Package ‘CatsCradle’

February 1, 2026

Title This package provides methods for analysing spatial
transcriptomics data and for discovering gene clusters

Version 1.5.2

Description This package addresses two broad areas. It allows for in-depth analysis of spatial tran-
scriptomic data by identifying tissue neighbourhoods. These are contiguous regions of tis-
sue surrounding individual cells. 'CatsCradle' allows for the categorisation of neighbour-
hoods by the cell types contained in them and the genes expressed in them. In particular, it pro-
duces Seurat objects whose individual elements are neighbourhoods rather than cells. In addi-
tion, it enables the categorisation and annotation of genes by producing Seurat objects whose ele-
ments are genes.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

Imports Seurat (>=5.0.1), ggplot2, networkD3, stringr, pracma,
reshape?2, rdist, igraph, geometry, Rfast, data.table, abind,
pheatmap, EBImage, S4Vectors, SeuratObject,
SingleCellExperiment, SpatialExperiment, Matrix, methods,
SummarizedExperiment, msigdbr

Suggests fossil, interp, knitr, BiocStyle, tictoc
Depends R (>=4.4.0)

LazyData false

VignetteBuilder knitr

BugReports https://github.com/AnnaLaddach/CatsCradle/issues

URL https://github.com/AnnaLaddach/CatsCradle

biocViews BiologicalQuestion, StatisticalMethod, GeneExpression,
SingleCell, Transcriptomics, Spatial

NeedsCompilation no
git_url https://git.bioconductor.org/packages/CatsCradle
git_branch devel

https://github.com/AnnaLaddach/CatsCradle/issues
https://github.com/AnnaLaddach/CatsCradle

git_last_commit 0f9d76f
git_last_commit_date 2025-12-22
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Anna Laddach [aut] (ORCID: <https://orcid.org/0000-0001-5552-6534>),
Michael Shapiro [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2769-9320>)

Maintainer Michael Shapiro <michael.shapiro@crick.ac.uk>

Contents

aggregateFeatureMatrix oo
aggregateGeneExpression
annotateGeneAsVector oo
annotateGenesByGeneSet. o oo
annotateLRInteractionCounts,
cellTypesPerCellTypeGraphFromCellMatrix
cellTypesPerCellTypeGraphFromNbhdMatrix
collapseExtendedNBHDs L o o
combinatorialSpheres L.
computeCellTypesPerCellTypeMatrix
computeEdgeGraph L L
computeEdgeObject
computeGraphEmbedding oo
computeMoranslo
computeNBHDByCTMatrix it
computeNBHDVsCTObject
computeNeighbourEnrichment
computeNeighboursDelaunay
computeNeighboursEuclidean
convertToLong L
countLRInteractionsPerCell
cullEdges e e e
desymmetriseNN
directedHausdorfDistance o Lo oL
edgeCutoffsByClustering
edgeCutoffsByPercentile
edgeCutoffsByWatershed L oL
edgeCutoffsByZScore
edgeLengthPlot
edgeLengthsAndCellTypePairs
exampleObjects L.
exSeuratObj L
formatData e
geneSetsVsGeneClustersPValueMatrix
getAverageExpressionDFo oL oo

Contents

https://orcid.org/0000-0001-5552-6534
https://orcid.org/0000-0002-2769-9320

Contents

3
getAverageExpressionMatrix Lo e 30
getBinarisedMatriX L e e 31
getClusterOrder L e 32
getExtendedNBHDso 32
getFeatureZScores L. . e e e e 33
getGeneClusterAveragesPerCell 34
getGeneNeighbors 35
getlnteractionsOnEdges 35
getLigandReceptorNetwork o Lo 36
getLigandReceptorPairsInPanel oL 0oL 37
getNearbyGenes e 37
getNearestNeighbourLists L 38
getObjectSubsetClusteringPValueo o000 39
getObjectSubsetClusteringStatistics Lo 40
getSubsetComponents e e e e 41
humanLRN 0. 42
ligandReceptorResults 42
make.getExample L. 43
makeLRInteractionHeatmap 44
makeSummedLRInteractionHeatmap 45
meanGeneClusterOnCellUMAP 46
meanZPerCluster 46
meanZPerClusterOnUMAP 47
medianComplementDistance 48
medianComplementPValue 49
moranslo 50
moranslLigandReceptor 50
mouseLRN 51
nbhdsAsEdgesToNbhdsAsList 51
neighbourhoodDiameter L oo 52
orderGeneSetPValues L 53
performLigandReceptorAnalysis L L. 53
performLigandReceptorAnalysisAnalytical 56
performLigandReceptorAnalysisPermutation 57
permuteColumns L 59
permuteMatriX e e e e e e e e e 59
plotLRDotplot o e 60
predictAnnotationo e e 61
predictAnnotationAllGenes e 62
predictGeneAnnotationlmplo 0oL oo 63
randomiseGraph L 64
randomiseNodelndices L 65
readGmt 65
runGeometricClusteringTrials 66
runMoransl 67
sankeyFromMatrix e 68
seuratCells L 69

SEUratGENES e e e e e e e 69

4 aggregateFeatureMatrix

smallXenium e e e 70
stripGeneSet 70
symmetriseNNo 71
symmetryCheckNN L 71
tagRowAndCoIlNames L 72
transposeObject L e e e e e 72
xeniumCells L. 73
Index 74

aggregateFeatureMatrix
This function takes a matrix where rows are features and columns are
cells, and a neighbourhood list, and creates an matrix where columns
are the neighbourhoods, the rows are are the features and the values
are aggregated expression values for cells in each neighbourhood.

Description

This function takes a matrix where rows are features and columns are cells, and a neighbourhood
list, and creates an matrix where columns are the neighbourhoods, the rows are are the features and
the values are aggregated expression values for cells in each neighbourhood.

Usage

aggregateFeatureMatrix(M, nbhdList, aggregateFunction)

Arguments
M * a matrix where column names are cells and row names are features.
nbhdList * anamed list with memberships of the neighbourhoods of cells
aggregateFunction
* afunction to aggregate expression (e.g. rowSums, rowMeans)
Value

a matrix giving aggregated gene expression for a cell’s neighbourhood.

aggregateGeneExpression 5

aggregateGeneExpression
This function takes a Seurat object and a list of neighbourhoods and
creates a Seurat object where the columns are the neighbourhoods, the
rows are are the genes and the values are gene expression totals for
the cells in each neighbourhood

Description

This function takes a Seurat object and a list of neighbourhoods and creates a Seurat object where
the columns are the neighbourhoods, the rows are are the genes and the values are gene expression
totals for the cells in each neighbourhood

Usage

aggregateGeneExpression(
f,
neighbourhoods,
self = FALSE,
verbose = TRUE,
returnType = "Seurat”

Arguments
f * a Seurat object with layer counts or a SingleCellExperiment to be turned
into a Seurat object

neighbourhoods * Neighbourhoods as given by a collapsed expanded edge graph, as pro-
duced by collapseNeighbourhoods. In particular, each cell should appear

as nodeA.
self * include cell in its neighbourhood, defaults to FALSE
verbose ¢ used to control trace, defaults to TRUE
returnType * Will return a SingleCellExperiment if this is either of SCE, SingleCellEx-

periment or their lower-case equivalents. Otherwise, returns a Seurat object
or SingleCellExperiment, depending on the parameter returnType.

Value

a Seurat object giving total gene expression in each neighbourhood or SingleCellExperiment

Examples

getExample = make.getExample()

smallXenium = getExample('smallXenium',toy=TRUE)

extendedNeighbours = getExample('extendedNeighbours',toy=TRUE)

agg = aggregateGeneExpression(smallXenium,extendedNeighbours,verbose=FALSE)

6 annotateGenesByGeneSet

annotateGeneAsVector This function returns a numeric indicating which gene sets it does and
does not belong to. This vector can be normalised to account for the
sizes of the sets.

Description

This function returns a numeric indicating which gene sets it does and does not belong to. This
vector can be normalised to account for the sizes of the sets.

Usage

annotateGeneAsVector(gene, geneSets, normalise = FALSE)

Arguments

gene * the gene to annotate
geneSets * alist of gene sets

normalise * whether to normalise by set size

Value

a numeric

Examples

hallmark = make.getExample() ('hallmark')
Myc = annotateGeneAsVector('Myc',hallmark)
MycNormalised = annotateGeneAsVector('Myc',hallmark, TRUE)

annotateGenesByGeneSet
This function annotates genes with terms

Description

This essentially inverts a list of gene sets. It takes a list (e.g., Hallmark or GO) where each list item
is a name of a gene set and gives the genes in that set and returns a list where each item is a gene
and gives the gene sets that gene is in.

Usage

annotateGenesByGeneSet (geneSets)

annotatel RInteractionCounts 7

Arguments

geneSets * alist of gene sets, e.g., as produced by readGmt

Value

* A list where names are genes and values are lists of terms

Examples

hallmark = make.getExample()('hallmark')
annotatedGenes = annotateGenesByGeneSet (hallmark)

annotatelLRInteractionCounts
This takes a data frame of interaction counts as found by countLRIn-
teractionsPerCell(), the underlying Seurat object and the neighbour-
hood Seurat object and annotates the counts with the cell type and
the neighbourhood type corresponding to the cells of the interaction
counts.

