Package ‘CytoPipeline’

February 1, 2026

Title Automation and visualization of flow cytometry data analysis
pipelines
Version 1.11.1

Description This package provides support for automation and visualization of
flow cytometry data analysis pipelines. In the current state, the package
focuses on the preprocessing and quality control part. The framework is based
on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline
steps are linked to corresponding R functions - that are either provided in
the CytoPipeline package itself, or exported from a third party package,
or coded by the user her/himself. The processing steps need to be specified
centrally and explicitly using either a json input file or through step by step
creation of a CytoPipeline object with dedicated methods. After having run the
pipeline, obtained results at all steps can be retrieved and visualized thanks
to file caching (the running facility uses a BiocFileCache implementation).
The package provides also specific visualization tools like
pipeline workflow summary display, and 1D/2D comparison plots of obtained
flowFrames at various steps of the pipeline.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

BugReports https://github.com/UCLouvain-CBIO/CytoPipeline/issues

URL https://uclouvain-cbio.github.io/CytoPipeline

biocViews FlowCytometry, Preprocessing, QualityControl, WorkflowStep,
ImmunoOncology, Software, Visualization

Collate 'CytoPipeline-functions.R' 'CytoPipeline-package.R’
'CytoPipelineClass.R' 'CytoProcessingStep.R'
'CytoProcessingStepImplementations.R' 'data.R' 'gating.R'
'utils.R' 'ggplots.R’

Depends R (>=4.4)
Imports methods, stats, utils, withr, rlang, ggplot2 (>=3.4.1),

ggcyto, BiocFileCache, BiocParallel, flowCore, PeacoQC, flowAl,
diagram, jsonlite, scales

https://github.com/UCLouvain-CBIO/CytoPipeline/issues
https://uclouvain-cbio.github.io/CytoPipeline

Suggests testthat (>= 3.0.0), vdiffr, diffviewer, knitr, rmarkdown,
BiocStyle, reshape2, dplyr, CytoPipelineGUI

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/CytoPipeline
git_branch devel

git_last_commit d2d9d72

git_last_commit_date 2026-01-14

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Philippe Hauchamps [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2865-1852>),
Laurent Gatto [aut] (ORCID: <https://orcid.org/0000-0002-1520-2268>),
Dan Lin [ctb]

Maintainer Philippe Hauchamps <philippe.hauchamps@uclouvain.be>

Contents

aggregateAndSample L
appendCellID
applyScaleTransforms
areFluoCols o
areSignalCols L
compensateFromMatrix oL o oL
computeScatterChannelsLinearScale
CytoPipeline
CytoPipeline-class
CytoProcessingStep
estimateScaleTransforms
CXECULE o e e e e e e
exportCytoPipeline
findTimeChannel
getAcquiredCompensationMatrixo
getChannelNamesFromMarkers
getFCSFileName
getTransfoParams
ggplotEvents
ggplotFilterEvents Lo
ggplotFlowRate
handlingProcessingSteps o
inspectCytoPipelineObjects oo
interactingWithCytoPipelineCache
OMIPO2ISamples o
qualityControlFlowAl
qualityControlPeacoQC

Contents

https://orcid.org/0000-0003-2865-1852
https://orcid.org/0000-0002-1520-2268

aggregateAndSample 3

readRDSObject e e e 50
readSampleFiles 51
removeChannels L 53
removeDeadCellsManualGate 53
removeDebrisManualGate L o 55
removeDoubletsCytoPipeline L 56
removeMarginsPeacoQC oL 57
resetCellIDs o o 58
runCompensation 59
singletsGate e e e e e e e e e 60
subsample L e 62
updateMarkerName L. e 63
writeFlowFrame 63
Index 66
aggregateAndSample Aggregate and sample multiple flow frames of a flow set together
Description

Aggregate multiple flow frames in order to analyze them simultaneously. A new FF, which contains
about nTotalEvents cells, nTotalEvents/nFiles cells from each file. Two new columns are added: a
column indicating the original file by index, and a noisy version of this, for better plotting oppor-
tunities, This function is based on PeacoQC::AggregateFlowframes() where file names inputs have
been replaced by a flowSet input.

Usage

aggregateAndSample(

fs,

nTotalEvents,

setup = c("forceNEvent"”, "forceBalance"),
seed = NULL,

channels = NULL,

writeQutput = FALSE,

outputFile = "aggregate.fcs”,

keepOrder = FALSE

Arguments

fs

a flowCore::flowset

nTotalEvents Total number of cells to select from the input flow frames

setup How to proceed when nTotalEvents/nFiles is too high for some of the flow

frames:

4 appendCelllD

« forceBalance (default): compute the minimum nb of events per flow frame,
and keep that amount of events from each flow frame.

» forceNEvents: try to be as balanced as possible, but force a total of nTo-
talEvents if possible, i.e. takes all events from the flow frame with too
low nb of events, and then fill in the total with events from the bigger flow
frames in a balanced way. However, if nTotalEvents is greater than the sum
of all events, take all events only once.

seed seed to be set before sampling for reproducibility. Default NULL does not set
any seed.

channels Channels/markers to keep in the aggregate. Default NULL takes all channels of
the first file.

writeQutput Whether to write the resulting flowframe to a file. Default FALSE

outputFile Full path to output file. Default "aggregate.fcs"

keepOrder If TRUE, the random subsample will be ordered in the same way as they were

originally ordered in the file. Default = FALSE.

Value

returns a new flowCore::flowFrame

Examples

data(OMIP@21Samples)

nCells <- 1000

agg <- aggregateAndSample(
fs = OMIP@21Samples,
nTotalEvents = nCells)

appendCellID append ’Original_ID’ column to a flowframe

Description

: on a flowCore::flowFrame, append a ’Original_ID’ column. This column can be used in plots
comparing the events pre and post gating. If the *Original_ID’ column already exists, the function
does nothing

Usage
appendCellID(ff, eventIDs = seq_len(flowCore::nrow(ff)))

Arguments
ff a flowCore::flowFrame
eventIDs an integer vector containing the values to be added in expression matrix, as

Original ID’s.

applyScaleTransforms 5

Value

new flowCore::flowFrame containing the added ’Original_ID’ column

Examples

data(OMIP@21Samples)

retFF <- appendCellID(OMIP@21Samples[[1]11)

applyScaleTransforms apply scale transforms

Description

wrapper around flowCore::transform() that discards any additional parameter passed in (...) Addi-
tionally, some checks regarding channels correspondance is done: if transList contains transfor-
mations for channels that are not present in x, then these transformations are first removed.

Usage
applyScaleTransforms(x, transList, verbose = FALSE, ...)
Arguments
X a flowCore::flowSet or a flowCore::flowFrame
transList a flowCore::transformList
verbose if TRUE, send a message per flowFrame transformed
other arguments (not used)
Value

the transformed flowFrame
Examples
data(OMIP@21Samples)
transListPath <- file.path(system.file("extdata",
package = "CytoPipeline”),
"OMIP@21_TransList.rds")

transList <- readRDSObject(transListPath)

ff_c <- compensateFromMatrix(OMIP@21Samples[[1]1],
matrixSource = "fcs")

ff_t <- applyScaleTransforms(ff_c, transList = transList)

6 areSignalCols

areFluoCols find flow frame columns that represent fluorochrome channel

Description

: find flow frame columns that represent fluorochrome channel

Usage

areFluoCols(

X’

toRemovePatterns = c("FSC", "SSC", "Time", "Original_ID", "File", "SampleID")
)

Arguments
X a flowCore::flowFrame or a flowCore::flowSet
toRemovePatterns
a vector of string patterns that are to be considered as non fluorochrome
Value

a vector of booleans of which the dimension is equal to the number of columns in ff

Examples

data(OMIP@21Samples)

areFluoCols(OMIP@21Samples)

areSignalCols find flow frame columns that represent true signal

Description

: find flow frame columns that represent true signal

Usage

areSignalCols(
X’
toRemovePatterns = c("Time"”, "Original_ID", "File"”, "SampleID")

)

compensateFromMatrix 7

Arguments
X a flowCore::flowFrame or a flowCore::flowSet
toRemovePatterns
a vector of string patterns that are to be considered as non signal
Value

a vector of booleans of which the dimension is equal to the number of columns in ff

Examples

data(OMIP@21Samples)

areSignalCols(OMIP@21Samples)

compensateFromMatrix compensation of fcs file(s) from matrix

Description

executes the classical compensation function on a flowSet or flowFrame, given a compensation
matrix. The matrix can be either retrieved in the fcs files themselves or provided as a csv file.

Usage
compensateFromMatrix(
X,
matrixSource = c("fcs"”, "import"),

matrixPath = NULL,
updateChannelNames = TRUE,
verbose = FALSE,

Arguments

X a flowCore: : flowFrame or flowCore: :flowSet

matrixSource if "fcs", the compensation matrix will be fetched from the fcs files (differ-
ent compensation matrices can then be applied by fcs file) if "import", uses
matrixPath to read the matrix (should be a csv file)

matrixPath if matrixSource == "import", will be used as the input csv file path
updateChannelNames
if TRUE, updates the fluo channel names by prefixing them with "comp-"

verbose if TRUE, displays information messages

additional arguments (not used)

8 computeScatterChannelsLinearScale

Value

the compensated flowSet or flowFrame

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all",

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))
ff_c <-

compensateFromMatrix (ff_m,
matrixSource = "fcs")

computeScatterChannelslLinearScale

compute linear transformation of scatter channels found in ff, based on
5% and 95% of referenceChannel, set as target. If there is a transfor-
mation defined in transList for referenceChannel, it is applied first, be-
fore computing quantiles. Then the computed linear transformations
(or each scatter channel) are added into the transfo_list. -A channels
are computed, and same linear transformation is then applied to cor-
responding -W and -H channels (if they exist in ff).

Description

based on a referenceChannel

Usage

computeScatterChannelsLinearScale(
ff,
transList = NULL,
referenceChannel,
silent = TRUE

CytoPipeline 9

Arguments
ff a flowCore::flowFrame
transList an initial flowCore::transformList
referenceChannel
the reference channel to take target quantile values from. Can be defined as
marker or channel name.
silent if FALSE, will output some information on the computed linear transformations
Value

the transList with added linear scale transformations

Examples

data(OMIP@21Samples)

ff <- OMIP@21Samples[[1]1]

refMarker <- "APCCy7 - CD4"

refChannel <- "780/60Red-A"

transList <- flowCore::estimatelLogicle(ff,
channels = refChannel)

retTransList <-

computeScatterChannelsLinearScale(ff,

transList = translList,
referenceChannel = refMarker,
silent = TRUE

CytoPipeline CytoPipeline package

Description

CytoPipeline is a package that provides support for automation and visualization of flow cytome-
try data analysis pipelines. In the current state, the package focuses on the preprocessing and quality
control part.

