

Package ‘CluMSID’

February 1, 2026

Type Package

Title Clustering of MS2 Spectra for Metabolite Identification

Version 1.27.0

Maintainer Tobias Depke <depke@mailbox.org>

Description CluMSID is a tool that aids the identification of features in untargeted LC-MS/MS analysis by the use of MS2 spectra similarity and unsupervised statistical methods. It offers functions for a complete and customisable workflow from raw data to visualisations and is interfaceable with the xmcs family of preprocessing packages.

License MIT + file LICENSE

Encoding UTF-8

URL <https://github.com/tdepke/CluMSID>

BugReports <https://github.com/tdepke/CluMSID/issues>

LazyData true

Depends R (>= 3.6)

biocViews Metabolomics, Preprocessing, Clustering

Imports mzR, S4Vectors, dbscan, RColorBrewer, ape, network, GGally, ggplot2, plotly, methods, utils, stats, sna, grDevices, graphics, Biobase, gplots, MSnbase

RoxygenNote 6.1.1

Suggests knitr, rmarkdown, testthat, dplyr, readr, stringr, magrittr, CluMSIDdata, metaMS, metaMSdata, xcms

VignetteBuilder knitr

git_url <https://git.bioconductor.org/packages/CluMSID>

git_branch devel

git_last_commit 4f5bb4a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Tobias Depke [aut, cre],
 Raimo Franke [ctb],
 Mark Broenstrup [ths]

Contents

accessors	2
addAnnotations	4
as.MS2spectrum	5
cossim	6
distanceMatrix	7
extractMS2spectra	8
extractPseudospectra	9
featureList	10
findFragment	10
findNL	11
getSimilarities	12
getSpectrum	13
HCplot	14
HCtbl	14
MDSplot	15
mergeMS2spectra	16
mergeSpecList	17
mergeTolerance	17
MS2spectrum-class	18
networkplot	19
neutrallossPatterns	20
OPTICSplot	21
OPTICStbl	22
pseudospectrum-class	23
specplot	23
splitPolarities	24
writeFeaturelist	24

Index	26
--------------	-----------

accessors

Accessor functions for individual slots of `MS2spectrum` and `pseudospectrum` objects

Description

Accessor functions for individual slots of `MS2spectrum` and `pseudospectrum` objects

Usage

```
accessID(x)

accessAnnotation(x)

accessPrecursor(x)

accessRT(x)

accessPolarity(x)

accessSpectrum(x)

accessNeutralLosses(x)
```

Arguments

x An object of class [MS2spectrum](#) or [pseudospectrum](#)

Value

The value of the respective slot of the object (id, annotation, precursor, rt, spectrum, neutral_losses)

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

accessID(annotatedSpeclist[[1]])

load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

accessAnnotation(annotatedSpeclist[[1]])

load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

accessPrecursor(annotatedSpeclist[[1]])

load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

accessRT(annotatedSpeclist[[1]])

load(file = system.file("extdata",
  "annotatedSpeclist.RData",
```

```

  package = "CluMSIDdata"))

accessPolarity(annotatedSpecList[[1]])

load(file = system.file("extdata",
  "annotatedSpecList.RData",
  package = "CluMSIDdata"))

accessSpectrum(annotatedSpecList[[1]])

load(file = system.file("extdata",
  "annotatedSpecList.RData",
  package = "CluMSIDdata"))

accessNeutralLosses(annotatedSpecList[[1]])

```

addAnnotations*Adding external annotations to list of MS2spectrum objects*

Description

`addAnnotations` is used to add annotations that have been assigned externally, e.g. by library search, to a list of `MS2spectrum` objects as produced by `extractMS2spectra` and `mergeSpecList`.

Usage

```
addAnnotations(featlist, annolist, annotationColumn = 4)
```

Arguments

<code>featlist</code>	A list of <code>MS2spectrum</code> objects as produced by <code>extractMS2spectra</code> and <code>mergeSpecList</code>
<code>annolist</code>	A list of annotations, either as a <code>data.frame</code> or <code>csv</code> file. The order of features must be the same as in <code>featlist</code> . Please see the package vignette for a detailed example!
<code>annotationColumn</code>	The column of <code>annolist</code> where the annotation is found. Default is 4, which is the case if <code>writeFeatureList</code> followed by manual addition of annotations, e.g. in Excel, is used to generate <code>annolist</code> .

Value

A list of `MS2spectrum` objects as produced by `extractMS2spectra` and `mergeSpecList` with external annotations added to the `annotation` slot of each `MS2spectrum` object.

Examples

