Package ‘FastqCleaner’

February 1, 2026

Type Package

Title A Shiny Application for Quality Control, Filtering and Trimming
of FASTQ Files

Version 1.29.0
Date 2022-05-01

Description An interactive web application for quality control, filtering and trim-
ming of FASTQ files. This user-friendly tool combines a pipeline for data process-
ing based on Biostrings and ShortRead infrastructure, with a cutting-edge visual environment.
Single-Read and Paired-
End files can be locally processed. Diagnostic interactive plots (CG content, per-
base sequence quality, etc.) are provided for both the input and output files.

License MIT + file LICENSE
LazyData TRUE

Imports methods, shiny, stats, IRanges, Biostrings, ShortRead, DT,
S4Vectors, graphics, htmltools, shinyBS, Rcpp (>=0.12.12)

Suggests BiocStyle, testthat, knitr, rmarkdown
LinkingTo Rcpp

Collate 'roxygen.auxiliar.R' 'auxiliar.R' 'matching.R'
'server_functions.R' 'n_filter.R' 'seq_filter.R'
'complex_filter.R' 'adapter_filter.R' 'launch_fqc.R'
'length_filter.R' 'fixed_filter.R' 'trim3q_filter.R’'
'unique_filter.R' 'plotObjects.R' 'qmean_filter.R' 'simulate.R’
'"ReppExports.R'

biocViews QualityControl,Sequencing,Software,SangerSeq,SequenceMatching
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/FastqCleaner

git_branch devel

git_last_commit 464323c

2 Contents

git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Leandro Roser [aut, cre],
Fernan Agiiero [aut],
Daniel Sanchez [aut]

Maintainer Leandro Roser <learoser@gmail.com>

Contents
adapter_filter L 3
aSC2INt e e e e e e e 5
check_encoding 5
check onclick e 6
complex_filter 6
create_cleanfunction_ e e e e e 8
create_uniform_width 8
CUtRSEq o e e 9
fixed_filter e 11
inject_letter_random L. e 12
INE2ASC o e e e e e e e 13
isNaturalNumber e e 13
launch_fqc. o L e 14
length_filter e 14
messageFun_ L L e e e 15
myPlot e 16
n_filter e 16
outputClean_ e e e e e e e 17
PIOtA . e 18
PlotB . e 18
PlotC . 18
PlotD . . e e e 19
plotE . . . 19
PlotF . o o e 19
PlotG . . e e e 20
PlotH . . o e 20
plotl . . o o 20
Plot . o e e 21
plotObjects L 21
processingFunction_o 22
gmean_filter L. L e e e 22
random_length 23
random_qual 25
TandOM_S€q . .« . .« « v v e e e e e e e e e e e e e e e e e 26
seq_filter L 27

SEQ_NAMES « « . v v v v e 28

adapter_filter 3

trim3q_filter e e e 29
unique_filter L. e 30
Index 32
adapter_filter Remove full and partial adapters from a ShortReadQ object
Description

This program can remove adapters and partial adapters from 3” and 5°, using the functions trimLRPatterns
The program extends the methodology of the trimLRPatterns function of Biostrings, being also
capable of removing adapters present within reads and with other additional otpions (e.g., threshold
of minimum number of bases for trimming). For a given position in the read, the two Biostrings
functions return TRUE when a match is present between a substring of the read and the adapter.
As trimLRPatterns , adapter_filter also selects region and goes up to the end of the sequence in
the corresponding flank as the best match. The default error rate is 0.2. If several valid matches
are found, the function removes the largest subsequence. Adapters can be anchored or not. When
indels are allowed, the second method uses the ’edit distance’ between the subsequences and the

adapter
Usage

adapter_filter(
input,
Lpattern = "",
Rpattern = "",
rc.L = FALSE,
rc.R = FALSE,

first = c("R", "L"),
with_indels = FALSE,
error_rate = 0.2,
anchored = TRUE,
fixed = "subject”,
remove_zero = TRUE,
checks = TRUE,
min_match_flank = 3L,

)

