAnnotationSQLite, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
snpAnnot <- SnpAnnotationSQLite(dbpath)

data(illumina_snp_annot)
writeAnnotation(snpAnnot, illumina_snp_annot)

list columns
vars <- getVariableNames(snpAnnot)

add metadata

metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),
row.names=vars, stringsAsFactors=FALSE)

metadf["snpID", "description”] <- "integer id"

writeMetadata(snpAnnot, metadf)

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome (snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, condition="WHERE chromosome = 22")

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(getAnnotation(snpAnnot))
getMetadata(snpAnnot)

close(snpAnnot)
file.remove(dbpath)

snpCorrelationPlot SNP correlation plot

Description

Plots SNP correlation versus chromosome.

Usage

snpCorrelationPlot(correlations, chromosome,
ylim=c(0,1), ylab = "abs(correlation)", ...)

vefWrite 151

Arguments

correlations A vector of correlations.

chromosome A vector containing the chromosome for each SNP.
ylim The limits of the y axis.
ylab The label for the y axis.

Other parameters to be passed directly to plot.

Details

Plots SNP correlations (from, e.g., PCA), versus chromosome.

correlations must have the same length as chromosome and is assumed to be in order of position
on each chromosome. Values within each chromosome are evenly spaced along the X axis.
Author(s)

Cathy Laurie

See Also

manhattanPlot

Examples

correlations <- sample(0.001%(0:1000), 1000, replace=TRUE)
chromosome <- c(rep(1,400), rep(2,350), rep("X",200), rep("Y",50))
snpCorrelationPlot(correlations, chromosome)

vcfWrite Utility to write VCF file

Description

genoDataAsVCF creates a VCF-class object.
vcfWrite writes a VCF file from a GenotypeData object.

vcfCheck compares the genotypes in a VCF file to the corresponding genotypes in genoData.

Usage

genoDataAsVCF (genoData, sample.col="scanID",
id.col="snpID", qual.col=NULL, filter.cols=NULL,
info.cols=NULL, scan.exclude=NULL, snp.exclude=NULL,
scan.order=NULL, ref.allele=NULL)

vcfWrite(genoData, vcf.file="out.vcf"”, sample.col="scanID",
id.col="snpID", qual.col=NULL, filter.cols=NULL,

152

vefWrite

info.cols=NULL, scan.exclude=NULL, snp.exclude=NULL,
scan.order=NULL, ref.allele=NULL, block.size=1000, verbose=TRUE)

vcfCheck(genoData, vcf.file,
sample.col="scanID", id.col="snpID",
scan.exclude=NULL, snp.exclude=NULL,
block.size=1000, verbose=TRUE)

Arguments

genoData
vcf.file
sample.col

id.col

qual.col

filter.cols

info.cols

scan.exclude
snp.exclude

scan.order

ref.allele

block.size

verbose

Details

A GenotypeData object with scan and SNP annotation.
Filename for the output VCF file.
name of the column in the scan annotation to use as sample IDs in the VCF file

name of the column in the SNP annotation to use as "ID" column in the VCF
file

name of the column in the SNP annotation to use as "QUAL" column in the
VCEF file

vector of column names in the SNP annotation to use as "FILTER" column in
the VCF file. These columns should be logical vectors, with TRUE for SNPs to
be filtered. Any SNPs with a value of FALSE for all filter columns will be set to
"PASS".

vector of column names in the SNP annotation to concatenate for the "INFO"
column in the VCEF file.

vector of scanIDs to exclude from creation or checking of VCF file
vector of snpIDs to exclude from creation or checking of VCF file

vector of scanIDs to include in VCF file, in the order in which they should be
written

vector of "A" or "B" values indicating where allele A or allele B should be the
reference allele for each SNP. Default is to use allele A as the reference allele.

Number of SNPs to read from genoData at a time

logical for whether to show progress information.

REF will be alleleA and ALT will be alleleB.

vcfCheck compares the genotypes (diploid only) in a VCF file to the corresponding genotypes in
genoData. It stops with an error when it detects a discordant genotype. It assumes that the "ID"
column of the VCF file has unique values that can be matched with a column in the SNP annotation.
The VCEF file may contain additional samples or SNPs not present in the genoData; these records
will be automaticlaly excluded from the check. Users may exclude additional SNPs and samples
(i.e. those overlapping with genoData) using the scan.exclude and snp.exclude arguments.

