Package ‘DEScan2’

February 1, 2026

Type Package

Title Differential Enrichment Scan 2

Version 1.31.0

Date 2025-07-31

Maintainer Dario Righelli <dario.righelli@gmail.com>

Description Integrated peak and differential caller, specifically designed for
broad epigenomic signals.

Encoding UTF-8
License Artistic-2.0
LazyData TRUE

biocViews ImmunoOncology, PeakDetection, Epigenetics, Software,
Sequencing, Coverage

Depends R (>=3.5), GenomicRanges

Imports BiocParallel, BiocGenerics, ChIPpeakAnno, data.table,
DelayedArray, Seqinfo, GenomelnfoDb, GenomicAlignments, glue,
IRanges, plyr, Repp (>= 0.12.13), rtracklayer, S4 Vectors (>=
0.23.19), SummarizedExperiment, tools, utils

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.2

Suggests BiocStyle, knitr, rmarkdown, testthat, edgeR, limma, EDASeq,
RUVSeq, RColorBrewer, statmod

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/DEScan2
git_branch devel

git_last_commit 788dce2

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

2 Contents
Author Dario Righelli [aut, cre],
John Koberstein [aut],
Bruce Gomes [aut],
Nancy Zhang [aut],
Claudia Angelini [aut],
Lucia Peixoto [aut],
Davide Risso [aut]
Contents
binnedCoverage e 3
binnedCovOnly e e e e 4
binToChrCoordMatRowNames 4
computeCoverageMovingWindowOnChr 5
computeLambdaOnChr 5
COMPULEZ. © . v v o v e o e 6
constructBedRanges 7
countFinalRegions 8
CreateGranges v v v v i e e e e e e e e e e e e e e e e 9
cutGRangesPerChromosome 10
c_get_disjoint_max_Win e e e e e 11
DEScan2 e 11
divideEachSampleByChromosomes 12
evenRunMean 13
evenRunSum Lo 13
finalRegions 14
findOverlapsOverSamples L 15
findPeaks 16
fromSamplesToChrsGRangesList 18
generateDFofSamplesPerChromosomes 18
get_disjoint_max_win. oL e e e e 19
giveUniqueNamesToPeaksOverSamples 20
initMergedPeaksNames 20
keepRelevantChrs L 21
repparma_get_disjoint_max_wino 21
readBamAsBed 22
readBedFile 23
readFilesAsGRangesList 23
RleListToRIeMatrix oo et e 24
saveGRangesAsBed L 25
saveGRangesAsTSv 26
setGRGenomelnfo 27
Index 28

binnedCoverage 3

binnedCoverage binnedCoverage

Description

this function computes the coverage over a binned chromosome, starting from a per base computed

coverage.
Usage
binnedCoverage(
bins,
numvar,
mcolname,
covMethod = c("max”, "mean"”, "sum”, "min"),
roundingMethod = c("none"”, "floor", "ceiling", "round")
)
Arguments
bins a GRanges object representing a chromosome binned.
numvar an RleList representing the per base coverage over the chr.
mcolname the name of column where the sum have to be stored.
covMethod a method to apply for the computing of the coverate it can be one of "max",

"non non

"mean", "sum", "min". ("max" is default)

roundingMethod a method to apply to round the computations it can be one of "none", "floor",

"ceiling", "round". It’s useful only when using covMethod="mean". ("none" is
default)

Value

the bins GRanges with the mcolname attached

Examples

dividing one chromosome in bins of 50 bp each

seginfo <- Seqginfo::Seginfo(genome="mm9")

bins <- GenomicRanges: :tileGenome(
seglengths=Seqinfo: :seqlengths(seqinfo)[1],
tilewidth=50,
cut.last.tile.in.chrom=TRUE)

gr <- GenomicRanges: :GRanges(seqnames = S4Vectors::Rle("chri1”, 100),
ranges=IRanges: :IRanges(start = seq(from=10, to=1000, by=10),
end=seq(from=20, to=1010, by = 10)))

cov <- GenomicRanges::coverage(x=gr)

(binnedMaxCovGR <- binnedCoverage(bins, cov, "binned_cov"))