The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep.
The CytoProcessingStep defines the link between pipeline step names and corresponding R func-
tions that are either provided in the CytoPipeline package itself, or exported from a third party
package, or coded by the user her/himself. The processing steps need to be specified centrally and
explicitly using either a json input file or through step by step creation of a CytoPipeline object
with dedicated methods.

After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks
to file caching (the running facility uses a BiocFileCache implementation). The package provides
also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison
plots of obtained flowFrames at various steps of the pipeline.

For a step by step example using CytoPipeline, please have a look at the vignette!

10

Author(s)

CytoPipeline-class

Maintainer: Philippe Hauchamps <philippe.hauchamps@uclouvain.be> (ORCID)
Authors:

e Laurent Gatto <laurent.gatto@uclouvain.be> (ORCID)

Other contributors:

e Dan Lin <dan. 8.1in@gsk.com> [contributor]

See Also

CytoPipelineClass, CytoProcessingStep

CytoPipeline-class CytoPipeline class

Description

Class representing a flow cytometry pipeline, and composed of two processing queues, i.e. lists of
CytoProcessingStep objects :

Usage

S4 method for signature 'CytoPipeline'

* alist of CytoProcessingStep(s) for pre-calculation of scale transformations per channel

* alist of CytoProcessingStep(s) for the pre-processing of flow frames

show(object)

S4 method for signature 'missing'’

CytoPipeline(
object,
experimentName = "default_experiment”,
sampleFiles = character(),
pData = NULL
)
S4 method for signature 'list'
CytoPipeline(
object,
experimentName = "default_experiment”,
sampleFiles = character(),
pData = NULL
)

S4 method for signature 'character'

https://orcid.org/0000-0003-2865-1852
https://orcid.org/0000-0002-1520-2268

CytoPipeline-class 11

CytoPipeline(
object,
experimentName = "default_experiment”,
sampleFiles = character(),
pData = NULL
)

S3 method for class 'CytoPipeline’
as.list(x, ...)

experimentName (x)

experimentName(x) <- value

sampleFiles(x)

sampleFiles(x) <- value

pData(x)

pData(x) <- value

sampleDisplayNames(x, sampleFiles = NULL)
sampleNameFromDisplayName(x, displayName)

Arguments

object a character() containing a JSON input

experimentName the experiment name

sampleFiles a character (e.g. sampleFileNames) or a numeric vector (e.g. indices of sample
files). If NULL, all samples will be displayed.

pData the pheno Data (data.frame or NULL)

X a CytoPipeline object

additional arguments (not used here)

value the new value to be assigned. the pData<- setter is a bit more liberal than it used
to be:

1. It can accept new pData containing more rows than existing sample names
(the corresponding subset of pData is taken).

2. It can accept pData with row names pointing to either sample file full paths
or base file names

3. It can accept pData with no row names provided the number of rows corre-
spond to the number of sample files. Row names are then set by default to
sample file base names (if unique), or sample file full paths.

displayName a character

12 CytoPipeline-class

Value

nothing
e foras.list.CytoPipeline: the obtained list
* for sampleDisplayNames: a character vector of sample display names

* for sampleNameFromDisplayName: the sample name corresponding to the specified display
name. of sample display names

Slots

scaleTransformProcessingQueue A list of CytoProcessingStep objects containing the steps
for obtaining the scale transformations per channel

flowFramesPreProcessingQueue A list of CytoProcessingStep objects containing the steps for
pre-processing of the samples flow frames

experimentName A character containing the experiment (run) name
sampleFiles A character vector storing all fcs files to be run into the pipeline

pData An optional data.frame containing additional information for each sample file. The pData
raw names should correspond to the sample files (using full paths or base paths). If the pData
contains a columns with name ’displayName’, this will have an impact in the sampleDisplayNames ()
function, i.e. sample display names will be the one mentioned in pData, instead of typically
base file names (or larger paths if base file names are not unique)

Examples

*** EXAMPLE 1: building CytoPipeline step by step *xx ##i#

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
pattern = "Donor"))

outputDir <- base::tempdir()
main parameters : sample files and output files
pipL <- CytoPipeline(experimentName = experimentName,

sampleFiles = sampleFiles)

SCALE TRANSFORMATION STEPS #i##

pipL <-
addProcessingStep(piplL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "flowframe_read”,
FUN = "readSampleFiles”,
ARGS = list(

whichSamples = "all”,

CytoPipeline-class 13

truncate_max_range = FALSE,
min.limit = NULL

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "remove_margins”,
FUN = "removeMarginsPeacoQC",
ARGS = list()

)

pipL <-
addProcessingStep(piplL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "compensate”,
FUN = "compensateFromMatrix”,
ARGS = list(matrixSource = "fcs")

)

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "flowframe_aggregate”,
FUN = "aggregateAndSample”,
ARGS = list(
nTotalEvents = 10000,
seed = @

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "scale_transform_estimate”,
FUN = "estimateScaleTransforms”,
ARGS = list(
fluoMethod = "estimatelLogicle”,
scatterMethod = "linear"”,
scatterRefMarker = "BV785 - CD3"

14

PRE-PROCESSING STEPS

pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "flowframe_read”,
FUN = "readSampleFiles”,
ARGS = list(
truncate_max_range = FALSE,
min.limit = NULL
)
)
)
pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "remove_margins”,
FUN = "removeMarginsPeacoQC",
ARGS = list()
)
)
pipL <-
addProcessingStep(piplL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "compensate”,
FUN = "compensateFromMatrix”,
ARGS = list(matrixSource = "fcs")
)
)
pipL <-
addProcessingStep(
pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "remove_debris”,
FUN = "removeDebrisManualGate”,
ARGS = list(
FSCChannel = "FSC-A",
SSCChannel = "SSC-A",
gateData = c¢(73615, 110174, 213000, 201000,
47679, 260500, 260500, 113000, 35000)))
)
pipL <-
addProcessingStep(pipL,

whichQueue = "pre-processing”,
CytoProcessingStep(

126000,

CytoPipeline-class

CytoPipeline-class 15

name = "remove_dead_cells”,
FUN = "removeDeadCellsManualGate”,
ARGS = list(

FSCChannel = "FSC-A",

LDMarker = "L/D Aqua - Viability",

gateData = c(0, 0, 250000, 250000,
0, 650, 650, 0)

)
)
)
pipL <-
addProcessingStep(
pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "perform_QC",
FUN = "qualityControlPeacoQC",
ARGS = list(
preTransform = TRUE,
min_cells = 150, # default
max_bins = 500, # default
step = 500, # default,
MAD = 6, # default
IT_limit = 0.55, # default
force_IT = 150, # default
peak_removal = 0.3333, # default
min_nr_bins_peakdetection = 10 # default
)
)
)
pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "transform”,
FUN = "applyScaleTransforms”,
ARGS = list()
)
)

#i#t# *x* EXAMPLE 2: building CytoPipeline from JSON file **x #i#

jsonDir <- system.file("extdata"”, package = "CytoPipeline")
jsonPath <- file.path(jsonDir, "pipelineParams.json")

pipL2 <- CytoPipeline(jsonPath,
experimentName = experimentName,
sampleFiles = sampleFiles)

16 CytoProcessingStep

CytoProcessingStep Cyto Processing step

Description

Class containing the function and arguments to be applied in a lazy-execution framework.

Objects of this class are created using the CytoProcessingStep() function. The processing step
is executed with the executeProcessingStep() function.

Usage
CytoProcessingStep(name = character(), FUN = character(), ARGS = list())

S4 method for signature 'CytoProcessingStep
show(object)

executeProcessingStep(x, ...)
getCPSName (x)

getCPSFUN(x)

getCPSARGS (X)

S3 method for class 'CytoProcessingStep'
as.list(x, ...)

as.json.CytoProcessingStep(x, pretty = FALSE)

from. json.CytoProcessingStep(jsonString)

Arguments

name character denoting a name to the step, which can be different from the function
name

FUN function or character representing a function name.

ARGS list of arguments to be passed along to FUN.

object a CytoProcessingStep object.

X a CytoProcessingStep object.
other arguments (not used)

pretty formatting set-up (see jsonlite::toJSON doc)

jsonString a character() containing a JSON string.

estimateScaleTransforms 17

Details

This object contains all relevant information of a data analysis processing step, i.e. the function and
all of its arguments to be applied to the data.

Value

The CytoProcessingStep function returns and object of type CytoProcessingStep.

Examples

Create a simple processing step object
ps1 <- CytoProcessingStep("”summing step”, sum)

getCPSName (ps1)

getCPSFUN(ps1)

getCPSARGS(ps1)

executeProcessingStep(ps1, 1:10)
as.list(ps1)

js_str <- as.json.CytoProcessingStep(ps1)
ps2 <- from. json.CytoProcessingStep(js_str)

identical(ps1, ps2)

estimateScaleTransforms
estimates scale tranformations

Description

this function estimates the scale transformations to be applied on a flowFrame to obtain ’good
behaving’ distributions, i.e. the best possible separation between + population and - population.
It distinguishes between scatter channels, where either linear, or no transform is applied, and fluo
channels, where either logicle transform

* using flowCore::estimateLogicle - is estimated, or no transform is applied.

The idea of linear transform of scatter channels is as follows: a reference channel (not a scatter one)
is selected and a linear transform (Y = AX + B) is applied to all scatter channel, as to align their 5
and 95 percentiles to those of the reference channel For the estimateLogicle function, see flowCore
documentation.