Author(s)

Stephanie Gogarten, Michael Lawrence, Sarah Nelson

vefWrite 153

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

See Also
snpgdsVCF2GDS

Examples

library(GWASdata)

library(VariantAnnotation)

gdsfile <- system.file("extdata”, "illumina_geno.gds", package="GWASdata")

data(illuminaSnpADF, illuminaScanADF)

genoData <- GenotypeData(GdsGenotypeReader(gdsfile),
scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

vcf <- genoDataAsVCF(genoData, id.col="rsID")

vef

vcffile <- tempfile()

vcfWrite(genoData, vcffile, id.col="rsID", info.cols="IntensityOnly")
vcf <- readVcf(vcffile, "hgl18")

vef

vcfCheck(genoData, vcffile, id.col="rsID")

close(genoData)

unlink(vcffile)

Index

* 1O
readWriteFirst, 135

* Mendelian
mendelErr, 104
mendellList, 107

* classes
GdsGenotypeReader, 63
GdsIntensityReader, 66
GdsReader, 68
GenotypeData-class, 74
Genotypelterator-class, 78
IntensityData-class, 95
MatrixGenotypeReader, 101
NcdfGenotypeReader, 111
NcdfIntensityReader, 113
NcdfReader, 116
ScanAnnotationDataFrame, 138
ScanAnnotationSQLite, 140
SnpAnnotationDataFrame, 145
SnpAnnotationSQLite, 148

+ datagen
BAFfromClusterMeans, 33
BAFfromGenotypes, 35
simulateGenotypeMatrix, 143

x datasets
centromeres, 40
HLA, 87
pcaSnpFilters, 118
pseudoautosomal, 131
relationsMeanVar, 136

x distributiion
duplicateDiscordanceProbability,

57

x file
readWriteFirst, 135

+ hplot
anomSegStats, 20
chromIntensityPlot, 41
genoClusterPlot, 72

154

ibdPlot, 88
intensityOutliersPlot, 98
manhattanPlot, 100
pseudoautoIntensityPlot, 130
qgPlot, 132
snpCorrelationPlot, 150

* htest

batchTest, 37

* logic

allequal, 6

* manip

alleleFrequency, 5
anomDetectBAF, 7
anomDetectLOH, 12
anomIdentifylLowQuality, 17
anomSegStats, 20
apartSnpSelection, 25
asSnpMatrix, 26
BAFfromClusterMeans, 33
BAFfromGenotypes, 35
convertNcdfGds, 43
createDataFile, 44
duplicateDiscordance, 50
duplicateDiscordanceAcrossDatasets
52
exactHWE, 58
findBAFvariance, 60
gdsSubset, 70
genotypeToCharacter, 80
hetByScanChrom, 85
hetBySnpSex, 86
ibdPlot, 88
imputedDosageFile, 91
pasteSorted, 117
pedigreeCheck, 119
pedigreeDeleteDuplicates, 122
pedigreeMaxUnrelated, 123
pedigreePairwiseRelatedness, 126
plinkUtils, 127

INDEX

setMissingGenotypes, 142
vcfWrite, 151

+ methods
GdsGenotypeReader, 63
GdsIntensityReader, 66
GdsReader, 68
GenotypeData-class, 74
Genotypelterator-class, 78
getVariable, 82
IntensityData-class, 95
MatrixGenotypeReader, 101
NcdfGenotypeReader, 111
NcdfIntensityReader, 113
NcdfReader, 116
ScanAnnotationDataFrame, 138
ScanAnnotationSQLite, 140
SnpAnnotationDataFrame, 145
SnpAnnotationSQLite, 148

+ models
assocRegression, 30

+ package
GWASTools-package, 4

* regression
assocRegression, 30

* survival
assocCoxPH, 27

* univar
meanIntensityByScanChrom, 103
missingGenotypeByScanChrom, 109
missingGenotypeBySnpSex, 110
qualityScoreByScan, 133
qualityScoreBySnp, 134

+ utilities
getobj, 81
saveas, 137

add.gdsn, 34, 36, 43,46, 71, 92, 142
all, 7

all.equal, 7
alleleFrequency, 5, 51

allequal, 6
AnnotatedDataFrame, 5, 138, 139, 145—147
anomDetectBAF, 7, 13, 17-20, 23, 24
anomDetectLOH, 71, 12, 16-20, 24
anomFilterBAF (anomDetectBAF), 7
anomIdentifylLowQuality, 17
anomSegmentBAF (anomDetectBAF), 7
anomSegStats, 20, 142
anomStatsPlot (anomSegStats), 20