(binnedMeanCovGR <- binnedCoverage(bins, cov, "binned_cov”,

4 binToChrCoordMatRowNames

covMethod="mean", roundingMethod="floor"))
(binnedSumCovGR <- binnedCoverage(bins, cov, "binned_cov"”, covMethod="sum"))

binnedCovOnly binnedCovOnly

Description

it’s useful just to coerce the bin coverage to an Rle object

Usage

binnedCovOnly(bins, numvar, mcolname)

Arguments
bins a GRanges object representing a chromosome binned
numvar an RleList representing the per base coverage over the chr
mcolname the name of column where the sum have to be stored
Value

an Rle within the per bin computed coverage

binToChrCoordMatRowNames
binToChrCoordMatRowNames

Description
computes the starting range of the bins for the binMatrix, taking in input the length of the chromo-
some of the matrix.

Usage
binToChrCoordMatRowNames(binMatrix, chrLength, binWidth = 50)

Arguments
binMatrix a matrix where each row represents a bin.
chrLength the length of the chromosome of the binMatrix.
binWidth the width of the bin.

Value

the binMatrix with start range as rownames.

computeCoverageMoving WindowOnChr 5

computeCoverageMovingWindowOnChr
computeCoverageMovingWindowOnChr

Description

computes the coverage on a chromosomewith a set of moving windows of dimensions minWin-
Width:maxWinWidth

Usage

computeCoverageMovingWindowOnChr(
chrBedGRanges,
minWinWidth = 50,
maxWinWidth = 1000,
binWidth = 50,
verbose = TRUE

Arguments

chrBedGRanges a GRanges to compute the coverage

minWinWidth the minimum width of the window to use for the coverage
maxWinWidth the maximum width of the window to use for the coverage
binWidth the dimension of the bin in base number

Value

RleList where each element is a window within the Rle of its coverage

computeLambdaOnChr computeLambdaOnChr

Description

computes the lambdas on a chromosome for the winVector windows and other two windows (min/maxCompWinWidth)
to compare with

6 computeZ

Usage

computelLambdaOnChr(

chrGRanges,

winVector = seq_len(20),
minChrR1leWComp,
minCompWinWidth
maxChrRleWComp,
maxCompWinWidth = 10000,
verbose = TRUE

5000,

)

Arguments
chrGRanges the GRanges representing the reads of the chromosome.
winVector the of width of the windows used to compute the coverage.

minChrRleWComp and Rle object within coverage of window of width minCompWinWidth.
minCompWinWidth

the width of the window used for the coverage of minChrRleWComp in bases.
maxChrRleWComp and Rle object within coverage of window of width minCompWinWidth.

maxCompWinWidth
the width of the window used for the coverage of maxChrRleWComp in bases.

verbose verbose flag.
binSize the size of the bin in bases.
Value

an RleList where each element is a window of winVector, within an Rle representing the lambda
computed for that window.

computeZ computeZ

Description

Computes Z-Scores returning the z matrix.

Usage

computeZ(
lambdaChrRlelList,
runWinRleList,
chrLength,
minCount = 0.1,
binSize = 50,
verbose = FALSE

constructBedRanges 7
Arguments
lambdaChrRlelList
an RleList of lambda values computed by computeLambdaOnChr function each
element of the list is an Rle representing the lambda for the moving window in
the list position.
runWinRleList an RleList of coverage values computed. by computeCoverageMovingWin-
dowOnChr function each element of the list is an Rle representing the coverage
for the moving window in the list position.
chrLength the length of the chr in analysis.
minCount A small constant (usually no larger than one) to be added to the counts prior to
the log transformation to avoid problems with log(0).
binSize the size of the bin.
verbose verbose output.
Value

z a matrix of z scores for each window (column) and bin (row). where the rownames represent the
starting base of each bin.

constructBedRanges constructBedRanges

Description

Constructs a GRanges object from a bam/bed/bed.zip file in a consistent way.

Usage
constructBedRanges(
filename,
filetype = c("bam”", "bed", "bed.zip"”, "narrow"”, "broad"),
genomeName = NULL,
onlyStdChrs = FALSE,
arePeaks = FALSE,
verbose = FALSE
)
Arguments
filename the complete file path of a bam?bed file.
filetype the file type bam/bed/bed.zip/narrow/broad.
genomeName the name of the genome used to map the reads (i.e. "mm9"). N.B. if NOT NULL
the GRanges Seqinfo will be forced to genomeName Seqinfo (needs Internet
access, but strongly suggested!)
onlyStdChrs flag to keep only standard chromosome.
arePeaks flag indicating if the file contains peaks.
verbose flag to obtain verbose output.

