Package ‘GSEABenchmarkeR’

February 2, 2026

Type Package
Title Reproducible GSEA Benchmarking
Version 1.31.0

Description The GSEABenchmarkeR package implements an extendable framework for
reproducible evaluation of set- and network-based methods for enrichment
analysis of gene expression data. This includes support for the efficient
execution of these methods on comprehensive real data compendia (microarray
and RNA-seq) using parallel computation on standard workstations and
institutional computer grids. Methods can then be assessed with respect to
runtime, statistical significance, and relevance of the results for the
phenotypes investigated.

URL https://github.com/waldronlab/GSEABenchmarkeR

BugReports https://github.com/waldronlab/GSEABenchmarkeR/issues
License Artistic-2.0

Encoding UTF-8

Depends R (>=4.5.0), Biobase, SummarizedExperiment

Imports AnnotationDbi, AnnotationHub, BiocFileCache, BiocParallel,
edgeR, EnrichmentBrowser, ExperimentHub, grDevices, graphics,
KEGGandMetacoreDzPathwaysGEO, KEGGdzPathwaysGEO, methods,
S4Vectors, stats, utils

Suggests BiocStyle, GSE62944, knitr, rappdirs, rmarkdown

biocViews ImmunoOncology, Microarray, RNASeq, GeneExpression,
DifferentialExpression, Pathways, GraphAndNetwork, Network,
GeneSetEnrichment, NetworkEnrichment, Visualization,
ReportWriting

VignetteBuilder knitr

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/GSEABenchmarkeR
git_branch devel

git_last_commit 129d655

https://github.com/waldronlab/GSEABenchmarkeR
https://github.com/waldronlab/GSEABenchmarkeR/issues

git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Ludwig Geistlinger [aut, cre],
Gergely Csaba [aut],
Mara Santarelli [ctb],
Lucas Schiffer [ctb],
Marcel Ramos [ctb],
Ralf Zimmer [aut],
Levi Waldron [aut]

Maintainer Ludwig Geistlinger <ludwig.geistlinger@gmail.com>

bpPlot

Contents
bpPlot e 2
cacheResource e 3
evalNrSigSets e 4
evalRandomGS 6
evalRelevance e 8
evalTypelError 11
loadEData e e e e 14
maPreproc L e e e 16
readDatald2diseaseCodeMap Lo 17
readResults oL 18
runDE . . oo 19
runEA . . L e 22

Index 24

bpPlot Customized boxplot visualization of benchmark results
Description

This is a convenience function to create customized boxplots for specific benchmark criteria such

as runtime, statistical significance and phenotype relevance.

Usage

bpPlot(data, what = c("runtime”, "sig.sets"”, "rel.sets”, "typel"))

cacheResource 3

Arguments

data Numeric matrix or list of numeric vectors. In case of a matrix, column names
are assumed to be method names and rownames are assumed to be dataset IDs.
In case of a list, names are assumed to be method names and each element
corresponds to a numeric vector with names assumed to be dataset IDs.

what Character. Determines how the plot is customized. One of

* runtime: displays runtime of methods across datasets,
* sig.sets: displays percentage of significant gene sets,
* rel.sets: displays phenotype relevance scores,

* typel: displays type I error rates.

Value

None. Plots to a graphics device.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

evalNrSigSets to evaluate fractions of significant gene sets; evalRelevance to evaluate pheno-
type relevance of gene set rankings.

Examples

simulated setup:

3 methods & 5 datasets
methods <- paste@("m”, 1:3)
data.ids <- paste@("d", 1:5)

runtime data

rt <- vapply(1:3, function(m) runif(5, min = m, max = m+1), numeric(5))
rownames(rt) <- data.ids

colnames(rt) <- methods

plot
bpPlot(rt, what = "runtime”)

cacheResource Caching of a resource

Description

Convenience function to flexibly save and restore an already processed expression data compendium
via caching.

4 evalNrSigSets

Usage

cacheResource(res, rname, ucdir = "GSEABenchmarkeR")
Arguments

res Resource. An arbitrary R object.

rname Character. Resource name.

ucdir Character. User cache directory. Defaults to ’GSEABenchmarkeR’, which will

accordingly use tools: :R_user_dir ("GSEABenchmarkeR", which = "cache").

Value

None. Stores the object in the cache by side effect.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

loadEData, R_user_dir, BiocFileCache

Examples

load user-defined expression compendium
data.dir <- system.file("extdata/myEData”, package = "GSEABenchmarkeR")
edat <- loadEData(data.dir)

do some processing of the compendium
edat <- lapply(edat, function(d) d[1:50,])

cache it ...
cacheResource(edat, "myEData")

... and restore it at a later time
edat <- loadEData(data.dir, cache = TRUE)

evalNrSigSets Evaluating gene set rankings for the number of (significant) sets

Description

These functions evaluate gene set rankings obtained from applying enrichment methods to multiple
datasets. This allows to assess resulting rankings for granularity (how many gene sets have a unique
p-value?) and statistical significance (how many gene sets have a p-value below a significance
threshold?).

evalNrSigSets

Usage

evalNrSigSets(ea.ranks, alpha = 0.05, padj = "none”, perc = TRUE)

evalNrSets(ea.ranks, uniqg.pval = TRUE, perc = TRUE)

Arguments

ea.ranks

alpha
padj

perc

uniqg.pval

Value

Enrichment analysis rankings. A list with an entry for each enrichment method
applied. Each entry is a list that stores for each dataset analyzed the resulting
gene set ranking as obtained from applying the respective method to the respec-
tive dataset.

