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BarcodeObj-class BarcodeObj object

Description

A S4 object holds the barcode data and samples’ metadata. A set of operations can be applied to
the BarcodeObj object for quality control and selecting barcodes/samples subset.

Details

The BarcodeObj object is a S4 object, it has three slots, which can be access by "@" operator,
they are messyBc, cleanBc and metadata. A BarcodeObj object can be generated by bc_extract

function. The bc_extract function can use various data types as input, such as data.frame, fastq
files, or ShortReadQ.

Slot messyBc is a list that holds the raw barcodes sequence without filtering, where each element
is a data. table corresponding to the successive samples. Each table has 3 columns: 1. umi_seq
(optional): UMI sequence. 2. barcode_seq: barcode sequence. 3. count: how many reads a
full sequence has. In this table, barcode_seq value can be duplicated, as two different full read
sequences can have the same barcode sequence, due to the diversity of the UMI or mutations in the
constant region.

Slot cleanBc is a 1ist holds the barcodes sequence after filtering, where each element is a data. table
corresponding to the successive samples. The "cleanBc" slot contains 2 columns 1. barcode_seq:
barcode sequence 2. counts: reads count, or UMI count if the cleanBc was created by bc_cure_umi.

Value

A BarcodeObj object.

Examples

HHHHHE

# Create BarcodeObj with fastq file

fg_file <- system.file("extdata”, "simple.fq", package="CellBarcode")
library(ShortRead)

bc_extract(fq_file, pattern = "AAAAA(.*)CCCCC")

HHHHHEH
# data manipulation on BarcodeObj object
data(bc_obj)

bc_obj
# Select barcodes
bc_subset(bc_obj, barcode = c("AACCTT", "AACCTT"))

bc_objLc("AGAG”, "AAAG"), ]

# Select samples by metadata
bc_meta(bc_obj)$phenotype <- c("1", "b")
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bc_meta(bc_obj)
bc_subset(bc_obj, sample = phenotype == "1")

# Select samples by sample name

bc_obj[, "test1"]

bc_obj[, c("test1”, "test2")]

bc_subset(bc_obj, sample = "test1"”, barcode = c("AACCTT", "AACCTT"))

# Apply barcodes blacklist
bc_subset(
bc_obj,
sample = c("test1”, "test2"),
barcode = c("AACCTT"))

# Join two samples with no barcodes overlap
bc_obj["AGAG", "test1"] + bc_obj["AAAG", "test2"]

# Join two samples with overlap barcodes

bc_obj_join <- bc_obj["AGAG", "test1"] + bc_obj["AGAG", "test2"]
bc_obj_join

# The same barcode will be merged after applying bc_cure_depth()
bc_cure_depth(bc_obj_join)

# Remove barcodes
bc_obj
bc_obj - "AAAG"

# Select barcodes in a white list
bc_obj

bc_obj * "AAAG"

H#HH

bc_2df Transforms BarcodeObj object into another data type

Description

Transforms BarcodeObj object into data. frame, data.table or matrix.
Usage

bc_2df (barcodeObj)

bc_2dt(barcodeObj)

bc_2matrix(barcodeObj)

## S4 method for signature 'BarcodeObj'
bc_2df (barcodeObj)
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## S4 method for signature 'BarcodeObj
bc_2dt(barcodeObj)

## S4 method for signature 'BarcodeObj
bc_2matrix(barcodeObj)

Arguments

barcodeObj A BarcodeObj object.

Value

A data. frame, with two columns: barcode_seq and count.

Examples

data(bc_obj)
bc_obj <- bc_cure_depth(bc_obj)

# BarcodeObj to data.frame
bc_2df (bc_obj)

# BarcodeObj to data.table
bc_2dt(bc_obj)

# BarcodeObj to matrix
bc_2matrix(bc_obj)

#iH#

bc_auto_cutoff Finds barcode count cutoff point

Description

Finds the cutoff point for the barcode count filtering based on the barcode count distribution.

Usage

bc_auto_cutoff(barcodeObj, useCleanBc = TRUE)

## S4 method for signature 'BarcodeObj'
bc_auto_cutoff(barcodeObj, useCleanBc = TRUE)
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Arguments
barcodeObj A BarcodeObj object.
useCleanBc A logical value, if TRUE, the cleanBc slot in the BarcodeObj object will be used,
otherwise the messyBc slot will be used.
Details

The one dimension kmeans clustering is applied to identify the "true barcode" based on the read
count. The algorithm detail is: 1. Remove the barcodes with counts below the median of counts. 2.
Transform the count by log2(x+1). 3. Apply the 1-dimension clustering to the log count, with the
cluster number of 2 and weights of the log count. 4. Choose the minimum count value in the cluster
with more counts as cutoff point.

For more info about 1 dimension kmeans used here please refer to Ckmeans. 1d. dp.

Value

a numeric vector of the cutoff point.

Examples

data(bc_obj)

bc_auto_cutoff(bc_obj)

bc_barcodes Gets barcode sequences

Description
bc_barcodes used to get the barcode sequences in BarcodeObj object. The input BarcodesObj
object should be pre-processed by bc_cure_x functions, such as bc_cure_depth, bc_cure_umi.
Usage

bc_barcodes(barcodeObj, unlist = TRUE)

## S4 method for signature 'BarcodeObj'
bc_barcodes(barcodeObj, unlist = TRUE)

Arguments
barcodeObj A BarcodeObj object.
unlist A logical value. If TRUE, the function returns a vector of unique barcode list

from all samples; otherwise a list will be returned. In the latter case, each ele-
ment of the list contains the barcodes of a sample.
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Value

A character vector or a list.

Examples

data(bc_obj)

# Get unique barcodes vector of all samples
bc_barcodes(bc_obj)

# Get a list with each element containing barcodes from one sample
bc_barcodes(bc_obj, unlist = FALSE)

HH#

bc_cleanBc Accesses cleanBc slot in the BarcodeObj object

Description

cleanBc slot of BarcodeObj object contains the processed barcode reads frequency data. For more
detail about the cleanBc slot, see BarcodeObj. bc_cleanBc is used to access the ‘cleanBc* slot in
the BarcodeObj.