8 countFinalRegions

Value

a GRanges object.

Examples

files <- list.files(system.file("extdata/bam/", package="DEScan2"),
pattern="bam$"”, full.names=TRUE)
bgr <- constructBedRanges(files[1], filetype="bam", genomeName="mm9",
onlyStdChrs=TRUE)
bgr

countFinalRegions countFinalRegions

Description

count reads falling within the final regions.

Usage

countFinalRegions(
regionsGRanges,
readsFilePath = NULL,
fileType = c("bam”, "bed"),
minCarriers = 2,
genomeName = NULL,
onlyStdChrs = FALSE,

carrierscolname = "k-carriers”,
ignStrandSO = TRUE,
modeSO = "Union",
saveFlag = FALSE,
savePath = "finalRegions”,
verbose = TRUE
)
Arguments

regionsGRanges a GRanges objects representing the peaks to compute the coverage, with a "k-
carriers" mcols. (tipically generated by finalRegions function).

readsFilePath the filepath of bam or bed files necessary to compute the coverage.

fileType the file type of the input files.
minCarriers minimum number of carriers (samples).
genomeName code name of the genome of reads files (i.e. "mm9").

onlyStdChrs a flag indicating if to keep only the standard chromosomes

createGranges 9

carrierscolname

character describing the name of the column within the carriers number (default
is "k-carriers").

ignStrandso a flag indicating if to ignore the reads strand. (see GenomicAlignments::summarizeOverlaps).
modeSO the mode to use, defaultis "Union". (see GenomicAlignments::summarizeOverlaps).
saveFlag a flag indicating if to save the results.
savePath the path where to store the results.
verbose verbose output.

Value

A SummarizedExperiment object containing as assays the read counts matrix with regions as rows
and samples as columns, and as rowRanges the GRanges object representing the peaks used as rows
in the matrix.

Examples

filename <- system.file("”extdata/regions/regions.rds”, package="DEScan2")

regionsGR <- readRDS(file=filename)

reads.path <- system.file("extdata/bam", package="DEScan2")

finalRegionsSE <- countFinalRegions(regionsGRanges=regionsGR,
readsFilePath=reads.path, fileType="bam", minCarriers=1,
genomeName="mm9", onlyStdChrs=TRUE, ignStrandSO=TRUE, saveFlag=FALSE,
verbose=TRUE)

library("SummarizedExperiment")

assay(finalRegionsSE) ## matrix of counts

rowRanges(finalRegionsSE) ## the GRanges of the input regions

createGranges createGranges

Description

a simplified wrapper function to create a GRanges object.

Usage

createGranges(chrSeqInfo, starts, widths, mcolname = NULL, mcolvalues = NULL)

Arguments
chrSeqInfo a seqinfo object.
starts the start ranges.
widths the width of each range.
mcolname the name for the mcol attribute.

mcolvalues the values for the mcol attribute.

10 cutGRangesPerChromosome

Value

a GRanges object.

Examples

chrSeqInfo <- Seqinfo::Seginfo(genome="mm9")["chri"]

starts=sample(seqg_len(100), 10)

widths=starts+10;

mcolname <- "z-score”;

mcolvalues <- sample(seq_len(100), 10)

chrGR <- createGranges(chrSeqInfo=chrSeqlnfo, starts=starts, widths=widths,
mcolname=mcolname, mcolvalues=mcolvalues)

cutGRangesPerChromosome
cutGRangesPerChromosome

Description

takes in input a GRanges object, producing a LIST of GRanges, one for each chromosome.

Usage

cutGRangesPerChromosome (GRanges)

Arguments

GRanges a GRanges object.

Value

a named list of GRanges, one for each chromosome.

Examples

library("GenomicRanges")

gr <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "%x" "+" "-")), c(1, 2, 2, 3, 2)),
seglengths=c(chr1=11, chr2=12, chr3=13))

(grchrlist <- cutGRangesPerChromosome(gr))

c_get_disjoint_max_win

11

c_get_disjoint_max_win
c_get_disjoint_max_win

Description

just a wrapper for the C function. Useful to modify indexes and colnames.