155

apartSnpSelection, 25
asSnpMatrix, 26
assocCoxPH, 27, 84
assocRegression, 30, 84, 93
assocTestCPH (GWASTools-defunct), 84
assocTestFisherExact
(GWASTools-defunct), 84
assocTestRegression
(GWASTools-defunct), 84
autosomeCode (getVariable), 82
autosomeCode, GdsGenotypeReader-method
(GdsGenotypeReader), 63
autosomeCode,GdsIntensityReader-method
(GdsIntensityReader), 66
autosomeCode, GenotypeData-method
(GenotypeData-class), 74
autosomeCode, IntensityData-method
(IntensityData-class), 95
autosomeCode,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
autosomeCode,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
autosomeCode,NcdfIntensityReader-method
(NcdfIntensityReader), 113
autosomeCode, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
autosomeCode, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

BAFfromClusterMeans, 33, 34, 36, 62
BAFfromGenotypes, 35, 42, 62, 131
batchChisqTest (batchTest), 37
batchFisherTest, 84
batchFisherTest (batchTest), 37
batchTest, 37

centromeres, 8, 9, 13, 20, 40
checkGenotypeFile, 84
checkGenotypeFile (createDataFile), 44
checkImputedDosageFile, 84
checkImputedDosageFile
(imputedDosageFile), 91
checkIntensityFile, 84
checkIntensityFile (createDataFile), 44
checkNcdfGds (convertNcdfGds), 43
chisq. test, 39
chromIntensityPlot, 36, 41
close,GdsReader-method (GdsReader), 68

156

close,GenotypeData-method
(GenotypeData-class), 74

close,IntensityData-method
(IntensityData-class), 95

close,NcdfReader-method (NcdfReader),
116

close, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140

close, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

cluster, 28

convertGdsNcdf (convertNcdfGds), 43

convertNcdfGds, 43

convertVcfGds (GWASTools-defunct), 84

coxph, 29

createAffylIntensityFile, 84

createAffylIntensityFile
(createDataFile), 44

createDataFile, 44, 71, 84, 93

currentFilter (Genotypelterator-class),
78

currentFilter,Genotypelterator-method
(Genotypelterator-class), 78

DNAcopy, 8, 11, 13, 14, 16, 18
dupDosageCorAcrossDatasets

(duplicateDiscordanceAcrossDatasets),

52
duplicateDiscordance, 50, 56, 58
duplicateDiscordanceAcrossDatasets, 51,

52,58
duplicateDiscordanceProbability, 51, 56,

57

exactHWE, 58, 84

findBAFvariance, 11, 16, 19, 60
fisher.test, 39

gdsCheckImputedDosage
(GWASTools-defunct), 84
gdsfmt, 44, 48, 70, 71
GdsGenotypeReader, 54, 63, 68, 74-76, 93,
144
GdsGenotypeReader-class
(GdsGenotypeReader), 63
gdsImputedDosage (GWASTools-defunct), 84
GdsIntensityReader, 66, 95, 97, 144
GdsIntensityReader-class
(GdsIntensityReader), 66

INDEX

GdsReader, 63-68, 68
GdsReader-class (GdsReader), 68
gdsSetMissingGenotypes
(GWASTools-defunct), 84
gdsSubset, 70, 84, 142
gdsSubsetCheck, 71, 84
gdsSubsetCheck (gdsSubset), 70
genoClusterPlot, 72
genoClusterPlotByBatch
(genoClusterPlot), 72
genoDataAsVCF (vcfWrite), 151
GenotypeBlockIterator
(Genotypelterator-class), 78
GenotypeBlockIterator-class
(Genotypelterator-class), 78
GenotypeData, 5, 6, 8, 13, 20, 26-29, 31, 33,
35-37, 39,41, 42, 50-53, 56, 58, 61,
62, 65,68, 72, 73, 78-80, 85, 86, 92,
93,97,102, 105, 109112, 115,
127-129, 131, 133-135, 139, 141,
147, 150-152
GenotypeData (GenotypeData-class), 74
GenotypeData-class, 74
Genotypelterator
(Genotypelterator-class), 78
Genotypelterator-class, 78
genotypeToCharacter, 80
getAlleleA (getVariable), 82
getAlleleA, GdsGenotypeReader-method
(GdsGenotypeReader), 63
getAlleleA,GenotypeData-method
(GenotypeData-class), 74
getAlleleA,Genotypelterator-method
(Genotypelterator-class), 78
getAlleleA, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
getAlleleA, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
getAlleleB (getVariable), 82
getAlleleB,GdsGenotypeReader-method
(GdsGenotypeReader), 63
getAlleleB,GenotypeData-method
(GenotypeData-class), 74
getAlleleB,Genotypelterator-method
(Genotypelterator-class), 78
getAlleleB, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
getAlleleB, SnpAnnotationSQLite-method