18 estimateScaleTransforms

Usage
estimateScaleTransforms(
ff,
fluoMethod = c("estimatelLogicle”, "none"),
scatterMethod = c("none”, "linearQuantile”),

scatterRefMarker = NULL,
specificScatterChannels = NULL,
verbose = FALSE,

)
Arguments
ff a flowCore::flowFrame
fluoMethod method to be applied to all fluo channels

scatterMethod method to be applied to all scatter channels

scatterRefMarker
the reference channel that is used to align the

specificScatterChannels
vector of scatter channels for which we still want to apply the fluo method (and
not the scatter Method)

verbose if TRUE, send messages to the user at each step

additional parameters passed to flowCore::estimateLogicle()

Value

a flowCore::flowFrame with removed low quality events from the input

Examples

data(OMIP@21Samples)

compMatrix <- flowCore::spillover(OMIP@21Samples[[1]1]1)$SPILL
ff_c <- runCompensation(OMIP@21Samples[[1]], spillover = compMatrix)

transList <-
estimateScaleTransforms(

ff = ff_c,
fluoMethod = "estimatelLogicle”,
scatterMethod = "linear”,

scatterRefMarker = "BV785 - CD3")

execute 19

execute executing CytoPipeline object

Description

this function triggers the execution of the processing queues of a CytoPipeline object. First, the
scale tranform processing queue is run, taking the set of sample names as an implicit first input.
At the end of the queue, a scale transform List is assumed to be created. Second, the flowFrame
pre-processing queue, reapeatedly for each sample file. The scale transform list generated in the
previous step is taken as implicit input, together with the initial sample file. At the end of the
queue run, a pre-processed flowFrame is assumed to be generated. No change is made on the input
CytoPipeline object, all results are stored in the cache.

Usage

execute(
X,
path = ".",
rmCache = FALSE,
useBiocParallel = FALSE,
BPPARAM = BiocParallel: :bpparam(),
BPOPTIONS = BiocParallel: :bpoptions(packages = c("flowCore")),
savelLastStepFF = TRUE,
saveFFSuffix = "_preprocessed”,
saveFFFormat = c("fcs", "csv"),
saveFFCsvUseChannelMarker = TRUE,
saveScaleTransforms = FALSE

)
Arguments

X CytoPipeline object

path base path, a subdirectory with name equal to the experiment will be created to
store the output data, in particular the experiment cache

rmCache if TRUE, starts by removing the already existing cache directory corresponding
to the experiment

useBiocParallel
if TRUE, use BiocParallel for computation of the sample file pre-processing in
parallel (one file per worker at a time). Note the BiocParallel function used is
bplapply ()

BPPARAM if useBiocParallel is TRUE, sets the BPPARAM back-end to be used for the
computation. If not provided, will use the top back-end on the BiocParallel: :registered()
stack.

BPOPTIONS if useBiocParallel is TRUE, sets the BPOPTIONS to be passed to bplapply ()

function. Note that if you use a SnowParams back-end, you need to specify

20 execute

all the packages that need to be loaded for the different CytoProcessingStep to
work properly (visibility of functions). As a minimum, the flowCore package
needs to be loaded. (hence the default BPOPTIONS = bpoptions(packages =
c("flowCore")))

savelLastStepFF if TRUE, save the final result of the pre-processing, for each file. By conven-
tion, these output files are stored in path/x@experimentName/output/, the file
names used are the same as the initial fcs file basenames, concatenated with
saveFFSuffix, and with file extension corresponding to saveFFFormat.

saveFFSuffix FF file name suffix

saveFFFormat either fcs or csv
saveFFCsvUseChannelMarker
if TRUE (default), converts the channels to the corresponding marker names
(where the Marker is not NA). This setting is only applicable to export in csv
format.
saveScaleTransforms
if TRUE (default FALSE), save on disk (in RDS format) the flowCore: : transformList
object obtained after running the scaleTransform processing queue. The file
name is hardcoded to path/experimentName/RDS/scaleTransformList.rds

Value

nothing

Examples

*** EXAMPLE 1: building CytoPipeline step by step *xx #i##

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
pattern = "Donor"))

outputDir <- base::tempdir()

main parameters : sample files and output files
pipelineParams <- list()
pipelineParams$experimentName <- experimentName
pipelineParams$sampleFiles <- sampleFiles

pipL <- CytoPipeline(pipelineParams)

SCALE TRANSFORMATION STEPS #i##

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "flowframe_read”,

FUN = "readSampleFiles”,
ARGS = list(

execute 21

whichSamples = "all”,
truncate_max_range = FALSE,
min.limit = NULL

)

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "remove_margins”,
FUN = "removeMarginsPeacoQC",
ARGS = list()

)

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "compensate”,
FUN = "compensateFromMatrix",
ARGS = list(matrixSource = "fcs")

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "flowframe_aggregate”,
FUN = "aggregateAndSample”,
ARGS = list(
nTotalEvents = 10000,
seed = 0

)

pipL <-
addProcessingStep(pipL,
whichQueue = "scale transform”,
CytoProcessingStep(
name = "scale_transform_estimate”,
FUN = "estimateScaleTransforms”,
ARGS = list(
fluoMethod = "estimatelLogicle”,
scatterMethod = "linear”,
scatterRefMarker = "BV785 - CD3"

22

PRE-PROCESSING STEPS #i##

pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(

name = "flowframe_read”,

FUN = "readSampleFiles”,

ARGS = list(
truncate_max_range = FALSE,
min.limit = NULL

)

)
)
pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(

name = "remove_margins”,

FUN = "removeMarginsPeacoQC",

ARGS = list()

)
)
pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(

name = "compensate”,

FUN = "compensateFromMatrix",

ARGS = list(matrixSource = "fcs")

)
)
pipL <-
addProcessingStep(
pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "remove_debris”,
FUN = "removeDebrisManualGate"”,
ARGS = list(
FSCChannel = "FSC-A",
SSCChannel = "SSC-A",
gateData = ¢(73615, 110174, 213000, 201000, 126000,
47679, 260500, 260500, 113000, 35000)
)
)
)

pipL <-

execute

execute

addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "remove_dead_cells”,
FUN = "removeDeadCellsManualGate”,
ARGS = list(
FSCChannel = "FSC-A",
LDMarker = "L/D Aqua - Viability",
gateData = c(0, 0, 250000, 250000,
0, 650, 650, 0)

)
)
)
pipL <-
addProcessingStep(
pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "perform_QC",
FUN = "qualityControlPeacoQC",
ARGS = list(
preTransform = TRUE,
min_cells = 150, # default
max_bins = 500, # default
step = 500, # default,
MAD = 6, # default
IT_limit = 0.55, # default
force_IT = 150, # default
peak_removal = 0.3333, # default
min_nr_bins_peakdetection = 10 # default
)
)
)
pipL <-
addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "transform”,
FUN = "applyScaleTransforms”,
ARGS = list()
)
)

execute pipeline, remove cache if existing with the same experiment name
suppressWarnings(execute(pipL, rmCache = TRUE, path = outputDir))

re-execute as is without removing cache => all results found in cache!
suppressWarnings(execute(pipL, rmCache = FALSE, path = outputDir))

#i#t# *x* EXAMPLE 2: building CytoPipeline from JSON file **x #i#

24 exportCytoPipeline

jsonDir <- system.file("extdata"”, package = "CytoPipeline")
jsonPath <- file.path(jsonDir, "pipelineParams.json")

pipL2 <- CytoPipeline(jsonPath,
experimentName = experimentName,
sampleFiles = sampleFiles)

note we temporarily set working directory into package root directory
needed as json path mentions "./" path for sample files
suppressWarnings(execute(pipL2, rmCache = TRUE, path = outputDir))

***x EXAMPLE 3: building CytoPipeline from cache (previously run) *xx #it#

experimentName <- "OMIP@21_PeacoQC"

pipL3 <- buildCytoPipelineFromCache(
experimentName = experimentName,
path = outputDir)

suppressWarnings(execute(piplL3,
rmCache = FALSE,
path = outputDir))

exportCytoPipeline exporting CytoPipeline objects

Description

functions to export CytoPipeline objects in various formats

Usage

export2JSONFile(x, path)

Arguments

X a CytoPipeline object

path the full path to the name of the file to be created
Value

* for export2JSONFile: nothing

Functions

* export2JSONFile(): exports a CytoPipeline object to a JSON file (writing the file = side
effect)

findTimeChannel 25

Examples

outputDir <- base::tempdir()

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
pattern = "Donor"))

build CytoPipeline object using json input
jsonPath <- file.path(system.file("extdata”, package = "CytoPipeline"),
"pipelineParams. json")

pipL <- CytoPipeline(jsonPath,
experimentName = experimentName,
sampleFiles = sampleFiles)

remove the last pre-processing step
nPreProcessing <- getNbProcessingSteps(pipL, whichQueue = "pre-processing"”)
pipL <- removeProcessingStep(pipL, whichQueue = "pre-processing”,

index = nPreProcessing)

export back to json file
export2JSONFile(pipL, path = file.path(outputDir, "newFile.json"))

findTimeChannel find time channel in flowSet/flowFrame

Description

tries to find a channel in a flowSet/flowFrame that could be the time channel. First tries to identify
a channel name containing the ’time’ string, then tries to identify a single monotonically increasing
channel.

Usage
findTimeChannel(obj, excludeChannels = c())

Arguments
obj a flowCore::flowFrame or flowCore::flowSet
excludeChannels
vector of column names to exclude in the search
Value

a character, name of the found channel that should be representing time. If not found, returns
NULL.

26 getAcquiredCompensationMatrix

Examples

data(OMIP@21Samples)

ret <- findTimeChannel (OMIP@21Samples[[1]1])
ret # "Time"

getAcquiredCompensationMatrix
extract compensation matrix from a flowCore::flowFrame

Description

helper function retrieving the compensation matrix stored in fcs file (if any). It scans the following
keywords: $SPILL, $spillover and $SPILLOVER

Usage

getAcquiredCompensationMatrix(ff)

Arguments

ff a flowCore::flowFrame

Value

the found compensation matrix

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(
sampleFiles = sampleFiles,
whichSamples = "all”,
truncate_max_range = truncateMaxRange,
min.limit = minLimit)
compensationMatrix <- getAcquiredCompensationMatrix(fsRaw[[2]])

getChannelNamesFromMarkers

27

getChannelNamesFromMarkers
get channel names from markers

Description

finds name of channels corresponding to user provided markers

Usage

getChannelNamesFromMarkers (ff, markers)

Arguments
ff a flowCore::flowFrame
markers a vector of markers, either provided as :
* an array of booleans (referring to flowFrame columns)
* an array of integers (indices in flowFrame columns)
* an array of characters (exact markers or channel patterns)
Value

a character vector, containing the names of the corresponding channels
Examples
data(OMIP@21Samples)

with existing markers
ret <- getChannelNamesFromMarkers(

OMIP@21Samples[[1]],
c(
"FSC-A",
"L/D Aqua - Viability”,
"FITC - gdTCR",
"PECy5 - CD28"
))

ret # c("FSC-A", "525/5@Violet-A", "530/30Blue-A", "670/30Yellow-A")

with boolean vector
indices <- c(1, 6, 14, 18)
boolInput <- rep(FALSE, 21)
boolInput[indices] <- TRUE
ret2 <- getChannelNamesFromMarkers(
OMIP021Samples[[111],
boolInput)

28

ret2 # c("FSC-A", "525/50Violet-A", "530/30Blue-A", "670/30Yellow-A")

with indices vector

ret3 <- getChannelNamesFromMarkers(
OMIP@21Samples[[11],
indices

)

ret3 # c("FSC-A", "525/50Violet-A", "530/30Blue-A", "670/30Yellow-A")

getTransfoParams

getFCSFileName get fcs file name

Description

get basename of SFILENAME keyword if exists

Usage

getFCSFileName (ff)
Arguments

ff a flowCore::flowFrame
Value

the basename of $SFILENAME keyword

Examples

data(OMIP@21Samples)

fName <- getFCSFileName(OMIP@21Samples[[11])

getTransfoParams get tranformation parameters for a specific channel

Description

investigates a flowCore::tranformList object to get the type and parameters of the transformation

applying to a specific channel

Usage

getTransfoParams(transList, channel)

getTransfoParams 29

Arguments
transList a flowCore::transformList
channel channel name

Value

If the transformation exists for the specified channel, and is either recognized as a logicle transfo or
a linear transfo, a list with two slots:

* $type a character containing the transfo type ("logicle’ or ’linear’)

* $params_list a list of named numeric, according to transfo type

Otherwise, NULL is returned.