Usage

c_get_disjoint_max_win(
z0,
sigwin = 10,
nmax = 9999999,

zthresh = 10,
verbose = FALSE
)
Arguments
z0 the z matrix.
sigwin the sigwin.
nmax the nmax.
zthresh peaks lower than this value will not be kept.
verbose verbose flag.
Value
a matrix
DEScan2 DEScan2
Description

integrated peak and differential caller, specifically designed for broad epigenomic signals.

Author(s)
Dario Righelli

12 divideEachSampleByChromosomes

divideEachSampleByChromosomes
divideEachSampleByChromosomes

Description

taken in input a grangeslist of samples, generate a list of samples where each element has a GRanges-
List each element of the GRangesList represents a single chromosome.

Usage

divideEachSampleByChromosomes(samplesGRangesList)

Arguments
samplesGRangesList
a GRangesList of samples.
Value

list of samples where each element is a list of chromosomes and each of these elements is a
GRanges.

Examples

library("GenomicRanges")

gr1 <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "x" "+" "-")) c(1, 2, 2, 3, 2)),
seqglengths=c(chr1=11, chr2=12, chr3=13))

gr2 <- GRanges(
segnames=Rle(c("chr1”, "chr4"”, "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "%" "+" "-"3) c(, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr4=12, chr3=13))

sgrl <- GRangesList(gril, gr2)

names(sgrl) <- c("samp1”, "samp2")

(sampChrGrl <- divideEachSampleByChromosomes(sgrl))

evenRunMean 13

evenRunMean evenRunMean

Description

this function computes a running mean over X with a window width k (modified from S4Vectors
package to work on even k, see evenRunSum).

Usage

evenRunMean(x, k, endrule = c("drop”, "constant”), na.rm = FALSE)
Arguments

X an Rle object, typically a coverage object.

k window dimension for the running sum over x.

endrule refer to S4Vectors::runMean.

na.rm refer to S4Vectors::runMean.
Value

an Rle within the running mean over x with a win of length k.

evenRunSum evenRunSum

Description

this function computes a running sum over x with a window width k (modified from S4Vectors
package to work on even k, in such a case it adds a length at the end of the output Rle).

Usage

evenRunSum(x, k, endrule = c("drop”, "constant”), na.rm = FALSE)
Arguments

X an Rle object, typically a coverage object.

k window dimension for the running sum over x.

endrule refer to S4Vectors::runSum.

na.rm refer to S4Vectors::runSum.
Value

an Rle within the running sum over x with a win of length k.

14 finalRegions

finalRegions finalRegions

Description

Align peaks to form common regions then filter regions for presence in multiple replicates taking
in input a GRangesList where each element is a sample of called peaks.

Usage

finalRegions(
peakSamplesGRangeslList,
zThreshold = 20,
minCarriers = 2,
saveFlag = TRUE,
outputFolder = "overlappedPeaks”,
verbose = FALSE,
scorecolname = "z-score”,
coverageFlag = FALSE,
BPPARAM = BiocParallel: :bpparam()

Arguments

peakSamplesGRangesList
named GRangesList where each element is a sample of called peaks. A score
mcols values is needed for each GRanges. The scorecolname param can be used
as reference name for the score. (tipically returned by findPeaks function).

zThreshold a minimum threshold for the z score. All peaks lesser than this value will be
ignored.

minCarriers a threshold of minimum samples (carriers) for overlapped regions.

saveFlag a flag for saving results in a tsv file.

outputFolder the directory name to store the bed file.
verbose verbose output.
scorecolname character describing the name of the column within the peaks score.

coverageFlag boolean indicating if to compute the scores in a coverage mode (sum of the
reads of merged peak) or in a score mode (a normalized score across the merged
peaks)

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Value

a GRanges of selected overlapping peaks with z-score, n-peaks, k-carriers as mcols object.

findOverlapsOverSamples 15

Examples

peak.path <- system.file("extdata/peaks/RData/peaksGRL_all_files.rds",

package="DEScan2")

grl <- readRDS(peak.path)

grl

regionsGR <- finalRegions(peakSamplesGRangesList=grl, zThreshold=1,

minCarriers=3, saveFlag=FALSE, verbose=TRUE)

findOverlapsOverSamples

findOverlapsOverSamples

Description

given in input a GRangeList where each element is a sample computes the coverage extending a
both direction window of prefixed length.