INDEX 157

(SnpAnnotationSQLite), 148 getDimensionNames (NcdfReader), 116
getAnnotation (getVariable), 82 getDimensionNames,NcdfReader-method
getAnnotation, ScanAnnotationDataFrame-method (NcdfReader), 116

(ScanAnnotationDataFrame), 138 getGenotype (getVariable), 82
getAnnotation, ScanAnnotationSQLite-method getGenotype, GdsGenotypeReader-method

(ScanAnnotationSQLite), 140 (GdsGenotypeReader), 63
getAnnotation, SnpAnnotationDataFrame-method getGenotype,GenotypeData-method

(SnpAnnotationDataFrame), 145 (GenotypeData-class), 74
getAnnotation, SnpAnnotationSQLite-method getGenotype,MatrixGenotypeReader-method

(SnpAnnotationSQLite), 148 (MatrixGenotypeReader), 101
getAttribute (getVariable), 82 getGenotype,NcdfGenotypeReader-method
getAttribute, GdsReader-method (NcdfGenotypeReader), 111

(GdsReader), 68 getGenotypeSelection (getVariable), 82
getAttribute,NcdfReader-method getGenotypeSelection,GdsGenotypeReader-method

(NcdfReader), 116 (GdsGenotypeReader), 63
getBAlleleFreq (getVariable), 82 getGenotypeSelection,GenotypeData-method
getBAlleleFreq,GdsIntensityReader-method (GenotypeData-class), 74

(GdsIntensityReader), 66 getGenotypeSelection,Genotypelterator-method
getBAlleleFreq, IntensityData-method (Genotypelterator-class), 78

(IntensityData-class), 95 getGenotypeSelection,MatrixGenotypeReader-method
getBAlleleFreq,NcdfIntensityReader-method (MatrixGenotypeReader), 101

(NcdfIntensityReader), 113 getLogRRatio (getVariable), 82
getChromosome (getVariable), 82 getLogRRatio,GdsIntensityReader-method
getChromosome, GdsGenotypeReader-method (GdsIntensityReader), 66

(GdsGenotypeReader), 63 getLogRRatio, IntensityData-method
getChromosome,GdsIntensityReader-method (IntensityData-class), 95

(GdsIntensityReader), 66 getLogRRatio,NcdfIntensityReader-method
getChromosome, GenotypeData-method (NcdfIntensityReader), 113

(GenotypeData-class), 74 getMetadata (getVariable), 82
getChromosome,Genotypelterator-method getMetadata, ScanAnnotationDataFrame-method

(Genotypelterator-class), 78 (ScanAnnotationDataFrame), 138
getChromosome, IntensityData-method getMetadata, ScanAnnotationSQLite-method

(IntensityData-class), 95 (ScanAnnotationSQLite), 140
getChromosome,MatrixGenotypeReader-method getMetadata, SnpAnnotationDataFrame-method

(MatrixGenotypeReader), 101 (SnpAnnotationDataFrame), 145
getChromosome,NcdfGenotypeReader-method getMetadata, SnpAnnotationSQLite-method

(NcdfGenotypeReader), 111 (SnpAnnotationSQLite), 148
getChromosome,NcdfIntensityReader-method getNodeDescription (getVariable), 82

(NcdfIntensityReader), 113 getNodeDescription,GdsReader-method
getChromosome, SnpAnnotationDataFrame-method (GdsReader), 68

(SnpAnnotationDataFrame), 145 getobj, 81, 137
getChromosome, SnpAnnotationSQLite-method getPosition (getVariable), 82

(SnpAnnotationSQLite), 148 getPosition,GdsGenotypeReader-method
getDimension (getVariable), 82 (GdsGenotypeReader), 63
getDimension, GdsReader-method getPosition,GdsIntensityReader-method

(GdsReader), 68 (GdsIntensityReader), 66
getDimension,NcdfReader-method getPosition,GenotypeData-method