```
load(file = system.file("extdata",
  "featlist.RData",
  package = "CluMSIDdata"))

addAnnotations(featlist, system.file("extdata",
  "post_anno.csv",
  package = "CluMSIDdata"),
  annotationColumn = 4)
```

as.MS2spectrum

*Convert spectra from **MSnbase** classes*

Description

Convert spectra from **MSnbase** classes

Usage

```
as.MS2spectrum(x)
```

Arguments

x	An object of class Spectrum or Spectrum2
---	--

Value

An object of class [MS2spectrum](#)

Examples

```
#Load a "Spectrum2" object from MSnbase
library(MSnbase)
sp <- itraqdata[["X1"]]
#Convert this object to "MS2spectrum" class
new_sp <- as.MS2spectrum(sp)
#Or alternatively:
new_sp <- as(sp, "MS2spectrum")
```

cossim	<i>Calculate cosine similarity between two spectra</i>
--------	--

Description

`cossim()` calculates the cosine of the spectral contrast angle as a measure for the similarity of two spectra.

Usage

```
cossim(x, y, type = c("spectrum", "neutral_losses"),
      mzTolerance = 1e-05)

## S4 method for signature 'MS2spectrum,MS2spectrum'
cossim(x, y, type = c("spectrum",
      "neutral_losses"), mzTolerance = 1e-05)

## S4 method for signature 'pseudospectrum,pseudospectrum'
cossim(x, y,
      type = c("spectrum", "neutral_losses"), mzTolerance = 1e-05)
```

Arguments

<code>x, y</code>	MS2 spectra, either as <code>matrix</code> , <code>MS2spectrum</code> or <code>pseudospectrum</code> objects. <code>x</code> and <code>y</code> must have the same class.
<code>type</code>	Whether similarity between spectra ("spectrum", default) or neutral loss patterns ("neutral_losses") is to be compared
<code>mzTolerance</code>	The m/z tolerance used for merging. If two fragment peaks are within tolerance, they are regarded as the same. Defaults to <code>1e-5</code> , i.e. 10ppm.

Value

The cosine similarity of `x` and `y`

Methods (by class)

- `x = MS2spectrum, y = MS2spectrum`: `cossim` method for `MS2spectrum` objects
- `x = pseudospectrum, y = pseudospectrum`: `cossim` method for `pseudospectrum` objects

Examples

```
load(file = system.file("extdata",
  "annotatedSpecList.RData",
  package = "CluMSIDdata"))

cossim(annotatedSpecList[[1]], annotatedSpecList[[2]])
```

distanceMatrix	<i>Create distance matrix from list of spectra</i>
----------------	--

Description

distanceMatrix() creates a distance matrix from a list of MS2 spectra, MS1 pseudospectra or neutral loss patterns by pairwise comparison using the specified distance function. This distance matrix is the basis for CluMSID's data mining functions.

Usage

```
distanceMatrix(speclist, distFun = "cossim", type = c("spectrum",
  "neutral_losses"), mz_tolerance = 1e-05)
```

Arguments

speclist	A list of MS2spectrum or pseudospectrum objects as generated by extractMS2spectra or extractPseudospectra .
distFun	The distance function to be used. At the moment, only cossim is implemented.
type	"spectrum" (default) for MS2 spectra or MS1 pseudospectra or "neutral_losses" for neutral loss patterns.
mz_tolerance	The <i>m/z</i> tolerance to be used for merging, default is 1e-5, i.e. +/- 10ppm. If the mass-to-charge ratios of two peaks differ less than <i>mz_tolerance</i> , they are assumed to have the same <i>m/z</i>

Value

A numeric `length(speclist)` by `length(speclist)` matrix containing pairwise distances (1 - similarity) between all features in speclist. Row and column names are taken from the `id` slot or, if present, pasted from the `id` and `annotation` slots of the [MS2spectrum](#) or [pseudospectrum](#) objects.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

distanceMatrix(annotatedSpeclist[1:20])
```

`extractMS2spectra` *Extract MS2 spectra from raw data files*

Description

`extractMS2spectra()` is used to extract MS2 spectra from raw data files, e.g. mzXML files.