Usage

findOverlapsOverSamples(
samplePeaksGRangelist,

extendRegions

= 200,

minOverlap = 0oL,

maxGap = -1L,
zThresh = 10,

verbose = FALSE,
scorecolname = "z-score”,
coverageFlag = FALSE

Arguments

samplePeaksGRangelist

extendRegions
minOverlap
maxGap
zThresh
verbose
scorecolname

coverageFlag

given a granges list of samples finds the overlapping regions between them.

the number of bases to extend each region at its start and end.

the minimum overlap each peak needs to have. (see ChipPeak Anno::findOverlapsOfPeaks)
the maximum gap admissible between the peaks. (see ChipPeakAnno::findOverlapsOfPeaks)
a threshold value on z-score/scorecolname

verbose flag

character describing the name of the column within the peaks score.

boolean indicating if to compute the scores in a coverage mode (sum of the
reads of merged peak) or in a score mode (a normalized score across the merged
peaks)

16 findPeaks

Value

a GRanges of peaks overlapped and unique between samples.

Examples

(peaks.file <- system.file("extdata/peaks/RData/peaksGRL_all_files.rds",
package="DEScan2"))

peaksGRLFiles <- readRDS(peaks.file)

(overlPeaks <- findOverlapsOverSamples(peaksGRLFiles))

findPeaks findPeaks

Description

This function calls peaks from bed or bam inputs using a variable window scan with a poisson
model using the surrounding maxCompWinWidth (10kb) as background.

Usage

findPeaks(
files,
filetype = c("bam", "bed"),
genomeName = NULL,
binSize = 50,
minWin = 50,
maxWin = 1000,
zthresh = 10,
minCount = 0.1,
minCompWinWidth = 5000,
maxCompWinWidth = 10000,
outputFolder = "Peaks",
save = TRUE,
force = TRUE,
verbose = FALSE,
sigwin = 10,
onlyStdChrs = TRUE,

chr = NULL,
BPPARAM = BiocParallel: :bpparam()
)
Arguments
files Character vector containing paths of files to be analyzed.
filetype Character, either "bam" or "bed" indicating format of input file.
genomeName the code of the genome to use as reference for the input files. (cfr. con-

structBedRanges function parameters)

findPeaks
binSize
minWin
maxWin

zthresh

minCount

minCompWinWidth

maxCompWinWidth

outputFolder

save

force
verbose

sigwin

onlyStdChrs

chr
BPPARAM

Value

17

Integer size in bases of the minimum window for scanning, 50 is the default.
Integer indicating the minimum window size in bases notation.
Integer indicating the maximum window size in bases notation.

Cuttoff value for z-scores. Only windows with greater z-scores will be kept,
default is 10.

A small constant (usually no larger than one) to be added to the counts prior to
the log transformation to avoid problems with log(0).

minimum bases width of a comparing window for Z-score.

maximum bases width of a comparing window for Z-score.

A string, Name of the folder to save the Peaks (optional) if the directory doesn’t
exist, it will be created. (Default is "Peaks")

Boolean, if TRUE files will be saved in a "./Peaks/chr*" directory created (if not
already present) in the current working directory.

a boolean flag indicating if to force output overwriting.
if to show additional messages

an integer value used to compute the length of the signal of a peak (default value
is 10).

a flag to work only with standard chromosomes. (cfr. constructBedRanges func-
tion parameters).

if not NULL, a character like "chr#" indicating the chromosomes to use.

object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

A GRangesList where each element is a sample. Each GRanges represents the founded peaks and
attached the z-score of the peak as mcols.

Examples

bam.files <- list.files(system.file("extdata/bam”, package = "DEScan2"),

full.names = TRUE)

peaks <- findPeaks(files=bam.files[1], filetype="bam",

head(peaks)

genomeName="mm9" ,

binSize=50, minWin=50, maxWin=1000,
zthresh=5, minCount=0.1, sigwin=10,
minCompWinWidth=5000, maxCompWinWidth=10000,
save=FALSE,

onlyStdChrs=TRUE,

chr=NULL,

verbose=FALSE)

18 generateDFofSamplesPerChromosomes

fromSamplesToChrsGRangesList
fromSamplesToChrsGRangesList

Description

converts a GRangesList orgnized per samples to a GRangesList organized per Chromosomes where
each element is a GRangesList of samples.