Usage

bc_cleanBc(barcodeObj, isList = TRUE)

## S4 method for signature 'BarcodeObj'
bc_cleanBc(barcodeObj, isList = TRUE)

Arguments
barcodeObj A BarcodeObj objects.
isList A logical value, if TRUE (default), the return is a list with each sample as an
element. Otherwise, the function will return a data.frame contains the data
from all the samples with a column named sample_name to keep the sample
information.
Value

Ifalist isrequested, each list element is a data. frame for each sample. In a data. frame, there
are 2 columns 1. barcode_seq: barcode sequence 2. counts: reads count, or UMI count if the
cleanBc was created by bc_cure_umi.

If a data. frame is requested, the data.frame in the list described above are combined into one
data. frame by row, with an extra column named sample_name for identifying sample.
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Examples

data(bc_obj)

# Get the data in cleanBc slot

# default the return value is a list
bc_cleanBc(bc_obj)

# The return value can be a data.frame
bc_cleanBc(bc_obj, isList=FALSE)
#iH#

bc_create_BarcodeObj  Create a BarcodeObj object from extracted barcodes data

Description

Create a BarcodeObj object from extracted barcodes data

Usage
bc_create_BarcodeObj(x, sample_name = NULL, metadata = NULL, ordered = TRUE)

## S4 method for signature 'matrix’

bc_create_BarcodeObj(x, sample_name = NULL, metadata = NULL)

## S4 method for signature 'data.frame'
bc_create_BarcodeObj(x, sample_name = NULL, metadata = NULL)

Arguments
X The barcodes data, it can be matrix, data.frame with each row as a barcode each
column as a sample. The row names should be given as the barcode sequences,
and the column names can be given as the sample names.
sample_name A character vector, optional, specifying the sample name.
metadata A data.frame, optional, specifying the metadata of each sample. The row names
of the metadata should be the same as the sample names.
ordered A logical value. If the value is true, the return barcodes (UMI-barcode tags) are
sorted by the read counts.
Value

A BarcodeObj object.

Examples

data(bc_obj)
m = bc_2matrix(bc_obj)
bc_create_BarcodeObj(m)
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bc_cure_cluster Clean barcodes by editing distance

Description

bc_cure_cluster performs clustering of barcodes by editing distance, and remove the minority
barcodes with a similar sequence. This function is only applicable for the BarcodeObj object with
a cleanBc slot. The barcodes with a smaller reads count will be removed.

Usage

bc_cure_cluster(

)

barcodeObj,

dist_threshold = 1,

depth_fold_threshold = 1,

dist_method = "hamm”,

cluster_method = "greedy",

count_threshold = 1e+09,

dist_costs = list(replace = 1, insert = 1, delete = 1)

## S4 method for signature 'BarcodeObj'
bc_cure_cluster(

barcodeObj,

dist_threshold = 1,

depth_fold_threshold = 1,

dist_method = "hamm”,

cluster_method = "greedy",

count_threshold = 1e+07,

dist_costs = list(replace = 1, insert = 1, delete = 1)

Arguments

barcodeObj A BarcodeObj object.

dist_threshold A single integer, or vector of integers with the length of sample number, speci-

fying the editing distance threshold for defining two similar barcode sequences.
If the input is a vector, each value in the vector relates to one sample according
to its order in BarcodeObj object. The sequences with editing distance equal to
or less than the threshold will be considered similar barcodes.

depth_fold_threshold

A single numeric or vector of numeric with the length of sample number, speci-
fying the depth fold change threshold of removing the similar minority barcode.
The majority of barcodes should have at least depth_fold_threshold times
of reads of the similar minotiry one, to remove the minority similar barcode.
(TODO: more precise description)



10 bc_cure_cluster

dist_method A character string, specifying the editing distance used for evaluating barcode
similarity. It can be "hamm" for Hamming distance or "leven" for Levenshtein
distance.

cluster_method A character string specifying the algorithm used to perform the clustering of
barcodes. Currently only "greedy" is available, in this case, The most and the
least abundant barcode will be used for comparing, the least abundant barcode
is preferentially removed.

count_threshold
An integer, read depth threshold to consider a barcode as a true barcode. If a
barcode with a count higher than this threshold it will not be removed, even if
the barcode is similar to a more abundant one. Default is 1€9.

dist_costs A list, the cost of the events of distance algorithm, applicable when Leven-
shtein distance is applied. The names of vector have to be insert, delete and
replace, specifying the weight of insertion, deletion, and replacement events
respectively. The default cost for each event is 1.

Value

A BarcodeObj object with cleanBc slot updated.

Examples

data(bc_obj)

d1 <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
" AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"

)Y

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)
pattern <- "([ACTG]{3})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),

pattern_type=c(UMI=1, barcode=2))

# Remove barcodes with depth < 5
(bc_cured <- bc_cure_depth(bc_obj, depth=5))

# Do the clustering, remove the less abundant barcodes
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# one by hamming distance <= 1
bc_cure_cluster(bc_cured, dist_threshold

D)

# Levenshtein distance <= 1
bc_cure_cluster(bc_cured, dist_threshold = 2, dist_method = "leven”,
dist_costs = list("insert” = 2, "replace” = 1, "delete"” = 2))

#iH#

bc_cure_depth Filters barcodes by counts

Description

bc_cure_depth filters barcodes by the read counts or the UMI counts.

Usage
bc_cure_depth(barcodeObj, depth = @, isUpdate = TRUE)
## S4 method for signature 'BarcodeObj'
bc_cure_depth(barcodeObj, depth = @, isUpdate = TRUE)
Arguments
barcodeObj A BarcodeObj object.
depth A numeric or a vector of numeric, specifying the threshold of minimum count
for a barcode to keep. If the input is a vector and the vector length is not the
same as the sample number, the element will be repeatedly used. And when the
depth argument is a number with a negative value, automatic cutoff point will be
chosen by bc_auto_cutoff function for each samples. See bc_auto_cutoff
for details.
isUpdate A logical value. If TRUE, the cleanBc slot in BarcodeObj will be used pref-
erentially, otherwise the messyBc slot will be used. If no cleanBc is available,
messyBc will be used.
Value

A BarcodeObj object with cleanBc slot updated or created.