Description

This takes a data frame of interaction counts as found by countLRInteractionsPerCell(), the under-
lying Seurat object and the neighbourhood Seurat object and annotates the counts with the cell type
and the neighbourhood type corresponding to the cells of the interaction counts.

Usage

annotatelLRInteractionCounts(interactionCounts, obj, nbhdObj)

Arguments
interactionCounts
* as found by countLRInteractionsPerCell()
obj * a Seurat object, or SingleCellExperiment to be turned into a Seurat object
nbhdObj * aneighbourhood x cell type Seurat object or a SingleCellExperiment to be
turned into a Seurat object
Value

This returns the interaction counts annotated with the cell type and neighbourhood type of each cell.

cellTypesPerCell TypeGraphFromCellMatrix

cellTypesPerCellTypeGraphFromCellMatrix

This function converts a matrix as found by cellTypesPerCellType-
Matrix into a directed igraph whose vertices correspond to seu-
rat_clusters and whose edge correspond to occupancy fraction.

Description

This function converts a matrix as found by cellTypesPerCellTypeMatrix into a directed igraph
whose vertices correspond to seurat_clusters and whose edge correspond to occupancy fraction.

Usage

cellTypesPerCellTypeGraphFromCellMatrix(

M,
colours = NULL,

selfEdges = FALSE,

minWeight = 0,

edgeWeighting = 2
edgeCurved = 0.2,

arrowSize = 4,
arrowWidth = 4,
plotGraph = TRUE

Arguments
M .
colours .
selfEdges .
minWeight .

edgeWeighting .

edgeCurved .
arrowSize .
arrowWidth .
plotGraph .

o,

a matrix as found by cellTypesPerCellTypeMatrix. Note, however, that this
matrix may need to be reduced to a square matrix as the matrix produced
from a subset object may be missing certain cell types as rows.

a named vector of colours used to colour the vertices of the graph. The
names are the seurat_clusters as character strings.

alogical which determines whether to include self edges. Defaults to FALSE

Allows one to exclude edges of low weight. Defaults to 0, thus including
all edges.

a parameter used to thicken the edges in the display. Defaults to 20.
a parameter to set curvature of the edges. Defaults to 0.2

a parameter to set arrow size. Defaults to 4.

a parameter to set arrow width. Defaults to 4.

a logical which determines whether to plot the graph. Defaults to TRUE.

cellTypesPerCell TypeGraphFromNbhdMatrix 9

Value

This returns a directed igraph whose vertices are the cell types and whose arrows indicate "owner-
ship" of cells of the target type by neighbourhoods of cells of the source type. Layout is done witht
the FR algorithm and coordinates are found in the coords attribute of G. If colours were supplied
these are found in color attribute of V(G). Edge weights and widths are found in the weight and
width attributes of E(G).

Examples

getExample = make.getExample()

cellTypesPerCellTypeMatrix = getExample('cellTypesPerCellTypeMatrix')

colours = getExample('colours')

G = cellTypesPerCellTypeGraphFromCellMatrix(cellTypesPerCellTypeMatrix,
minWeight = 0.05, colours = colours)

cellTypesPerCellTypeGraphFromNbhdMatrix
This function takes a neighbourhood-by-cell type matrix and produces
a directed igraph showing the fractions of cells of each type in the
neighbourhoods around cells of each type.

Description

This function takes a neighbourhood-by-cell type matrix and produces a directed igraph showing
the fractions of cells of each type in the neighbourhoods around cells of each type.

Usage

cellTypesPerCellTypeGraphFromNbhdMatrix(
nbhdByCellType,
clusters,
colours = NULL,
selfEdges = FALSE,
minWeight = 0,
edgeWeighting = 20,
edgeCurved = 0.2,
arrowSize = 4,
arrowWidth = 4,
plotGraph = TRUE

Arguments
nbhdByCellType * A matrix whose rows are neighbourhoods each denoted by the cell at their
center, whose columns are cell types, and whose entries are counts.

clusters ¢ a named vector whose names are the cells and whose entries are their seu-
rat_clusters.

10 collapseExtendedNBHDs

colours * a named vector of colours used to colour the vertices of the graph. The
names are the seurat_clusters as character strings.

selfEdges * alogical which determines whether to include self edges. Defaults to FALSE

minWeight * Allows one to exclude edges of low weight. Defaults to 0, thus including
all edges.

edgeWeighting * a parameter used to thicken the edges in the display. Defaults to 20.

edgeCurved * a parameter to set curvature of the edges. Defaults to 0.2

arrowSize * a parameter to set arrow size. Defaults to 4.

arrowWidth * a parameter to set arrow width. Defaults to 4.

plotGraph ¢ alogical which determines whether to plot the graph. Defaults to TRUE.

Value

This returns a directed igraph whose vertices are the cell types and whose arrows indicate "owner-
ship" of cells of the target type by neighbourhoods of cells of the source type. Layout is done witht
the FR algorithm and coordinates are found in the coords attribute of G. If colours were supplied
these are found in the color attribute of V(G). Edge weights and widths are found in the weight and
width attributes of E(G).

collapseExtendedNBHDs This function takes an expanded neighbourhood list and collapses it
to a nearest neighbourhood graph where all neighbours of degree <=
n in the original graph are considered first neighbours.

Description

This function takes an expanded neighbourhood list and collapses it to a nearest neighbourhood
graph where all neighbours of degree <= n in the original graph are considered first neighbours.

Usage

collapseExtendedNBHDs (
extendedNeighboursList,
n = length(extendedNeighboursList)
)

Arguments

extendedNeighboursList
¢ the results of getExtendedNBHDs()

n ¢ the maximum degree to connect neighbours. Defaults to the maximum de-
gree neighbourhoods were expanded to in the results of getExtendedNBHDs().

combinatorialSpheres 11

Value

a graph in neighbour format, i.e., a data frame with columns nodeA and nodeB, where nodes that
were originally of degree <= n are connected.

Examples

extendedNeighboursList = make.getExample() ('extendedNeighboursList', toy=TRUE)
extendedNeighbours = collapseExtendedNBHDs(extendedNeighboursList, 4)

combinatorialSpheres Discovers the combinatorial ball of a given radius around a fixed set
of genes in the nearest neighbor graph of a Seurat object.

Description

Discovers the combinatorial ball of a given radius around a fixed set of genes in the nearest neighbor
graph of a Seurat object.

Usage

combinatorialSpheres(NN, origin, radius)

Arguments

NN * anearest neighbors graph

origin * a gene or list of genes

radius * the radius of the combinatorial ball to be found.
Value

This returns a data frame whose columns are the gene name, the radius from the origin at which it
is found

Examples

getExample = make.getExample()

NN = getExample('NN', toy=TRUE)

STranspose = getExample('STranspose', toy=TRUE)

spheres = combinatorialSpheres(NN, 'Ccl6',3)

hallmark = getExample('hallmark")

geneSet = intersect(hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]1],colnames(STranspose))
sphereAroundSet = combinatorialSpheres(NN,geneSet, 1)

12 computeEdgeGraph

computeCellTypesPerCellTypeMatrix
For each cell type, this function looks at the neighbourhoods around
cells of that type and discovers the fractions (or numbers if normalise
= F) of those cells of each type.

Description

For each cell type, this function looks at the neighbourhoods around cells of that type and discovers
the fractions (or numbers if normalise = F) of those cells of each type.

Usage
computeCellTypesPerCellTypeMatrix(nbhdByCellType, cellTypes, normalise = TRUE)

Arguments

nbhdByCellType * A matrix whose rows are neighbourhoods each denoted by the cell at their
center, whose columns are cell types, and whose entries are counts.

cellTypes * named vector of cell types where names are each cell and cell types are a
factor
normalise ¢ boolean, defaults to TRUE
Value

A square matrix whose rownames and colnames are the seurat_clusters as character strings. Each
row corresponds to neighbourhoods around all cells of that type and the entries give the fractions of
those neighbourhoods occupied by cells of each type.

Examples

getExample = make.getExample()

NBHDByCTMatrix = getExample('NBHDByCTMatrix')

clusters = getExample('clusters"')

cellTypesPerCellType = computeCellTypesPerCellTypeMatrix(NBHDByCTMatrix,clusters)

computeEdgeGraph This function takes a spatial graph and computes a new spatial graph
where edges become nodes and A-B edges (in the original graph) be-
come connected to all A- edges and all B- edges.

Description

This function takes a spatial graph and computes a new spatial graph where edges become nodes
and A-B edges (in the original graph) become connected to all A- edges and all B- edges.

computeEdgeObject 13

Usage
computeEdgeGraph(spatialGraph, selfEdges = FALSE)

Arguments

spatialGraph * adata frame of neighbouring edge pairs.

selfEdges * alogical determining whether to include self edges. Defaults to False.
Value

a graph in neighbour format where edges in the original graph become nodes and A-B edges (in the
original graph) become connected to all A- edges and all B- edges.

Examples

delaunayNeighbours = make.getExample() ('delaunayNeighbours')
edgeNeighbours = computeEdgeGraph(delaunayNeighbours)

computeEdgeObject This function takes interactionResults and creates a seurat object
where each point represents an edge between cells, and spatial co-
ordinates are the centroids of edges between cells. The "expression
matrix" is the binarised presence/absence of an interaction (ligand re-
ceptor pair) on an edge.