Examples

data(OMIP@21Samples)

set-up a hybrid transformation list :
- two channels are logicle-ly transformed with automatic param estimates
- one channel has explicit logicle transfo with default parameters
- one channel has linear transformation
- other channels have no transformation
translist <- flowCore::estimatelLogicle(

OMIP@21Samples[[1]],

c("450/50Violet-A", "525/50Violet-A")
)
translist <- c(

translist,

flowCore: :transformList(

"FSC-A",
flowCore: :linearTransform(
a=2o.1,
b =290
)
),
flowCore: :transformList(
"540/30Violet-A",
flowCore: :logicleTransform()

)

retl <- getTransfoParams(translist, channel = "FSC-A")
ret1$type # "linear”
ret1$paramsList # a = 0.1, b = 0.

ret2 <- getTransfoParams(translist, channel = "525/50Violet-A")
ret2$type # "logicle”
ret2$paramsList # a = 0., w = 0.2834, m = 4.5, t = 262143

ret3 <- getTransfoParams(translist, channel = "540/30Violet-A")

30

ggplotEvents

ret3stype # "logicle
ret3$paramsList # a = 0., w = 0.5, m = 4.5, t = 262144

ggplotEvents

plot events in 1D or 2D, using ggplot2

Description

plot events of specific channels of either : flowCore::flowFrame, or flowCore::flowSet in 2D or 1D,

mimicking FlowJo

type of graph.

if 1D : geom_density will be used
if 2D : geom_hex will be used

Usage
ggplotEvents(
obj,
xChannel,

yChannel = NULL,

nDisplayCells
seed = NULL,
bins = 216,
fill
alpha = 0.2,

= Inf,

"lightblue”,

xScale = c("linear”, "logicle"),
yScale = c("linear”, "logicle"),
xLogicleParams = NULL,
yLogicleParams = NULL,
xLinearRange = NULL,

yLinearRange

= NULL,

transList = NULL,

runTransforms

Arguments
obj
xChannel
yChannel
nDisplayCells

seed
bins
fill

= FALSE

a flowCore::flowFrame or flowCore::flowSet
channel (name or index) or marker name to be displayed on x axis
channel (name or index) or marker name to be displayed on y axis

maximum number of events that will be plotted. If the number of events exceed
this number, a sub-sampling will be performed

seed used for sub-sampling (if any)
used in geom_hex

used in geom_density

ggplotEvents 31
alpha used in geom_density
xScale scale to be used for the x axis (note "linear" corresponds to no transformation)
yScale scale to be used for the y axis (note "linear" corresponds to no transformation)
xLogicleParams if (xScale == "logicle"), the parameters of the logicle transformation to be used,
asalisttw = ..., m = ..., a= ..., t = ...). If NULL, these parameters will be
estimated by flowCore::estimateLogicle()
yLogicleParams if (yScale == "logicle"), the parameters of the logicle transformation to be used,
asalisttw = ..., m = ..., a= ..., t = ...). If NULL, these parameters will be
estimated by flowCore::estimateLogicle()
xLinearRange if (xScale == "linear"), the x axis range to be used
yLinearRange if (yScale == "linear"), the y axis range to be used
transList optional list of scale transformations to be applied to each channel. If it is non
null, "x/yScale’, *x/yLogicleParams’ and ’x/yLinear_range’ will be discarded.
runTransforms (TRUE/FALSE) Will the application of non linear scale result in data being
effectively transformed ?
 If TRUE, than the data will undergo transformations prior to visualization.
e If FALSE, the axis will be scaled but the data themselves will not be trans-
formed.
Value
a list of ggplot objects
Examples
data(OMIP@21Samples)

1D Examples

simple linear scale example

ggplotEvents(OMIP@21Samples[[1]],
xChannel = "FSC-A",
xScale = "linear")

with explicit linear range
ggplotEvents(OMIP@21Samples[[11],

xChannel = "FSC-A",
xScale = "linear”,
xLinearRange = c(0, 250000))

with linear scale, several flow frames
ggplotEvents(OMIP@21Samples, xChannel = "FSC-A", xScale = "linear")

simple logicle scale example

ggplotEvents(OMIP@21Samples[[1]1],
xChannel = "450/50Violet-A",
xScale = "logicle")

32

ggplotEvents

logicle scale, explicit parameters
ggplotEvents(OMIPQ21Samples[[1]],
xChannel = "450/50Violet-A",

xScale = "logicle”, xLogicleParams = list(
a=1,
w =2,
m=7,
t = 270000))

with sub-sampling
ggplotEvents(OMIP@21Samples[[2]1],
xChannel = "450/50Violet-A",
xScale = "logicle”, nDisplayCells = 5000)

tuning some plot parameters
ggplotEvents(OMIP@21Samples[[2]],

xChannel = "450/50Violet-A",

xScale = "logicle”, alpha = 0.5, fill = "red")

examples that use a transformation list, estimated after compensation
compensationMatrix <- flowCore::spillover(OMIP@21Samples[[1]1]1)$SPILL

ffC <- runCompensation(OMIP@21Samples[[1]1],
spillover = compensationMatrix,
updateChannelNames = FALSE)

transList <- flowCore::estimatelLogicle(
ffC,
colnames(compensationMatrix))

transList <-
c(translList,
flowCore: :transformList(
"FSC-A",
flowCore::linearTransform(a = 0.00001)))

linear example, without running the transformations on data
ggplotEvents(OMIP@21Samples[[11],

xChannel = "450/50Violet-A",

xScale = "linear”,

transList = translList,

runTransforms = FALSE)

linear example, now running the transformations on data
ggplotEvents(OMIP@21Samples[[1]],

xChannel = "450/50Violet-A",

xScale = "linear”,

transList = translList,

runTransforms = TRUE)

logicle example, without running the transformations on data
ggplotEvents(OMIP@21Samples[[1]1],
xChannel = "FSC-A",

ggplotEvents

xScale = "logicle",
transList = transList,
runTransforms = FALSE)

logicle example, now running the transformations on data
ggplotEvents(OMIP@21Samples[[11],

xChannel = "FSC-A",

xScale = "logicle”,

transList = translList,

runTransforms = TRUE)

2D examples

simple linear example
ggplotEvents(OMIP@21Samples[[1]],
xChannel = "FSC-A",
xScale = "linear"”,
yChannel = "610/20Violet-A",
yScale = "logicle")

simple linear example, 2 flow frames
ggplotEvents(OMIP@21Samples,
xChannel = "FSC-A",

xScale = "linear”,
yChannel = "SSC-A",
yScale = "linear")

logicle vs linear example
ggplotEvents(OMIP@21Samples[[1]],
xChannel = "450/50Violet-A",

xScale = "logicle”,
yChannel = "SSC-A",
yScale = "linear")

2X logicle example

ggplotEvents(OMIP@21Samples[[11],
xChannel = "TETaGC",
xScale = "logicle”,
yChannel = "CD27",
yScale = "logicle")

tuning nb of bins

ggplotEvents(OMIP@21Samples[[11],
xChannel = "TETaGC",
xScale = "logicle",
yChannel = "CD27",
yScale = "logicle”,
bins = 128)

using transformation list, not run on data
ggplotEvents(OMIP@21Samples[[11],
xChannel = "TETaGC",

34 ggplotFilterEvents

xScale = "logicle",
yChannel = "CD27",
yScale = "logicle”,
transList = translList,
runTransforms = FALSE)

using transformation list, run on data
ggplotEvents(OMIP@21Samples[[11],
xChannel = "TETaGC",
xScale = "logicle",
yChannel = "CD27",
yScale = "logicle”,
transList = translList,
runTransforms = TRUE)

ggplotFilterEvents plot filtered events in 2D, using ggplot

Description

plot events of specific channels of either : flowCore::flowFrame, or flowCore::flowSet in 2D, show-
ing the impact of applying a filter between :

* a’pre’ flowframe

Usage

ggplotFilterEvents(
ffPre,
ffPost,
xChannel,
yChannel,
nDisplayCells = 10000,
seed = NULL,
size = 0.5,
xScale = c("linear”, "logicle"),
yScale = c("linear”, "logicle"),
xLogicleParams = NULL,
yLogicleParams = NULL,
xLinearRange = NULL,
yLinearRange = NULL,
transList = NULL,
runTransforms = FALSE,
interactive = FALSE

ggplotFilterEvents 35
Arguments
ffPre a flowCore::flowFrame, before applying filter
ffPost a flowCore::flowFrame, after applying filter
xChannel channel (name or index) or marker name to be displayed on x axis
yChannel channel (name or index) or marker name to be displayed on y axis
nDisplayCells maximum number of events that will be plotted. If the number of events exceed
this number, a subsampling will be performed
seed seed used for sub-sampling (if any)
size used by geom_point()
xScale scale to be used for the x axis (note "linear" corresponds to no transformation)
yScale scale to be used for the y axis (note "linear" corresponds to no transformation)
xLogicleParams if (xScale == "logicle"), the parameters of the logicle transformation to be used,
asalisttw=... m=...,a=..,t=..) If NULL, these parameters will be estimated
by flowCore::estimateLogicle()
yLogicleParams if (yScale == "logicle"), the parameters of the logicle transformation to be used,
asalisttw=... m=...,a=..t=..) If NULL, these parameters will be estimated
by flowCore::estimateLogicle()
xLinearRange if (xScale == "linear"), linear range to be used
yLinearRange if (yScale == "linear"), linear range to be used
transList optional list of scale transformations to be applied to each channel. If it is non
null, *x/yScale’, *x/yLogicleParams’ and ’x/yLinear_range’ will be discarded.
runTransforms (TRUE/FALSE) Will the application of non linear scale result in data being
effectively transformed ?
 If TRUE, than the data will undergo transformations prior to visualization.
e If FALSE, the axis will be scaled but the data themselves are not trans-
formed.
interactive if TRUE, transform the scaling formats such that the ggcyto::x_scale_logicle()
and ggceyto::y_scale_logicle() do work with plotly::ggplotly()
Value
a ggplot object
Examples
data(OMIP@21Samples)

ffPre <- OMIP@21Samples[[1]]

creating a manual polygon gate filter based on channels L/D and FSC-A

LDMarker <- "L/D Aqua - Viability"