Arguments
input ShortReadQ object
Lpattern 5’ pattern (character or DNAString object)
Rpattern 3’ pattern (character or DNAString object)
rc.L Reverse complement Lpattern? default FALSE

rc.R Reverse complement Rpatter? default FALSE

first

with_indels

error_rate

anchored

fixed

remove_zero

checks

min_match_flank

Value

adapter_filter

trim first right("R’) or left ("L’) side of sequences when both Lpattern and Rpat-
tern are passed

Allow indels? This feature is available only when the error_rate is not null

Error rate (value in the range [0, 1] The error rate is the proportion of mismatches
allowed between the adapter and the aligned portion of the subject. For a given
adapter A, the number of allowed mismatches between each subsequence s of A
and the subject is computed as: error_rate * L_s, where L_s is the length of the
subsequence s

Adapter or partial adapter within sequence (anchored = FALSE, default) or only
in 3’ and 5’ terminals? (anchored = TRUE)

Parameter passed to trimLRPatterns Default ’subject’, ambiguities in the pat-
tern only are interpreted as wildcard. See the argument fixed in trimLRPatterns

Remove zero-length sequences? Default TRUE
Perform checks? Default TRUE

Do not trim in flanks of the subject, if a match has min_match_flank of less
length. Default 1L (only trim with >=2 coincidences in a flank match)

additional parameters passed to trimLRPatterns

Edited DNAString or DNAStringSet object
Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead')

create 6 sequences of width 43

set.seed(10)

input <- random_seq(6, 43)

add adapter in 3'
adapter <- "ATCGACT"

input <- paste@(input, as.character(DNAString(adapter)))
input <- DNAStringSet(input)

create qualities of width 50

set.seed(10)

input_qg <- random_qual(c(30,40), slength = 6, swidth = 50,

encod = 'Sanger')

asc2int

create names
input_names <- seq_names(length(input))

create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)

trim adapter
filtered <- adapter_filter(my_read, Rpattern = adapter)

look at the filtered sequences
sread(filtered)

asc2int ASCII to integer

Description

ASCII to integer

Usage

asc2int(x)

Value

Integer

check_encoding Check quality encoding

Description

Check quality encoding

Usage
check_encoding(x = NULL, custom = NULL)

Arguments
X Quality values
custom custom encoding from the following:

’Sanger’
’Illuminal.8’
’Illuminal.5’
’Illuminal.3’
’Solexa’

> expected range: [0, 40]
> expected range: [0, 41]
> expected range: [0, 40]
> expected range: [3, 40]
> expected range: [-5, 40]

6 complex_filter

Value

List with encoding information

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require(Biostrings)

x <- list(PhredQuality(@:40), SolexaQuality(-5:40), IlluminaQuality(3:40))
x <- lapply(x, function(i)utf8ToInt(as.character(i)[11))
lapply(x, check_encoding)

SolexaQuality(0:40)
I1luminaQuality(0:40)

check_onclick_ check onclick

Description

Function to put a tickmark on click

Usage

check_onclick_(.menu_react, .butt_number, my_envir)

Value

Change value of reactive output, without return

complex_filter Remove sequences with low complexity

Description
The program removes low complexity sequences, computing the entropy with the observed fre-
quency of dinucleotides.

Usage

complex_filter(input, threshold = 0.5, referenceEntropy = 3.908135)

complex_filter 7

Arguments
input ShortReadQ object
threshold A threshold value computed as the relation of the H of the sequences and the
reference H. Default is 0.5
referenceEntropy
Reference entropy. By default, the program uses a value of 3.908, that corre-
sponds to the entropy of the human genome in bits
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead')

create sequences of different width

set.seed(10)

input <- lapply(c(@, 6, 10, 16, 20, 26, 30, 36, 40),
function(x) random_seq(1, x))

create repetitive 'CG' sequences with length adequante
for a total length:
input + CG = 40

set.seed(10)
CG <- lapply(c(20, 17, 15, 12, 10, 7, 5, 2, 0),
function(x) paste(rep('CG', x), collapse = ''))

concatenate input and CG
input <- mapply('paste', input, CG, sep = '')
input <- DNAStringSet(input)

plot relative entropy (E, Shannon 1948)

freq <- dinucleotideFrequency(input)

freq <- freq /rowSums(freq)