Description

This function takes interactionResults and creates a seurat object where each point represents an
edge between cells, and spatial coordinates are the centroids of edges between cells. The "expres-
sion matrix" is the binarised presence/absence of an interaction (ligand receptor pair) on an edge.

Usage
computeEdgeObject(
ligandReceptorResults,
centroids,
npcs = 10,
returnType = "Seurat”
)
Arguments

ligandReceptorResults
* as returned by performLigandReceptorResultsAnalysis()

centroids * a dataframe containing centroids where rownames are cellnames and the
first two columns contain x and y coordinates respectively.

npcs » number of pcs used for PCA, defaults to 10

14 computeGraphEmbedding

returnType Determines whether to return a Seurat object or a SpatialExperiment. Will do
the later if this is set to either SCE, SingleCellExperiment or lower case versions
of either.
Value

This returns a seurat object where each point represents an edge between cells, and spatial coor-
dinates are the centroids of edges between cells. The "expression matrix" is the binarised pres-
ence/absence of an interaction (ligand receptor pair) on an edge. Depending on the parameter
returnType, this can alternatively be returned as a SpatialExperiment.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

ligandReceptorResults = getExample('ligandReceptorResults')
edgeSeurat = computeEdgeObject(ligandReceptorResults, centroids)

computeGraphEmbedding This function adds a force directed graph embedding to a seurat object

Description

This function adds a force directed graph embedding to a seurat object

Usage
computeGraphEmbedding(
seuratObj,
graph = defaultGraph(seuratObj),
returnType = "Seurat”
)
Arguments
seuratObj * aseurat object of SingleCellExperiment to be turned into a Seurat object
graph » which graph to extract. Defaults to pasteO(f @active.assay, _snn’)
returnType » Will return a SingleCellExperiment if this is either of SCE, SingleCellEx-
periment or their lower-case equivalents. Otherwise, returns a Seurat object
Value

a seurat object with a "graph" dimensionality reduction. Can also be a SingleCellExperiment de-
pending on parameter returnType.

Examples

NBHDByCTSeurat = make.getExample() ('NBHDByCTSeurat', toy=TRUE)
objWithEmbedding = computeGraphEmbedding (NBHDByCTSeurat)

computeMoransl 15

computeMoransI This function takes a matrix where rows are features and columns are
cells, and a neighbourhood list, and computes Moran’s .

Description
This function takes a matrix where rows are features and columns are cells, and a neighbourhood
list, and computes Moran’s 1.

Usage

computeMoransI(M, nbhdList)

Arguments
M ¢ a matrix where column names are cells and row names are features.
nbhdList * anamed list with memberships of the neighbourhoods of cells
Value

a matrix giving aggregated gene expression for a cell’s neighbourhood.

computeNBHDBYCTMatrix This function computes a matrix where neighbourhoods are rows and
cell types are columns. The values in the matrix indicate the number
of cells of a given type within a neighbourhood.

Description
This function computes a matrix where neighbourhoods are rows and cell types are columns. The
values in the matrix indicate the number of cells of a given type within a neighbourhood.

Usage

computeNBHDByCTMatrix(spatialGraph, cellTypes)

Arguments
spatialGraph * aspatial graph in neighbour list format.
cellTypes * named vector of cell types where names are each cell and cell types are a
factor
Value

a matrix of neighbourhoods by cell types

16 computeNBHDVsCTObject

Examples

getExample = make.getExample()

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')
NBHDByCTMatrix = computeNBHDByCTMatrix(delaunayNeighbours,clusters)

computeNBHDVsCTObject This function creates a seurat object using a neighbourhood by cell
type matrix

Description

This function creates a seurat object using a neighbourhood by cell type matrix

Usage
computeNBHDVsCTObject (
dataMatrix,
resolution = 0.1,
npcs = 10,

n.neighbors = 30L,
transpose = FALSE,
verbose = TRUE,

returnType = "Seurat”

)
Arguments

dataMatrix * a matrix of neighbourhoods by cell types or its transpose.

resolution * resolution for clustering (default 0.1).

npcs * number of pcs used for PCA, defaults to 10.

n.neighbors * number of neighbors used by UMAP, defaults to 30.

transpose e defaults to FALSE.

verbose ¢ defaults to TRUE, used to limit trace if FALSE

returnType * Will return a SingleCellExperiment if this is either of SCE, SingleCellEx-

periment or their lower-case equivalents. Otherwise, returns a Seurat object

Value

a seurat object based on a neighbourhood by cell type matrix or its transpose, containing clusters
and UMAP. This can also be a SingleCellExperiment depending on the parameter returnType.

Examples

NBHDByCTMatrix = make.getExample() ('NBHDByCTMatrix', toy=TRUE)
NBHDByCTSeurat = computeNBHDVsCTObject(NBHDByCTMatrix)
NBHDByCTSingleCell_sce = computeNBHDVsCTObject (NBHDByCTMatrix,returnType="'SCE")

computeNeighbourEnrichment 17

computeNeighbourEnrichment

This function calculates P values for whether cell types are more fre-
quently neighbours than expected by chance. By default it calculates
P values analytically using a hypergeometric test on the edges, where
the arguments to the R phyper function are as follows: q = number of
edges between cell type A and B m = number of edges between cell
type B and any other cell type n = the number of edges between any
cell type apart from cell type B k = number of edges between cell type
B and any other cell type The purist may object to the use of the hy-
pergeometric test here. We may think of "edges out of a cell of type A"
as being the random draw balls (here, edges) from the urn and "edges
out of cells of type B" as being success. However, all edges out of a
given cell of type A are in this "random draw'". Clearly the edges in
this draw are not independent. However, empirically we find that p-
values computed using this method correspond very closely to those
computed using permutation while the computation time is orders of
magnitude faster.

Description

For legacy purposes, and for user flexibility, it allows for the calculation of P values by comparison
to randomised graphs. It offers two distinct randomisations. One is by permuting the cell types on
the neighbour (e.g., delaunay) graph. The other is by comparison to randomised neighbour graphs
where edges are randomised but the degree of each node is preserved.

Usage
computeNeighbourEnrichment(
spatialGraph,
cellTypes,
method = "analytical”,
nSim = 1000,
maxTries = 1000,
randomiseBy = "cells”,
verbose = TRUE
)
Arguments
spatialGraph * a spatial graph in neighbour list format.
cellTypes * named vector of cell types where names are each cell and cell types are a
factor.
method * method for computing p-values. Defaults to "analytical", in which case an

edge-based hypergeometric test is performed. If "permutation” is selected
p-values are calculated by comparison to randomised graphs (note this is
slower than the analytical approach).

18 computeNeighboursDelaunay

nSim ¢ the number of randomised graphs to create for pvalue calculation, if the
method is set to permutation.

maxTries * the maximum number of tries to remove self edges during graph randomi-
sation. If self edges are remeining this will be reported.

randomiseBy * This takes either the value ’cells’ (the default) or "graph’. In the former
case randomisation is carried out by permuting the cell types on the ex-
isting graph. In the latter case, the graph is permuted using the function
randomiseGraph() which is a heuristic algorithm to preserve the distribu-
tion of vertex degrees.

verbose » whether to print trace. Defaults to TRUE

Value

A square matrix containing upper tail p values describing whether two cell types are more frequently
found together than expected by chance.

Examples

getExample = make.getExample()

delaunayNeighbours = getExample('delaunayNeighbours')

clusters = getExample('clusters')

cellTypesPerCellTypePValues = computeNeighbourEnrichment(delaunayNeighbours,
clusters, verbose = FALSE)

computeNeighboursDelaunay
This function computes a spatial graph where neighbors are identified
based on Delaunay triangulation.

Description
This function computes a spatial graph where neighbors are identified based on Delaunay triangu-
lation.

Usage

computeNeighboursDelaunay(centroids)

Arguments
centroids * a dataframe containing centroids where rownames are cellnames and the
first two columns contain x and y coordinates respectively.
Value

a graph in neighbour format, i.e., a data frame with columns nodeA and nodeB.

computeNeighboursEuclidean 19

Examples

centroids = make.getExample() ('centroids')
delaunayNeighbours = computeNeighboursDelaunay(centroids)

computeNeighboursEuclidean
This function computes a spatial graph where neighbors are identified
based on euclidean distance and a user defined threshold.

Description
This function computes a spatial graph where neighbors are identified based on euclidean distance
and a user defined threshold.

Usage

computeNeighboursEuclidean(centroids, threshold)

Arguments
centroids * adataframe containing centroids where rownames are cellnames and columns
contain x and y coordinates respectively.
threshold * adistance cut off to compute neighbours.
Value

a graph in neighbour format, i.e., a data frame with columns nodeA and nodeB.

Examples

centroids = make.getExample() ('centroids')
euclideanNeighbours = computeNeighboursEuclidean(centroids, 20)

convertTolLong This is a utility function for converting ligandReceptor cluster-level
results to long format and calculates adjusted p-values.

Description
This is a utility function for converting ligandReceptor cluster-level results to long format and cal-
culates adjusted p-values.