LDChannel <- getChannelNamesFromMarkers(ffPre, markers = LDMarker)

36

liveGateMatrix <- matrix(
data = c(
50000, 50000, 100000, 200000, 200000,
100, 1000, 2000, 2000, 1

)!
ncol = 2,
dimnames = list(
cQ),
c("FSC-A", LDChannel)
)

)

liveGate <- flowCore: :polygonGate(
filterId = "Live",
.gate = liveGateMatrix

)

selectedLive <- flowCore::filter(ffPre, liveGate)
ffL <- flowCore::Subset(ffPre, selectedLive)

show the results

subsample 5000 points
ggplotFilterEvents(
ffPre = ffPre,
ffPost = ffL,
nDisplayCells = 5000,
xChannel = "FSC-A", xScale = "linear",
yChannel = LDMarker, yScale = "logicle") +
ggplot2::ggtitle("Live gate filter - 5000 points”)

with all points
ggplotFilterEvents(
ffPre = ffPre,
ffPost = ffL,
nDisplayCells = Inf,
xChannel = "FSC-A", xScale = "linear",
yChannel = LDMarker, yScale = "logicle") +
ggplot2::ggtitle("Live gate filter - all points")

ggplotFlowRate

ggplotFlowRate plot flow rate as a function of time, using ggplot2

Description

plot flow rate as a function of time, using ggplot2

handlingProcessingSteps 37

Usage

ggplotFlowRate(obj, title = "Flow Rate”, timeUnit = 100)

Arguments

obj a flowCore::flowFrame or flowCore::flowSet

title a title for the graph

timeUnit which time interval is used to calculate "instant" flow rate (default = 100 ms)
Value

a ggplot graph
Examples

data(OMIP@21Samples)

single flowFrame plot
ggplotFlowRate (OMIP@21Samples[[1]1])

two flowFrames plot
ggplotFlowRate (OMIP@21Samples)

single plot with title
ggplotFlowRate (OMIP@21Samples[[1]], title = "Test Flow Rate plot”)

explicit time unit
ggplotFlowRate (OMIP@21Samples[[1]], timeUnit = 50)

handlingProcessingSteps
handling processing steps in CytoPipeline objects

Description

functions to manipulate processing steps in processing queues of CytoPipeline objects

Usage
addProcessingStep(
X ’
whichQueue = c("scale transform”, "pre-processing"”),
newPS
)

removeProcessingStep(

38 handlingProcessingSteps

X’
whichQueue = c("scale transform”, "pre-processing”),
index
)
getNbProcessingSteps(x, whichQueue = c("scale transform”, "pre-processing”))
getProcessingStep(
X)
whichQueue = c("scale transform”, "pre-processing”),
index
)
getProcessingStepNames(x, whichQueue = c("”scale transform”, "pre-processing"”))

cleanProcessingSteps(

X’
whichQueue = c("both”, "scale transform”, "pre-processing")
)
showProcessingSteps(x, whichQueue = c("scale transform”, "pre-processing”))
Arguments
X a CytoPipeline object
whichQueue selects the processing queue for which we manage the processing steps
newPS the new processing step to be added (CytoProcessingStep object)
index index of the processing step to remove
Value

* for addProcessingStep: the updated CytoPipeline object

* for removeProcessingStep: the updated CytoPipeline object

* for getNbProcessingSteps: the number of processing steps present in the target queue
» for getProcessingStep: the obtained CytoProcessingStep object

* for getProcessingStepNames: the vector of step names

* for cleanProcessingSteps: the updated CytoPipeline object

* for showProcessingSteps: nothing (only console display side effect is required)

handlingProcessingSteps 39

Functions

* addProcessingStep(): adds a processing step in one of the processing queues (at the end),
returns the modified CytoPipeline object

* removeProcessingStep(): removes a processing step from one of the processing queues,
returns the modified CytoPipeline object

* getNbProcessingSteps(): gets the number of processing steps in a processing queue
* getProcessingStep(): gets a processing step at a specific index of a processing queue

* getProcessingStepNames(): gets a character vector of all processing step names of a spe-
cific processing queue

* cleanProcessingSteps(): deletes all processing steps in one or both processing queues,
returns the modified CytoPipeline object

* showProcessingSteps(): shows all processing steps in a processing queue

Examples

rawDataDir <-

system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,

pattern = "Donor"))

transListPath <-

file.path(system.file("extdata", package = "CytoPipeline"),

"OMIP@21_TransList.rds")

main parameters : sample files and experiment name
pipelineParams <- list()
pipelineParams$experimentName <- experimentName
pipelineParams$sampleFiles <- sampleFiles

create CytoPipeline object (no step defined yet)
pipL <- CytoPipeline(pipelineParams)

add a processing step in scale tranformation queue
pipL <- addProcessingStep(pipL,

whichQueue = "scale transform”,
CytoProcessingStep(
name = "scale_transform_read”,

FUN = "readRDS",
ARGS = list(file = transListPath)
))

getNbProcessingSteps(pipL, "scale transform”) # returns 1

add another processing step in scale transformation queue
pipL <- addProcessingStep(pipL,

whichQueue = "scale transform”,
CytoProcessingStep(
name = "scale_transform_sum”,

FUN = "sum”,

40 inspectCytoPipelineObjects

ARGS = list()

)

getNbProcessingSteps(pipL, "scale transform”) # returns 2
getProcessingStepNames(pipL, whichQueue = "scale transform”)

removes second processing step in scale transformation queue
pipL <- removeProcessingStep(pipL,
whichQueue = "scale transform”,
index = 2)

get processing step object
pS <- getProcessingStep(pipL, whichQueue = "scale transform”, index = 1)
getCPSName (pS) #"scale_transform_read”

add a processing step in pre-processing queue
pipL <- addProcessingStep(pipL,
whichQueue = "pre-processing”,
CytoProcessingStep(
name = "pre-processing_sum”,
FUN = "sum",
ARGS = list()
)
getNbProcessingSteps(pipL, "scale transform”) # returns 1
getNbProcessingSteps(pipL, "pre-processing”) # returns also 1

showProcessingSteps(pipL, whichQueue = "scale transform”)
showProcessingSteps(pipL, whichQueue = "pre-processing"”)

cleans both processing queues
pipL <- cleanProcessingSteps(pipL)
pipL

inspectCytoPipelineObjects
inspect CytoPipeline results objects

Description

functions to obtain results objects formats

Usage

getCytoPipelineExperimentNames(
path = ".",
pattern = NULL,
ignore.case = FALSE,

fixed = FALSE

inspectCytoPipelineObjects

)

getCytoPipelineObjectFromCache(

X7
path = ".",

whichQueue = c("scale transform”,

sampleFile
objectName

)

NULL,

getCytoPipelineObjectInfos(
X’
path = ".",

whichQueue = c("scale transform”,

sampleFile = NULL
)

getCytoPipelineFlowFrame(
X,
path = ".",

whichQueue = c("scale transform”,

sampleFile,
objectName

)

getCytoPipelineScaleTransform(

X,
path = ".",

whichQueue = c("scale transform”,

sampleFile = NULL,

"pre-processing”),

"pre-processing”),

"pre-processing”),

"pre-processing”),

objectName
)
plotCytoPipelineProcessingQueue(
X,
whichQueue = c("pre-processing”, "scale transform”),
purpose = c("run status”, "description"”),
sampleFile = NULL,
path = ".",
title = TRUE,
box.type = "ellipse”,
Iwd =1,
box.prop = 0.5,
box.cex = 0.7,
cex.txt = 0.7

’

box.size = 0.1,
dtext = 0.15,

41

42

inspectCytoPipelineObjects

)

collectNbOfRetainedEvents(experimentName, path = ".", whichSampleFiles)
Arguments

path root path to locate the search for file caches

pattern optional pattern limiting the search for experiment names

ignore.case
fixed

X
whichQueue

sampleFile

objectName

purpose

title
box. type
1wd
box.prop
box. cex
cex.txt
box.size

dtext

(TRUE/FALSE) used in pattern matching (grepl)
(TRUE/FALSE) used in pattern matching (grepl)
a CytoPipeline object

which queue to look into

which sampleFile is looked for:

* if whichQueue == "scale transform", the sampleFile is ignored

* if NULL and whichQueue == "pre-processing", the sampleFile is defaulted
to the first one belonging to the experiment

(character) which object name to look for
purpose of the workflow plot

* if "run status" (default), the disk cache will be inspected and the box colours
will be set according to run status (green = run, orange = not run, red = def-
inition not consistent with cache). Moreover, the object classes and names
will be filled in if found in the cache.