H <- -rowSums(freq * log2(freq), na.rm = TRUE)

H_max <- 3.908135 # max entropy

plot(H/H_max, type='b', xlab = 'Sequence', ylab= 'E')

create qualities of width 40

8 create_uniform_width

set.seed(10)
input_g <- random_qual(c(30,40), slength = 9, swidth = 40,
encod = 'Sanger')

create names
input_names <- seq_names(9)

create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)

apply the filter
filtered <- complex_filter(my_read)

look at the filtered sequences
sread(filtered)

create_cleanfunction_ create_cleanfunction_

Description

Create a function to process FASTQ files in function of the Shiny parameters selected by the user

Usage

create_cleanfunction_(my_envir, .which_read = c("FORWARD", "REVERSE"))

Value

Function with selected cleaning operations

create_uniform_width Create fastq/sequences/qualities with uniform width

Description

Create fastq/sequences/qualities with uniform width

Usage

create_uniform_width(input, type = c("fastq”, "sequence”, "quality"))

Arguments
input input to edit
type type of the input: ’fastq’ (ShortReadQ), ’sequence’ (DNAStringSet), ’quality’

(BStringset)

cutRseq 9

Value

ShortReadQ object or character vector with sequences or qualities, with uniform widht (padded
with Ns or })

cutRseq Remove left and right full and partial patterns

Description

This set of programs are internal, and the function adapter_filter is recommended for trimming. The
programs can remove adapters and partial adapters from 3’ and 5. The adapters can be anchored
or not. When indels are allowed, the error rate consists in the edit distance. IUPAC simbols are
allowed. The methods use the trimLRPatterns function of the Biostrings package, with some
additions to take into account e.g., partial adaptors. IUPAC symbols are allowed in all the cases. The
present function also removes partial adapters, without the need of additional steps (for example,
creating a padded adapter with 'Ns’, etc). A similar result to the output of trimLRPatterns can be
obtained with the option anchored = TRUE. When several matches are found, the function removes
the subsequence that starts in the first match when cutRseq is used, or ends in the last match when
cutLseq is used.

Usage

cutRseq(
subject,
Rpattern,
with.indels = FALSE,
fixed = "subject”,
error_rate = 0.2,
anchored = TRUE,
ranges = FALSE,
checks = TRUE,
min_match_flank = 2L,

)

cutLseq(
subject,
Lpattern,
with.indels = FALSE,
fixed = "subject”,
error_rate = 0.2,
anchored = TRUE,
ranges = FALSE,
min_match_flank = 3L,
checks = TRUE,

10

Arguments

subject
Rpattern
with.indels
fixed

error_rate

anchored

ranges

checks

min_match_flank

Lpattern

Value

cutRseq

DNAString or DNAStringSet object
3’ pattern, DNAString object
Allow indels?

Parameter passed to trimLRPatterns Default ’subject’, ambiguities in the pat-
tern only are interpreted as wildcard. See the argument fixed in trimLRPatterns
Error rate (value in [0, 1]). The error rate is the proportion of mismatches al-
lowed between the adapter and the aligned portion of the subject. For a given
adapter A, the number of allowed mismatches between each subsequence s of A
and the subject is computed as: error_rate * L_s, where L_s is the length of the
subsequence s.

Can the adapter or partial adapter be within the sequence? (anchored = FALSE)
or only in the terminal regions of the sequence? (anchored = TRUE). Default
TRUE (trim only flanking regions)

Return ranges? Default FALSE
Perform internal checks? Default TRUE

Do not trim in flanks of the subject, if a match has min_match_flank of less
length. Default 1L (only trim with >=2 coincidences in a flank match)

additional parameters passed to trimLRPatterns

5’ pattern, DNAString object

Edited DNAString or DNAStringSet object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

library(Biostrings)

subject <- DNAStringSet(c('ATCATGCCATCATGAT',

"CATGATATTA',

'"TCATG', 'AAAAAA', '"AGGTCATG'))