Usage

```
extractMS2spectra(MSfile, min_peaks = 2, recalibrate_precursor = FALSE,  
    RTlims = NULL)
```

Arguments

MSfile	An LC-MS/MS raw data file in one of the non-proprietary formats that can be parsed by mzR, e.g. mzXML or mzML.
min_peaks	Minimum number of peaks in MS2 spectrum, defaults to 2. Spectra with less than <code>min_peaks</code> fragment peaks will be ignored and not extracted.
recalibrate_precursor	Logical, defaults to FALSE. Applicable only for files that were exported to mzXML using a deprecated version of Bruker Compass Xport (< 3.0.13). If set to TRUE, the precursor m/z will be recalculated from the respective fragment m/z in the MS2 spectrum. For details, see Depke et al. 2017.
RTlims	Retention time interval for the extraction of spectra. Provide as numeric vector of length 2. Spectra with retention time < <code>RTlims[1]</code> or > <code>RTlims[2]</code> will be ignored.

Value

A list with objects of class `MS2spectrum`, containing MS2 spectra extracted from the raw data.

Examples

extractPseudospectra *Extract pseudospectra*

Description

`extractPseudospectra()` is used to extract MS1 pseudospectra from **CAMERA** output.

Usage

```
extractPseudospectra(x, min_peaks = 1, intensity_columns = NULL)
```

Arguments

x **CAMERA** output that contains information on pseudospectra. Can either be of class `data.frame` or [xsAnnotate](#). It is recommended to use either `xsAnnotate` objects or `data.frames` generated from XCMSonline results tables but other `data.frames` are possible.

min_peaks Minimum number of peaks in pseudospectrum, defaults to 1. See [extractMS2spectra](#).

intensity_columns Numeric, defaults to `NULL`. If a `data.frame` is used as input which has not been generated from an XCMSonline results table, the indices of the columns that contain the peak intensities in the different samples have to be indicated as `intensity_columns`.

Value

A list of pseudospectra, stored as objects of class [pseudospectrum](#), analogous to the output of [extractMS2spectra](#).

Examples

```
pstable <- readr::read_delim(file = system.file("extdata",
                                                "TD035_XCMS.annotated.diffreport.tsv",
                                                package = "CluMSIDdata"), delim = "\t")

pseudospeclist <- extractPseudospectra(pstable, min_peaks = 2)
```

<code>featureList</code>	<i>Generate a data.frame with feature information from list of MS2spectrum objects</i>
--------------------------	--

Description

`featureList` generates a `data.frame` that contains feature ID, precurosur m/z and retention time for all features contained in a list of `MS2spectrum` objects as produced by `extractMS2spectra` and `mergeSpecList`. `featureList` is used internally by `writeFeaturelist`.

Usage

```
featureList(featlist)
```

Arguments

<code>featlist</code>	A list of <code>MS2spectrum</code> objects as produced by <code>extractMS2spectra</code> and <code>mergeSpecList</code>
-----------------------	---

Details

Although originally designed for lists of `MS2spectrum` objects, the function also works with lists of `pseudospectrum` objects. In this case, NA is given for precursor m/z .

Value

A `data.frame` that contains feature ID, precurosur m/z (if available) and retention time

Examples

```
load(file = system.file("extdata",
  "featlist.RData",
  package = "CluMSIDdata"))

pre_anno <- featureList(featlist)
```

<code>findFragment</code>	<i>Find spectra that contain a specific fragment</i>
---------------------------	--

Description

`findFragment` is used to find spectra that contain a specific fragment ion. Its sister function is `findNL`, which finds specific neutral losses. Both functions work analogous to `getSpectrum`.

Usage

```
findFragment(featlist, mz, tolerance = 1e-05)
```

Arguments

featlist	a list that contains only objects of class MS2spectrum
mz	The mass-to-charge ratio of the fragment ion of interest.
tolerance	The m/z tolerance for the fragment ion search. Default is 1E-05, i.e. +/- 10ppm.