Examples

data(bc_obj)

dl <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
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"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC”,
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC”

),

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern <- "([ACTGI{33})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

# Remove barcodes with depth < 5
(bc_cured <- bc_cure_depth(bc_obj, depth=5))
bc_2matrix(bc_cured)

# Use UMI information, filter the barcode < 5 UMI
bc_umi_cured <- bc_cure_umi(bc_obj, depth =0, doFish=TRUE, isUniqueUMI=TRUE)
bc_cure_depth(bc_umi_cured, depth = 5)

#iH#

bc_cure_umi Filters UMI-barcode tag by counts

Description

When the UMI is applied, bc_cure_umi can filter the UMI-barcode tags by counts.

Usage

bc_cure_umi(barcodeObj, depth = 2, doFish = FALSE, isUniqueUMI = FALSE)
## S4 method for signature 'BarcodeObj'

bc_cure_umi(barcodeObj, depth = 1, doFish = FALSE, isUniqueUMI = FALSE)

Arguments
barcodeObj A BarcodeObj object.
depth A numeric or a vector of numeric, specifying the UMI-barcode tag count thresh-

old. Only the barcodes with UMI-barcode tag count equal to or larger than the
threshold are kept.
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doFish A logical value, if true, for barcodes with UMI read depth above the threshold,
“fish” for identical barcodes with UMI read depth below the threshold. The
consequence of doFish will not increase the number of identified barcodes, but
the UMI counts will increase due to including the low depth UMI barcodes.

isUniqueUMI A logical value. In the case that a UMI relates to several barcodes, if you believe
that the UMI is absolutely unique, then only the UMI-barcodes tags with the
highest count are kept for each UMI.

Details
When invoking this function, it processes the data with following steps:

1. (if isUniqueUMI is TRUE) Find the dominant UMI-barcode tag with the highest reads count
in each UML

2. UMlI-barcode depth filtering.
3. (if doFish is TRUE) Fishing the UMI-barcode tags with low reads count.

Value

A BarcodeObj object with cleanBc slot updated (or created).

Examples

data(bc_obj)

d1l <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"

)7

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern <- "([ACTGI{3})TCGATCGATCGA([ACTGI+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

# Use UMI information to remove the barcode <= 5 UMI-barcode tags
bc_umi_cured <- bc_cure_umi(bc_obj, depth =@, doFish=TRUE, isUniqueUMI=TRUE)
bc_cure_depth(bc_umi_cured, depth = 5)
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bc_extract Extract barcode from sequences

Description

bc_extract identifies the barcodes (and UMI) from the sequences using regular expressions. pattern
and pattern_type arguments are necessary, which provides the barcode (and UMI) pattern and
their location within the sequences.

Usage

bc_extract(
X,
pattern = "",
sample_name = NULL,
metadata = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'data.frame'
bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'ShortReadQ'’
bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'DNAStringSet'
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bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'integer'
bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'character'
bc_extract(
X,
pattern = "",
sample_name = NULL,
metadata = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

## S4 method for signature 'list'
bc_extract(

X,

pattern = "",

sample_name = NULL,

metadata = NULL,

maxLDist = 0,

pattern_type = c(barcode = 1),

costs = list(sub = 1, ins = 99, del = 99),

ordered = TRUE

Arguments

X A single or a list of fastq files, ShortReadQ, DNAStringSet, data.frame, or
named integer.
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pattern A string or a string vector with the same number of files, specifying the regular
expression with capture. It matches the barcode (and UMI) with capture pattern.

sample_name A string vector, applicable when x is a list or fastq file vector. This argument
specifies the sample names. If not provided, the function will look for sample
names in the rownames of metadata, the fastqfile name or the 1ist names.

metadata A data. frame with sample names as the row names, with each metadata record
by column, specifying the sample characteristics.

maxLDist An integer. The minimum mismatch threshold for barcode matching, when
maxLDist is 0, the str_match is invoked for barcode matching which is faster,
otherwise aregexec is invoked and the costs parameters can be used to specify
the weight of the distance calculation.

pattern_type A vector. It defines the barcode (and UMI) capture group. See Details.

costs A named list, applicable when maxLDist > 0, specifying the weight of each mis-
match event while extracting the barcodes. The list element name have to be sub
(substitution), ins (insertion) and del (deletion). The default value is 1ist (sub
=1, ins =99, del =99). See aregexec for more detailed information.

ordered A logical value. If the value is true, the return barcodes (UMI-barcode tags) are
sorted by the read counts.

Details

The pattern argument is a regular expression, the capture operation () identifying the barcode
or UMI. pattern_type argument annotates capture, denoting the UMI or the barcode captured
pattern. In the example:

([ACTGI{33})TCGATCGATCGA([ACTG]+)ATCGATCGATC
| -—=—————- | starts with 3 base pairs UMI.
| === | constant sequence in the backbone.
|======= | flexible barcode sequences.
| === | 3' constant sequence.

In UMI part [ACGT]{3}, [ACGT] means it can be one of the "A", "C", "G" and "T", and {3} means
it repeats 3 times. In the barcode pattern [ACGT ]+, the + denotes that there is at least one of the A or
CorGorT.

Value

This function returns a BarcodeObj object if the input is a 1ist or a vector of Fastq files, otherwise
it returns a data. frame. In the later case the data. frame has columns:

1. umi_seq (optional): UMI sequence, applicable when there is UMI in ‘pattern‘ and ‘pat-
tern_type‘ argument.
2. barcode_seq: barcode sequence.

3. count: reads number.
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Examples

fqg_file <- system.file("extdata”, "simple.fq"”, package="CellBarcode")
library(ShortRead)

# barcode from fastq file
bc_extract(fg_file, pattern = "AAAAA(.*)CCCCC")

# barcode from ShortReadQ object
sr <- readFastq(fg_file) # ShortReadQ
bc_extract(sr, pattern = "AAAAA(.*)CCCCC")

# barcode from DNAStringSet object
ds <- sread(sr) # DNAStringSet
bc_extract(ds, pattern = "AAAAA(.*)CCCCC")

# barcode from integer vector
iv <- tables(ds, n = Inf)$top # integer vector
bc_extract(iv, pattern = "AAAAA(.*)CCCCC")

# barcode from data.frame
df <- data.frame(seq = names(iv), freq = as.integer(iv)) # data.frame
bc_extract(df, pattern = "AAAAA(.*)CCCCC")

# barcode from list of DNAStringSet
1 <- list(samplel = ds, sample2 = ds) # list
bc_extract(l, pattern = "AAAAA(.*)CCCCC")

# Extract UMI and barcode
d1l <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
" AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),
freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)
# barcode backbone with UMI and barcode

pattern <- "([ACTGI{3})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_extract(

list(test = d1),

pattern,

17
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sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

#iH

bc_extract_sc_fastq Extract barcode from single-cell sequencing fastq file

Description

bc_extract_10X_fastq can extract cellular barcode, UMI, and lineage barcode sequences from
10X Genomics scRNASeq fastq file. This function can process the barcodes in the sScRNASeq fastq
file or target amplified fastq files directly.