Statistical significance level. Defaults to 0.05.

Character. Method for adjusting p-values to multiple testing. For available meth-
ods see the man page of the stats function p.adjust. Defaults to "none”.

Logical. Should the percentage or absolute number of gene sets be returned?
Percentage is typically more useful for comparison between rankings with a
potentially different total number of gene sets. Defaults to TRUE.

Logical. Should the number of gene sets with a unique p-value or the total
number of gene sets per ranking be returned? Defaults to TRUE.

A list of numeric vectors storing for each method the number of (significant) gene sets for each
dataset analyzed. If each element of the resulting list is of equal length (corresponds to successful
application of each enrichment method to each dataset), the list is automatically simplified to a
numeric matrix (rows = datasets, columns = methods).

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

runkA to apply enrichment methods to multiple datasets; readResults to read saved rankings as
an input for the eval-functions.

Examples

simulated setup:

2 methods & 2 datasets
methods <- paste@("m”, 1:2)
data.ids <- paste@("d", 1:2)

simulate gene set rankings
getRankingForDataset <- function(d)

{

r <- EnrichmentBrowser: :makeExampleData("ea.res")
EnrichmentBrowser: :gsRanking(r, signif.only=FALSE)

6 evalRandomGS

getRankingsForMethod <- function(m)

{
rs <- lapply(data.ids, getRankingForDataset)
names(rs) <- data.ids
rs

}

ea.ranks <- lapply(methods, getRankingsForMethod)
names(ea.ranks) <- methods

evaluate
evalNrSets(ea.ranks)
evalNrSigSets(ea.ranks)

evalRandomGS Evaluation of enrichment methods on random gene sets

Description

This function evaluates the proportion of rejected null hypotheses (= the fraction of significant gene
sets) of an enrichment method when applied to random gene sets of defined size.

Usage
evalRandomGS (

method,
se,
nr.gs = 100,
set.size = 5,
alpha = 0.05,
padj = "none",
perc = TRUE,
reps = 100,
rep.block.size = -1,

summarize = TRUE,
save2file = FALSE,
out.dir = NULL,

)
Arguments
method Enrichment analysis method. A character scalar chosen from sbeaMethods and
nbeaMethods, or a user-defined function implementing a method for enrichment
analysis.

se An expression dataset of class SummarizedExperiment.

evalRandomGS

nr.gs
set.size
alpha
padj

perc

reps

rep.block.size

summarize

save2file

out.dir

Value

Integer. Number of random gene sets. Defaults to 100.
Integer. Gene set size, i.e. number of genes in each random gene set.
Numeric. Statistical significance level. Defaults to 0.05.

Character. Method for adjusting p-values to multiple testing. For available meth-
ods see the man page of the stats function p.adjust. Defaults to "none”.

Logical. Should the percentage (between 0 and 100, default) or the proportion
(between 0 and 1) of significant gene sets be returned?

Integer. Number of replications. Defaults to 100.

Integer. When running in parallel, splits reps into blocks of the indicated size.
Defaults to -1, which indicates to not partition reps.

Logical. If TRUE (default) returns the mean (mean) and the standard deviation
(sd) of the proportion of significant gene sets across reps replications. Use
FALSE to return the full vector storing the proportion of significant gene sets for
each replication.

Logical. Should results be saved to file for subsequent benchmarking? Defaults
to FALSE.

Character. Determines the output directory where results are saved to. Defaults
to NULL, which then writes to tools: :R_user_dir ("GSEABenchmarkeR") in
case save2file is set to TRUE.

Additional arguments passed to the selected enrichment method.

A named numeric vector of length 2 storing mean and standard deviation of the proportion of
significant gene sets across reps replications (summarize=TRUE); or a numeric vector of length reps
storing the the proportion of significant gene sets for each replication itself (summarize=FALSE).

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

sbea and nbea for carrying out set- and network-based enrichment analysis.

BiocParallelParam and register for configuration of parallel computation.