Usage

convertToLong(ligandReceptorResults)

20 countLRInteractionsPerCell

Arguments

ligandReceptorResults
* ligandReceptorReults calculated using performLigandReceptorAnalysis()

Value

ligand receptor results in long format

countLRInteractionsPerCell
This function takes a listing of the neighbouring cells together with
the presence or absence of each ligand-receptor pair on each edge
and produces a count showing for each cell, how many neighbours it
has with that interaction either as source or as target

Description

This function takes a listing of the neighbouring cells together with the presence or absence of each
ligand-receptor pair on each edge and produces a count showing for each cell, how many neighbours
it has with that interaction either as source or as target

Usage

countLRInteractionsPerCell(edges, sourceOrTarget)

Arguments

edges * A data frame of neighbouring cells together with their interactions as pro-
duced by getInteractionsOnEdges()

sourceOrTarget * a character, either ’source’ or ’target’ telling which direction of interaction
to count

Value

This returns a data frame with one row for each cell and a column giving the name of that cell and
the other columns giving the counts of interactions that it has with its neighbours.

cullEdges 21

cullEdges This subsets edges by our chosen critera

Description

This subsets edges by our chosen critera

Usage

cullEdges(annEdges, cutoffSpec)

Arguments
annEdges * a data frame with columns nodeA, nodeB, length and cellTypePair as pro-
duced by edgeLengthsAndCellTypePairs.
cutoffSpec * This can be either a numeric value which will be applied across all edges
as an upper limit or a data frame with columns cellTypePair and cutoff as
produced by any of the edgeCutoffsBy functions
Value

This returns a subset of the annotated edges

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges =

edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

tolerance = 5

nbins = 15

cutoffDFWater = edgeCutoffsByWatershed(annEdges,
tolerance=tolerance,
nbins=nbins)

culledEdges = cullEdges(annEdges,cutoffDFWater)

desymmetriseNN This function takes the data frame of neighbor genes and reduces it
so that each undirected edge is represented by only one directed edge.
This ensures that randomisation does not magically split undirected
edges into two edges.

22 directedHausdorfDistance

Description

This function takes the data frame of neighbor genes and reduces it so that each undirected edge
is represented by only one directed edge. This ensures that randomisation does not magically split
undirected edges into two edges.

Usage

desymmetriseNN(NN)
Arguments

NN * adataframe containing the neighborlist
Value

* aneighborListDF with only one directed edge per undirected edge.

Examples

NN = make.getExample() ('NN',toy=TRUE)
print(dim(NN))

NNN = desymmetriseNN(NN)
print(dim(NNN))

directedHausdorfDistance
This finds the directed Hausdorf distance from A to B

Description

This finds the directed Hausdorf distance from A to B

Usage

directedHausdorfDistance(A, B)

Arguments
A e an m x d matrix representing m points in dimension d
B * an n x d matrix representing n points in dimension d
Value

This returns the distance of the furthest point in A from its nearest point in B.

edgeCutoffsByClustering 23

Examples

A = matrix(seq_len(8),ncol=2)
B = matrix(seq(from=3,to=16),ncol=2)
d_hausdorf = directedHausdorfDistance(A,B)

edgeCutoffsByClustering
This finds proposed cutoffs for edge lengths by clustering the lengths

of the edges for each cell type pair using k-means clustering with k =
2

Description

This finds proposed cutoffs for edge lengths by clustering the lengths of the edges for each cell type
pair using k-means clustering with k = 2

Usage

edgeCutoffsByClustering(annEdges)

Arguments
annEdges * a data frame with columns nodeA, nodeB, length and cellTypePair as pro-
duced by edgeLengthsAndCellTypePairs.
Value

This returns a data frame with columns cellTypePair and cutoff.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges =
edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

cutoffDF = edgeCutoffsByClustering(annEdges)

24 edgeCutoffsBy Watershed

edgeCutoffsByPercentile
This finds edge cutoffs by percentile

Description

This finds edge cutoffs by percentile

Usage

edgeCutoffsByPercentile(annEdges, percentileCutoff)

Arguments
annEdges * a data frame with columns nodeA, nodeB, length and cellTypePair as pro-
duced by edgeLengthsAndCell TypePairs.
percentileCutoff
* anumeric
Value

This returns a data frame with columns cellTypePair and cutoff.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges =
edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

cutoffDF = edgeCutoffsByPercentile(annEdges,percentileCutoff=95)

edgeCutoffsByWatershed
This finds proposed cutoffs for edge lengths by computing the his-
togram of edge lengths for each cell type pair and then using the wa-
tershed algorithm to find the hump of the histogram containing the
median.

Description

This finds proposed cutoffs for edge lengths by computing the histogram of edge lengths for each
cell type pair and then using the watershed algorithm to find the hump of the histogram containing
the median.

edgeCutoftsByZScore 25

Usage

edgeCutoffsByWatershed(annEdges, nbins = 15, tolerance = 10)

Arguments
annEdges * a data frame with columns nodeA, nodeB, length and cellTypePair as pro-
duced by edgeLengthsAndCellTypePairs.
nbins * the number of bins for the histogram
tolerance * the tolerance parameter for the watershed algorithm.
Value

This returns a data frame with columns cellTypePair and cutoff.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges =
edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

cutoffDF = edgeCutoffsByWatershed(annEdges)

edgeCutoffsByZScore This finds edge cutoffs by z-score

Description

This finds edge cutoffs by z-score

Usage

edgeCutoffsByZScore(annEdges, zCutoff)

Arguments
annEdges * a data frame with columns nodeA, nodeB, length and cellTypePair as pro-
duced by edgeLengthsAndCell TypePairs.
zCutoff * a numeric
Value

This returns a data frame with columns cellTypePair and cutoff.

26 edgeLengthPlot

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges =
edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

cutoffDF = edgeCutoffsByZScore(annkdges,zCutoff=1.5)

edgelengthPlot edgeLengthPlot

Description
This plots histograms of the edge lengths broken out by the cell types of the cells they connect. It
optionally plots a cutoff for each pair of types.

Usage

edgelLengthPlot (annEdges, cutoffDF, whichPairs, xLim = 100, legend = FALSE)

Arguments
annkdges * A data frame as produced by edgeLengthsAndCellTypePairs
cutof fDF * A data frame with columns cellTypePair and cutoff. This defaults to NULL
in which case no cutoffs will be plotted.
whichPairs * Which cellTypePairs to plot. If this is NULL, we plot all pairs. If this is a
numeric, we plot only pairs that have at least this many edges. If this is a
character vector, we plot the pairs in this list.
xLim * limits the extent of the plots. Defaults to 100. Can be set to NULL.
legend * Show legend, defaults to FALSE
Value

This returns a ggplot object

Examples

getExample = make.getExample()
centroids = getExample('centroids')
clusters = getExample('clusters')
delaunayNeighbours = getExample('delaunayNeighbours')
annEdges =
edgelLengthsAndCellTypePairs(delaunayNeighbours, clusters,centroids)
cutoffDF = edgeCutoffsByPercentile(annEdges,95)
g = edgelLengthPlot(annEdges, cutoffDF,whichPairs=60)

edgeLengthsAndCellTypePairs 27

edgelLengthsAndCellTypePairs
This function annotates edges with their distance and the types of cells
they connect

Description

This function annotates edges with their distance and the types of cells they connect

Usage

edgelLengthsAndCellTypePairs(edges, clusters, centroids)

Arguments
edges * A data frame with columns nodeA and nodeB giving the cells of each edge
clusters * the clusters of each cell
centroids * the centroids of each cell

Value

a data frame giving the edges (as nodeA and nodeB), their lengths and the cell type pair.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

clusters = getExample('clusters"')

delaunayNeighbours = getExample('delaunayNeighbours')

annEdges = edgelLengthsAndCellTypePairs(delaunayNeighbours,clusters,centroids)

exampleObjects This returns the names of available example objects.

Description

This returns the names of available example objects.

Usage

exampleObjects()

Value

A character vector of the names of available example data objects

28 formatData

Examples

availableObjects = exampleObjects()

exSeuratObj exSeuratObj

Description

A Seurat object of 2000 genes by 540 cells.

Usage

exSeuratObj

Format

A Seurat object

A Seurat object of cells. It includes a UMAP of the cells and annotated clustering into cell
types. It has been severely reduced in size to accommodate Bioconductor size restrictions.

Source

This is subset from the data associated with https://www.nature.com/articles/s41586-021-04006-z

formatData This is a utility function for converting entries in ligandReceptorRe-
sults to long format.

Description

This is a utility function for converting entries in ligandReceptorResults to long format.

Usage

formatData(data, name)

Arguments
data ¢ item from ligandReceptorResults
name * name to give column of returned data
Value

dataframe with item from ligandReceptorResults in long format

geneSets VsGeneClustersP ValueMatrix 29

geneSetsVsGeneClustersPValueMatrix
This compares the gene clusters to other gene sets e.g., GO, Hallmark,
and determines the p-value for their overlaps when compared to a set
of background genes.

Description

This compares the gene clusters to other gene sets e.g., GO, Hallmark, and determines the p-value
for their overlaps when compared to a set of background genes.