Usage
bc_extract_sc_fastq(
fat,
fq2 = NULL,

patternCellBarcode = NULL,
patternUMI = NULL,
patternBarcode = NULL

)
Arguments

fq1 A string, the fastq file contains the cellular barcode and lineage barcode

fg2 A string, it is optional, it provides the second fastq file contains the cellular bar-
code and lineage barcode. Two fastq files will be concatenated for the barcode
extraction

patternCellBarcode
A string, defines the regular expression to match the single cell cellular barcode
sequence. The expected sequence should be in the first catch. Please see the
documents of bc_extract and example for more information.

patternUMI A string, defines the regular expression to match the UMI sequence. The ex-

pected sequence should be in the first catch. Please see the documents of bc_extract

and example for more information.

patternBarcode the regular expression to match the lineage barcode. The expected sequence
should be in the first catch. Please see the documents of bc_extract and exam-
ple for more information.

Details

It should take some effort to define the regular expression to match the barcode sequence. Here 1
also provide the example to extract the barcode from 10X Genomics scRNASeq results. It also can
be used to extract the barcode from other system.
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The function can process the barcodes in the sSCRNASeq fastq file or target amplified fastq files. For
the 10X scRNASeq fastq file, the cellular barcode is in the first 16bp of the readl, the UMI is in the
next 12bp, and the lineage barcode is in the read?2.

The usage of the function will be like this:

bc_extract_sc_fastq(
fql = "readl.fastq.gz",
fq2 = "read2.fastq.gz",
patternCellBarcode = "(.{16})",
patternUMI = " {16}(.{12})",
patternBarcode = "CGAAGTATCAAG(.+)CCGTAGCAAG"

Value

A BarcodeObj object with each cell as a sample.

See Also

bc_extract, bc_extract_sc_sam,

bc_extract_sc_sam Extract barcode from single-cell sequencing sam file

Description

bc_extract_sc_sam can extract cellular barcode, UMI, and lineage barcode sequences from 10X
Genomics scRNASeq sam file (or bam file have similar data structure). This function can not
process bam file directly, users need to uncompress the bam file to get a sam file to run this function
See example.

Usage

bc_extract_sc_sam(sam, pattern, cell_barcode_tag = "CR", umi_tag = "UR")

bc_extract_sc_bam(bam, pattern, cell_barcode_tag = "CR"”, umi_tag = "UR")

Arguments
sam A string, define the un-mapped sequences
pattern A string, define the regular expression to match the barcode sequence. The

barcode sequence should be in the first catch. Please see the documents of
bc_extract and example for more information.
cell_barcode_tag
A string, define the tag of cellular barcode field in sam file. The default is "CR".
umi_tag A string, define the tag of a UMI field in the sam file.

bam A string, define the bam file, it will be converted to sam file
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Details

Although the function ‘bc_extract_sc_bam* can process bam file directly, some optimization is still
working on, it will be much more efficient to use ‘samtools‘ to get the sam file.

What’s more, if the barcode sequence does not map to the reference genome. The user should use
the samtools to get the un-mapped reads and save it as sam format for using as the input. It can save
a lot of time. The way to get the un-mapped reads:

samtools view -f 4 input.bam > output.sam

Value

A BarcodeObj object with each cell as a sample.

See Also

bc_extract, bc_extract_sc_fastq

Examples

## NOT run

# In the case that when the barcode sequence is not mapped to
# reference genome, it will be much more efficient to get

# the un-mapped sequences as the input.

## Get un-mapped reads
# samtools view -f 4 input.bam > scRNASeq_10X.sam

sam_file <- system.file("extdata"”, "scRNASeq_10X.sam”, package = "CellBarcode”)

bc_extract_sc_sam(
sam = sam_file,
pattern = "AGATCAG(.*)TGTGGTA",
cell_barcode_tag = "CR",
umi_tag = "UR"

## Read bam file directly
bam_file <- system.file("extdata”, "scRNASeq_10X.bam", package = "CellBarcode")
bc_extract_sc_bam(

bam = bam_file,

pattern = "AGATCAG(.*)TGTGGTA",

cell_barcode_tag = "CR",

umi_tag = "UR"
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bc_messyBc Accesses messyBc slot in the BarcodeObj object

Description

messyBc slot of BarcodeObj object contains the raw barcode reads frequency data. For more detail
about the messyBc slot, see BarcodeObj. bc_messyBc is used to access the ‘messyBc* slot in the
BarcodeObj.

Usage

bc_messyBc(barcodeObj, isList = TRUE)

## S4 method for signature 'BarcodeObj'
bc_messyBc(barcodeObj, isList = TRUE)

Arguments
barcodeObj A BarcodeObj objects.
isList A logical value, if TRUE (default), the return is a list with each sample as an
element. Otherwise, the function will return a data.frame contains the data
from all the samples with a column named sample_name to keep the sample
information.
Value

If a 1list is requested, in the 1ist each element is a data. frame corresponding to the successive
samples. Each data.frame has at most 3 columns: 1. umi_seq (optional): UMI sequence. 2.
barcode_seq: barcode sequence. 3. count: how many reads a full sequence has.

If a data. frame is requested, the data.frame in the list described above are combined into one
data.frame by row, with an extra column named sample_name for identifying sample.