Examples

loading two datasets from the GEO2KEGG compendium
geo2kegg <- loadEData("geo2kegg”, nr.datasets = 2)

only considering the first 1000 probes for demonstration
geo2kegg <- lapply(geo2kegg, function(d) d[1:1000,]1)

preprocessing and DE analysis for two of the datasets
geo2kegg <- maPreproc(geo2kegg)
geo2kegg <- runDE(geo2kegg)

8 evalRelevance

evalRandomGS("camera”, geo2kegg[[1]], reps = 3)

evalRelevance Evaluating phenotype relevance of gene set rankings

Description

This function evaluates gene set rankings obtained from the application of enrichment methods to
multiple datasets - where each dataset investigates a certain phenotype such as a disease. Given pre-
defined phenotype relevance scores for the gene sets, indicating how important a gene set is for the
investigated phenotype (as e.g. judged by evidence from the literature), this allows to assess whether
enrichment methods produce gene set rankings in which phenotype-relevant gene sets accumulate
at the top.

Usage

evalRelevance(
ea.ranks,
rel.ranks,
data2pheno,
method = "wsum”,
top = 0,
rel.thresh = 0,

compOpt(rel.ranks, gs.ids, data2pheno = NULL, top = @)

compRand(rel.ranks, gs.ids, data2pheno = NULL, perm = 1000)

Arguments

ea.ranks Enrichment analysis rankings. A list with an entry for each enrichment method
applied. Each entry is a list that stores for each dataset analyzed the resulting
gene set ranking, obtained from applying the respective method to the respective
dataset. Resulting gene set rankings are assumed to be of class DataFrame in
which gene sets (required column named GENE. SET) are ranked according to a
ranking measure such as a gene set p-value (required column named PVAL). See
gsRanking for an example.

rel.ranks Relevance score rankings. A list with an entry for each phenotype investigated.
Each entry should be a DataFrame in which gene sets (rownames are assumed to
be gene set IDs) are ranked according to a phenotype relevance score (required
column REL . SCORE).

evalRelevance 9

data2pheno A named character vector where the names correspond to dataset IDs and the
elements of the vector to the corresponding phenotypes investigated.

method Character. Determines how the relevance score is summarized across the en-
richment analysis ranking. Choose "wsum” (default) to compute a weighted sum
of the relevance scores, "auc” to perform a ROC/AUC analysis, or "cor” to
compute a correlation. This can also be a user-defined function for customized
behaviors. See Details.

top Integer. If top is non-zero, the evaluation will be restricted to the first top gene
sets of each enrichment analysis ranking. Defaults to @, which will then evaluate
the full ranking. If used with method="auc", it defines the number of gene sets
at the top of the relevance ranking that are considered relevant (true positives).

rel.thresh Numeric. Relevance score threshold. Restricts relevance score rankings (argu-
ment rel.ranks) to gene sets exceeding the threshold in the REL . SCORE col-
umn.

Additional arguments for computation of the relevance measure as defined by
the method argument. This includes for method="wsum":

* perc: Logical. Should observed scores be returned as-is or as a *perc*entage
of the respective optimal score. Percentages of the optimal score are typi-
cally easier to interpret and are comparable between datasets / phenotypes.
Defaults to TRUE.

¢ rand: Logical. Should gene set rankings be randomized to assess how likely

it is to observe a score equal or greater than the respective obtained score?
Defaults to FALSE.

gs.ids Character vector of gene set IDs on which enrichment analysis has been carried
out.
perm Integer. Number of permutations if rand set to TRUE.
Details

The function evalRelevance evaluates the similarity of a gene set ranking obtained from enrich-
ment analysis and a gene set ranking based on phenotype relevance scores. Therefore, the function
first transforms the ranks ’r’ from the enrichment analysis to weights w’ in [0,1] viaw =1 -1/N;
where N’ denotes the total number of gene sets on which the enrichment analysis has been carried
out. These weights are then multiplied with the corresponding relevance scores and summed up.

The function compOpt applies evalRelevance to the theoretically optimal case in which the en-
richment analysis ranking is identical to the relevance score ranking. The ratio between observed
and optimal score is useful for comparing observed scores between datasets / phenotypes.

The function compRand repeatedly applies evalRelevance to random rankings obtained from plac-
ing the gene sets randomly along the ranking, thereby assessing how likely it is to observe a score
equal or greater than the one obtained.

It is also possible to inspect other measures for summarizing the phenotype relevance, instead of
calculating weighted relevance scores sums (argument method="wsum”, default). One possibility
is to treat the comparison of the EA ranking and the relevance ranking as a classification problem,
and to compute standard classification performance measures such as the area under the ROC curve
(method="auc"). However, this requires to divide the relevance rankings (argument rel.ranks)

10 evalRelevance

into relevant (true positives) and irrelevant (true negatives) gene sets using the top argument. In-
stead of method="auc", this can also be any other performance measure that the ROCR package
(https://rocr.bioinf.mpi-sb.mpg.de) implements. For example, method="tnr" for calcu-
lation of the true negative rate. Although such classification performance measures are easy to
interpret, the weighted sum has certain preferable properties such as avoiding thresholding and
accounting for varying degrees of relevance in the relevance rankings.