Usage
geneSetsVsGeneClustersPValueMatrix(
geneSets,
clusterDF,
backgroundGenes,
adjust = FALSE
)
Arguments
geneSets * anamed list of gene sets
clusterDF * adata frame giving the cluster membership of each gene with columns gene
and geneCluster
backgroundGenes
* acharacter vector of genes
adjust * alogical deciding whether to adjust p values. Defaults to FALSE.
Value

a matrix of p-values rows correspond to the gene sets and the columns correspond the the CatsCradle
gene clusters

Examples

getExample = make.getExample()
STranspose = getExample('STranspose',toy=TRUE)
clusterDF = data.frame(gene=colnames(STranspose),
geneCluster=STranspose$seurat_clusters)
hallmark = getExample('hallmark"')
geneSet = intersect(hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]1],colnames(STranspose))
pvalueMatrix = geneSetsVsGeneClustersPValueMatrix(geneSet,
clusterDF,
colnames(STranspose))

30 getAverageExpressionMatrix

getAverageExpressionDF
This converts an average gene expression matrix to a data frame.

Description

This converts an average gene expression matrix to a data frame.

Usage

getAverageExpressionDF (M)

Arguments

M * An average gene expression matrix.

Value

A data frame with columns cellCluster, geneCluster and average expression

Examples

getExample = make.getExample()
averageExpMatrix = getExample('averageExpMatrix',toy=TRUE)
averageExpDF = getAverageExpressionDF (averageExpMatrix)

getAverageExpressionMatrix

This computes average expression of each gene cluster in each cell
cluster and returns the result as a matrix

Description

This computes average expression of each gene cluster in each cell cluster and returns the result as

a matrix
Usage
getAverageExpressionMatrix(
f,
fPrime,
clusteringName = "seurat_clusters”,
layer = "scale.data”

getBinarisedMatrix 31

Arguments
f * The Seurat object of cells, or SingleCellExperiment to be turned into a Seu-
rat object
fPrime » The Seurat object of genes, or SingleCellExperiment to be turned into a

Seurat object

clusteringName In many cases, this will be the cell clustering, i.e., seurat_clusters, which is the
default, but for neighbourhood Seurat objects, this can be neighbourhood_clusters.

layer * layer to use for expression values

Value

A matrix of the average expression where the rows correspond to cell clusters and the columns
correspond to gene clusters.

Examples

getExample = make.getExample()

STranspose = getExample('STranspose', toy=TRUE)

exSeuratObj = getExample('exSeuratObj', toy=TRUE)

M = getAverageExpressionMatrix(exSeuratObj,STranspose,layer="'data')

getBinarisedMatrix This functions retrieves an expression matrix from a seurat object or
SingleCellExperiment and binarises it.

Description

This functions retrieves an expression matrix from a seurat object or SingleCellExperiment and
binarises it.

Usage
getBinarisedMatrix(obj, cutoff = @, layer = "counts")
Arguments
obj * a Seurat object or SingleCellExperiment to be turned into a Seurat object
cutoff * a cutoff for binarisation. Defaults to 0.
layer * layer to fetch data from. Defaults to count.
Value

A binarised sparse expression matrix where rows are genes and columns are cells.

32 getExtendedNBHDs

getClusterOrder This gets the clusters in their cannonical order

Description

This deals with skullduggery in which seurat_clusters has been converted from a factor to a charac-
ter or a numeric.

Usage
getClusterOrder(f)
Arguments
f * a Seurat object with meta.data column seurat_clusters or SingleCellExper-
iment to be turned into a Seurat object
Value

A vector of these unique values in order

Examples

STranspose = make.getExample() ('STranspose',toy=TRUE)
geneClusters = getClusterOrder(STranspose)

getExtendedNBHDs This function takes a nearest neighbour graph and a radius and cal-
culates nth degree neighbour graphs where max(n) == radius

Description
This function takes a nearest neighbour graph and a radius and calculates nth degree neighbour
graphs where max(n) == radius

Usage

getExtendedNBHDs (spatialGraph, n)

Arguments
spatialGraph * anearest neighbour graph
n * the maximum degree to calculate a neighbour graph with edges connecting

vertices of degree n for.

getFeatureZScores 33

Value

A named list of neighbour graphs, where each graph contains edges connecting vertices of degree
n. Each graph is named according to degree n.

Examples

delaunayNeighbours = make.getExample() ('delaunayNeighbours')
extendedNeighboursList = getExtendedNBHDs(delaunayNeighbours, 4)

getFeatureZScores This gets z-scores for the values of features

Description

This gets z-scores for the values of features

Usage
getFeatureZScores(f, features = rownames(f), layer = "data")
Arguments
f * a Seurat object of cells or SingleCellExperiment to be converted to a Seurat
object
features « a set of features to retrieve z-scores for, defaults to rownames(f)
layer * the data layer to retrieve
Value

This returns a data frame with a column for each feature and a row for each cell

Examples

getExample = make.getExample()
exSeuratObj = getExample('exSeuratObj',toy=TRUE)
df = getFeatureZScores(exSeuratObj)

34 getGeneClusterAveragesPerCell

getGeneClusterAveragesPerCell

This produces a matrix giving the average expression of gene clusters
in cells. By default, it uses all cells and all gene clusters.

Description

This produces a matrix giving the average expression of gene clusters in cells. By default, it uses
all cells and all gene clusters.

Usage

getGeneClusterAveragesPerCell(
f,
fPrime,
cells = colnames(f),
geneClusters = getClusterOrder (fPrime),
layer = "data”

)
Arguments
f * the cell Seurat object or SingleCellExperiment to be turned into a Seurat
object
fPrime * the genes Seurat object or SingleCellExperiment to be turned into a Seurat
object
cells * the cells to compute this for
geneClusters * the geneClusters to compute average expression for
layer * the data layer to use, defaults to ’data’
Value

A matrix where the rows correspond to cells, the columns correspond to geneClusters and the entries
give average expression for each cluster in each cell

Examples

getExample = make.getExample()

exSeuratObj = getExample('exSeuratObj',toy=TRUE)

STranspose = getExample('STranspose', toy=TRUE)

clusterExpression = getGeneClusterAveragesPerCell (exSeuratObj,STranspose)

getGeneNeighbors 35

getGeneNeighbors This function gets the neighbors of a given gene using either the gene
Seurat object or its nearest neighbor graph returned from getNearest-
NeighbourLists
Description

This function gets the neighbors of a given gene using either the gene Seurat object or its nearest
neighbor graph returned from getNearestNeighbourLists

Usage
getGeneNeighbors(gene, NN)

Arguments
gene * the gene in question
NN * either the gene Seurat object or its nearest neighbor graph as found by getN-
earestNeighbourLists. This can also be a SingleCellExperiment which will
be converted to a Seurat object
Value

the neighboring genes

Examples

library(Seurat)

getExample = make.getExample()

STranspose = getExample('STranspose',toy=TRUE)
NN = getExample('NN', toy=TRUE)

neighbors = getGeneNeighbors("Ccl6”,STranspose)
neighborsAgain = getGeneNeighbors(”Ccl6"”,NN)

getInteractionsOnEdges
This function takes a binarised expression matrix, a set of ligand re-
ceptor pairs and a set of edges denoting neighbouring cells and anno-
tates these with the ligand receptor interactions taking place on those
edges in each direction.

Description

This function takes a binarised expression matrix, a set of ligand receptor pairs and a set of edges
denoting neighbouring cells and annotates these with the ligand receptor interactions taking place
on those edges in each direction.

36 getLigandReceptorNetwork

Usage

getInteractionsOnEdges(M, pairDF, spatialGraph)

Arguments
M * a binarised expression matrix where rows are genes and columns are cells.
pairDF * adata frame giving the ligand-receptor pairs
spatialGraph * a data frame of neighbouring cell pairs. Note that each row is a directed
edge (A,B) so that this data frame should have both the edge (A,B) and the
edge (B,A)
Value

This returns a data frame whose first two columns give the neighbouring cells. Each of the re-
maining columns is a logical corresponding to a ligand-receptor pair telling whether the ligand is
expressed in the first cell and the receptor is expressed in the second cell.

getlLigandReceptorNetwork
This function retrieves the Nichenetr ligand- receptor network for
mouse or human.

Description

This function retrieves the Nichenetr ligand- receptor network for mouse or human.

Usage

getlLigandReceptorNetwork(species)

Arguments

species e cither ’human’ or ’mouse’

Value

This returns a data frame whose first two columns are from and to, i.e., ligand and receptor. These
are derived from the nichenetr ligand receptor networks.

Examples

1rn = getLigandReceptorNetwork('human')

getLigandReceptorPairsInPanel 37

getLigandReceptorPairsInPanel
This functions takes an Seurat object, its species and a ligand receptor
network and subsets the ligand receptor network to those pairs that
occur in the panel

Description

This functions takes an Seurat object, its species and a ligand receptor network and subsets the
ligand receptor network to those pairs that occur in the panel

Usage
getLigandReceptorPairsInPanel(
obj,
species,
1rn = getLigandReceptorNetwork(species)
)
Arguments
obj * a Seurat object or SingleCellExperiment to be converted to a Seurat object
species e either ’human’ or 'mouse’
1rn * aligand-receptor network, i.e., a data frame with columns from and to. By
default, it retrieves the nichenetr ligand receptor network
Value

This returns a data frame with columns ligand and receptor

Examples

smallXenium = make.getExample() ('smallXenium')
1rPairs = getLigandReceptorPairsInPanel(smallXenium, "mouse")

getNearbyGenes Nearby genes

Description

This finds the genes near a give subset using either a dimensional reduction or the nearest neighbor
graph

38

Usage

getNearbyGenes(

fPrime,
geneSet
radius,
metric
numPCs
weights

Arguments

fPrime

geneSet
radius
metric
numPCs

weights

Value

’

llumap" R
NULL,
= FALSE

getNearestNeighbourLists

a Seurat object of genes or SingleCellExperiment to be converted to a Seu-
rat object

set of genes

the distance around the given set

the metric to use, one of umap, tsne, pca or nearest neighbor
used only if the metric is pca

whether to use edge weights in the NN case

This returns a named vector whose values are distance from geneSet and whose names are the
nearby genes.