Value

If the respective fragment is only found in one spectrum, the output is an object of class [MS2spectrum](#); if it is found in more than one spectrum, the output is a list of [MS2spectrum](#) objects.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))
putativeAQs <- findFragment(annotatedSpeclist, 159.068)
```

findNL

*Find spectra that contain a specific neutral loss***Description**

`findNL` is used to find spectra that contain a specific neutral loss. Its sister function is [findFragment](#), which finds specific fragment ions. Both functions work analogous to [getSpectrum](#).

Usage

```
findNL(featlist, mz, tolerance = 1e-05)
```

Arguments

featlist	a list that contains only objects of class MS2spectrum
mz	The mass-to-charge ratio of the neutral loss of interest.
tolerance	The m/z tolerance for the neutral loss search. Default is 1E-05, i.e. +/- 10ppm.

Value

If the respective neutral loss is only found in one spectrum, the output is an object of class [MS2spectrum](#); if it is found in more than one spectrum, the output is a list of [MS2spectrum](#) objects.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))
findNL(annotatedSpeclist, 212.009)
```

getSimilarities	<i>Match one spectrum against a set of spectra</i>
-----------------	--

Description

getSimilarities calculates the similarities of one spectrum or neutral loss pattern to a set of other spectra or neutral loss patterns.

Usage

```
getSimilarities(spec, speclist, type = c("spectrum", "neutral_losses"),
  hits_only = FALSE)
```

Arguments

spec	The spectrum to be compared to other spectra. Can be either an object of class MS2spectrum or a two-column numerical matrix that contains fragment mass-to-charge ratios in the first and intensities in the second column.
speclist	The set of spectra to which spec is to be compared. Must be a list where every entry is an object of class MS2spectrum . Can be generated from an mzXML file with extractMS2spectra and mergeMS2spectra or constructed using new("MS2spectrum", ...) for every list entry (see vignette for details).
type	Specifies whether MS2 spectra or neutral loss patterns are to be compared. Must be either 'spectrum' (default) or 'neutral_losses'.
hits_only	Logical that indicates whether the result should contain only similarities greater than zero.

Value

A named vector with similarities of spec to all spectra or neutral loss patterns in speclist.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))
getSimilarities(annotatedSpeclist[[137]],
  annotatedSpeclist, hits_only = TRUE)
```

getSpectrum	<i>Access individual spectra from a list of spectra by various slot entries</i>
-------------	---

Description

As accessing S4 objects within lists is not trivial, `getSpectrum` can be used to access individual or several `MS2spectrum` objects by their slot entries.

Usage

```
getSpectrum(featlist, slot, what, mz.tol = 1e-05, rt.tol = 30)
```

Arguments

<code>featlist</code>	a list that contains only objects of class <code>MS2spectrum</code>
<code>slot</code>	The slot to be searched (invalid slot arguments will produce errors). Possible values are: <ul style="list-style-type: none">• 'id'• 'annotation'• 'precursor' (<i>m/z</i> of precursor ion)• 'rt' (retention time of precursor)
<code>what</code>	the search term or number, must be character for 'id' and 'annotation' and numeric for 'precursor' and 'rt' See vignette for examples.
<code>mz.tol</code>	the tolerance used for precursor ion *m/z* searches, defaults to 1E-05 (+/- 10ppm)
<code>rt.tol</code>	the tolerance used for precursor ion retention time searches, defaults to 30s; high values can be used to specify retention time ranges (see vignette for example)

Value

If the only one spectrum matches the search criteria, the output is an object of class `MS2spectrum`; if more than one spectrum matches, the output is a list of `MS2spectrum` objects.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

getSpectrum(annotatedSpeclist, "annotation", "pyocyanin")

getSpectrum(annotatedSpeclist, "id", "M244.17T796.4")

getSpectrum(annotatedSpeclist, "precursor", 286.18, mz.tol = 1E-03)

six_eight <- getSpectrum(annotatedSpeclist, "rt", 420, rt.tol = 60)
```

HCplot	<i>Generate cluster dendrogram or heatmap from spectral similarity data</i>
--------	---

Description

HCplot() performs hierarchical clustering of spectral similarity data using average linkage as agglomeration criterion like [HCtbl](#) and generates either a circular dendrogram or a combination of dendrogram and heatmap.