(NcdfReader), 116 (GenotypeData-class), 74

158

getPosition,Genotypelterator-method
(Genotypelterator-class), 78
getPosition, IntensityData-method
(IntensityData-class), 95
getPosition,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
getPosition,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
getPosition,NcdfIntensityReader-method
(NcdfIntensityReader), 113

getPosition, SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 145
getPosition, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
getQuality (getVariable), 82
getQuality,GdsIntensityReader-method
(GdsIntensityReader), 66
getQuality,IntensityData-method
(IntensityData-class), 95
getQuality,NcdfIntensityReader-method
(NcdfIntensityReader), 113
getQuery (getVariable), 82
getQuery, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
getQuery, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
getScanAnnotation (getVariable), 82
getScanAnnotation, GenotypeData-method
(GenotypeData-class), 74
getScanlID (getVariable), 82
getScanID,GdsGenotypeReader-method
(GdsGenotypeReader), 63
getScanID,GdsIntensityReader-method
(GdsIntensityReader), 66
getScanlD,GenotypeData-method
(GenotypeData-class), 74
getScanID, IntensityData-method
(IntensityData-class), 95
getScanID,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
getScanID,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
getScanID,NcdfIntensityReader-method
(NcdfIntensityReader), 113

getScanID, ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 138
getScanID, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140

INDEX

getScanVariable (getVariable), 82
getScanVariable,GenotypeData-method
(GenotypeData-class), 74
getScanVariable,IntensityData-method
(IntensityData-class), 95
getScanVariableNames (getVariable), 82

getScanVariableNames,GenotypeData-method

(GenotypeData-class), 74

getScanVariableNames,IntensityData-method

(IntensityData-class), 95
getSex (getVariable), 82
getSex,GenotypeData-method
(GenotypeData-class), 74
getSex, IntensityData-method
(IntensityData-class), 95
getSex, ScanAnnotationDataFrame-method
(ScanAnnotationDataFrame), 138
getSex, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
getSnpAnnotation (getVariable), 82
getSnpAnnotation, GenotypeData-method
(GenotypeData-class), 74
getSnpID (getVariable), 82
getSnpID, GdsGenotypeReader-method
(GdsGenotypeReader), 63
getSnpID,GdsIntensityReader-method
(GdsIntensityReader), 66
getSnpID, GenotypeData-method
(GenotypeData-class), 74
getSnpID, Genotypelterator-method
(Genotypelterator-class), 78
getSnpID, IntensityData-method
(IntensityData-class), 95
getSnpID,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
getSnpID,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
getSnpID,NcdfIntensityReader-method
(NcdfIntensityReader), 113
getSnpID, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
getSnpID, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
getSnpVariable (getVariable), 82
getSnpVariable,GenotypeData-method
(GenotypeData-class), 74
getSnpVariable,Genotypelterator-method
(Genotypelterator-class), 78

INDEX

getSnpVariable,IntensityData-method
(IntensityData-class), 95
getSnpVariableNames (getVariable), 82
getSnpVariableNames,GenotypeData-method
(GenotypeData-class), 74
getSnpVariableNames,IntensityData-method
(IntensityData-class), 95
getVariable, 82
getVariable,GdsGenotypeReader-method
(GdsGenotypeReader), 63
getVariable,GdsIntensityReader-method
(GdsIntensityReader), 66
getVariable, GdsReader-method
(GdsReader), 68
getVariable,GenotypeData-method
(GenotypeData-class), 74
getVariable, IntensityData-method
(IntensityData-class), 95
getVariable,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
getVariable,NcdfIntensityReader-method
(NcdfIntensityReader), 113
getVariable,NcdfReader-method
(NcdfReader), 116
getVariable, ScanAnnotationDataFrame-method
(ScanAnnotationDataFrame), 138
getVariable, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
getVariable, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
getVariable, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
getVariableNames (getVariable), 82
getVariableNames, GdsReader-method
(GdsReader), 68
getVariableNames,NcdfReader-method
(NcdfReader), 116

getVariableNames, ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 138

getVariableNames, ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 140

getVariableNames, SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 145

getVariableNames, SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 148
getX (getVariable), 82
getX,GdsIntensityReader-method

(GdsIntensityReader), 66

159

getX,IntensityData-method
(IntensityData-class), 95
getX,NcdfIntensityReader-method
(NcdfIntensityReader), 113
getY (getVariable), 82
getY,GdsIntensityReader-method
(GdsIntensityReader), 66
getY,IntensityData-method
(IntensityData-class), 95
getY,NcdfIntensityReader-method
(NcdfIntensityReader), 113
glm, 31, 33
GWASExactHW, 59
gwasExactHW (GWASTools-defunct), 84
GWASTools (GWASTools-package), 4
GWASTools-defunct, 84
GWASTools-package, 4