Examples

getExample
STranspose
hallmark =

= make.getExample()

= getExample('STranspose', toy=TRUE)

getExample('hallmark')

geneSet = intersect(colnames(STranspose),hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]1])
geometricallyNearby = getNearbyGenes(STranspose,geneSet,radius=0.2,metric="umap"')
combinatoriallyNearby = getNearbyGenes(STranspose,geneSet,radius=1,metric="NN")
weightedNearby = getNearbyGenes(STranspose, 'Myc',radius=1,metric='NN',weights=TRUE)

getNearestNeighbourlLists

This function extracts a shared nearest neighbor network from a Seurat
object

Description

This function extracts a shared nearest neighbor network from a Seurat object

Usage

getNearestNeighbourLists(f, graph = defaultGraph(f))

getObjectSubsetClusteringPValue 39

Arguments
f * a Seurat object or SingleCellExperiment to be converted to a Seurat object
graph * which graph to extract. Defaults to pasteO(f@active.assay,”_snn’)

Value

* This returns dataframe of neighbors: nodeA - node names for node A nodeB - node names for
node B weight - edge weight

Examples

STranspose = make.getExample() ('STranspose',toy=TRUE)
NN = getNearestNeighbourLists(STranspose)

getObjectSubsetClusteringPValue
This function computes a p-value for the geometric clustering of a gene
set (in UMAP or PCA reduction) based on the median distance from
its complement to the set.

Description

This function computes a p-value for the geometric clustering of a gene set (in UMAP or PCA
reduction) based on the median distance from its complement to the set.

Usage

getObjectSubsetClusteringPValue(
fPrime,
geneSubset,
numTrials = 1000,
reduction = "UMAP",

numPCs = 10
)
Arguments

fPrime * a transposed Seurat object, i.e. a Seurat object of genes or SingleCellEx-
periment to be converted to a Seurat object

geneSubset * a subset of the genes which can be given as a character vector as a logical
vector

numTrials ¢ the number of random trials to be carried out for randomised testing. De-
faults to 1000.

reduction e can be "UMAP’ or ’PCA’, defaults to "UMAP’

numPCs ¢ number of PCs to use if reduction is "PCA’

40 getObjectSubsetClusteringStatistics

Value

A p-value reporting how often a random subset of the same size is sufficiently clustered to produce
an equally large distance from its complement.

Examples

getExample = make.getExample()

STranspose = getExample('STranspose')

hallmark = getExample('hallmark',toy=TRUE)

geneSubset = intersect(colnames(STranspose),hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]])
p = getObjectSubsetClusteringPValue(STranspose,geneSubset,100)

getObjectSubsetClusteringStatistics
This function computes statistics for the geometric clustering of a gene
set (in UMAP or PCA reduction) based on the median distance from
its complement to the set.

Description

This function computes statistics for the geometric clustering of a gene set (in UMAP or PCA
reduction) based on the median distance from its complement to the set.

Usage

getObjectSubsetClusteringStatistics(
fPrime,
geneSubset,
numTrials = 1000,
reduction = "UMAP",

numPCs = 10
)
Arguments

fPrime * a transposed Seurat object, i.e. a Seurat object of genes or SingleCellEx-
periment to be converted to a Seurat object

geneSubset * asubset of the genes which can be given as a character vector or as a logical
vector

numTrials * the number of random trials to be carried out for randomised testing. De-
faults to 1000.

reduction e can be "'UMAP’ or ’PCA’, defaults to "UMAP’

numPCs ¢ number of PCs to use if reduction is "PCA’

getSubsetComponents 41

Value

A list of statistics resulting from the testing of randomised subsets of the same size as the given gene
subset. These include subsetDistance, the actual median complement distance; randomSubsetDis-
tance, the median complement distances for randomised subsets; pValue, computed by comparing
the real and randomised distances; and zScore, the z-distance of the actual median distance from
the mean of the randomised distances.

Examples

getExample = make.getExample()

STranspose = getExample('STranspose', toy=TRUE)

hallmark = getExample('hallmark')

geneSubset = intersect(colnames(STranspose),hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]11)
stats = getObjectSubsetClusteringStatistics(STranspose,geneSubset,100)

getSubsetComponents This is designed to dectect the components of a gene subset in the case
where median complement distance detects clustering.

Description

This is designed to dectect the components of a gene subset in the case where median complement
distance detects clustering.

Usage

getSubsetComponents(fPrime, theSubset, alpha = 0.5, edgeCut = NA)

Arguments
fPrime * a gene Seurat object or SingleCellExperiment
theSubset * asubset of the genes
alpha * a parameter typically less than one controling the granularity of the compo-
nents. Defaults to .5
edgeCut * the maximum length of edges included in the subgraph whose components
are returned. If it is NA (the default) it is computed using alpha. Otherwise,
it can be supplied directly.
Value

A list of the components of the subset treated as a graph whose edges are determined by their
distance in UMAP coordinates.

42 ligandReceptorResults

humanLRN humanLRN

Description

A data frame giving 12019 human ligand receptor pairs

Usage
humanLRN

Format

a data frame with two columns, ’from’ and ’to’
A data frame with two columns, 'from’ and ’to’. Each row represents a human ligand -

receptor pair.
Source

This is taken from the nichenetr package, url = https://www.nature.com/articles/s41592-019-0667-
5. Specifically we use the human ligand - receptor network.

ligandReceptorResults ligandReceptorResults

Description

The result of performLigandReceptorAnalysis(smallXenium, delaunayNeighbours, "mouse", clus-
ters,verbose=FALSE)

Usage

ligandReceptorResults

Format

A list of data frames.
A list containing: interactionsOnEdges - a data frame whose first two columns give the neigh-
bouring cells and next two columns give their corresponding clusters. Each of the remain-
ing columns is a logical corresponding to a ligand-receptor pair telling whether the ligand
is expressed in the first cell and the receptor is expressed in the second cell. totallnterac-
tionsByCluster - a dataframe where the first column gives a directed (sender-receiver) pair of
clusters. The second column gives the total number of edges between those clusters. The
remaining columns give the total numbers of edges on which particular ligand receptor inter-
actions are present. meanlnteractionsByCluster - a dataframe where the first column gives a
directed (sender-receiver) pair of clusters. The second column gives the total number of edges

make.getExample 43

between those clusters. The remaining columns give the total numbers of edges on which
particular ligand receptor interactions are present (for that cluster pair) divided by the total
number of edges between those clusters. simResults - a dataframe where the rownames are
sender-receiver cluster pairs and column names are ligand receptor pairs. Values give the num-
ber of simulations for which observed values are greater than simulated values. pValues - a
dataframe where the rownames are sender-receiver cluster pairs and column names are ligand
receptor pairs. Entries are uppertail pvalues describing whether a particular ligand receptor
interaction is observed more frequently between 2 clusters than expected.

Source

Created from smallXenium and delaunayNeighbours by using performLigandReceptorAnalysis(()

make.getExample This function makes the function whichretrieves and makes example
data objects.

Description

This function makes the function whichretrieves and makes example data objects.

Usage

make.getExample()

Value

This returns the function which retrieves and makes example data objects. The latter saves any
object it has found for quicker return. Using the value ’list’ causes it to return the list of all objects
found so far.

Examples

getExample = make.getExample()

Provided:

smallXenium = getExample('smallXenium')

Computed:

delaunayNeighbours = getExample('delaunayNeighbours')

44 makeLRInteractionHeatmap

makeLRInteractionHeatmap
This function takes ligandReceptorResults and plots a heatmap of -
log10(pvalues). If the minimum p-value is 0 a pseudocount of 0.001
will be added before log transformation.

Description

This function takes ligandReceptorResults and plots a heatmap of -log10(pvalues). If the minimum
p-value is 0 a pseudocount of 0.001 will be added before log transformation.

Usage

makeLRInteractionHeatmap(
ligandReceptorResults,
clusters,
colours = c(),
pValCutoffClusterPair = 0.05,
pValCutoffLigRec = 0.05,
labelClusterPairs = TRUE

Arguments

ligandReceptorResults
* as returned by performLigandReceptorAnalysis()

clusters * named vector of cell types where names are each cell and clusters are a
factor
colours * anamed list of colours where names are clusters. If not specified the default

pheatmap colour scheme will be used.

pValCutoffClusterPair
* a cutoff for showing interactions between two clusters. A cluster pair must
have at least one ligand-receptor interaction pvalue < pValCutoffCluster-
Pair. Defaults to 0.05.
pValCutofflLigRec
* a cutoff for showing interactions between a ligand and receptor. At least
one cluster pair must have pvalue < pValCutoffLigRec for ligand-receptor
pair. Defaults to 0.05.
labelClusterPairs
* show labels for cluster pairs. Defaults to TRUE.