Usage

```
HCplot(distmat, h = 0.95, type = c("dendrogram", "heatmap"), ...)
```

Arguments

distmat	A distance matrix as generated by distanceMatrix .
h	Height where the tree is to be cut, defaults to 0.95. See cutree for details.
type	Specifies which visualisation is to be generated: "dendrogram" (default) for a circular dendrogram or "heatmap" for a combination of dendrogram and heatmap.
...	Additional graphical parameters passed to <code>plot.phylo</code> (for <code>type = "dendrogram"</code>) or <code>gplots::heatmap.2</code> (for <code>type = "heatmap"</code>)

Value

A plot as specified by type.

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

HCplot(distmat[1:50,1:50], h = 0.8, type = "heatmap")
```

HCtbl	<i>Hierarchical clustering of spectral similarity data</i>
-------	--

Description

HCtbl() performs hierarchical clustering of spectral similarity data using average linkage as agglomeration criterion.

Usage

```
HCtbl(distmat, h = 0.95)
```

Arguments

`distmat` A distance matrix as generated by [distanceMatrix](#).
`h` Height where the tree is to be cut, defaults to 0.95. See [cutree](#) for details.

Value

A `data.frame` with name and cluster ID for each feature in `distmat`.

See Also

[HCplot](#)

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

my_HCtbl <- HCtbl(distmat[1:50,1:50], h = 0.8)
```

MDSplot

Multidimensional scaling of spectral similarity data

Description

`MDSplot()` is used to generate multidimensional scaling plots from spectral similarity data. An interactive visualisation can be produced using [plotly](#).

Usage

```
MDSplot(distmat, interactive = FALSE, highlight_annotated = FALSE, ...)
```

Arguments

`distmat` A distance matrix as generated by [distanceMatrix](#).
`interactive` Logical, defaults to FALSE. If TRUE, an interactive visualisation is generated using [plotly](#).
`highlight_annotated` Logical, defaults to FALSE. If TRUE, points for features for which an annotation was added before using [distanceMatrix](#) are highlighted by red colour, while other points are grey in the MDS plot.
`...` Additional arguments passed to `geom_point()`, e.g. `pch`, `size` or `alpha`.

Value

An MDS plot generated with the help of [cmdscale](#), [ggplot](#) and, if interactive, [ggplotly](#).

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

MDSplot(distmat, highlight_annotated = TRUE)
```

mergeMS2spectra

Merge MS2 spectra with or without external peak table

Description

mergeMS2spectra is used to merge MS2 spectra that come from the same precursor. It does so either by grouping spectra of the same precursor m/z that fall into a defined retention time window (rt_tolerance) or by grouping spectra to peaks from an externally supplied peak table. Please see the vignette for more details.

Usage

```
mergeMS2spectra(ms2list, mz_tolerance = 1e-05, rt_tolerance = 30,
  peaktable = NULL, exclude_unmatched = FALSE)
```

Arguments

ms2list	A list of <code>MS2spectrum</code> objects to be merged.
mz_tolerance	The m/z tolerance to be used for merging, default is $1e-5$, i.e. +/- 10ppm. If the mass-to-charge ratios of two peaks differ less than <code>mz_tolerance</code> , they are assumed to have the same m/z
rt_tolerance	The retention time tolerance used for merging features. If used without a peak table, <code>rt_tolerance</code> is the maximum retention time difference between subsequent spectra of the same precursor m/z with which they are still assumed to belong to the same feature. If used with an external peak table, <code>rt_tolerance</code> is the maximum retention time difference between a spectrum and a peak in the peak table with which the spectrum is still considered to belong to that peak.
peaktable	An external peak table, e.g. from XCMS, that serves as a template for grouping spectra. The peaktable must be a three-column <code>data.frame</code> with feature ID, m/z and retention time for each peak/feature.
exclude_unmatched	If an external peak table is used: Should spectra that do not match to any peak/feature in the peak table be exclude from the resulting list?

Value

A merged list of `MS2spectrum` objects.

Examples

```
my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
  "PoolA_R_SE.mzXML",
  package = "CluMSIDdata"),
  min_peaks = 4, RTlims = c(0,5))

my_merged_spectra <- mergeMS2spectra(my_spectra, rt_tolerance = 20)
```

mergeSpecList

Merge list of spectra

Description

mergeSpecList() is an accessory function used only inside mergeMS2spectra.

Usage