Examples

data(bc_obj)

# get the data in messyBc slot

# default the return value is a list
bc_messyBc(bc_obj)

# The return value can be a data.frame
bc_messyBc(bc_obj, isList=FALSE)
H#iH#
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bc_meta Accesses and sets metadata in BarcodeObj object

Description

Sample information is kept in metadata. bc_meta is for accessing and updating metadata in BarcodeOb j
object

Usage
bc_meta(barcodeObj)

bc_meta(barcodeObj, key = NULL) <- value

## S4 method for signature 'BarcodeObj'
bc_meta(barcodeObj)

## S4 replacement method for signature 'BarcodeObj'
bc_meta(barcodeObj, key = NULL) <- value

Arguments
barcodeObj A BarcodeObj object.
key A string, identifying the metadata record name to be modified.
value A string vector or a data.frame. If the value is a vector, it should have the same
length of sample number in the BarcodeObj object. Otherwise, if the value is
data. frame, the row name of the data. frame should be the sample name, and
each column as a metadata variable.
Value

A data.frame
Examples
data(bc_obj)

# get the metadata data.frame
bc_meta(bc_obj)

# assign value to metadata by $ operation
bc_meta(bc_obj)$phenotype <- c("1", "b")

# assign value to metadata by "key" argument
bc_meta(bc_obj, key = "sample_type"”) <- c("1", "b")

# show the updated metadata
bc_meta(bc_obj)
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# assign new data.frame to metadata
metadata <- data.frame(

sample_name <- c("test1”, "test2"),
phenotype <- c("1", "b")
)

rownames (metadata) = bc_names(bc_obj)
bc_meta(bc_obj) <- metadata
H#HiH#

bc_names Access & update sample names in BarcodeObj & and BarcodeQcSet

Description

Get or update sample names in BarcodeObj object and BarcodeQcSet.

Usage

bc_names (x)
bc_names(x) <- value

## S4 method for signature 'BarcodeObj'

bc_names(x)

## S4 replacement method for signature 'BarcodeObj,character'
bc_names(x) <- value

## S4 method for signature 'BarcodeQcSet'
bc_names(x)

## S4 replacement method for signature 'BarcodeQcSet,ANY'
bc_names(x) <- value

Arguments
X A BarcodeObj object or a BarcodeQcSet object.
value A character vector setting the new sample names, with the length of the samples
number in BarcodeObj or BarcodeQcSet object.
Value

A character vector
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Examples

data(bc_obj)

bc_names(bc_obj)

bc_names(bc_obj) <- c("newl”, "new2")
bc_obj A dummy BarcodeObj object
Description

Dataset contains a BarcodeObj with makeup barcode data.

Usage
data(bc_obj)

Format

This is a BarcodeObj object

Value

A BarcodeObj object.

Source

This is a BarcodeObj object derived from makeup data by:

d1l = data.frame(

seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)
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d2 = data.frame(

seq = c(
"ACTTCGATCGATCGAAACGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),

freq = c(
30, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern = "TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj = bc_extract(

list(testl = d1, test2 = d2),

pattern, sample_name=c("test1"”, "test2"))

bc_obj = bc_cure_depth(bc_obj, depth=5)

# Save the dummy data

25

# save(bc_obj, file = "./data/bc_obj.RData")
H#it#
bc_plot_count Plot for counts distribution
Description

This function is used to summarize the counts of each barcode.

Usage

bc_plot_count(barcodeObj, bins = 20, useCleaned

## S4 method for signature 'BarcodeObj'
bc_plot_count(barcodeObj, bins = 20, useCleaned

TRUE)

TRUE)
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Arguments
barcodeObj A BarcodeObj object
bins The number of bins for the histogram
useCleaned Whether to use the cleaned barcode data
Details

When useCleaned is TRUE, the cleaned barcode data will be used. Otherwise, the messy barcode
data will be used. The output will be different when useCleaned is TRUE or FALSE. It also depends
on whether the UMI is available. The counts include:

—_—

reads count (with barcode) versus the total reads
reads count per UMI

UMI count per barcode

barcode count per sample

reads or UMI count (dominant barcode) versus total count per sample

AN T o

reads or UMI count (dominant barcode) distribution

Value

A egg::ggarrange object

Examples

data(bc_obj)
bc_plot_count(barcodeObj=bc_obj)

bc_plot_mutual Barcode read count 2D scatter plot of sample combination

Description

Draw barcode count scatter plot for all pairwise combinations of samples within a BarcodeObj
object. It uses cleanBc slot in the BarcodeObj object is used to draw the figure. If the BarcodeObj
object does not have a cleanBc slot, you have to run the bc_curex functions in ahead, such as
bc_cure_depth, bc_cure_umi.
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Usage

bc_plot_mutual(
barcodeObj,
count_marks = NULL,
highlight = NULL,
log_coord = TRUE,
alpha = 0.
)

~

## S4 method for signature 'BarcodeObj'
bc_plot_mutual(

barcodeObj,

count_marks = NULL,

highlight = NULL,

log_coord = TRUE,
alpha = 0.7
)
Arguments
barcodeObj A BarcodeObj object, which has a cleanBc slot
count_marks A numeric or numeric vector, specifying the read count cutoff in the scatter plot
for each sample.
highlight A character vector, specifying the barcodes to be highlighted.
log_coord A logical value, if TRUE (default), the x and y coordinates of the scatter plot
will be logarized by log10.
alpha A numeric between 0 and 1, specifies the transparency of the dots in the scatter
plot.
Value

A scatter plot matrix.

Examples

data(bc_obj)

bc_plot_mutual (barcodeObj=bc_obj, count_marks=c(30, 20))
fizizd

bc_plot_pair Barcode read count 2D scatter plot for given pairs

Description

Draws scatter plot for barcode read count between given pairs of samples with a BarcodeObj object.
This function will return a scatter plot matrix contains the scatter plots for all given sample pairs.
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Usage

bc_plot_pair(
barcodeObj,
sample_x,
sample_y,
count_marks_x
count_marks_y

bc_plot_pair

= NULL,
= NULL,

highlight = NULL,
log_coord = TRUE,

alpha = 0.7
)

## S4 method for signature 'BarcodeObj'

bc_plot_pair(
barcodeObj,
sample_x,
sample_y,
count_marks_x
count_marks_y

= NULL,
= count_marks_x,

highlight = NULL,

log_coord
alpha = 0.7

Arguments

barcodeObj

sample_x

sample_y

count_marks_x
count_marks_y
highlight

log_coord

alpha

Value

Scatter plot matrix.

TRUE,

A BarcodeObj object.

A character vector or a integer vector, specifying the sample in x axis of each
scatter plot. It can be the sample names in BarcodeObj or the sample index
value.