It is also possible to compute a standard rank-based correlation measure such as Spearman’s cor-
relation (method="cor") to compare the similarity of the enrichment analysis rankings and the
relevance rankings. However, this might not be optimal for a comparison of an EA ranking going
over the full gene set vector against the typically much smaller vector of gene sets for which a rel-
evance score is annotated. For this scenario, using rank correlation reduces the question to "does
a subset of the EA ranking preserve the order of the relevance ranking"; although our question of
interest is rather "is a subset of the relevant gene sets ranked highly in the EA ranking".

Value

A numeric matrix (rows = datasets, columns = methods) storing in each cell the chosen relevance
measure (score, AUC, cor) obtained from applying the respective enrichment method to the respec-
tive expression dataset.

Author(s)
Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

runkA to apply enrichment methods to multiple datasets; readResults to read saved rankings as
an input for the eval-functions;

Examples

#
(1) simulated setup: 1 enrichment method applied to 1 dataset
#

simulate gene set ranking
ea.ranks <- EnrichmentBrowser::makeExampleData("ea.res")
ea.ranks <- EnrichmentBrowser::gsRanking(ea.ranks, signif.only=FALSE)

simulated relevance score ranking

rel.ranks <- ea.ranks

rel.ranks[,2] <- runif(nrow(ea.ranks), min=1, max=100)
colnames(rel.ranks)[2] <- "REL.SCORE"
rownames(rel.ranks) <- rel.ranks[,"GENE.SET"]

ind <- order(rel.ranks[,"REL.SCORE"], decreasing=TRUE)
rel.ranks <- rel.ranks[ind,]

evaluate

evalRelevance(ea.ranks, rel.ranks)
compOpt(rel.ranks, ea.ranks[,"GENE.SET"])
compRand(rel.ranks, ea.ranks[,"GENE.SET"], perm=3)

https://rocr.bioinf.mpi-sb.mpg.de

evalTypelError 11

#
(2) simulated setup: 2 methods & 2 datasets
#

methods <- paste@("m”, 1:2)
data.ids <- paste@("d", 1:2)

simulate gene set rankings
ea.ranks <- sapply(methods, function(m)
sapply(data.ids,
function(d)
{
r <- EnrichmentBrowser::makeExampleData("ea.res")
r <- EnrichmentBrowser::gsRanking(r, signif.only=FALSE)
return(r)
}, simplify=FALSE),
simplify=FALSE)

simulate a mapping from datasets to disease codes
d2d <- c("ALZ", "BRCA")
names(d2d) <- data.ids

simulate relevance score rankings
rel.ranks <- lapply(ea.ranks[[1]],
function(rr)
{
rr[,2] <= runif(nrow(rr), min=1, max=100)
colnames(rr)[2] <- "REL.SCORE"
rownames (rr) <- rr[,"GENE.SET"]
ind <- order(rr[,"REL.SCORE"], decreasing=TRUE)
rr <- rrlind,]
return(rr)
D

names(rel.ranks) <- unname(d2d)

evaluate
evalRelevance(ea.ranks, rel.ranks, d2d)

evalTypelError Evaluation of the type I error rate of enrichment methods

Description

This function evaluates the type I error rate of selected methods for enrichment analysis when
applied to one or more expression datasets.

12 evalTypelError

Usage

evalTypelError(
methods,
exp.list,
gs,
alpha = 0.05,
ea.perm = 1000,
tI.perm = 1000,
perm.block.size = -1,
summarize = TRUE,
save2file = FALSE,
out.dir = NULL,
verbose = TRUE,

)
Arguments
methods Methods for enrichment analysis. This can be either
¢ acharacter vector with method names chosen from sbeaMethods and nbeaMethods,
* auser-defined function implementing a method for enrichment analysis, or
* anamed list, containing pre-defined and/or user-defined enrichment meth-
ods. See examples.
exp.list Experiment list. A 1ist of datasets, each being of class SummarizedExperiment.
gs Gene sets, i.e. a list of character vectors of gene IDs.
alpha Numeric. Statistical significance level. Defaults to 0.05.
ea.perm Integer. Number of permutations of the sample group assignments during en-
richment analysis. Defaults to 1000. Can also be an integer vector matching the
length of *methods’ to assign different numbers of permutations for different
methods.
tI.perm Integer. Number of permutations of the sample group assignments during type |

error rate evaluation. Defaults to 1000. Can also be an integer vector matching
the length of methods to assign different numbers of permutations for different
methods.

perm.block.size
Integer. When running in parallel, splits tI.perm into blocks of the indicated
size. Defaults to -1, which indicates to not partition tI.perm.

summarize Logical. If TRUE (default) applies summary to the vector of type I error rates
across tI.perm permutations of the sample labels. Use FALSE to return the full
vector of type I error rates.

save2file Logical. Should results be saved to file for subsequent benchmarking? Defaults
to FALSE.
out.dir Character. Determines the output directory where results are saved to. Defaults

to NULL, which then writes to tools: :R_user_dir ("GSEABenchmarkeR") in
case save2file is set to TRUE.

evalTypelError 13

verbose Logical. Should progress be reported? Defaults to TRUE.