```
mergeSpecList(specList, tolerance = 1e-05)
```

Arguments

specList	A list of MS2spectrum objects to be merged.
tolerance	The m/z tolerance to be used for merging.

Value

A list of the same length as specList containing merged spectra as MS2spectrum objects. If multiple spectra contribute to one consensus spectrum, than this consensus spectrum is contained in the list multiple times at the respective positions of the contributing spectra.

mergeTolerance

Merge spectra with m/z tolerance

Description

mergeTolerance() merges two spectra by identifying common peaks with a given m/z tolerance. It can be used with Reduce() to merge more than two spectra.

Usage

```
mergeTolerance(x, y, tolerance = 1e-05)
```

Arguments

x, y	MS2 spectra as objects of class <code>matrix</code> with m/z in the first column and intensity in the second.
tolerance	The m/z tolerance used for merging. If two peaks are within tolerance, they are regarded as the same. Defaults to 1e-5, i.e. 10ppm.

Value

A matrix with m/z in the first column and separate columns for intensities in the respective spectra. If peaks were merged, their m/z corresponds to the mean of the two original m/z.

MS2spectrum-class	<i>A custom S4 class for MS2 spectra, neutral loss patterns and respective metainformation</i>
-------------------	--

Description

A custom S4 class for MS2 spectra, neutral loss patterns and respective metainformation

Usage

```
## S4 method for signature 'MS2spectrum'
show(object)

## S4 method for signature 'MS2spectrum'
precursorMz(object)

## S4 method for signature 'MS2spectrum'
rtime(object)

## S4 method for signature 'MS2spectrum'
intensity(object)

## S4 method for signature 'MS2spectrum'
mz(object)

## S4 method for signature 'MS2spectrum,ANY'
peaksCount(object)
```

Arguments

object	An object of class <code>MS2spectrum</code>
--------	---

Value

Prints information from the object slots with exception of 'spectrum' and 'neutral_losses' where only a summary is given.

Methods (by generic)

- `show`: A `show` generic for `MS2spectra`.
- `precursorMz`: Method for `MSnbase::precursorMz` for `MS2spectrum` objects. Accesses `precursor` slot and returns precursor *m/z* as a numeric.
- `rttime`: Method for `MSnbase::rttime` for `MS2spectrum` objects. Accesses `rt` slot and returns retention time as a numeric.
- `intensity`: Method for `MSnbase::intensity` for `MS2spectrum` objects. Accesses `spectrum` slot and returns the intensity column as a numeric vector.
- `mz`: Method for `MSnbase::mz` for `MS2spectrum` objects. Accesses `spectrum` slot and returns the *m/z* column as a numeric vector.
- `peaksCount`: Method for `MSnbase::mz` for `MS2spectrum` objects. Accesses `spectrum` slot and returns the number of peaks as a numeric.

Slots

`id` a character string similar to the ID used by XCMSonline or the ID given in a predefined peak list

`annotation` a character string containing a user-defined annotation, defaults to empty

`precursor` (median) *m/z* of the spectrum's precursor ion

`rt` (median) retention time of the spectrum's precursor ion

`polarity` the ionisation polarity, "positive" or "negative"

`spectrum` the actual MS2 spectrum as two-column matrix (column 1 is (median) *m/z*, column 2 is (median) intensity of the product ions)

`neutral_losses` a neutral loss pattern generated by subtracting the product ion mass-to-charge ratios from the precursor *m/z* in a matrix format analogous to the `spectrum` slot

networkplot

Correlation network from spectral similarity data

Description

`networkplot()` is used to generate correlation networks from spectral similarity data. An interactive visualisation can be produced using `plotly`.

Usage

```
networkplot(distmat, interactive = FALSE, show_labels = FALSE,
           label_size = 1.5, highlight_annotated = FALSE,
           min_similarity = 0.1, exclude_singletons = FALSE)
```

Arguments

distmat	A distance matrix as generated by distanceMatrix .
interactive	Logical, defaults to FALSE. If TRUE, an interactive visualisation is generated using plotly .
show_labels	Logical, defaults to FALSE. If TRUE, feature IDs are printed as labels in the network plot. Argument has no effect if interactive is TRUE (because in this case, labels are displayed on mouse-over).
label_size	Numeric, defaults to 1.5. If show_labels is TRUE and interactive is FALSE, label_size defines the size of labels in the plot.
highlight_annotated	Logical, defaults to FALSE. If TRUE, points for features for which an annotation was added before using distanceMatrix are highlighted by red colour, while other points are grey in the network plot.
min_similarity	Numeric, defaults to 0.1. The minimum spectral contrast angle (see cossim) that is considered a spectral similarity and hence a connection in the network.
exclude_singletons	Logical, defaults to FALSE. If TRUE, features that have no connection to any other feature will not be displayed in the network plot.

Value

A network plot generated with the help of [network](#), [ggnetwork](#) and, if interactive, [ggplotly](#). Edge weights correspond to spectral similarities.

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

networkplot(distmat[1:50,1:50], show_labels = TRUE,
  exclude_singletons = TRUE)
```