Lpattern <- Rpattern <- 'TCATG'

FastqCleaner::
FastqCleaner::
FastgCleaner::

FastgCleaner::
FastqCleaner::
FastqCleaner::

:cutlseq(subject, Lpattern)
:cutlLseq(subject, Lpattern, ranges = TRUE)
:cutRseq(subject, Rpattern)

:cutlLseq(subject, Lpattern, anchored = FALSE)
:cutlseq(subject, Lpattern, error_rate = 0.2)
:cutlLseq(subject, Lpattern, error_rate = 0.2,

fixed_filter 11

with.indels = TRUE)

fixed_filter Remove a fixed number of bases of a ShortReadQ object from 3’ or 5’

Description

The program removes a given number of bases from the 3’ or 5’ regions of the sequences contained
in a ShortReadQ object

Usage
fixed_filter(input, trim3 = NA, trim5 = NA)

Arguments
input ShortReadQ object
trim3 Number of bases to remove from 3’
trim5 Number of bases to remove from 5’
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead')

create 6 sequences of width 20

set.seed(10)
input <- random_seq(6, 20)

create qualities of width 20
set.seed(10)

input_qg <- random_qual(c(30,40), slength = 6, swidth = 20,
encod = 'Sanger')

create names
input_names <- seq_names(6)

12 inject_letter_random

create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)

apply the filter
filtered3 <- fixed_filter(my_read, trim5 = 5)

filtered5 <- fixed_filter(my_read, trim3 = 5)
filtered3and5 <- fixed_filter(my_read, trim3 = 10, trim5 = 5)

look at the trimmed sequences
sread(filtered3)
sread(filtered5)
sread(filtered3and5)

inject_letter_random Inject a letter in a set of sequences at random positions

Description

Inject a letter in a set of sequences at random positions

Usage

inject_letter_random(
my_seq,
how_many_seqs = NULL,
how_many_letters = NULL,
letter = "N”

Arguments

my_seq character vector with sequences to inject

how_many_seqs How many sequences pick to inject Ns. An interval [min_s, max_s] with min_s
minimum and max_s maximum sequences can be passed. In this case, a value
is picked from the interval. If NULL, a random value within the interval [1,
length(my_seq)] is picked.

how_many_letters

How many times inject the letter in the i sequences that are going to be injected.
An interval [min_i max_i] can be passed. In this case, a value is randomly
picked for each sequence i. This value represents the number of times that the
letter will be injected in the sequence i. If NULL, a random value within the
interval [1, width(my_seq[i])] is picked for each sequence i.

letter Letter to inject. Default: "N’

int2asc

Value

character vector

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

For reproducible examples, make a call to set.seed before
running each random function

set.seed(10)
s <- random_seq(slength = 10, swidth = 20)

set.seed(10)
s <- inject_letter_random(s, how_many_seqs = 1:30, how_many= 2:10)

13

int2asc Integer to ASCII

Description

Integer to ASCIIL

Usage

int2asc(n)

Value

ASCII character

isNaturalNumber Is natural number

Description

Is natural number

Usage

isNaturalNumber(x)

Value

Logical

14

length_filter

launch_fqc Launch FastqCleaner application

Description

Launch FastqCleaner application

Usage

launch_fgc(launch.browser = TRUE, ...)

Arguments

launch.browser Launch in browser? Default TRUE

Additional parameters passed to runApp

Value

Launch the application, without return value

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

Uncomment and paste in te console to launch the application:
launch_fqc()

NULL

length_filter Filter sequences of a FASTQ file by length

Description

The program removes from a ShortReadQ object those sequences with a length lower than rm.min

or/and higher than rm.max

Usage

length_filter(input, rm.min = NA, rm.max = NA)

messageFun_ 15

Arguments
input ShortReadQ object
rm.min Threshold value for the minimun number of bases
rm.max Threshold value for the maximum number of bases
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

create ShortReadQ object width widths between 1 and 100

set.seed(10)
input <- random_length(100, widths = 1:100)

apply the filter, removing sequences length < 10 or length > 80
filtered <- length_filter(input, rm.min = 10, rm.max = 80@)

look at the filtered sequences
sread(filtered)

messageFun_ messageFun_

Description

messageFun_

Usage

messageFun_(.who, .chunck, .which_read, my_envir)