Usage

fromSamplesToChrsGRangesList(samplesGRangesList)

Arguments
samplesGRangeslList
a GRangesList of samples. Tipically generaed by findPeaks function.
Value

A GRangesList of chromosomes where each element is a GRanges list of samples.

Examples

library(”"GenomicRanges")

gr1 <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1"”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "x", "+" "-")) c(1, 2, 2, 3, 2)),
seglengths=c(chr1=11, chr2=12, chr3=13))

gr2 <- GRanges(
segnames=Rle(c("chr1”, "chr4"”, "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "%" "+" "-")) c(, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr4=12, chr3=13))

sgrl <- GRangesList(grl, gr2)

names(sgrl) <- c("samp1”, "samp2")

(chrGrlSampGr <- fromSamplesToChrsGRangesList(sgrl))

generateDFofSamplesPerChromosomes
generateDFofSamplesPerChromosomes

Description

generates a dataframe where each row is a sample (Ist col) and a string with its chromosomes

non

separated by ";" (2nd col) (useful to fromSamplesToChromosomesGRangesList function).

get_disjoint_max_win 19

Usage

generateDFofSamplesPerChromosomes (samplesChrGRList)

Arguments
samplesChrGRList
a GRangesList of samples each divided by chromosome.
Value

a dataframe where each row is a sample (st col) and a string with its chromosomes separated by
";" (2nd col).

get_disjoint_max_win get_disjoint_max_win

Description

find significant z score windows keeping the max value without intersections

Usage

get_disjoint_max_win(
z0,
sigwin = 20,
nmax = Inf,
zthresh = -Inf,
two_sided = FALSE,
verbose = FALSE

)
Arguments
z0 Matrix containing z scores with bins as rows and windows size as columns.
sigwin Integer indicating how many bins per fragment.
nmax Integer indicating the maximum number of windows to return.
zthresh Integer indicating the minimum z-score considered significant.
two_sided not used argument.
verbose verbose flag.
Value

a matrix of integer containing founded peaks

20 initMergedPeaksNames

giveUniqueNamesToPeaksOverSamples
giveUniqueNamesToPeaksOverSamples

Description

given a GRangesList of samples assigns unique names to the peaks of each sample.

Usage

giveUniqueNamesToPeaksOverSamples(samplePeaksGRangelist)

Arguments

samplePeaksGRangelist
a GRangelL.ist of peaks, one GRanges for each sample.

Value

a GRangesList of samples within renamed peaks for each element.

initMergedPeaksNames initMergedPeaksNames

Description

given a GRanges of merged peaks assigns them new names.

Usage

initMergedPeaksNames(mergedGRanges)

Arguments
mergedGRanges A GRanges object. (Tipically Generated in findOverlapsOverSamples function
)
Value

a granges of renamed peaks.

keepRelevantChrs 21

keepRelevantChrs keepRelevantChrs

Description

subselect a list of GRanges created with cutGRangesPerChromosome returning only the relevant
chromosomes GRanges.

Usage

keepRelevantChrs(chrGRangesList, chr = NULL)

Arguments

chrGRangesList where each element is a chromosome, tipically created with cutGRangesPer-
Chromosome.

chr a character vector of chromosomes names of the form "chr#".

Value

the input chrGRangesList with only the relevat chromosomes.

Examples

library("GenomicRanges")

gr1 <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "%" "+" "-")) c(, 2, 2, 3, 2)),
seglengths=c(chr1=11, chr2=12, chr3=13))

grlc <- cutGRangesPerChromosome(gril)

(grlChr <- keepRelevantChrs(grlc, c("chr1”, "chr3")))

rcpparma_get_disjoint_max_win
repparma_get_disjoint_max_win Computes the disjoint max_win ma-
trix.

Description

rcpparma_get_disjoint_max_win Computes the disjoint max_win matrix.