neutrallossPatterns *Generate neutral loss patterns from MS2 spectra*

Description

neutrallossPatterns generates neutral loss patterns from MS2 spectra and adds them to [MS2spectrum](#) objects in the slot `neutral_losses`.

Usage

`neutrallossPatterns(x)`

Arguments

x an object of class [MS2spectrum](#) that contains an MS2 spectrum in the spectrum slot

Value

an object of class [MS2spectrum](#) with a neutral loss pattern in the neutral_losses slot

OPTICSplot

Visualisation of density-based clustering of spectral similarity data

Description

OPTICSplot() performs density-based clustering of spectral similarity data using the OPTICS algorithm like [OPTICStbl](#) and creates a reachability distance plot.

Usage

```
OPTICSplot(distmat, eps = 10000, minPts = 3, eps_cl = 0.5, ...)
```

Arguments

distmat	A distance matrix as generated by distanceMatrix .
eps	OPTICS parameters, see optics .
minPts	OPTICS parameters, see optics .
eps_cl	The reachability distance used for cluster determination, see extractDBSCAN .
...	Additional graphical parameters to be passed to plot ()

Details

The function internally uses [optics](#) and [extractDBSCAN](#) from the [dbSCAN](#) package.

Value

A reachability distance plot as visualisation of OPTICS clustering, see code[extractDBSCAN](#).

See Also

[OPTICStbl](#)

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

OPTICSplot(distmat[1:50,1:50], eps_cl = 0.7)
```

OPTICStbl*Density-based clustering of spectral similarity data*

Description

OPTICStbl() performs density-based clustering of spectral similarity data using the OPTICS algorithm.

Usage

```
OPTICStbl(distmat, eps = 10000, minPts = 3, eps_cl = 0.5)
```

Arguments

- distmat A distance matrix as generated by [distanceMatrix](#).
- eps, minPts OPTICS parameters, see [optics](#).
- eps_cl The reachability distance used for cluster determination, see [extractDBSCAN](#).

Details

The function internally uses [optics](#) and [extractDBSCAN](#) from the [dbSCAN](#) package.

Value

A `data.frame` with feature name, cluster ID and OPTICS order for each feature in `distmat`.

See Also

[OPTICSplot](#)

Examples

```
load(file = system.file("extdata",
  "distmat.RData",
  package = "CluMSIDdata"))

my_OPTICStbl <- OPTICStbl(distmat[1:50,1:50], eps_cl = 0.7)
```

pseudospectrum-class *A custom S4 class for MS1 pseudospectra and respective metainformation*

Description

A custom S4 class for MS1 pseudospectra and respective metainformation

Slots

id a the "pcgroup" number assigned by **CAMERA**
annotation a character string containing a user-defined annotation, defaults to empty
rt (median) retention time of the ions contained in the pseudospectrum
spectrum the actual MS1 pseudospectrum as two-column matrix (column 1 is (median) *m/z*, column 2 is (median) intensity of the ions)

specplot *Create a basic plot of MS2 spectra*

Description

specplot creates a very basic plot of MS2 spectra from [MS2spectrum](#) or [pseudospectrum](#) objects.

Usage

```
specplot(spec, ...)
```

Arguments

spec	An object of class MS2spectrum or pseudospectrum
...	Additional graphical parameters to be passed to <code>plot()</code>

Value

A plot of the MS2 spectrum saved in the `spectrum` slot of `spec`.

Examples