A character vector or a integer vector, similar to sample_x, specifying the sam-
ples used for y axis. It can be the sample names or the sample index value.

A numeric vector used to mark the cutoff point for samples in x axis
A number vector used to mark the cutoff point for samples in the y-axis.
A character vector, specifying the barcodes that need to be highlighted.

A logical value, if TRUE (default), the x and y coordinates of the scatter will be
transformed by log10.

A numeric between 0 and 1, specifies the transparency of the dots in the scatter
plot.
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Examples

data(bc_obj)

bc_names(bc_obj)

bc_plot_pair(barcodeObj=bc_obj, sample_x="test1"”, sample_y="test2",

count_marks_x=30, count_marks_y=20)

#iH#
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bc_plot_single

Scatter plot of barcode count distribution per sample

Description

Draws barcode count distribution for each sample in a BarcodeObj object.

Usage

bc_plot_single(

)

barcodeObj,
sample_names = NULL,
count_marks = NULL,
highlight = NULL,
log_coord = TRUE,
alpha = 0.7

## S4 method for signature 'BarcodeObj'
bc_plot_single(

barcodeObj,

sample_names = bc_names(barcodeObj),
count_marks = NULL,

highlight = NULL,

log_coord = TRUE,

alpha = 0.7

Arguments

barcodeObj
sample_names
count_marks

highlight
log_coord

alpha

for each sample.

transformed by log10.

plot.

A BarcodeObj object has a cleanBc slot
A character vector or integer vector, specifying the samples used for the plot.

A character vector, specifying the barcodes that need to be highlighted.

A numeric or numeric vector, specifying the read count cutoff in the scatter plot

A logical value, if TRUE (default), the x and y coordinates of the scatter plot are

A numeric between 0 and 1, specifies the transparency of the dots in the scatter
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Value

1D distribution graph matrix.
Examples
data(bc_obj)

bc_plot_single(bc_obj, count_marks=c(10, 11))
#HH

bc_seq_filter Remove low-quality sequence

Description

Remove low-quality sequences by base-pair quality, sequence length or unknown base "N".

Usage

bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
sample_name = ""

)

## S4 method for signature 'ShortReadQ'
bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = @
)

## S4 method for signature 'DNAStringSet'
bc_seq_filter(x, min_read_length = @, N_threshold

92)

## S4 method for signature 'data.frame'
bc_seq_filter(x, min_read_length = @, N_threshold = 0)

## S4 method for signature 'character'
bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
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sample_name = basename(x)

)

## S4 method for signature 'integer'
bc_seq_filter(x, min_read_length = @, N_threshold = 0)

## S4 method for signature 'list'
bc_seq_filter(
X)
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
sample_name = names(x)

Arguments

X A single or a list of Fastq file, ShortReadQ, DNAStringSet, data. frame, integer
vector.

min_average_quality
A numeric or a vector of numeric, specifying the threshold of the minimum
average base quality of a sequence to be kept.

min_read_length
A single or a vector of integer, specifying the sequence length threshold.

N_threshold A integer or a vector of integer, specifying the maximum N can be in a sequence.
sample_name A string vector, specifying the sample name in the output.
Value

A ShortReadQ or DNAStringSet object with sequences passed the filters.

Examples

library(ShortRead)
fqg_file <- system.file("extdata”, "simple.fq"”, package="CellBarcode")

# apply a filter to fastq files
bc_seq_filter(fg_file)

# Read in fastq files to get ShortReadQ object
sr <- readFastq(fg_file[1])

# apply sequencing quality filter to ShortReadQ
bc_seq_filter(sr)

# get DNAStringSet object

ds <- sread(sr)

# Apply sequencing quality filter to DNAStringSet
bc_seq_filter(ds)
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#iH

bc_seq_qc Evaluates sequences quality

Description

bc_seq_qc evaluates sequences quality. See the return value for detail.

Usage

bc_seq_qc(x, sample_name = NULL, reads_sample_size = 1e+05)
bc_plot_seqQc(x)

## S4 method for signature 'ShortReadQ'’
bc_seq_qc(x, reads_sample_size = 1e+05)

## S4 method for signature 'DNAStringSet'
bc_seq_qc(x, reads_sample_size = 1e+05)

## S4 method for signature 'data.frame'
bc_seq_qc(x, reads_sample_size = 1e+05)

## S4 method for signature 'integer'
bc_seq_qc(x, reads_sample_size = 1e+05)

## S4 method for signature 'character'
bc_seq_qc(x, sample_name = basename(x), reads_sample_size = 1e+@5)

## S4 method for signature 'list'
bc_seq_qc(x, sample_name = names(x))

## S4 method for signature 'BarcodeQc'
bc_plot_seqQc(x)

## S4 method for signature 'BarcodeQcSet'
bc_plot_seqQc(x)

Arguments
X A single or list of Fastq files, ShortReadQ object, DNAStringSet object, data.frame
or named integer vector.
sample_name A character vector with the length of sample number, used to set the sample

name.
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reads_sample_size
A integer value defines the sample size of the sequences for quality control anal-
ysis. If there are fewer sequences comparing to this value, all the sequences will
be used. The default is 1eS5.

Value

A barcodeQc or a barcodeQcSet class. The barcodeQc is a list with four slots,

* top: a data. frame with top 50 most frequency sequence,

e distribution: a data.frame with the distribution of read depth. It contains nOccurrences
(depth), and nReads (unique sequence) columns.

* base_quality_per_cycle: data. frame with base-pair location (NGS sequencing cycle) by
row, and the base-pair quality summary by column, including Mean, P5 (5 P75 (75

* base_freq_per_cycle: data.frame with three columns: 1. Cycle, the sequence base-pair
location (NGS sequencing cycle); 2. Base, DNA base; Count: reads count.

e summary: a numeric vector with following elements: total_read, median_read_length,
p5_read_length, p95_read_length.

The barcodeQcSet is a list of barcodeQc.