Additional arguments passed to the selected enrichment methods.

Value

A list with an entry for each method applied. Each method entry is a list with an entry for each
dataset analyzed. Each dataset entry is either a summary (summarize=TRUE) or the full vector of
type I error rates (summarize=FALSE) across tI.perm permutations of the sample labels.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

sbea and nbea for carrying out set- and network-based enrichment analysis.

BiocParallelParam and register for configuration of parallel computation.

Examples

loading three datasets from the GEO2KEGG compendium
geo2kegg <- loadEData("geo2kegg”, nr.datasets=3)

only considering the first 1000 probes for demonstration
geo2kegg <- lapply(geo2kegg, function(d) d[1:1000,]1)

preprocessing and DE analysis for two of the datasets
geo2kegg <- maPreproc(geo2kegg[2:3])
geo2kegg <- runDE(geo2kegg)

getting a subset of human KEGG gene sets

gs.file <- system.file("extdata"”, package="EnrichmentBrowser")
gs.file <- file.path(gs.file, "hsa_kegg_gs.gmt")

kegg.gs <- EnrichmentBrowser: :getGenesets(gs.file)

evaluating type I error rate of two methods on two datasets
NOTE: using a small number of permutations for demonstration;
for a meaningful evaluation tI.perm should be >= 1000
res <- evalTypelError(geo2kegg, methods=c("ora",

"camera"), gs=kegg.gs, ea.perm=0, tI.perm=3)

applying a user-defined enrichment method ...

... or a mix of pre-defined and user-defined methods
dummySBEA <- function(se, gs)
{

sig.ps <- sample(seq(@, 0.05, length=1000), 5)

nsig.ps <- sample(seq(@.1, 1, length=1000), length(gs)-5)
ps <- sample(c(sig.ps, nsig.ps), length(gs))

names(ps) <- names(gs)

return(ps)

14 loadEData

methods <- list(camera = "camera”, dummySBEA = dummySBEA)
res <- evalTypelError(methods, geo2kegg, gs=kegg.gs, tI.perm=3)

loadEData Loading pre-defined and user-defined expression data

Description

This function implements a general interface for loading the pre-defined GEO2KEGG microarray
compendium and the TCGA RNA-seq compendium. It also allows loading of user-defined data

from file.
Usage
loadEData(edata, nr.datasets = NULL, cache = TRUE, ...)
Arguments
edata Expression data compendium. A character vector of length 1 that must be either
* ’geo2kegg’: to load the GEO2KEGG microarray compendium,
* ’tcga’: to load the TCGA RNA-seq compendium, or
* an absolute file path pointing to a directory, in which a user-defined com-
pendium has been saved in RDS files.
See details.
nr.datasets Integer. Number of datasets that should be loaded from the compendium. This
is mainly for demonstration purposes.
cache Logical. Should an already cached version used if available? Defaults to TRUE.

Additional arguments passed to the internal loading routines of the GEO2KEGG
and TCGA compendia. This currently includes for loading of the GEO2KEGG
compendium

* preproc: logical. Should probe level data automatically be summarized to
gene level data? Defaults to FALSE.

* de.only: logical. Include only datasets in which differentially expressed
genes have been found? Defaults to FALSE.

* excl.metac: logical. Exclude datasets for which MetaCore rather than
KEGG pathways have been assigned as target pathways? Defaults to FALSE.

And for loading of the TCGA compendium

* mode: character, determines how TCGA RNA-seq datasets are obtained. To
obtain raw read counts from GSE62944 use either 'ehub' (default, via Ex-
perimentHub) or 'geo’ (direct download from GEO, slow). Alternatively,
use 'cTD' to obtain normalized log2 TPM values from curatedTCGAData.

loadEData 15

e data.dir: character. Absolute file path indicating where processed RDS
files for each dataset are written to. Defaults to NULL, which will then write
to tools: :R_user_dir ("GSEABenchmarkeR").

* min.ctrls: integer. Minimum number of controls, i.e. adjacent normal
samples, for a cancer type to be included. Defaults to 9.

* paired: Logical. Should the pairing of samples (tumor and adjacent nor-
mal) be taken into account? Defaults to TRUE, which reduces the data for
each cancer type to patients for which both sample types (tumor and adja-
cent normal) are available. Use FALSE to obtain all samples in an unpaired
manner.

e min.cpm: integer. Minimum counts-per-million reads mapped. See the
edgeR vignette for details. The default filter is to exclude genes with cpm
< 2 in more than half of the samples.

e with.clin.vars: logical. Should clinical variables (>500) be kept to al-
low for more advanced sample groupings in addition to the default binary
grouping (tumor vs. normal)?

* map2entrez: Should human gene symbols be automatically mapped to En-
trez Gene IDs? Defaults to TRUE.