hasBAlleleFreq (getVariable), 82
hasBAlleleFreq,GdsIntensityReader-method
(GdsIntensityReader), 66
hasBAlleleFreq, IntensityData-method
(IntensityData-class), 95
hasBAlleleFreq,NcdfIntensityReader-method
(NcdfIntensityReader), 113
hasCoordVariable (NcdfReader), 116
hasCoordVariable,NcdfReader-method
(NcdfReader), 116
hasLogRRatio (getVariable), 82
hasLogRRatio,GdsIntensityReader-method
(GdsIntensityReader), 66
hasLogRRatio,IntensityData-method
(IntensityData-class), 95
hasLogRRatio,NcdfIntensityReader-method
(NcdfIntensityReader), 113
hasQuality (getVariable), 82
hasQuality,GdsIntensityReader-method
(GdsIntensityReader), 66
hasQuality,IntensityData-method
(IntensityData-class), 95
hasQuality,NcdfIntensityReader-method
(NcdfIntensityReader), 113
hasScanAnnotation (getVariable), 82
hasScanAnnotation,GenotypeData-method
(GenotypeData-class), 74
hasScanAnnotation,IntensityData-method
(IntensityData-class), 95
hasScanVariable (getVariable), 82

160

hasScanVariable,GenotypeData-method
(GenotypeData-class), 74
hasScanVariable, IntensityData-method
(IntensityData-class), 95
hasSex (getVariable), 82
hasSex, GenotypeData-method
(GenotypeData-class), 74
hasSex, IntensityData-method
(IntensityData-class), 95
hasSex, ScanAnnotationDataFrame-method
(ScanAnnotationDataFrame), 138
hasSex, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
hasSnpAnnotation (getVariable), 82
hasSnpAnnotation, GenotypeData-method
(GenotypeData-class), 74
hasSnpAnnotation,IntensityData-method
(IntensityData-class), 95
hasSnpVariable (getVariable), 82
hasSnpVariable,GenotypeData-method
(GenotypeData-class), 74
hasSnpVariable,IntensityData-method
(IntensityData-class), 95
hasVariable (getVariable), 82
hasVariable,GdsReader-method
(GdsReader), 68
hasVariable, GenotypeData-method
(GenotypeData-class), 74
hasVariable, IntensityData-method
(IntensityData-class), 95
hasVariable,NcdfReader-method
(NcdfReader), 116

hasVariable, ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 138

hasVariable, ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 140

hasVariable, SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 145
hasVariable, SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 148
hasX (getVariable), 82
hasX,GdsIntensityReader-method

(GdsIntensityReader), 66
hasX, IntensityData-method

(IntensityData-class), 95
hasX,NcdfIntensityReader-method

(NcdfIntensityReader), 113
hasY (getVariable), 82

INDEX

hasY,GdsIntensityReader-method
(GdsIntensityReader), 66

hasY,IntensityData-method
(IntensityData-class), 95

hasY,NcdfIntensityReader-method
(NcdfIntensityReader), 113

hetByScanChrom, 85, 86

hetBySnpSex, 85, 86

HLA, 8, 13,17, 20, 21, 87

HWExact, 59

ibdAreasDraw (ibdPlot), 88
ibdAssignRelatedness (ibdPlot), 88
ibdAssignRelatednessKing (ibdPlot), 88
ibdPlot, 88
identical, 7
imputedDosageFile, 84, 91, 92
IntensityData, 5, 8, 13, 20, 34-36, 41, 42,
61, 62,68,72,73,76,103, 104, 112,
115,130, 131, 133-135, 139, 141,
147, 150
IntensityData (IntensityData-class), 95
IntensityData-class, 95
intensityOutliersPlot, 98
iterateFilter (Genotypelterator-class),
78
iterateFilter,Genotypelterator-method
(Genotypelterator-class), 78

kingIBS@FSCI (ibdPlot), 88

lastFilter (Genotypelterator-class), 78

lastFilter,Genotypelterator-method
(Genotypelterator-class), 78

lastFilter<- (Genotypelterator-class),
78

lastFilter<-,Genotypelterator,numeric-method

(Genotypelterator-class), 78
1m, 31, 33
logistf, 31, 33
lrtest, 33

manhattanPlot, 100, /57
MatrixGenotypeReader, 74-76, 101
MatrixGenotypeReader-class
(MatrixGenotypeReader), 101
MchromCode (getVariable), 82
MchromCode, GdsGenotypeReader-method
(GdsGenotypeReader), 63

INDEX

MchromCode, GdsIntensityReader-method
(GdsIntensityReader), 66
MchromCode, GenotypeData-method
(GenotypeData-class), 74
MchromCode, IntensityData-method
(IntensityData-class), 95
MchromCode,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
MchromCode ,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
MchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 113