* if "description”, the workflow will be obtained from the step definition in
the x object, not from the disk cache. As a result, all boxes will be coloured
in black, and no object class and name will be provided.

if TRUE, adds a title to the plot

shape of label box (rect, ellipse, diamond, round, hexa, multi)

default line width of arrow and box (one numeric value)

length/width ratio of label box (one numeric value)

relative size of text in boxes (one numeric value)

relative size of arrow text (one numeric value)

size of label box (one numeric value)

controls the position of arrow text relative to arrowhead (one numeric value)

other arguments passed to diagram::plotmat()

experimentName the experimentName used to select the file cache on disk

whichSampleFiles

indicates for which sample files the number of retained events are to be collected.
If missing, all sample files will be used.

inspectCytoPipelineObjects 43

Value

for getCytoPipelineExperimentNames: a vector of character containing found experiment
names

for getCytoPipelineObjectFromCache: the found object (or stops with an error message if
the target object is not found)

for getCytoPipelineObjectInfos: a dataframe with the collected information about the
found objects (or stops with an error message if no target object was found)

for getCytoPipelineFlowFrame: the found flowFrame (or stops with an error message if the
target object is not found, or if the object is no flowFrame)

for getCytoPipelineScaleTransform: the found flowFrame (or stops with an error message
if the target object is not found, or if the object is no transformList)

for plotCytoPipelineProcessingQueue: nothing

for collectNbOfRetainedEvents: a dataframe with the collected number of events columns
refer to pre-processing steps rows refer to samples

Functions

getCytoPipelineExperimentNames(): This function looks into a path for stored file caches
and gets the corresponding experiment names

getCytoPipelineObjectFromCache(): Given a CytoPipeline object, this function retrieves
a specific object in the corresponding file cache

getCytoPipelineObjectInfos(): Given a CytoPipeline object, this function retrieves the
information related to a specific object name, i.e. object name and object class

getCytoPipelineFlowFrame(): Given a CytoPipeline object, this function retrieves a spe-
cific flowCore::flowFrame object in the corresponding file cache object name and object class

getCytoPipelineScaleTransform(): Given a CytoPipeline object, this function retrieves a
specific flowCore::transformList object in the corresponding file cache

plotCytoPipelineProcessingQueue(): This functions displays a plot of a processing queue
of a CytoPipeline object, using diagram::plotmat().
— If a step is in run state for all sample files, the corresponding box appears in green

— If a step is in non run state for at least one sample file, the corresponding box appears in
orange

— If at least one step is not consistent with cache, the whole set of boxes appears in red

collectNbOfRetainedEvents(): Given a CytoPipeline object, this function retrieves, for all
pre-processing steps, given the output is a flowFrame, the number of retained event.

44 inspectCytoPipelineObjects

Examples

preliminary run:
build CytoPipeline object using json input, run and store results in cache
rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
pattern = "Donor"))

jsonDir <- system.file("extdata"”, package = "CytoPipeline")
jsonPath <- file.path(jsonDir, "pipelineParams.json")
outputDir <- base::tempdir()
pipL <- CytoPipeline(jsonPath,
experimentName = experimentName,
sampleFiles = sampleFiles)

note we temporarily set working directory into package root directory
needed as json path mentions "./" path for sample files
suppressWarnings(execute(pipL, rmCache = TRUE, path = outputDir))

get a list of all stored experiments in a specific path taken as root dir
experimentNames <- getCytoPipelineExperimentNames(path = outputDir)

rebuilding Cytopipeline object from cache
pipL2 <- buildCytoPipelineFromCache(experimentName = experimentNames[1],
path = outputDir)

plot scale transformation queue
plotCytoPipelineProcessingQueue(pipL2, whichQueue = "pre-processing”,
path = outputDir)

plot pre-processing queue
plotCytoPipelineProcessingQueue(pipL2, whichQueue = "scale transform”,
path = outputDir)

get object infos for a specific queue

df <- getCytoPipelineObjectInfos(pipL2, whichQueue = "pre-processing”,
path = outputDir,
sampleFile = sampleFiles(pipL2)[1])

get transform list (output of one step)
trans <-
getCytoPipelineScaleTransform(pipL2, whichQueue = "scale transform”,
objectName =
"scale_transform_estimate_obj",
path = outputDir)

get flowFrame (output of one step)
ff <- getCytoPipelineFlowFrame(pipL2, whichQueue = "pre-processing”,
objectName = "remove_doublets_obj",

interactingWithCytoPipelineCache 45

path = outputDir,
sampleFile = sampleFiles(pipL2)[11)

get any object (output of one step)
obj <-
getCytoPipelineObjectFromCache(pipL2, whichQueue = "scale transform”,
objectName = "compensate_obj",
path = outputDir)
class(obj) # flowCore::flowSet

collect number of retained events at each step

nbEventsDF <- collectNbOfRetainedEvents(
experimentName = experimentNames[1],
path = outputDir)

interactingWithCytoPipelineCache
interaction between CytoPipeline object and disk cache

Description

functions supporting the interaction between a CytoPipeline object and the file cache on disk

Usage
deleteCytoPipelineCache(x, path = ".")
buildCytoPipelineFromCache(experimentName, path = ".")

checkCytoPipelineConsistencyWithCache(

X’
path = ".",
whichQueue = c("both”, "scale transform”, "pre-processing”),
sampleFile = NULL

)

Arguments
X a CytoPipeline object
path the full path to the experiment storage on disk (without the /.cache)

experimentName the experimentName used to select the file cache on disk
whichQueue which processing queue to check the consistency of

sampleFile if whichQueue == "pre-processing" or "both": which sample file(s) to check on
the disk cache

46 interacting WithCytoPipelineCache

Value

for deleteCytoPipelineCache: TRUE if successfully removed
for buildCytoPipelineFromCache: the built CytoPipeline object
for checkCytoPipelineConsistencyWithCache: alist with the following values:

e isConsistent (TRUE/FALSE)

* inconsistencyMsg: character filled in by an inconsistency message in case the cache and
CytoPipeline object are not consistent with each other

* scaleTransformStepStatus: a character vector, containing, for each scale transform step, a

non non:

status from c¢("run", "not run", "inconsistent")

* preProcessingStepStatus: a character matrix, containing, for each pre-processing step

non "nons

(rows), for each sample file (columns), a status from c("run", "not run", "inconsistent")

Functions

* deleteCytoPipelineCache(): delete the whole disk cache corresponding to the experiment
of a CytoPipeline object

* buildCytoPipelineFromCache(): builds a new CytoPipeline object, based on the informa-
tion stored in the file cache

* checkCytoPipelineConsistencyWithCache(): check the consistency between the process-
ing steps described in a CytoPipeline object, and what is stored in the file cache

Examples

preliminary run:
build CytoPipeline object using json input, run and store results in cache
rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
experimentName <- "OMIP@21_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
pattern = "Donor"))

jsonDir <- system.file("extdata"”, package = "CytoPipeline”)
jsonPath <- file.path(jsonDir, "pipelineParams.json")
outputDir <- base::tempdir()
pipL <- CytoPipeline(jsonPath,
experimentName = experimentName,
sampleFiles = sampleFiles)

note we temporarily set working directory into package root directory
needed as json path mentions "./" path for sample files
suppressWarnings(execute(pipL, rmCache = TRUE, path = outputDir))

rebuild CytoPipeline from stored results in cache, for a specific
experiment

experimentName <- "OMIP@21_PeacoQC"
pipL2 <- buildCytoPipelineFromCache(

OMIPO21Samples 47

experimentName = experimentName,
path = outputDir)

checking consistency between CytoPipeline object and cache
res <- checkCytoPipelineConsistencyWithCache(pipL2)
#res

suppressWarnings(execute(pipL2, rmCache = FALSE, path = outputDir))
(everything is already stored in cache)

deleting cache related to a specific experiment
pipL3 <- CytoPipeline(experimentName = experimentName)
deleteCytoPipelineCache(pipL3, path = outputDir)

OMIP@21Samples OMIPO21Samples dataset

Description

OMIPO021Samples dataset

Format

a flowCore::flowSet with two different flowFrames each one contains one flow cytometry sample
corresponding to Donorl.fcs and Donor2.fcs in following source. A subsampling of 5,000 events
has been performed on each file.

Value

nothing

Source

https://flowrepository.org/experiments/305

qualityControlFlowAl perform QC with flowAl

Description

this function is a wrapper around flowAl::flow_auto_qc() function. It also pre-selects the channels
to be handled (=> all signal channels)

https://flowrepository.org/experiments/305

48 qualityControlFlowAI
Usage
qualityControlFlowAI(
ff,
preTransform = FALSE,
transList = NULL,
outputDiagnostic = FALSE,
outputDir = NULL,
)
Arguments
ff a flowCore::flowFrame
preTransform if TRUE, apply the transList scale transform prior to running the gating algo-
rithm
transList applied in conjunction with preTransform
outputDiagnostic
if TRUE, stores diagnostic files generated by flowAl in outputDir directory
outputDir used in conjunction with outputDiagnostic
additional parameters passed to flowAl::flow_auto_qc()
Value
a flowCore::flowFrame with removed low quality events from the input
Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all",

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_QualityControl <-
qualityControlFlowAI(fsRaw[[2]],
remove_from = "all”, # all default
second_fractionFR = 0.1,
deviationFR = "MAD",
alphaFR = 0.01,
decompFR = TRUE,

qualityControlPeacoQC 49

outlier_binsFS = FALSE,
pen_valueFS = 500,
max_cptFS = 3,

sideFM = "both",
neg_valuesfFM = 1))

qualityControlPeacoQC perform QC with PeacoQC

Description

this function is a wrapper around PeacoQC::PeacoQC() function. It also pre-selects the channels to
be handled (=> all signal channels)

Usage

qualityControlPeacoQC(
ff,
preTransform = FALSE,
transList = NULL,
outputDiagnostic = FALSE,
outputDir = NULL,

Arguments

ff a flowCore::flowFrame

preTransform if TRUE, apply the transList scale transform prior to running the gating algo-

rithm
transList applied in conjunction with preTransform
outputDiagnostic

if TRUE, stores diagnostic files generated by PeacoQC in outputDir directory
outputDir used in conjunction with outputDiagnostic

additional parameters passed to PeacoQC::PeacoQC()

Value

a flowCore::flowFrame with removed low quality events from the input

50

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))

ff_c <-
compensateFromMatrix(ff_m,
matrixSource = "fcs”)

transList <-
estimateScaleTransforms(
ff = ff_c,
fluoMethod = "estimatelLogicle”,
scatterMethod = "linear”,
scatterRefMarker = "BV785 - CD3")

ff_QualityControl <- suppressWarnings(
qualityControlPeacoQC(
ff_c,
preTransform = TRUE,
transList = translList,
min_cells = 150,
max_bins = 500,
MAD = 6,
IT_limit = @.55,
force_IT = 150,
peak_removal = (1/3),
min_nr_bins_peakdetection = 10))

readRDSObject

readRDSObject read RDS object

Description

wrapper around readRDS, which discards any additional parameters passed in (...)

readSampleFiles 51

Usage
readRDSObject(RDSFile, ...)
Arguments
RDSFile a RDS file containing a R object object
other arguments (not used)
Value
the read R object
Examples
data(OMIP@21Samples)

transListPath <- file.path(system.file("extdata",
package = "CytoPipeline”),
"OMIP@21_TransList.rds")
transList <- readRDSObject(transListPath)

ff_c <- compensateFromMatrix(OMIP@21Samples[[1]1],
matrixSource = "fcs")

ff_t <- applyScaleTransforms(ff_c, transList = translList)

readSampleFiles Read fcs sample files

Description

Wrapper around flowCore::read.fcs() or flowCore::read.flowSet(). Also adds a "Cell_ID" additional
column, used in flowFrames comparison

Usage

readSampleFiles(
sampleFiles,
whichSamples = "all",
nSamples = NULL,
seed = NULL,
channelMarkerFile = NULL,

52 readSampleFiles

Arguments

sampleFiles a vector of character path to sample files
whichSamples one of:

« ’all’ if all sample files need to be read

* ’random’ if some samples need to be chosen randomly (in that case, using
nSamples and seed)

* avector of indexes pointing to the sampleFiles vector

nSamples number of samples to randomly select (if whichSamples == "random”). If nSamples
is higher than nb of available samples, the output will be all samples

seed an optional seed parameters (provided to ease reproducibility).

channelMarkerFile

an optional path to a csv file which provides the mapping between channels

and markers. If provided, this csv file should contain a Channel column, and a
Marker column. Optionally a *Used’ column can be provided as well (TRUE/FALSE).
Channels for which the *Used’ column is set to FALSE will not be incorporated

in the created flowFrame.

additional parameters passed to flowCore file reading functions.