Value

Changes the state of reactive vector, without return

16 n_filter

myPlot myPlot

Description

Construction of diagnostic plots. The function depends of the values created by plotObject

Usage

myPlot(isPaired, location, sampleSize, kmerLength, theFile, maxFreq)

Value

List with Highcharts plots

n_filter Remove sequences with non-identified bases (Ns) from a ShortReadQ
object

Description

This program is a wrapper to nFilter. It removes the sequences with a number of N’s above a
threshold value 'rm.N’. All the sequences with a number of N > rm.N (N >=rm.N) will be removed

Usage

n_filter(input, rm.N)

Arguments
input ShortReadQ object
rm.N Threshold value of N’s to remove a sequence from the output (sequences with
number of Ns > threshold are removed) For example, if rm.N is 3, all the se-
quences with a number of Ns > 3 (Ns >= 4) will be removed
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

outputClean_

Examples

require('Biostrings')
require('ShortRead")

create 6 sequences of width 20
set.seed(10)
input <- random_seq(50, 20)

inject N's

set.seed(10)

input <- inject_letter_random(input, how_many_seqs = 1:30,
how_many = 1:10)

input <- DNAStringSet(input)

watch the N's frequency
hist(letterFrequency(input, 'N'), breaks = 0:10,
main = 'Ns Frequency', xlab = '# Ns')

create qualities of width 20
set.seed(10)
input_g <- random_qual(50, 20)

create names
input_names <- seq_names(50)

create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_g, id = input_names)

apply the filter
filtered <- n_filter(my_read, rm.N = 3)

watch the filtered sequences
sread(filtered)

watch the N's frequency
hist(letterFrequency(sread(filtered), 'N'),

17

main = 'Ns distribution', xlab = '')
outputClean_ outputClean_
Description
outputClean_
Usage

outputClean_(.myFile, .lengthWidthVec, my_envir)

18

Value

Vector with chunks length and width information

plotC

plotA plotA

Description

plotA

Usage

plotA(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

Per cycle quality plot

plotB plotB

Description

plotB

Usage

plotB(x, nplots = 1, theFile = c("input”, "output"), sampleSize)

Value

Per cycle mean base quality plot

plotC plotC

Description

plotC

Usage

plotC(x, nplots = 1, theFile = c("input”, "output"), sampleSize)

Value

Mean quality of reads distribution plot

plotD

19

plotD plotD

Description

plotD

Usage

plotD(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

percent of reads with quality > threshold plot

plotE plotE

Description

plotE

Usage

plotE(x, nplots = 1, theFile = c("input”, "output"), sampleSize)

Value

Per cycle base proportion plot

plotF plotF

Description

plotF

Usage

plotF(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

Per cycle base proportion plot (lineplot)

20

plotl

plotG plotG

Description

plotG

Usage

plotG(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

CG content distribution plot

plotH plotH

Description

plotH

Usage

plotH(x, nplots = 1, theFile = c("input”, "output"), sampleSize)

Value

Read length distribution

plotI plotl

Description

plotl

Usage

plotI(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

Read ocurrence distribution plot

plotJ 21

plotJ plotJ

Description

plotJ

Usage

plotJ(x, nplots = 1, theFile = c("input”, "output”), sampleSize)

Value

Relative kmer diversity plot

plotObjects plotObjects Create the information required to construct the plots.
This is the input of myplot, which uses the values created for this func-
tion to construct the plots

Description

plotObjects Create the information required to construct the plots. This is the input of myplot,
which uses the values created for this function to construct the plots

Usage

plotObjects(fqg, klength, basename, maxFreq, sampleSize)

Value

List with information to construct the diagnostic plots

22 gmean_filter

processingFunction_ processingFunction_

Description

This function is the core of the application. It is used for the program to process the FASTQ file/s
in the environment of the Shiny app. Note that this program makes a call to create_cleanfunction