Examples

library(ShortRead)

# fastq file

fqg_file <- system.file("extdata”, "simple.fq"”, package="CellBarcode")
bc_seq_qc(fq_file)

# ShortReadQ
sr <- readFastq(fg_file[1])
bc_seq_qc(sr)

# DNAStringSet
ds <- sread(sr)
bc_seq_qc(ds)

# List of DNAStringSet
1 <- list(samplel = ds, sample2 = ds)
bc_plot_seqQc(bc_seq_qc(l))

# List of ShortRead
1_sr <- list(samplel = sr, sample2 = sr)

bc_plot_seqQc(bc_seq_qgc(l_sr))

#iH#
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bc_splitVDJ Parse VDJ recombination (experimental)

Description

Script to split barcodes from the genetic ’barcode mouse’ construct as generated in the lab of Ton
Schumacher (NKI, NL) in its remaining constant V, D and J elements and the modified elements
(additions/deletions) in between those constant parts.

Usage

bc_splitVDJ(
seqs,
v_part = "TCCAGTAG",
d_fwd = "TCTACTATCGTTACGAC",
d_inv = "GTCGTAACGATAGTAGA",
j_part = "GTAGCTACTACCG"

)

Arguments
seqs a character vector contains the barcode sequences.
v_part a string given the V part sequence.
d_fwd a string given the D region forwrad sequence.
d_inv a string given the D region inverted sequence.
j_part a string given the J region sequence.

Value

A list contains two data.frame named add.del .ok and add.del.err, which contain columns with
the remaining constant parts and inserted/deleted parts

Examples

## prepare input sequence

seq_v <- c(
"TCCAGTAGCTACTATCGTTACGAGTAGCTACTACCG",
"TCCAGTAGCTACTATCGTTACGACGTAGCTACTACCG",
"TCCATACTATCGTTACGACGTAGCTACTACG",
"TCCAGTAGTCGTAACGATAGTAGAGTAGCTACTACCG"

)

## split the sequences
bc_splitVDJ(seq_v)
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bc_subset Manages barcodes and samples in a BarcodeObj object

Description

A set of functions and operators for subsetting or joining of BarcodeObj object(s). The bc_subset,
* and - are used to select barcodes or samples in a BarcodeObj object. Two BarcodeObj objects
can be joined by +.

Usage

bc_subset(
barcodeObj,
sample = NULL,
barcode = NULL,
black_list = NULL,
is_sample_quoted_exp = FALSE
)

bc_merge(barcodeObj_x, barcodeObj_y)

## S4 method for signature 'BarcodeObj'
bc_subset(
barcodeObj,
sample = NULL,
barcode = NULL,
black_list = NULL,
is_sample_quoted_exp = FALSE
)

## S4 method for signature 'BarcodeObj,BarcodeObj
bc_merge(barcodeObj_x, barcodeObj_y)

## S3 method for class 'BarcodeObj'
barcodeObj_x + barcodeObj_y

## S3 method for class 'BarcodeObj'
barcodeObj - black_list

## S3 method for class 'BarcodeObj'
barcodeObj * white_list

Arguments

barcodeObj A BarcodeObj object.
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sample A character vector or integer vector or an expression (expressio not applicable
for [] operator), specifying the samples in the subsets. When the value is an
expression, the columns in the metadata can be used as a variable.

barcode A vector of integer or string, indicating the selected barcode.

black_list A character vector, specifying the black list with excluded barcodes.
is_sample_quoted_exp
A logical value. If TRUE, the expression in sample argument will not be evalu-
ated before executing the function.

barcodeObj_x A BarcodeObj object.
barcodeObj_y A BarcodeObj object.

white_list A character vector, giving the barcode white list.

Details

bc_subset and []: Gets samples and barcodes subset from a BarcodeObj object.

+: Combines two BarcodeObj objects. The metadata, cleanBc and messyBc slot in the Bar-
codeObj objects will be joined. For the metadata slot, the sample_name column, and the Full
outer join (the record in either BarcodeObj object) will be performed with row names as the key.
The messyBc and cleanBc from two objects are combined by rows for the same sample from two
BarcodeObj objects.

-: removes barcodes in the black_list.

*: selects barcodes in the white_list.

Value

A BarcodeObj object.

Examples

data(bc_obj)
bc_obj

# Select barcodes
bc_subset(bc_obj, barcode = c("AACCTT", "AACCTT"))
bc_objLc("AGAG", "AAAG"), 1]

# Select samples by metadata
bc_meta(bc_obj)$phenotype <- c("1", "b")
bc_meta(bc_obj)

bc_subset(bc_obj, phenotype == "1")

# Select samples by sample name

bc_obj[, "test1"]

bc_obj[, c("test1”, "test2")]

bc_subset(bc_obj, sample = "test1"”, barcode = c("AACCTT", "AACCTT"))

# Apply barcode blacklist



bc_summary_barcode 37

bc_subset

bc_obj,
sample = c("test1”, "test2"),
barcode = c("AACCTT"))

# Join two samples with different barcode sets
bc_obj["AGAG", "test1"] + bc_obj["AAAG", "test2"]

# Join two samples with overlap barcodes

bc_obj_join <- bc_obj["AGAG", "test1"] + bc_obj["AGAG", "test2"]
bc_obj_join

# The same barcode will be removed after applying bc_cure_depth()
bc_cure_depth(bc_obj_join)

# Remove barcodes
bc_obj
bc_obj - "AAAG"

# Select barcodes in a whitelist

bc_obj
bc_obj * "AAAG”
#iH#
bc_summary_barcode Summary and evaluate barcode diversity
Description

bc_summary_barcode evaluates sequence diversity metrics using the barcodes data in the cleanBc
slot of BarcodeObj object. It also generates Lorenz curve and barcode frequency distribution
graphs.

Usage
bc_summary_barcode(barcodeObj, plot = TRUE, log_x = TRUE)
## S4 method for signature 'BarcodeObj'
bc_summary_barcode(barcodeObj, plot = TRUE, log_x = TRUE)
Arguments
barcodeObj A BarcodeObj object.
plot A logical value, if TRUE, draw the Lorenz curve and barcode distribution graphs.

log_x A logical value, if TRUE, the x axis is logarized.



38 bc_summary_barcode

Details
Followings are the metrics used for evaluating the barcode diversity:
Richness: The unique barcodes number R, it evaluates the richness of the barcodes.

Shannon index: Shannon diversity index is weighted geometric average of the proportion p of
barcodes.

R
H' = =" pilnp;
i=1

Equitability index: Shannon equitability E'y; characterize the evenness of the barcodes, it is a value
between 0 and 1, with 1 being complete evenness.