Details

The pre-defined GEO2KEGG microarray compendium consists of 42 datasets investigating a total
of 19 different human diseases as collected by Tarca et al. (2012 and 2013).

The pre-defined TCGA RNA-seq compendium consists of datasets from The Cancer Genome Atlas
(TCGA, 2013) investigating a total of 34 different cancer types.

User-defined data can also be loaded, given that datasets, preferably of class SummarizedExperiment,
have been saved as RDS files.

Value

A list of datasets, typically of class SummarizedExperiment.

Note that loadEData("geo2kegg"”, preproc = FALSE) (the default) returns the original microarray
probe level data as a list of ExpressionSet objects. Use preproc = TRUE or the maPreproc function
to summarize the probe level data to gene level data and to obtain a 1ist of SummarizedExperiment
objects.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

References

Tarca et al. (2012) Down-weighting overlapping genes improves gene set analysis. BMC Bioinfor-
matics, 13:136.

Tarca et al. (2013) A comparison of gene set analysis methods in terms of sensitivity, prioritization
and specificity. PLoS One, 8(11):e79217.

16 maPreproc

The Cancer Genome Atlas Research Network (2013) The Cancer Genome Atlas Pan-Cancer anal-
ysis project. Nat Genet, 45(10):1113-20.

Rahman et al. (2015) Alternative preprocessing of RNA-Sequencing data in The Cancer Genome
Atlas leads to improved analysis results. Bioinformatics, 31(22):3666-72.
See Also

SummarizedExperiment, ExpressionSet, maPreproc

Examples

(1) Loading the GEO2KEGG microarray compendium
geo2kegg <- loadEData("geo2kegg"”, nr.datasets=2)

(2) Loading the TCGA RNA-seq compendium
tcga <- loadEData("tcga"”, nr.datasets=2)

(3) reading user-defined expression data from file
data.dir <- system.file("extdata/myEData", package="GSEABenchmarkeR")
edat <- loadEData(data.dir)

maPreproc Preprocessing of microarray expression data

Description

This function prepares datasets of the GEO2KEGG microarray compendium for further analysis.
This includes summarization of probe level expression to gene level expression as well as annotation
of required colData slots for sample grouping.

Usage

maPreproc(exp.list, parallel = NULL)

Arguments
exp.list Experiment list. A 1ist of datasets, each being of class ExpressionSet.
parallel Parallel computation mode. An instance of class BiocParallelParam. See
the vignette of the BiocParallel package for switching between serial, multi-
core, and grid execution. Defaults to NULL, which then uses the first element of
BiocParallel::registered() for execution. If not changed by the user, this
accordingly defaults to multi-core execution on the local host.
Value

A list of datasets, each being of class SummarizedExperiment.

readDatald2diseaseCodeMap 17

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

loadEData to load a specified expression data compendium.

Examples

reading user-defined expression data from file
geo2kegg <- loadEData("geo2kegg”, nr.datasets=3)

only considering the first 100 probes for demonstration
geo2kegg <- lapply(geo2kegg, function(d) d[1:100,1)

preprocessing two datasets
geo2kegg <- maPreproc(geo2kegg[2:3])

readDatald2diseaseCodeMap
Read a mapping between dataset ID and disease code

Description

When assessing enrichment analysis results for phenotype relevance, it is assumed that each an-
alyzed dataset investigates a certain phenotype such as a disease. This function reads a mapping
between dataset IDs and assigned disease codes.

Usage
readDatald2diseaseCodeMap(map.file)

Arguments

map.file Character. The path to the mapping file.

Value

A named character vector where each element of the vector is a disease code and the names are the
dataset IDs.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

evalRelevance for evaluating phenotype relevance of gene set rankings.

18

Examples

readResults

data.dir <- system.file("extdata”, package="GSEABenchmarkeR")
d2d.file <- file.path(data.dir, "malacards”, "Gseld2Disease.txt")
d2d.map <- readDatald2diseaseCodeMap(d2d.file)

readResults

Reading results of enrichment analysis

Description

These functions read results obtained from the application of enrichment methods to multiple
datasets for subsequent assessment.

Usage

readResults(
data.dir,
data.ids,
methods,

type = c("runtime”, "ranking", "typel")

Arguments

data.dir
data.ids

methods

type

Value

Character. The data directory where results have been saved to.
A character vector of dataset IDs.

Methods for enrichment analysis. A character vector with method names typ-
ically chosen from sbeaMethods and nbeaMethods, or user-defined functions
implementing methods for enrichment analysis.

Character. Type of the result. Should be one out of 'runtime’, ‘ranking’, or
“typel’.