Value

either a flowCore::flowSet or a flowCore::flowFrame if length(sampleFiles) == 1

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
res <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

#res

create a flowCore::flowFrame with one single sample
res2 <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = 2,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

removeChannels 53

#res?2

removeChannels remove channels from a flowFrame

Description

: in a flowCore::flowFrame, remove the channels of the given names.

Usage

removeChannels(ff, channels)

Arguments
ff a flowCore::flowFrame
channels the channel names to be removed
Value

a new flowCore::flowFrame with the removed channels

Examples

data(OMIP@21Samples)

retFF <- removeChannels(OMIP@21Samples[[1]],
channel = "FSC-A")

removeDeadCellsManualGate
remove dead cells from a flowFrame using manual gating

Description

remove dead cells from a flowFrame, using manual gating in the FSC-A, ’(a)Live/Dead’ 2D repre-
sentation. The function uses flowCore::polygonGate()

54 removeDeadCellsManualGate

Usage

removeDeadCellsManualGate(
ff,
preTransform = FALSE,
transList = NULL,
FSCChannel,
LDMarker,
gateData,

Arguments

ff a flowCore::flowFrame

preTransform boolean, if TRUE: the transList list of scale transforms will be applied first on

the LD channel.
transList applied in conjunction with preTransform == TRUE
FSCChannel a character containing the exact name of the forward scatter channel
LDMarker a character containing the exact name of the marker corresponding to (a)Live/Dead

channel, or the Live/Dead channel name itself

gateData a numerical vector containing the polygon gate coordinates first the FSCChannel
channel coordinates of each points of the polygon gate, then the LD channel
coordinates of each points (prior to scale transform)

additional parameters passed to flowCore::polygonGate()

Value

a flowCore::flowFrame with removed dead cells from the input

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))

removeDebrisManualGate 55

ff_c <-
compensateFromMatrix(ff_m,
matrixSource = "fcs")

remDeadCellsGateData <- c(@, 0, 250000, 250000,
0, 650, 650, 0)

ff_lcells <-
removeDeadCellsManualGate(ff_c,
FSCChannel = "FSC-A",
LDMarker = "L/D Aqua - Viability",
gateData = remDeadCellsGateData)

removeDebrisManualGate
remove debris from a flowFrame using manual gating

Description

remove debris from a flowFrame, using manual gating in the FSC-A, SSC-A 2D representation.
The function internally uses flowCore::polygonGate()

Usage
removeDebrisManualGate(ff, FSCChannel, SSCChannel, gateData, ...)
Arguments
ff a flowCore::flowFrame
FSCChannel a character containing the exact name of the forward scatter channel
SSCChannel a character containing the exact name of the side scatter channel
gateData a numerical vector containing the polygon gate coordinates first the FSCChannel
channel coordinates of each points of the polygon gate, then the SSCChannel
channel coordinates of each points.
additional parameters passed to flowCore::polygonGate()
Value

a flowCore::flowFrame with removed debris events from the input

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

56 removeDoubletsCytoPipeline

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))
ff_c <-

compensateFromMatrix (ff_m,
matrixSource = "fcs")

remDebrisGateData <- c(73615, 110174, 213000, 201000, 126000,
47679, 260500, 260500, 113000, 35000)

ff_cells <-
removeDebrisManualGate(ff_c,
FSCChannel = "FSC-A",
SSCChannel = "SSC-A",

gateData = remDebrisGateData)

removeDoubletsCytoPipeline

remove doublets from a flowFrame, using CytoPipeline custom algo-
rithm

Description

Wrapper around CytoPipeline::singletGate(). Can apply the flowStats function subsequently on
several channel pairs, e.g. (FSC-A, FSC-H) and (SSC-A, SSC-H)

Usage

removeDoubletsCytoPipeline(ff, areaChannels, heightChannels, nmads, ...)
Arguments

ff a flowCore::flowFrame

areaChannels a character vector containing the name of the "area type’ channels one wants to
use

heightChannels a character vector containing the name of the ’height type’ channels one wants
to use

removeMarginsPeacoQC 57

nmads a numeric vector with the bandwidth above the ratio allowed, per channels pair
(cells are kept if the ratio between -A channel[i] and -H channel[i] is smaller than
the median ratio + nmad][i] times the median absolute deviation of the ratios).
Default is 4, for all channel pairs.

additional parameters passed to CytoPipeline::singletGate()

Value

a flowCore::flowFrame with removed doublets events from the input

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]1]))

ff_c <-
compensateFromMatrix (ff_m,
matrixSource = "fcs")
ff_s <-

removeDoubletsCytoPipeline(ff_c,
areaChannels = c("FSC-A", "SSC-A"),
heightChannels = c("FSC-H", "SSC-H"),
nmads = c(3, 5))

removeMarginsPeacoQC remove margin events using PeacoQC

Description

Wrapper around PeacoQC::RemoveMargins(). Also pre-selects the channels to be handled (=> all
signal channels) If input is a flowSet, it applies removeMargins() to each flowFrame of the flowSet.

58 resetCelllDs

Usage

removeMarginsPeacoQC(x, channelSpecifications = NULL, ...)
Arguments

X a flowCore::flowSet or a flowCore::flowFrame

channelSpecifications

A list of lists with parameter specifications for certain channels. This param-
eter should only be used if the values in the internal parameters description is
too strict or wrong for a number or all channels. This should be one list per
channel with first a minRange and then a maxRange value. This list should
have the channel name found back in colnames(flowCore::exprs(ff)), or the cor-
responding marker name (found in flowCore::pData(flowCore::description(ff))
) . If a channel is not listed in this parameter, its default internal values will
be used. The default of this parameter is NULL. If the name of one list is set
to AL1FluoChannels, then the minRange and maxRange specified there will be
taken as default for all fluorescent channels (not scatter)

additional parameters passed to PeacoQC::RemoveMargins()

Value

either a flowCore::flowSet or a flowCore::flowFrame depending on the input.

Examples

rawDataDir <-
system.file("extdata"”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL
fsRaw <- readSampleFiles(sampleFiles,
truncate_max_range = truncateMaxRange,
min.limit = minLimit)
suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))
ggplotFilterEvents(ffPre = fsRaw[[2]],
ffPost = ff_m,
xChannel = "FSC-A",
yChannel = "SSC-A")

resetCellIDs reset "Original_ID’ column in a flowframe

Description

: on a flowCore::flowFrame, reset *Original_ID’ column. This column can be used in plots compar-
ing the events pre and post gating. If the *Original_ID’ column already exists, the function replaces
the existing IDs by the user provided ones. If not, an appendCellID() is called.

runCompensation 59

Usage

resetCellIDs(ff, eventIDs = seq_len(flowCore::nrow(ff)))

Arguments
ff a flowCore::flowFrame
eventIDs an integer vector containing the values to be set in expression matrix, as Original
ID’s.
Value

new flowCore::flowFrame containing the amended (or added) ’Original _ID’ column

Examples

data(OMIP@21Samples)
ff <- appendCellID(OMIP@21Samples[[1]])
subsample_ff <- subsample(ff, 100, keepOriginalCelllIDs = TRUE)

re-create a sequence of IDs, ignoring the ones before subsampling
reset_ff <- resetCellIDs(subsample_ff)

runCompensation compensate with additional options

Description

: this is a simple wrapper around the flowCore::compensate() utility, allowing to trigger an update
of the fluo channel names with a prefix ’comp-’ (as in FlowJo)

Usage

runCompensation(obj, spillover, updateChannelNames = TRUE)

Arguments
obj a flowCore::flowFrame or flowCore::flowSet
spillover compensation object or spillover matrix or a list of compensation objects
updateChannelNames

if TRUE, add a comp-’ prefix to all fluorochrome channels (hence does not
impact the columns related to FSC, SSC, or other specific keyword like TIME,
Original_ID, File,...) Default TRUE.

60 singletsGate

Value

a new object with compensated data, and possibly updated column names

Examples

data(OMIP@21Samples)

ff <- OMIP@21Samples[[1]1]

compMatrix <- flowCore::spillover(ff)$SPILL

ff <- runCompensation(ff,
spillover = compMatrix,
updateChannelNames = TRUE)

singletsGate Clean doublet events from flow cytometry data

Description

will adjust a polygon gate aimed at cleaning doublet events from the flowFrame. The main idea
is to use the ratio between the two indicated channel as an indicator and select only the events
for which this ratio is 'not too far’ from the median ratio. More specifically, the computed ratio
is ch1/(14+ch2). However, instead of looking at a constant range of this ratio, as is done in Pea-
coQC::removeDoublets(), which leads to a semi-conic gate, we apply a parallelogram shaped gate,
by keeping a constant range of channel 2 intensity, based on the target ratio range at the mid value
of channel 1.