Value

matrix of -log10(pvalues) that underlies the heatmap.

makeSummedLRInteractionHeatmap 45

Examples

getExample = make.getExample()

clusters = getExample('clusters')

ligandReceptorResults = getExample('ligandReceptorResults')
cellTypePerCellTypelLigRecMatrix =
makeSummedLRInteractionHeatmap(ligandReceptorResults, clusters, "mean")

makeSummedLRInteractionHeatmap
This function takes ligandReceptorResults and plots a heatmap of the
total number of ligand receptor interactions between clusters.

Description

This function takes ligandReceptorResults and plots a heatmap of the total number of ligand recep-
tor interactions between clusters.

Usage

makeSummedLRInteractionHeatmap(
ligandReceptorResults,
clusters,
type,
logScale = TRUE

)

Arguments

ligandReceptorResults
* as returned by performLigandReceptorAnalysis()

clusters * named vector of cell types where names are each cell and clusters are a
factor
type * "total" or "mean" to plot raw total interactions or mean interactions per
edge.
logScale ¢ plot heatmap using log scale (defaults to TRUE)
Value

matrix of total ligand receptor interactions that underlies t he heatmap.

Examples

getExample = make.getExample()

clusters = getExample('clusters"')

ligandReceptorResults = getExample('ligandReceptorResults')
cellTypePerCellTypelLigRecMatrix =
makeSummedLRInteractionHeatmap(ligandReceptorResults, clusters, "mean")

46 meanZPerCluster

meanGeneClusterOnCellUMAP
Mean gene cluster on cell umap

Description

This function paints gene expression for a given gene cluster on cell umap.

Usage

meanGeneClusterOnCellUMAP(f, fPrime, geneCluster)

Arguments
f * a Seurat object of cells or SingleCellExperiment to be converted to a Seurat
object
fPrime ¢ the corresponding Seurat object of genes SingleCellExperiment to be con-
verted to a Seurat object
geneCluster * a gene cluster of fPrime
Value

This returns a ggplot object

Examples

getExample = make.getExample()

exSeuratObj = getExample('exSeuratObj', toy=TRUE)

STranspose = getExample('STranspose', toy=TRUE)

g = meanGeneClusterOnCellUMAP (exSeuratObj,STranspose,geneCluster=0)

meanZPerCluster This finds the mean z-score for features in subsets of cells e.g., in each
of the seurat_clusters

Description

This finds the mean z-score for features in subsets of cells e.g., in each of the seurat_clusters

Usage

meanZPerCluster(f, features, clusterBy = "seurat_clusters”, layer = "data")

meanZPerClusterOnUMAP 47

Arguments
f * a Seurat object of cells or SingleCellExperiment to be converted to a Seurat
object
features * a set of features of f
clusterBy * the name of the column of f@meta.data to be used to subset the cells
layer * the data layer to be used for z-scores
Value

This returns a data frame each of whose columns corresponds to a value of the clusterBy data. In
the case where the clusterBy data is a factor or numeric, it prepends cluster_ to the column name.

Examples

getExample = make.getExample()

exSeuratObj = getExample('exSeuratObj',toy=TRUE)

STranspose = getExample('STranspose',toy=TRUE)

df = meanZPerCluster(exSeuratObj, features=colnames(STranspose),
clusterBy="'shortName')

meanZPerClusterOnUMAP This collects together mean z-score data together with UMAP coordi-
nates from the gene seurat object for plotting.

Description

This collects together mean z-score data together with UMAP coordinates from the gene seurat
object for plotting.

Usage

meanZPerClusterOnUMAP(f, fPrime, clusterBy = "seurat_clusters”, layer = "data")

Arguments
f * a Seurat object of cells or SingleCellExperiment to be converted to a Seurat
object
fPrime * the corresponding Seurat object of genes SingleCellExperiment to be con-
verted to a Seurat object
clusterBy ¢ the name of the column of f@meta.data to be used to subset the cells
layer * the data layer to be used for z-scores
Value

This returns a data frame with the UMAP coordinates of the gene Seurat object and the average z-
score for each gene within each of the cell clusters defined by the clusterBy column of the meta.data
of f.

48 medianComplementDistance

Examples

getExample = make.getExample()

exSeuratObj = getExample('exSeuratObj', toy=TRUE)

STranspose = getExample('STranspose', toy=TRUE)

df = meanZPerClusterOnUMAP (exSeuratObj,STranspose,clusterBy="'shortName')

medianComplementDistance
This takes a set S of n points in dimension d given by an n x d matrix
and a subset A given by a logical and returns the median distance from
the complement to the given subset.

Description

This takes a set S of n points in dimension d given by an n x d matrix and a subset A given by a
logical and returns the median distance from the complement to the given subset.

Usage

medianComplementDistance(S, idx)

Arguments
S * an n x d matrix representing a set of n points in dimension d
idx * alogical of length n representing a subset of S. This should not be the empty
set or all of S.
Value

This returns the median distance from the complement to the subset

Examples

S = matrix(seqg_len(12),ncol=2)
idx = c(rep(FALSE,3),rep(TRUE, 3))
compDist = medianComplementDistance(S,idx)

medianComplementP Value 49

medianComplementPValue
This takes a set S of n points in dimension d and a subset A and com-
putes a p-value for the co-localization of the subset by comparing the
median complement distance for the given set to values of the median
complement distance computed for random subsets of the same size.

Description

This takes a set S of n points in dimension d and a subset A and computes a p-value for the co-
localization of the subset by comparing the median complement distance for the given set to values
of the median complement distance computed for random subsets of the same size.

Usage

medianComplementPValue(S, idx, numTrials = 1000, returnTrials = FALSE)

Arguments
S * an n x d matrix representing a set of n points in dimension d
idx * alogical of length n representing a subset of S. This should not be the empty
set or all of S.
numTrials ¢ the number of random trials to perform, defaults to 1000
returnTrials * whether to report the real and random median complement distances.
Value

By default this reports a p-value. If returnTrials is set, this returns a list giving the p-value, the
actual complement distance and the random complement distances.

Examples

library(Seurat)

getExample = make.getExample()

STranspose = getExample('STranspose',toy=TRUE)

hallmark = getExample('hallmark")

S = data.matrix(FetchData(STranspose,c('umap_1"', 'umap_2')))

idx = colnames(STranspose) %in% hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"]]
mcpv = medianComplementPValue(S,idx,numTrials=100)

50 moransILigandReceptor

moransI moransl

Description

A data fame containing Moran’s I and related pvalues.

Usage

moransI

Format

A data fame containing Moran’s I and related pvalues.

Moran’s I values calculated for the genes in smallXenium (using the SCT assay). Pvalues
derived using 100 permutations.

Source

Created from smallXenium and delaunayNeighbours by using runMoransI()

moransILigandReceptor moransILigandReceptor

Description

Moran’s I for the ligand receptor pairs

Usage

moransILigandReceptor

Format

A data frame showing the spatial autocorrelation of the 28 ligand receptor pairs

A data frame with rownames giving the 28 ligand-receptor pairs and columns moransl and
pValues

Source

Computed using the function runMoransl on the object edgeSeurat and neighbours edgeNeigh-
bours = computeEdgeGraph(delaunayNeighbours) with 100 trials. For more informations see the
CatsCradleSpatial vignette.

mouseLRN 51

mouseLRN mouseLRN

Description

A data frame giving 11592 mouse ligand receptor pairs

Usage

mouselLRN

Format

a data frame with two columns, ’from’ and ’to’
A data frame with two columns, *from’ and ’to’. Each row represents a mouse ligand - receptor

pair.
Source

This is taken from the nichenetr package, url = https://www.nature.com/articles/s41592-019-0667-
5. Specifically, we use the mouse ligand - receptor network.

nbhdsAsEdgesToNbhdsAsList
nbhdsAsEdgesToNbhdsAsList

Description
This function takes a set of neighbourhoods given by edges and turns it into a named list giving the
memberships of each neighbourhood

Usage
nbhdsAsEdgesToNbhdsAsList(cells, neighbourhoods, self = FALSE)

Arguments

cells * The cells whose neighbourhoods to extract.

neighbourhoods * neighbourhoods given as a data frame with columns nodeA and nodeB, for
example the output of collapseNeighbourhoods

self ¢ include cell in its neighbourhood, defaults to FALSE

Value

a named list with memberships of the neighbourhoods of cells

52 neighbourhoodDiameter

Examples

delaunayNeighbours = make.getExample() ('delaunayNeighbours")
cells = unique(c(delaunayNeighbours[, 'nodeA'],delaunayNeighbours[, 'nodeB']))
nbhdsList = nbhdsAsEdgesToNbhdsAsList(cells,delaunayNeighbours)

neighbourhoodDiameter neighbourhoodDiameter

Description

This function takes a list of neighbourhoods and and the centroids of the cells and finds their diam-
eters, i.e., for each neighbourhood, the maximum distance between.