22 readBamAsBed

Usage
rcpparma_get_disjoint_max_win(
z0,
sigwin = 10L,
zthresh = 10,

nmax = 9999999L,
verbose = TRUE

)
Arguments
z0 a matrix.
sigwin sigwin.
zthresh zthresh.
nmax nmax.
verbose verbose.
Value

a matrix of three columns (bin_idx, win_idx, z_val) idxs in C style.

readBamAsBed readBamAsBed

Description

read a bam file into a bed like format. forcing UCSC format for chromosomes names.

Usage
readBamAsBed(file)

Arguments

file Character indicating path to bam file.

Value

GRanges object.

Examples

files <- list.files(system.file("extdata/bam”, package="DEScan2"),
full.names=TRUE)
gr <- readBamAsBed(files[1])

readBedFile 23

readBedFile readBedFile

Description

read a bed file into a GenomicRanges like format. forcing UCSC format for chromosomes names.

Usage

readBedFile(filename, arePeaks = FALSE)

Arguments

filename the bed filename.

arePeaks a flag indicating if the the bed file represents peaks.

Value

GRanges object

Examples

bedFile <- list.files(system.file("extdata/bed”,package="DEScan2"),
full.names=TRUE)
gr <- readBedFile(bedFile)

readFilesAsGRangesList
readFilesAsGRangesList

Description

Takes in input the path of bam/bed files to process and stores them in a GRangesList object, named
with filePath/filenames. (for lazy people)

Usage

readFilesAsGRangesList(
filePath,
fileType = c("bam”", "bed”, "bed.zip", "narrow"”, "broad"),
genomeName = NULL,
onlyStdChrs = TRUE,
arePeaks = TRUE,
verbose = TRUE

24 RleListToRIleMatrix

Arguments
filePath the path of input files.
fileType the type of the files (bam/bed/bed.zip/narrow/broad).
genomeName the genome code to associate to the files. (recommended) (i.e. "mm9", "hg17")
onlyStdChrs a flag to keep only standard chromosomes.
arePeaks a flag indicating if the files contain peaks.
verbose verbose output flag.
Value
a GRangesList object
Examples

files.path <- system.file("extdata/bam”, package="DEScan2")

grl <- readFilesAsGRangesList(filePath=files.path, fileType="bam",
genomeName="mm9", onlyStdChrs=TRUE,
verbose=TRUE)

class(grl)

names(grl)

grl

RleListToRleMatrix RleListToRleMatrix

Description

a wrapper to create a RleMatrix from a RleList object.

Usage

RleListToRleMatrix(RleList, dimnames = NULL)

Arguments
Rlelist an RleList object with all elements of the same length.
dimnames the names for dimensions of RleMatrix (see DelayedArray pkg).
Value

a RleMatrix from DelayedArray package.

saveGRangesAsBed

Examples

library("DelayedArray”)
lengths <- ¢(3, 1, 2)
values <- c(15, 5, 20)
el1l <- S4Vectors::Rle(values=values, lengths=lengths)

el2 <- S4Vectors::Rle(values=sort(values), lengths=lengths)
rleList <- IRanges::RleList(ell, el2)

names(rleList) <- c("one”, "two")
(rleMat <- RlelListToRleMatrix(rlelList))

saveGRangesAsBed saveGRangesAsBed

Description

save a GRanges object as bed file.

Usage

saveGRangesAsBed(
GRanges,
filepath = tempdir(),
filename = tempfile(),
force = FALSE,
verbose = FALSE

)

Arguments
GRanges the GRanges object.
filepath the path to store the files. @
filename the name to give to the files.
force force overwriting.
verbose verbose output flag.

Value

none

26 saveGRangesAsTsv

Examples

library("GenomicRanges")

gr <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1”, "chr3”), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "x" "+" "-")) c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

saveGRangesAsBed(GRanges=gr, filepath=tempdir(), filename=tempfile(),
verbose=TRUE)

saveGRangesAsTsv saveGRangesAsTsv

Description

save a GRanges object as tsv file.