Usage

processingFunction_(my_envir)

Value

Processes the input FASTQ file, without return

gmean_filter Filter sequences by their average quality

Description

The program removes the sequences with a quality lower the minq’ threshold

Usage

gmean_filter(input, ming, gq_format = NULL, check.encod = TRUE)

Arguments

input ShortReadQ object

ming Quality threshold

g_format Quality format used for the file, as returned by check.encoding

check.encod Check the encoding of the sequence? This argument is incompatible with q_format
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

random_length

Examples
require(ShortRead)

set.seed(10)
create 30 sequences of width 20
input <- random_seq(30, 20)

create qualities of width 20

high quality (15 sequences)

set.seed(10)

my_qual <- random_qual(c(30,40), slength = 15, swidth = 20,
encod = 'Sanger')

low quality (15 sequences)

set.seed(10)

my_qual_2 <- random_qual(c(5,30), slength = 15, swidth = 20,

encod = 'Sanger')

concatenate vectors
input_g<- c(my_qual, my_qual_2)

create names
input_names <- seq_names(30)

create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_g, id = input_names)

watch the average qualities
alphabetScore(my_read) / width(my_read)

apply the filter
filtered <- gmean_filter(my_read, ming = 30)

watch the average qualities

alphabetScore(my_read) / width(my_read)

watch the filtered sequences
sread(filtered)

random_length Create a named object with random sequences and qualities

Description

Create a ShortReadQ object with random sequences and qualities

24 random_length
Usage
random_length(
n)
widths,
random_widths = TRUE,
replace = TRUE,
len_prob = NULL,
seq_prob = c(0.25, 0.25, 0.25, 0.25),
g_prob = NULL,
nuc = c("DNA", "RNA"),
qual = NULL,
encod = c("Sanger"”, "Illuminal.8"”, "Illuminal.5", "Illuminal.3", "Solexa"),
base_name = "s",
sep = II_ n
)
Arguments
n number of sequences
widths width of the sequences

random_widths

replace

len_prob

seq_prob

g_prob

nuc

qual

encod

width must be picked at random from the passed parameter *widths’, consider-
ing the value as an interval where any integer can be picked. Default TRUE.
Otherwise, widths are picked only from the vector passed.

sample widths with replacement? Default TRUE.

vector with probabilities for each width value. Default NULL (equiprobability)
a vector of four probabilities values to set the frequency of the nucleotides "A’,
'C’,’G’, T, for DNA, or "A’, ’C’, ’G’, ’U’, for RNA. For example = c(0.25,
0.25, 0.5, 0). Default is = c(0.25, 0.25, 0.25, 0.25) (equiprobability for the 4

bases). If the sum of the probabilities is > 1, the values will be nomalized to the
range [0, 1].

a vector of range = range(qual), with probabilities to set the frequency of each
quality value. Default is equiprobability. If the sum of the probabilities is > 1,
the values will be nomalized to the range [0, 1].

create sequences of DNA (nucleotides = c(CA’, ’C’, ’G’, "T’)) or RNA (nu-
cleotides = c(CA, ’C’,’G’, ’U’))?. Default: 'DNA’

quality range for the sequences. It must be a range included in the selected
encoding:

’Sanger’ = [0, 40]

"Iluminal.8’ = [0, 41]

’Illuminal.5’ = [0, 40]

’Illuminal.3’ = [3, 40]

’Solexa’ = [-5, 40]

example: for a range from 20 to 30 in Sanger encoding, pass the argument =
c(20, 30)

sequence encoding

random_qual 25

base_name Base name for strings
sep Character separing base names and the read number. Default: °_’
Value

ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

For reproducible examples, make a call to set.seed before
running each random function

set.seed(10)
s1 <- random_seq(slength = 10, swidth
s1

20)

set.seed(10)

s2 <- random_seq(slength = 10, swidth = 20,
prob = c(0.6, 0.1, 0.3, 0))

s2

random_qual Create random qualities for a given encoding

Description

Create a BStringSet object with random qualities

Usage

random_qual(
slength,
swidth,
qual = NULL,
encod = c("Sanger”, "Illuminal.8", "Illuminal.5"”, "Illuminal.3", "Solexa"),
prob = NULL