MchromCode, SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 145
MchromCode, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
mean, 104
meanIntensityByScanChrom, 99, 103
meanSdByChromWindow (findBAFvariance),
60
medianSdOverAutosomes, 9, 17
medianSdOverAutosomes
(findBAFvariance), 60
mendelErr, 104, 108
mendellist, /05, 106, 107
mendellListAsDataFrame (mendellList), 107
minorAlleleDetectionAccuracy

(duplicateDiscordanceAcrossDatasets),

52
missingGenotypeByScanChrom, 109, 111
missingGenotypeBySnpSex, 109, 110

ncdf4-package, 44,48, 116, 117
ncdfAddData (GWASTools-defunct), 84
ncdfAddIntensity (GWASTools-defunct), 84
ncdfCheckGenotype (GWASTools-defunct),
84
ncdfCheckIntensity (GWASTools-defunct),
84
ncdfCreate (GWASTools-defunct), 84
NcdfGenotypeReader, 74, 76, 93, 102, 111,
115,117, 144
NcdfGenotypeReader-class
(NcdfGenotypeReader), 111
ncdfImputedDosage (GWASTools-defunct),
84
NcdfIntensityReader, 95, 97,112,113, 117,
144

161

NcdfIntensityReader-class
(NcdfIntensityReader), 113
NcdfReader, 111-115,116
NcdfReader-class (NcdfReader), 116
ncdfSetMissingGenotypes
(GWASTools-defunct), 84
ncdfSubset (GWASTools-defunct), 84
ncdfSubsetCheck (GWASTools-defunct), 84
ncvar_change_missval, 116
nscan (getVariable), 82
nscan,GdsGenotypeReader-method
(GdsGenotypeReader), 63
nscan,GdsIntensityReader-method
(GdsIntensityReader), 66
nscan,GenotypeData-method
(GenotypeData-class), 74
nscan,IntensityData-method
(IntensityData-class), 95
nscan,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
nscan,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
nscan,NcdfIntensityReader-method
(NcdfIntensityReader), 113
nscan, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
nsnp (getVariable), 82
nsnp,GdsGenotypeReader-method
(GdsGenotypeReader), 63
nsnp,GdsIntensityReader-method
(GdsIntensityReader), 66
nsnp,GenotypeData-method
(GenotypeData-class), 74
nsnp, IntensityData-method
(IntensityData-class), 95
nsnp,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
nsnp,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
nsnp,NcdfIntensityReader-method
(NcdfIntensityReader), 113
nsnp, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