A result list with an entry for each method applied. Each entry stores corresponding runtimes
(type="runtime"), gene set rankings (type="ranking"), or type I error rates (type="typel") as
obtained from applying the respective method to the given datasets.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

runkA to apply enrichment methods to multiple datasets.

runDE

Examples

simulated setup:

1 methods & 1 datasets
methods <- paste@("m”, 1:2)
data.ids <- paste@("d", 1:2)

result directory

res.dir <- tempdir()

sdirs <- file.path(res.dir, methods)
for(d in sdirs) dir.create(d)

store runtime & rankings
for(m in 1:2)

{
rt <- runif(5, min=m, max=m+1)
for(d in 1:2)
{
runtime
out.file <- paste(data.ids[d], "txt", sep=".")
out.file <- file.path(sdirs[m], out.file)
cat(rt[d], file=out.file)
ranking
out.file <- sub("txt$", "rds"”, out.file)
r <- EnrichmentBrowser: :makeExampleData("ea.res")
r <- EnrichmentBrowser: :gsRanking(r, signif.only=FALSE)
saveRDS(r, file=out.file)
}
}

reading runtime & rankings
rts <- readResults(res.dir, data.ids, methods, type="runtime")
rkgs <- readResults(res.dir, data.ids, methods, type="ranking")

19

runDE

Differential expression analysis for datasets of a compendium

Description

This function applies selected methods for differential expression (DE) analysis to selected datasets
of an expression data compendium.

Usage

runDE (
exp.list,
de.method = c("limma"”, "edgeR", "DESeq2"),
padj.method = "flexible",

20

runDE

parallel = NULL,

)

metaFC(exp.list, max.na = round(length(exp.list)/3))

writeDE(exp.list, out.dir = NULL)

plotDEDistribution(exp.list, alpha = 0.05, beta = 1)

plotNrSamples(exp.list)

Arguments

exp.list
de.method
padj.method

parallel

max.na

out.dir

alpha
beta

Details

Experiment list. A 1ist of datasets, each being of class SummarizedExperiment.
Differential expression method. See documentation of deAna.

Method for adjusting p-values to multiple testing. For available methods see the
man page of the stats function p.adjust. Defaults to *flexible’, which applies a
dataset-specific correction strategy. See details.

Parallel computation mode. An instance of class BiocParallelParam. See
the vignette of the BiocParallel package for switching between serial, multi-
core, and grid execution. Defaults to NULL, which then uses the first element of
BiocParallel::registered() for execution. If not changed by the user, this
accordingly defaults to multi-core execution on the local host.

Additional arguments passed to EnrichmentBrowser: : deAna.

Integer. Determines for which genes a meta fold change is computed. Per de-
fault, excludes genes for which the fold change is not annotated in >= 1/3 of the
datasets in exp.list.

Character. Determines the output directory where DE results for each dataset
are written to. Defaults to NULL, which then writes to a subdir named ’de’ in
tools: :R_user_dir ("GSEABenchmarkeR").

Statistical significance level. Defaults to 0.05.
Absolute log2 fold change cut-off. Defaults to 1 (2-fold).

DE studies typically report a gene as differentially expressed if the corresponding DE p-value,
corrected for multiple testing, satisfies the chosen significance level. Enrichment methods that work
directly on the list of DE genes are then substantially influenced by the multiple testing correction.

An example is the frequently used over-representation analysis (ORA), which assesses the overlap
between the DE genes and a gene set under study based on the hypergeometric distribution (see
Appendix A of the EnrichmentBrowser vignette for an introduction).

ORA is inapplicable if there are few genes satisfying the significance threshold, or if almost all

genes are DE.

Using padj.method="flexible" accounts for these cases by applying multiple testing correction
in dependence on the degree of differential expression:

runDE 21

* the correction method from Benjamini and Hochberg (BH) is applied if it renders >= 1% and
<=25% of all measured genes as DE,

* the p-values are left unadjusted, if the BH correction results in < 1% DE genes, and

» the more stringent Bonferroni correction is applied, if the BH correction results in > 25% DE
genes.

Note that resulting p-values should not be used for assessing the statistical significance of DE genes
within or between datasets. They are solely used to determine which genes are included in the
analysis with ORA - where the flexible correction ensures that the fraction of included genes is
roughly in the same order of magnitude across datasets.

Alternative stratgies could also be applied - such as taking a constant number of genes for each
dataset or excluding ORA methods in general from the assessment.

Value
runDE returns exp.list with DE measures annotated to the rowData slot of each dataset, writeDE
writes to file, and plotDEDistribution plots to a graphics device.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

loadEData to load a specified expression data compendium.

Examples

reading user-defined expression data from file
data.dir <- system.file("extdata/myEData", package="GSEABenchmarkeR")
edat <- loadEData(data.dir)

differential expression analysis
edat <- runDE(edat)

visualization of per-dataset DE distribution
plotDEDistribution(edat)

calculating meta fold changes across datasets
mfcs <- metaFC(edat, max.na=0)

writing DE results to file

out.dir <- tempdir()

out.dir <- file.path(out.dir, "de")
if(!file.exists(out.dir)) dir.create(out.dir)

writeDE(edat, out.dir)

22 runEA

runkA Application of enrichment methods to multiple datasets

Description

This function applies selected methods for enrichment analysis to selected datasets of a com-
pendium.