Ey =H'/H!,.. = H/In(R)

ax

Bit: Shannon entropy H, with a units of bit,

R
H ==Y pilogp;
i=1

Value

A data.frame with the following columns:

* total_reads: total read number.

* unig_barcode: how many barcodes in the dataset.

* shannon_index: Shannon’s diversity index or Shannon—Wiener index.
* equitability_index: Shannon’s equitability.

e bit_index: Shannon bit information.

Examples
data(bc_obj)

# filter barcode by the depth
bc_obj <- bc_cure_depth(bc_obj)

# Output the summary of the barcodes
bc_summary_barcode(bc_obj)
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bc_summary_seqQc Summary barcodeQcSet

Description

Summary the "total read count” and "read length" of each samples within a BarcodeQcSet object,
and output a data. frame with sample by row and different metrics by column.

Usage

bc_summary_seqQc(x)

## S4 method for signature 'BarcodeQcSet'
bc_summary_seqQc(x)
Arguments

X a barcodeQcSet object.

Value

A data.frame with 5 columns: sample_name, total_read, median_read_length, p5_read_length
and p95_read_length.

Examples

fq_file <- dir(
system.file("extdata”, "mef_test_data”, package = "CellBarcode"),
full=TRUE)

bc_summary_seqQc(bc_seq_qgc(fg_file))
fizizid

CellBarcode DNA Barcode Analysis toolkit

Description

The package CellBarcode performs Cellular DNA Barcode analysis. It can handle all kinds of DNA
barcodes, as long as the barcode is within a single sequencing read and has a pattern that can be
matched by a regular expression. CellBarcode can handle barcodes with flexible lengths, with
or without UMI (unique molecular identifier). This tool also can be used for pre-processing some
amplicon data such as CRISPR gRNA screening, immune repertoire sequencing, and metagenome
data.
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Author(s)

Maintainer: Wenjie Sun <sunwjie@gmail.com> (ORCID)

Authors:

* Anne-Marie Lyne <Anne-Marie.Lyne@curie.fr>

e Leila Perie <leila.perie@curie.fr>

See Also
Useful links:

e https://wenjie1991.github.io/CellBarcode/
* Report bugs at https://github.com/wenjie1991/CellBarcode/issues

format,BarcodeObj-method
Formats BarcodeObj object

Description

Format the summary of BarcodeObj object for pretty print.

Usage
## S4 method for signature 'BarcodeObj'
format(x)

Arguments

X A BarcodeObj object

Value

Formated summary text.

Examples

data(bc_obj)

# format BarcodeObj for pretty print
format(bc_obj)

HiH


https://orcid.org/0000-0002-3100-2346
https://wenjie1991.github.io/CellBarcode/
https://github.com/wenjie1991/CellBarcode/issues
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parse_10x_sam Parse 10X bam file

Description

Parse 10X bam file

Usage

parse_10x_sam(in_file_path, regex_str, cell_barcode_tag = "CR", umi_tag = "UR")

Arguments

in_file_path A string, define the un-mapped sequences

regex_str A string, define the regular expression to match the barcode sequence. The
barcode sequence should be in the first catch. Please see the bc_extract for
detail.

cell_barcode_tag
A string, define the tag of 10X cell barcode field in sam file. The defaultis "CR".

umi_tag A string, define the tag of UMI field in the sam file.

Value
A data.frame with 4 columns:
1. cell_barcode: 10X cellular barcode.

umi: UMI sequence.

barcode_seq: lineage barcode.

S

count: reads count.

seg_correct Sequence clustering

Description

This function will merge the UMIs by using the hamming distance. If two UMIs have hamming
distance no more than 1, only the UMI with more reads will be kept.



42 seq_correct

Usage

seg_correct(
seq,
count,
count_threshold,
dist_threshold,
depth_fold_threshold = 1,
dist_method = 1L,
insert_cost = 1L,
delete_cost = 1L,
replace_cost = 1L

)
Arguments
seq A string vector.
count An integer vector with the same order and length of UMI

count_threshold
An integer, barcode count threshold to consider a barcode as a true barcode,
when when a barcode with count higher than this threshold it will not be re-
moved.

dist_threshold A integer, distance threshold to consider two barcodes are related.

depth_fold_threshold
An numeric, control the fold cange threshold between the * major barcodes and
the potential contamination that need to be removed.

dist_method A integer, if 2 the levenshtein distance will be used, otherwise the hamming
distance will be applied.

insert_cost A integer, the insert cost when levenshtein distance is applied.
delete_cost A integer, the delete cost when levenshtein distance is applied.

replace_cost A integer, the replace cost when levenshtein distance is applied.

Details

This function will return the corrected UMI list.

Value

a list with two data.frame. seq_freq_tab: table with barcode and corrected ° sequence reads;
link_tab: data table record for the clustering process with ’ first column of barcode be removed
and second column of the majority barcode barcode.
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show,BarcodeObj-method
Show BarcodeObj object

Description

Show the summary of BarcodeObj object for pretty print.
Show the summary of BarcodeQc object for pretty print.

Show the summary of BarcodeQcSet object for pretty print.

Usage

## S4 method for signature 'BarcodeObj'
show(object)

## S4 method for signature 'BarcodeQc'
show(object)

## S4 method for signature 'BarcodeQcSet
show(object)

Arguments

object A BarcodeQcSet object

Value

Formated summary text.
Formated summary text.

Formated summary text.

Examples

data(bc_obj)

# show BarcodeObj for pretty print
bc_obj

#iH#
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subset,BarcodeQcSet-method
Subset the BarcodeQcSet

Description

Subset the BarcodeQcSet

Usage
## S4 method for signature 'BarcodeQcSet'
subset(x, i, drop = TRUE)

## S4 method for signature 'BarcodeQcSet,ANY,ANY,ANY'
x[i, drop = TRUE]

Arguments
X A BarcodeQcSet object
i A integer vector or a character vector, specifying the selected samples.
drop a logical value, if TRUE, when only one sample is selected, the output will be a
BarcodeQc object.
Value

A BarcodeQcSet or BarcodeQc

Examples

example_data <- system.file("extdata”, "mef_test_data”, package = "CellBarcode")
fg_files <- dir(example_data, "fastq.gz"”, full=TRUE)

gc_noFilter <- bc_seq_qgc(fg_files)

gc_noFilter[1:3]
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