open, GdsReader-method (GdsReader), 68

open, GenotypeData-method
(GenotypeData-class), 74

open, IntensityData-method
(IntensityData-class), 95

162

open,NcdfReader-method (NcdfReader), 116

open, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140

open, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

paste, 118

pasteSorted, 117

pcaSnpFilters, 118

pedigreeCheck, 84, 119, 122-124, 126, 127

pedigreeDeleteDuplicates, 121, 122

pedigreeMaxUnrelated, 123, 127

pedigreePairwiseRelatedness, 89, 90, 121,
123, 124,126

plinkCheck (plinkUtils), 127

plinkToNcdf (GWASTools-defunct), 84

plinkUtils, 127

plinkWrite (plinkUtils), 127

plot, 21,42,72,89, 98, 100, 130, 132, 151

points, 89

pseudoautoIntensityPlot, 130

pseudoautosomal, 8, 13, 17, 20, 21, 131, 131

put.attr.gdsn, 69

ggPlot, 132
qualityScoreByScan, 133, 135
qualityScoreBySnp, 134, 134

readWriteFirst, 135

relationsMeanVar, 90, 136

resetIterator (Genotypelterator-class),
78

resetIterator,Genotypelterator-method
(Genotypelterator-class), 78

saveas, 81, 137

ScanAnnotationDataFrame, 5, 74, 76, 92, 95,
97,138, 141, 147

ScanAnnotationDataFrame-class
(ScanAnnotationDataFrame), 138

ScanAnnotationSQLite, 5, 74, 76, 95, 97,
140, 150

ScanAnnotationSQLite-class
(ScanAnnotationSQLite), 140

sd, 104

sdByScanChromWindow, 9

sdByScanChromWindow (findBAFvariance),
60

segment, 8, 10, 11, 13, 16

INDEX

setMissingGenotypes, 84, 142
show, GdsReader-method (GdsReader), 68
show, GenotypeData-method
(GenotypeData-class), 74
show, IntensityData-method
(IntensityData-class), 95
show,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
show,NcdfReader-method (NcdfReader), 116
show, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
show, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
simulateGenotypeMatrix, 143
simulateIntensityMatrix
(simulateGenotypeMatrix), 143
smooth.CNA, 8, 11, 13, 16
SnpAnnotationDataFrame, 5, 17,43, 74, 76,
92, 95,97, 139, 145, 150
SnpAnnotationDataFrame-class
(SnpAnnotationDataFrame), 145
SnpAnnotationSQLite, 5, 74, 76, 95, 97, 141,
148
SnpAnnotationSQLite-class
(SnpAnnotationSQLite), 148
snpCorrelationPlot, 101, 119, 150
snpFilter (Genotypelterator-class), 78
snpFilter,Genotypelterator-method
(Genotypelterator-class), 78
snpgdsBED2GDS, 84, 129
snpgdsVCF2GDS, 84, 153
Surv, 29
survival, 29

vcfCheck (vefWrite), 151
vcfWrite, 151
vcovHC, 33

writeAnnotation (getVariable), 82
writeAnnotation,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
writeAnnotation, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
writeMetadata (getVariable), 82
writeMetadata, ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 140
writeMetadata, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

INDEX

XchromCode (getVariable), 82
XchromCode, GdsGenotypeReader-method
(GdsGenotypeReader), 63
XchromCode, GdsIntensityReader-method
(GdsIntensityReader), 66
XchromCode, GenotypeData-method
(GenotypeData-class), 74
XchromCode, IntensityData-method
(IntensityData-class), 95
XchromCode,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
XchromCode,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
XchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 113
XchromCode, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
XchromCode, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148
XYchromCode (getVariable), 82
XYchromCode, GdsGenotypeReader-method
(GdsGenotypeReader), 63
XYchromCode, GdsIntensityReader-method
(GdsIntensityReader), 66
XYchromCode, GenotypeData-method
(GenotypeData-class), 74
XYchromCode, IntensityData-method
(IntensityData-class), 95
XYchromCode ,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
XYchromCode,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
XYchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 113
XYchromCode, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
XYchromCode, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

YchromCode (getVariable), 82
YchromCode, GdsGenotypeReader-method
(GdsGenotypeReader), 63
YchromCode,GdsIntensityReader-method
(GdsIntensityReader), 66
YchromCode, GenotypeData-method
(GenotypeData-class), 74
YchromCode, IntensityData-method
(IntensityData-class), 95

163

YchromCode,MatrixGenotypeReader-method
(MatrixGenotypeReader), 101
YchromCode,NcdfGenotypeReader-method
(NcdfGenotypeReader), 111
YchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 113
YchromCode, SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 145
YchromCode, SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 148

	GWASTools-package
	alleleFrequency
	allequal
	anomDetectBAF
	anomDetectLOH
	anomIdentifyLowQuality
	anomSegStats
	apartSnpSelection
	asSnpMatrix
	assocCoxPH
	assocRegression
	BAFfromClusterMeans
	BAFfromGenotypes
	batchTest
	centromeres
	chromIntensityPlot
	convertNcdfGds
	createDataFile
	duplicateDiscordance
	duplicateDiscordanceAcrossDatasets
	duplicateDiscordanceProbability
	exactHWE
	findBAFvariance
	GdsGenotypeReader
	GdsIntensityReader
	GdsReader
	gdsSubset
	genoClusterPlot
	GenotypeData-class
	GenotypeIterator-class
	genotypeToCharacter
	getobj
	getVariable
	GWASTools-defunct
	hetByScanChrom
	hetBySnpSex
	HLA
	ibdPlot
	imputedDosageFile
	IntensityData-class
	intensityOutliersPlot
	manhattanPlot
	MatrixGenotypeReader
	meanIntensityByScanChrom
	mendelErr
	mendelList
	missingGenotypeByScanChrom
	missingGenotypeBySnpSex
	NcdfGenotypeReader
	NcdfIntensityReader
	NcdfReader
	pasteSorted
	pcaSnpFilters
	pedigreeCheck
	pedigreeDeleteDuplicates
	pedigreeMaxUnrelated
	pedigreePairwiseRelatedness
	plinkUtils
	pseudoautoIntensityPlot
	pseudoautosomal
	qqPlot
	qualityScoreByScan
	qualityScoreBySnp
	readWriteFirst
	relationsMeanVar
	saveas
	ScanAnnotationDataFrame
	ScanAnnotationSQLite
	setMissingGenotypes
	simulateGenotypeMatrix
	SnpAnnotationDataFrame
	SnpAnnotationSQLite
	snpCorrelationPlot
	vcfWrite
	Index