26 random_seq

Arguments
slength number of sequences
swidth width of the sequences
qual quality range for the sequences. It must be a range included in the selected
encoding:
’Sanger’ = [0, 40]
"Illuminal.8’ = [0, 41]
’Illuminal.5’ = [0, 40]
’Illuminal.3’ = [3, 40]
’Solexa’ = [-5, 40]
example: for a range from 20 to 30 in Sanger encoding, pass the argument =
c(20, 30)
encod sequence encoding
prob a vector of range = range(qual), with probabilities to set the frequency of each
quality value. Default is equiprobability. If the sum of the probabilities is > 1,
the values will be nomalized to the range [0, 1].
Value

BStringSet object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

g <- random_qual(30, 20)
q

random_seq Create random sequences

Description

Create a DNAStringSet object with random sequences

Usage

random_seq/(
slength,
swidth,
nuc = c(”"DNA", "RNA"),
prob = c(0.25, 0.25, ©.25, 0.25)

seq_filter

Arguments

slength
swidth

nuc

prob

Value

27

Number of sequences
Width of the sequences

Create sequences of DNA (nucleotides = cCA’, ’C’, ’G’, °T’)) or RNA (nu-
cleotides =c(C A, ’C’, ’G’, ’U’))?. Default: ' DNA’

A vector of four probability values used to set the frequency of the nucleotides
A, ’C’, ’G, T, for DNA, or A, ’C’, ’G’, U, for RNA. For example =
c(0.25, 0.25, 0.5, 0). Default is = ¢(0.25, 0.25, 0.25, 0.25) (equiprobability for
the 4 bases). If the sum of the probabilities is > 1, the values will be nomalized
to the range [0, 1].

DNAStringSet object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

For reproducible examples, make a call to set.seed before
running each random function

set.seed(10)

s1 <- random_seq(slength = 10, swidth = 20)

s1

set.seed(10)

s2 <- random_seq(slength = 10, swidth

20,

prob = c(0.6, 0.1, 0.3, 0))

s2

seq_filter

Remove a set of sequences

Description

Removes a set of sequences

Usage

seq_filter(input, rm.seq)

28

Arguments

input ShortReadQ object

rm.seq Ccharacter vector with sequences to remove
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require(ShortRead)

set.seed(10)
input <- random_length(30, 3:7)
rm.seq = c('TGGTC', 'CGGT', 'GTTCT', 'ATA")

verify that some sequences match
match_before <- unlist(lapply(rm.seq,
function(x) grep(x, as.character(sread(input)))))

filtered <- seq_filter(input,rm.seq = rm.seq)
verify that matching sequences were removed

match_after <- unlist(lapply(rm.seq,
function(x) grep(x, as.character(sread(filtered)))))

seq_names

seq_names Create sequences names

Description

Create BStringSet object with names

Usage

seq_names(n, base_name = "s", sep = "_")
Arguments

n Number of reads

base_name Base name for strings

sep Character separing base names and the read number. Default: *_

trim3q_filter 29

Value

BStringSet object

Examples

snames <- seqg_names(10)
snames

snames2 <- seq_names(1@, base_name = 's', sep = '.")
snames2
trim3q_filter Filter sequences with low quality in 3’ tails
Description

The program removes from the 3’ tails of the sequences a set of nucleotides showing a quality < a
threshold value in a ShortReadQ object

Usage

trim3g_filter(
input,
rm.3qual,
g_format = NULL,
check.encod = TRUE,
remove_zero = TRUE

)
Arguments
input ShortReadQ object
rm.3qual Quality threshold for 3’ tails
g_format Quality format used for the file, as returned by check_encoding
check.encod Check the encoding of the sequence? This argument is incompatible with q_format.
Default TRUE
remove_zero Remove zero-length sequences?
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