Usage

runtA(
exp.list,
methods,
gs,
perm = 1000,
parallel = NULL,
save2file = FALSE,
out.dir = NULL,

)
Arguments
exp.list Experiment list. A 1ist of datasets, each being of class SummarizedExperiment.
In case of just one dataset a single SummarizedExperiment is also allowed. See
the documentation of sbea for required minimal annotations.
methods Methods for enrichment analysis. This can be either
¢ acharacter vector with method names chosen from sbeaMethods and nbeaMethods,
* auser-defined function implementing a method for enrichment analysis, or
* anamed list, containing pre-defined and/or user-defined enrichment meth-
ods. See examples.
gs Gene sets, i.e. a list of character vectors of gene IDs.
perm Number of permutations of the sample group assignments. Defaults to 1000.
Can also be an integer vector matching the length of methods to assign different
numbers of permutations for different methods.
parallel Parallel computation mode. An instance of class BiocParallelParam. See
the vignette of the BiocParallel package for switching between serial, multi-
core, and grid execution. Defaults to NULL, which then uses the first element of
BiocParallel::registered() for execution. If not changed by the user, this
accordingly defaults to multi-core execution on the local host.
save2file Logical. Should results be saved to file for subsequent benchmarking? Defaults
to FALSE.
out.dir Character. Determines the output directory where results are saved to. Defaults

to NULL, which then writes to tools: :R_user_dir ("GSEABenchmarkeR") in
case save2file is set to TRUE.

Additional arguments passed to the selected enrichment methods.

runEA 23

Value

A list with an entry for each method applied. Each method entry is a list with an entry for each
dataset analyzed. Each dataset entry is a list of length 2, with the first element being the runtime
and the second element being the gene set ranking, as obtained from applying the respective method
to the respective dataset.

Author(s)

Ludwig Geistlinger <Ludwig.Geistlinger @sph.cuny.edu>

See Also

sbea and nbea for carrying out set- and network-based enrichment analysis.

BiocParallelParam and register for configuration of parallel computation.

Examples

loading three datasets from the GEO2KEGG compendium
geo2kegg <- loadEData("geo2kegg”, nr.datasets=3)

only considering the first 1000 probes for demonstration
geo2kegg <- lapply(geo2kegg, function(d) d[1:1000,]1)

preprocessing and DE analysis for two of the datasets
geo2kegg <- maPreproc(geo2kegg[2:3])
geo2kegg <- runDE(geo2kegg)

getting a subset of human KEGG gene sets
gs.file <- system.file("extdata/hsa_kegg_gs.gmt"”, package="EnrichmentBrowser")
kegg.gs <- EnrichmentBrowser: :getGenesets(gs.file)

applying two methods to two datasets
res <- runkEA(geo2kegg, methods=c("ora”, "camera"), gs=kegg.gs, perm=0)

applying a user-defined enrichment method
dummySBEA <- function(se, gs)

{
sig.ps <- sample(seq(@, 0.05, length=1000), 5)
nsig.ps <- sample(seq(@.1, 1, length=1000), length(gs)-5)
ps <- sample(c(sig.ps, nsig.ps), length(gs))
names(ps) <- names(gs)
return(ps)
}

res <- runtEA(geo2kegg, methods=dummySBEA, gs=kegg.gs)

applying a mix of pre-defined and user-defined methods
methods <- list(camera = "camera”, dummySBEA = dummySBEA)
res <- runkEA(geo2kegg, methods, gs=kegg.gs, perm=0)

Index

BiocFileCache, 4 sbeaMethods, 6, 12, 18, 22

BiocParallelParam, 7, 13, 16, 20, 22, 23 sd, 7

bpPlot, 2 SummarizedExperiment, 6, 12, 15, 16, 20, 22
summary, 12

cacheResource, 3
compOpt (evalRelevance), 8 writeDE (runDE), 19
compRand (evalRelevance), 8

DataFrame, 8§
deAna, 20

evalNrSets (evalNrSigSets), 4
evalNrSigSets, 3,4
evalRandomGS, 6
evalRelevance, 3, 8
evalTypelError, 11
ExpressionSet, 15, 16

gsRanking, 8
loadEData, 4, 14, 17

maPreproc, 15, 16, 16
mean, 7
metaFC (runDE), 19

nbea, 7, 13,23
nbeaMethods, 6, 12, 18, 22

p.adjust, 5,7
plotDEDistribution (runDE), 19
plotNrSamples (runDE), 19

R_user_dir, 4
readDatald2diseaseCodeMap, 17
readResults, 5, 18
register, 7, 13,23

rowData, 2/

runDE, 19

runkA, 5, 22

sbea, 7, 13,22, 23

24

	bpPlot
	cacheResource
	evalNrSigSets
	evalRandomGS
	evalRelevance
	evalTypeIError
	loadEData
	maPreproc
	readDataId2diseaseCodeMap
	readResults
	runDE
	runEA
	Index