```
load(file = system.file("extdata",
  "annotatedSpeclist.RData",
  package = "CluMSIDdata"))

specplot(annotatedSpeclist[[1]])
```

splitPolarities*Separate spectra with different polarities from the same run*

Description

Using `splitPolarities`, spectra with different polarities from the same run can be separated, e.g. when processing spectra recorded with polarity-switching.

Usage

```
splitPolarities(ms2list, polarity = c("positive", "negative"))
```

Arguments

<code>ms2list</code>	A list of <code>MS2spectrum</code> objects as produced by <code>extractMS2spectra</code> .
<code>polarity</code>	The polarity of spectra to be analysed, must be "positive" or "negative".

Value

A list of `MS2spectrum` objects that contains only spectra with the given polarity.

Examples

```
my_spectra <- extractMS2spectra(MSfile = system.file("extdata",
                                                       "PoolA_R_SE.mzXML",
                                                       package = "CluMSIDdata"),
                                   min_peaks = 4, RTlims = c(0,5))

my_positive_spectra <- splitPolarities(my_spectra, "positive")
```

writeFeaturelist*Write feature information from list of MS2spectrum objects*

Description

`writeFeaturelist` uses `featureList` to generate a `data.frame` that contains feature ID, precursor *m/z* and retention time for all features contained in a list of `MS2spectrum` objects as produced by `extractMS2spectra` and `mergeSpecList` and writes it to a csv file.

Usage

```
writeFeaturelist(fealist, filename = "pre_anno.csv")
```

Arguments

featlist	A list of <code>MS2spectrum</code> objects as produced by <code>extractMS2spectra</code> and <code>mergeSpecList</code>
filename	The desired file name of the csv file, default is "pre_anno.csv"

Details

Although originally designed for lists of `MS2spectrum` objects, the function also works with lists of `pseudospectrum` objects. In this case, NA is given for precursor m/z .

Value

A csv file that contains feature ID, precurosur m/z and retention time. The file has a header but no row names and is separated by ','.

Examples

```
load(file = system.file("extdata",
  "featlist.RData",
  package = "CluMSIDdata"))

writeFeaturelist(featlist, filename = "pre_anno.csv")
```

Index

* **internal**
 mergeSpecList, 17
 mergeTolerance, 17
 neutrallossPatterns, 20

accessAnnotation (accessors), 2
accessID (accessors), 2
accessNeutralLosses (accessors), 2
accessors, 2
accessPolarity (accessors), 2
accessPrecursor (accessors), 2
accessRT (accessors), 2
accessSpectrum (accessors), 2
addAnnotations, 4
as.MS2spectrum, 5

cmdscale, 15
cossim, 6, 7, 20
 cossim,MS2spectrum,MS2spectrum-method
 (cossim), 6
 cossim,pseudospectrum,pseudospectrum-method
 (cossim), 6
cutree, 14, 15

distanceMatrix, 7, 14, 15, 20–22

extractDBSCAN, 21, 22
extractMS2spectra, 7, 8, 9, 12, 24
extractPseudospectra, 7, 9

featureList, 10, 24
findFragment, 10, 11
findNL, 10, 11

getSimilarities, 12
getSpectrum, 10, 11, 13
ggnet2, 20
ggplot, 15
ggplotly, 15, 20

HCplot, 14, 15

HCtbl, 14, 14

intensity,MS2spectrum-method
 (MS2spectrum-class), 18

MDSplot, 15
mergeMS2spectra, 12, 16
mergeSpecList, 17
mergeTolerance, 17
MS2spectrum, 2, 3, 5–7, 11–13, 16, 18–21, 23,
 24
MS2spectrum-class, 18
mz,MS2spectrum-method
 (MS2spectrum-class), 18

network, 20
networkplot, 19
neutrallossPatterns, 20

optics, 21, 22
OPTICSplot, 21
OPTICStbl, 21, 22

peaksCount,MS2spectrum,ANY-method
 (MS2spectrum-class), 18

precursorMz,MS2spectrum-method
 (MS2spectrum-class), 18

pseudospectrum, 2, 3, 6, 7, 9, 23
pseudospectrum-class, 23

rtime,MS2spectrum-method
 (MS2spectrum-class), 18

show,MS2spectrum-method
 (MS2spectrum-class), 18

specplot, 23
Spectrum, 5
Spectrum2, 5
splitPolarities, 24

writeFeaturelist, 4, 10, 24

xsAnnotate, 9