Usage
singletsGate(
ff,
filterId = "Singlets”,
channell = "FSC-A",
channel2 = "FSC-H",
nmad = 4,
verbose = FALSE
)
Arguments
ff A flowCore::flowframe that contains flow cytometry data.
filterId the name for the filter that is returned
channel1 The first channel that will be used to determine the doublet events. Default is
VIFSC_A”
channel? The second channels that will be used to determine the doublet events. Default

is "FSC-H"

singletsGate 61

nmad Bandwidth above the ratio allowed (cells are kept if their ratio is smaller than the
median ratio + nmad times the median absolute deviation of the ratios). Default
is 4.
verbose If set to TRUE, the median ratio and width will be printed. Default is FALSE.
Value

This function returns a flowCore::polygonGate.

Examples

data(OMIP0@21Samples)

simple example with one single singlets gate filter
FSC-A and FSC-H channels are used by default

mySingletsGate <- singletsGate(OMIP@21Samples[[1]], nmad = 3)
selectedSinglets <- flowCore::filter(

OMIP@21Samples[[1]1],

mySingletsGate)

ff_1 <- flowCore: :Subset(OMIP@21Samples[[1]], selectedSinglets)

linRange <- c(0, 250000)

ggplotFilterEvents(
ffPre = OMIP@21Samples[[11],
ffPost = ff_1,
xChannel = "FSC-A", xLinearRange = linRange,

yChannel = "FSC-H", yLinearRange = linRange)
application of two singlets gates one after the other

singletsGatel <- singletsGate(OMIP@21Samples[[1]], nmad = 3)
singletsGate2 <- singletsGate(OMIP@21Samples[[1]1],

channell = "SSC-A",

channel2 = "SSC-H",

filterId = "Singlets2")

singletCombinedGate <- singletsGatel & singletsGate2

selectedSinglets <- flowCore::filter(
OMIP@21Samples[[1]1],
singletCombinedGate)

ff_1 <- flowCore: :Subset(OMIP@21Samples[[1]], selectedSinglets)

ggplotFilterEvents(
ffPre = OMIP@21Samples[[1]],
ffPost = ff_1,
xChannel = "FSC-A", xLinearRange = linRange,

62 subsample

yChannel = "FSC-H", yLinearRange = linRange)

ggplotFilterEvents(
ffPre = OMIP@21Samples[[1]],
ffPost = ff_1,
xChannel = "SSC-A", xLinearRange = linRange,

yChannel = "SSC-H", yLinearRange = linRange)

subsample sub-sampling of a flowFrame

Description

: sub-samples a flowFrame with the specified number of samples, without replacement. adds also a
column ’Original_ID’ if not already present in flowFrame.

Usage
subsample(ff, nEvents, seed = NULL, keepOriginalCelllDs = TRUE, ...)
Arguments
ff a flowCore::flowFrame
nEvents number of events to be obtained using sub-sampling
seed can be set for reproducibility of event sub-sampling
keepOriginalCelllIDs
if TRUE, adds (if not already present) a ’OriginallD’ column containing the
initial IDs of the cell (from 1 to nrow prior to subsampling). if FALSE, does the
same, but takes as IDs (1 to nrow after subsampling)
additional parameters (currently not used)
Value

new flowCore::flowFrame with the obtained subset of samples

Examples

data(OMIP@21Samples)

take first sample of dataset, subsample 100 events and create new flowFrame
ff <- subsample(OMIP@21Samples[[1]], nEvents = 100)

updateMarkerName 63

updateMarkerName update marker name of a given flowFrame channel

Description

: in a flowCore::flowFrame, update the marker name (stored in ’desc’ of parameters data) of a given
channel. Also update the corresponding keyword in the flowFrame.

Usage

updateMarkerName (ff, channel, newMarkerName)

Arguments
ff a flowCore::flowFrame
channel the channel for which to update the marker name

newMarkerName the new marker name to be given to the selected channel

Value

a new flowCore::flowFrame with the updated marker name

Examples

data(OMIP@21Samples)

retFF <- updateMarkerName (OMIP@21Samples[[1]1],
channel = "FSC-A",
newMarkerName = "Fwd Scatter-A")

writeFlowFrame write flowFrame to disk

Description

wrapper around flowCore::write.FCS() or utils::write.csv that discards any additional parameter
passed in (...)

64 writeFlowFrame

Usage

writeFlowFrame(
ff,
dir = ".",
useFCSFileName = TRUE,

nn

prefix = ,
suffix = "",
format = c("fcs”, "csv"),

csvUseChannelMarker = TRUE,

)
Arguments
ff a flowCore::flowFrame
dir an existing directory to store the flowFrame,

useFCSFileName if TRUE filename used will be based on original fcs filename

prefix file name prefix
suffix file name suffix
format either fcs or csv
csvUseChannelMarker

if TRUE (default), converts the channels to the corresponding marker names
(where the Marker is not NA). This setting is only applicable to export in csv
format.

other arguments (not used)

Value

nothing

Examples

rawDataDir <-
system.file("extdata”, package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))

truncateMaxRange <- FALSE
minLimit <- NULL

create flowCore::flowSet with all samples of a dataset
res <- readSampleFiles(

sampleFiles = sampleFiles,

whichSamples = "all”,

truncate_max_range = truncateMaxRange,

min.limit = minLimit)

ff_c <- compensateFromMatrix(res[[2]], matrixSource = "fcs")

writeFlowFrame

outputDir <- base::tempdir()
writeFlowFrame(ff_c,
dir = outputDir,
suffix = "_fcs_export”,
format = "csv")

65

Index

+ data
OMIP@21Samples, 47

+ internal
CytoPipeline, 9

addProcessingStep
(handlingProcessingSteps), 37
aggregateAndSample, 3
appendCelllID, 4
applyScaleTransforms, 5
areFluoCols, 6
areSignalCols, 6
as.json.CytoProcessingStep
(CytoProcessingStep), 16
as.list.CytoPipeline
(CytoPipeline-class), 10
as.list.CytoProcessingStep
(CytoProcessingStep), 16

buildCytoPipelineFromCache
(interactingWithCytoPipelineCache),
45

characterOrFunction-class
(CytoProcessingStep), 16

checkCytoPipelineConsistencyWithCache
(interactingWithCytoPipelineCache),
45

cleanProcessingSteps
(handlingProcessingSteps), 37

collectNbOfRetainedEvents
(inspectCytoPipelineObjects),
40

compensateFromMatrix, 7

computeScatterChannelsLinearScale, 8

CytoPipeline, 9

CytoPipeline,character-method
(CytoPipeline-class), 10

CytoPipeline,list-method
(CytoPipeline-class), 10

66

CytoPipeline,missing-method
(CytoPipeline-class), 10
CytoPipeline-class, 10
CytoPipeline-class,
(CytoPipeline-class), 10
CytoPipeline-package (CytoPipeline), 9
CytoPipelineClass, 10
CytoPipelineClass (CytoPipeline-class),
10
CytoProcessingStep, 10, 16
CytoProcessingStep-class
(CytoProcessingStep), 16

deleteCytoPipelineCache
(interactingWithCytoPipelineCache),
45

estimateScaleTransforms, 17

execute, 19

executeProcessingStep
(CytoProcessingStep), 16

experimentName (CytoPipeline-class), 10

experimentName<- (CytoPipeline-class),
10

export2JSONFile (exportCytoPipeline), 24

exportCytoPipeline, 24

findTimeChannel, 25
from. json.CytoProcessingStep
(CytoProcessingStep), 16

getAcquiredCompensationMatrix, 26

getChannelNamesFromMarkers, 27

getCPSARGS (CytoProcessingStep), 16

getCPSFUN (CytoProcessingStep), 16

getCPSName (CytoProcessingStep), 16

getCytoPipelineExperimentNames
(inspectCytoPipelineObjects),
40

INDEX

getCytoPipelineFlowFrame
(inspectCytoPipelineObjects),
40
getCytoPipelineObjectFromCache
(inspectCytoPipelineObjects),
40
getCytoPipelineObjectInfos
(inspectCytoPipelineObjects),
40
getCytoPipelineScaleTransform
(inspectCytoPipelineObjects),
40
getFCSFileName, 28
getNbProcessingSteps
(handlingProcessingSteps), 37
getProcessingStep
(handlingProcessingSteps), 37
getProcessingStepNames
(handlingProcessingSteps), 37
getTransfoParams, 28
ggplotEvents, 30
ggplotFilterEvents, 34
ggplotFlowRate, 36

handlingProcessingSteps, 37

inspectCytoPipelineObjects, 40
interactingWithCytoPipelineCache, 45

OMIP@21Samples, 47

pData (CytoPipeline-class), 10

pData<- (CytoPipeline-class), 10

plotCytoPipelineProcessingQueue
(inspectCytoPipelineObjects),
40

qualityControlFlowAI, 47
qualityControlPeacoQC, 49

readRDSObject, 50
readSampleFiles, 51
removeChannels, 53
removeDeadCellsManualGate, 53
removeDebrisManualGate, 55
removeDoubletsCytoPipeline, 56
removeMarginsPeacoQC, 57
removeProcessingStep
(handlingProcessingSteps), 37
resetCelllDs, 58

67

runCompensation, 59

sampleDisplayNames
(CytoPipeline-class), 10
sampleFiles (CytoPipeline-class), 10
sampleFiles<- (CytoPipeline-class), 10
sampleNameFromDisplayName
(CytoPipeline-class), 10
show, CytoPipeline-method
(CytoPipeline-class), 10
show, CytoProcessingStep-method
(CytoProcessingStep), 16
showProcessingSteps
(handlingProcessingSteps), 37
singletsGate, 60
subsample, 62

updateMarkerName, 63

writeFlowFrame, 63

	aggregateAndSample
	appendCellID
	applyScaleTransforms
	areFluoCols
	areSignalCols
	compensateFromMatrix
	computeScatterChannelsLinearScale
	CytoPipeline
	CytoPipeline-class
	CytoProcessingStep
	estimateScaleTransforms
	execute
	exportCytoPipeline
	findTimeChannel
	getAcquiredCompensationMatrix
	getChannelNamesFromMarkers
	getFCSFileName
	getTransfoParams
	ggplotEvents
	ggplotFilterEvents
	ggplotFlowRate
	handlingProcessingSteps
	inspectCytoPipelineObjects
	interactingWithCytoPipelineCache
	OMIP021Samples
	qualityControlFlowAI
	qualityControlPeacoQC
	readRDSObject
	readSampleFiles
	removeChannels
	removeDeadCellsManualGate
	removeDebrisManualGate
	removeDoubletsCytoPipeline
	removeMarginsPeacoQC
	resetCellIDs
	runCompensation
	singletsGate
	subsample
	updateMarkerName
	writeFlowFrame
	Index