30 unique_filter

Examples

require('Biostrings')
require('ShortRead')

create 6 sequences of width 20
set.seed(10)
input <- random_seq(6, 20)

create qualities of width 15 and paste to qualities
of length 5 used for the tails.

for two of the sequences, put low qualities in tails

set.seed(10)

my_qual <- random_qual(c(30,40), slength = 6, swidth = 15,
encod = 'Sanger')
set.seed(10)
tails <- random_qual(c(30,40), slength = 6, swidth = 5,
encod = 'Sanger')
set.seed(10)
tails[2:3] <- random_qual(c(3, 20), slength = 2,
swidth = 5, encod = 'Sanger')
my_qual <- paste@(my_qual, tails)
input_qg <- BStringSet(my_qual)
create names
input_names <- seq_names(6)
create ShortReadQ object
my_read <- ShortReadQ(sread = input,
quality = input_qg, id = input_names)
apply the filter
filtered <- trim3q_filter(my_read, rm.3qual = 28)
look at the trimmed sequences
sread(filtered)
unique_filter Remove duplicated sequences in a FASTQ file
Description

This program is a wrapper to occurrenceFilter. It removes the duplicated sequences of a FASTQ
file.

Usage

unique_filter(input)

unique_filter

Arguments

input ShortReadQ object

Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

set.seed(10)

s <- random_seq(10, 10)

s <- sample(s, 30, replace = TRUE)
g <- random_qual(30, 10)

n <- seg_names(30)

my_read <- ShortReadQ(sread = s, quality = q, id = n)

check presence of duplicates
isUnique(as.character(sread(my_read)))

apply the filter
filtered <- unique_filter(my_read)

isUnique(as.character(sread(filtered)))

Index

* internal inject_letter_random, 12
asc2int, 5 int2asc, 13
check_onclick_, 6 isNaturalNumber, 13
create_cleanfunction_, 8
create_uniform_width, 8 launch_fqc, 14
cutRseq, 9 length_filter, 14
int2asc, 13

isNaturalNumber, 13 messagefun_, 15

messageFun_, 15 myPlot, 16

myPlot, 16 n_filter, 16

outputClean_, 17 nFilter, 16

plotA, 18

plotB, 18 occurrenceFilter, 30

plotC, 18 outputClean_, 17

plotD, 19

plotE, 19 plotA, 18

plotF, 19 plotB, 18

plotG, 20 plotC, 18

plotH, 20 plotD, 19

plotI, 20 plotE, 19

plot7J, 21 plotF, 19

plotObjects, 21 plotG, 20

processingFunction_, 22 plotH, 20

plotI, 20

adapter_filter, 3 plot]J, 21
asc2int, 5 plotObjects, 21

processingFunction_, 22
BStringSet, 25, 26, 28, 29

gmean_filter, 22
check_encoding, 5

check_onclick_, 6 random_length, 23
complex_filter, 6 random_qual, 25
create_cleanfunction_, 8 random_seq, 26
create_uniform_width, 8 runApp, 14
cutlLseq (cutRseq), 9
cutRseq, 9 seq_filter, 27
seq_names, 28
DNAString, 3, 4, 10 ShortReadQ, 3,4, 7,11, 15, 16, 22, 23, 25, 28,
DNAStringSet, 4, 10, 26, 27 29, 31
fixed_filter, 11 trim3qg_filter, 29

32

INDEX

trimLRPatterns, 3, 4, 9, 10

unique_filter, 30

33

	adapter_filter
	asc2int
	check_encoding
	check_onclick_
	complex_filter
	create_cleanfunction_
	create_uniform_width
	cutRseq
	fixed_filter
	inject_letter_random
	int2asc
	isNaturalNumber
	launch_fqc
	length_filter
	messageFun_
	myPlot
	n_filter
	outputClean_
	plotA
	plotB
	plotC
	plotD
	plotE
	plotF
	plotG
	plotH
	plotI
	plotJ
	plotObjects
	processingFunction_
	qmean_filter
	random_length
	random_qual
	random_seq
	seq_filter
	seq_names
	trim3q_filter
	unique_filter
	Index