Usage

saveGRangesAsTsv(
GRanges,
filepath = tempdir(),
filename = tempfile(),
col.names = NA,
row.names = TRUE,
sep = "\t",
force = FALSE,
verbose = FALSE

)
Arguments

GRanges the GRanges object.

filepath the path to store the files.

filename the name to give to the files.

col.names a logical value indicating whether the column names are to be written in the file,
or a character vector indicating the column names, or NA for writing column
names for writing a TAB for the column name of the row names, default is NA
(see write.table).

row.names a logical value indicating whether the row names are to be written in the file, or
a character vector indicating the row names (see write.table).

sep the column separator character (default is "\t").

force force overwriting.

verbose verbose output flag.

setGRGenomelnfo 27
Value
none
Examples
gr <- GRanges(
seqgnames=Rle(c("chr1”, "chr2", "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "x" "+" "-")) c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))
saveGRangesAsTsv(gr, verbose=TRUE)
setGRGenomeInfo setGRGenomelnfo given a genome code (ie.

"mm9","mmi10","hgl19","hg38") retrieve the Seqlnfo of that genome
and assigns it to the input GRanges. Finally filters out those Infos not
necessary to the GRanges.

Description

setGRGenomelnfo given a genome code (i.e. "mm9","mm10","hg19","hg38") retrieve the Seqlnfo

of that genome and assigns it to the input GRanges. Finally filters out those Infos not necessary
the GRanges.

Usage
setGRGenomeInfo(GRanges, genomeName = NULL, verbose = FALSE)

Arguments
GRanges a GRanges object.
genomeName a genome code (i.e. "mm9")
verbose verbose output

Value

a GRanges object with the seqinfo of the genome code

Examples

library(”"GenomicRanges")

gr <- GRanges(
segnames=Rle(c("chr1”, "chr2", "chr1”, "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "x" "+" "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

mm9gr <- setGRGenomeInfo(GRanges=gr, genomeName="mm9", verbose=TRUE)

to

Index

* internal.
computeZ, 6
* internal
binnedCovOnly, 4
binToChrCoordMatRowNames, 4
c_get_disjoint_max_win, 11
computeCoverageMovingWindowOnChr,
5
computeLambdaOnChr, 5
evenRunMean, 13
evenRunSum, 13
generateDFofSamplesPerChromosomes,
18
get_disjoint_max_win, 19
giveUniqueNamesToPeaksOverSamples,
20
initMergedPeaksNames, 20
rcpparma_get_disjoint_max_win, 21

binnedCoverage, 3
binnedCovOnly, 4
binToChrCoordMatRowNames, 4
bpparam, 14, 17

c_get_disjoint_max_win, 11
computeCoverageMovingWindowOnChr, 5
computeLambdaOnChr, 5

computeZ, 6

constructBedRanges, 7
countFinalRegions, 8
createGranges, 9
cutGRangesPerChromosome, 10

DEScan2, 11
divideEachSampleByChromosomes, 12

evenRunMean, 13
evenRunSum, 13

finalRegions, 14
findOverlapsOverSamples, 15

28

findPeaks, 16
fromSamplesToChrsGRangesList, 18

generateDFofSamplesPerChromosomes, 18
get_disjoint_max_win, 19
giveUniqueNamesToPeaksOverSamples, 20

initMergedPeaksNames, 20
keepRelevantChrs, 21

rcpparma_get_disjoint_max_win, 21
readBamAsBed, 22

readBedFile, 23
readFilesAsGRangeslList, 23
RleListToRleMatrix, 24

saveGRangesAsBed, 25
saveGRangesAsTsv, 26
setGRGenomeInfo, 27

write.table, 26

	binnedCoverage
	binnedCovOnly
	binToChrCoordMatRowNames
	computeCoverageMovingWindowOnChr
	computeLambdaOnChr
	computeZ
	constructBedRanges
	countFinalRegions
	createGranges
	cutGRangesPerChromosome
	c_get_disjoint_max_win
	DEScan2
	divideEachSampleByChromosomes
	evenRunMean
	evenRunSum
	finalRegions
	findOverlapsOverSamples
	findPeaks
	fromSamplesToChrsGRangesList
	generateDFofSamplesPerChromosomes
	get_disjoint_max_win
	giveUniqueNamesToPeaksOverSamples
	initMergedPeaksNames
	keepRelevantChrs
	rcpparma_get_disjoint_max_win
	readBamAsBed
	readBedFile
	readFilesAsGRangesList
	RleListToRleMatrix
	saveGRangesAsBed
	saveGRangesAsTsv
	setGRGenomeInfo
	Index