Usage

neighbourhoodDiameter(neighbourhoods, centroids)

Arguments

neighbourhoods * alist of neighbourhoods as returned by nbhdsAsEdgesToNbhdsAsList

centroids * the centroids of the cells

Value

a named numeric. The names are the names of the list neighbourhoods and the values are the
maximum distance within each neighbourhood

Examples

getExample = make.getExample()

centroids = getExample('centroids')

delaunayNeighbours = getExample('delaunayNeighbours')

cells = unique(c(delaunayNeighbours[, 'nodeA'],delaunayNeighbours[, 'nodeB']))
nbhds = nbhdsAsEdgesToNbhdsAsList(cells,delaunayNeighbours)

diameters = neighbourhoodDiameter (nbhds[seq_len(100)],centroids)

orderGeneSetPValues 53

orderGeneSetPValues This orders the gene set p-values (or -logl0 p-values) and applies a
cutoff (if given) to show only the significant gene sets for each gene
cluster

Description

This orders the gene set p-values (or -log10 p-values) and applies a cutoff (if given) to show only
the significant gene sets for each gene cluster

Usage
orderGeneSetPValues(M, ascending = TRUE, cutoff = NULL, nameTag = "")
Arguments
M * A matrix of gene set p-values (or their logs) to be ordered by their signifi-
cance
ascending * Direction in which to order the columns. Defaults to TRUE, so that p-
values will be ordered according to decreasing significance, should be set
to FALSE if ordering -log p-value
cutoff * if non-null this is used to extract only significant cases
nameTag * can be used to modify the names of the list.
Value

This returns a list of whose entries are data frames, one for each gene cluster, each giving the
significant gene sets for that cluster and their significance.

54

performLigandReceptorAnalysis

performLigandReceptorAnalysis

Given a seurat object, a spatial graph, clusters and species this
function identifies ligand-receptor interactions between neighbouring
cells, identifies ligand-receptor interactions within and between clus-
ters and calculates whether these are observed more frequently than
expected by chance. If the "analytical” method is selected, an upper
tail p-value for observing a given number of A-B edges positive for a
given interaction is calculated using a binomial test (R pbinom func-
tion) where: q = number of A-B edges positive for an interaction size
= total number of A-B edges prob = pL*pR Where pL is the probabil-
ity of a cell expressing a specific ligand (number of cells positive for
a ligand/total cells), and pR is the probability of a cell expressing a
specific receptor (number of cells positive for a receptor/total cells).
If conditional = True p-values will be calculated given the proportion
of cells that express ligands and receptors in the specific clusters (pL
= number of cells in cluster A positive for a ligand/number of cells
in cluster A, pR = number of cells in cluster B positive for a recep-
tor/number of cells in cluster B). We recommend to use the analytical
method, which has a much faster runtime than the permutation-based
method, however for legacy purposes and user flexibility we retain the
permutation-based method.

Description

Given a seurat object, a spatial graph, clusters and species this function identifies ligand-receptor
interactions between neighbouring cells, identifies ligand-receptor interactions within and between
clusters and calculates whether these are observed more frequently than expected by chance. If the
"analytical" method is selected, an upper tail p-value for observing a given number of A-B edges
positive for a given interaction is calculated using a binomial test (R pbinom function) where: q =
number of A-B edges positive for an interaction size = total number of A-B edges prob = pL*pR
Where pL is the probability of a cell expressing a specific ligand (number of cells positive for a
ligand/total cells), and pR is the probability of a cell expressing a specific receptor (number of
cells positive for a receptor/total cells). If conditional = True p-values will be calculated given the
proportion of cells that express ligands and receptors in the specific clusters (pL = number of cells
in cluster A positive for a ligand/number of cells in cluster A, pR = number of cells in cluster B
positive for a receptor/number of cells in cluster B).

We recommend to use the analytical method, which has a much faster runtime than the permutation-
based method, however for legacy purposes and user flexibility we retain the permutation-based
method.

Usage

performLigandReceptorAnalysis(
obj,
spatialGraph,
species,
clusters,

performLigandReceptorAnalysis 55

method = "analytical”,

conditional = FALSE,

minEdgesPos = 10,

nSim = 1000,

lrn = getLigandReceptorNetwork(species),
verbose = TRUE

)
Arguments

obj * a Seurat object

spatialGraph * adata frame of neighbouring cell pairs.

species e either ’human’ or ’mouse’

clusters » named vector of clusters where names are each cell and clusters are a factor

method * method for computing p-values. Defaults to "analytical". If "permutation”
is selected p-values are calculated by comparison to randomised graphs
(note this is slower than the analytical approach).

conditional * if method is "analytical" and conditional is true, p-values will be calcu-
lated given the proportion of cells that express ligands and receptors in the
specific clusters. Otherwise global proportions of ligand and receptor ex-
pression are used. Defaults to FALSE.

minEdgesPos the minimum edges that need to be positive for a ligand-receptor interac-
tion between two clusters for a p-value to be calculated. Only taken into
consideration when the analytical method is selected.

nSim e number of simulations to perform for pvalue calculation.

lrn * aligand-receptor network, i.e., a data frame with columns from and to. By
default, it retrieves the nichenetr ligand receptor network

verbose » whether to print trace, defaults to TRUE

Value

A list containing: interactionsOnEdges - a sparse matrix where the rownames give pairs of neigh-
bouring cells and column names give ligand-receptor pairs. Entries are TRUE if the ligand is ex-
pressed in the first cell and the receptor is expressed in the second cell and FALSE if not. interac-
tionsOnEdgesMeta - a dataframe where the first two columns are the cells that comprise the edges
in interactionsOnEdges, and the next two columns are their clusters. totallnteractionsByCluster - a
dataframe where the rownames are sender-receiver cluster pairs and column names are ligand re-
ceptor pairs. Entries are total numbers of edges on which particular ligand receptor interactions are
present. meanInteractionsByCluster - a dataframe where the rownames are sender-receiver cluster
pairs and column names are ligand receptor pairs. Entries are total numbers of edges on which
particular ligand receptor i nteractions are present (for that cluster pair) divided by the total number
of edges between those clusters. simResults - a dataframe where the rownames are sender-receiver
cluster pairs and column names are ligand receptor pairs. Values give the number of simulations for
which observed values are greater than simulated values. Only returned if method = "permutation”.
pValues - a dataframe where the rownames are sender-receiver cluster pairs and column names are
ligand receptor pairs. Entries are uppertail p-values describing whether a particular ligand receptor

56 performLigandReceptorAnalysisAnalytical

interaction is observed more frequently between 2 clusters than expected. totalEdges - a vector of
total edges between cluster pairs.

Examples

getExample = make.getExample()

smallXenium = getExample('smallXenium')

delaunayNeighbours = getExample('delaunayNeighbours')

clusters = getExample('clusters')

performLigandReceptorAnalysis(smallXenium, delaunayNeighbours,
"mouse”, clusters)

performLigandReceptorAnalysisAnalytical
Given a seurat object, a spatial graph, clusters and species this
function identifies ligand-receptor interactions between neighbouring
cells, identifies ligand-receptor interactions within and between clus-
ters and calculates whether these are observed more frequently than
expected by chance using an analytical approach.

Description

Given a seurat object, a spatial graph, clusters and species this function identifies ligand-receptor
interactions between neighbouring cells, identifies ligand-receptor interactions within and between
clusters and calculates whether these are observed more frequently than expected by chance using
an analytical approach.

Usage

performLigandReceptorAnalysisAnalytical(
obj,
spatialGraph,
species,
clusters,
conditional = FALSE,
lrn = getLigandReceptorNetwork(species),
minEdgesPos = 10

)
Arguments
obj * a Seurat object
spatialGraph * adata frame of neighbouring cell pairs.
species e either ’human’ or 'mouse’

clusters e named vector of clusters where names are each cell and clusters are a factor

performLigandReceptorAnalysisPermutation 57

conditional * if method is "analytical" and conditional is true, p-values will be calcu-
lated given the proportion of cells that express ligands and receptors in the
specific clusters. Otherwise global proportions of ligand and receptor ex-
pression are used. Defaults to FALSE.

1rn ¢ a ligand-receptor network, i.e., a data frame with columns from and to. By
default, it retrieves the nichenetr ligand receptor network

minEdgesPos * the minimum edges that need to be positive for a ligand-receptor interaction
between two clusters for a p-value to be calculated.

Value

A list containing: interactionsOnEdges - a sparse matrix where the rownames give pairs of neigh-
bouring cells and column names give ligand-receptor pairs. Entries are TRUE if the ligand is ex-
pressed in the first cell and the receptor is expressed in the second cell and FALSE if not. interac-
tionsOnEdgesMeta - a dataframe where the first two columns are the cells that comprise the edges
in interactionsOnEdges, and the next two columns are their clusters. totallnteractionsByCluster - a
dataframe where the rownames are sender-receiver cluster pairs and column names are ligand re-
ceptor pairs. Entries are total numbers of edges on which particular ligand receptor interactions are
present. meanInteractionsByCluster - a dataframe where the rownames are sender-receiver cluster
pairs and column names are ligand receptor pairs. Entries are total numbers of edges on which
particular ligand receptor interactions are present (for that cluster pair) divided by the total number
of edges between those clusters. pValues - a dataframe where the rownames are sender-receiver
cluster pairs and column names are ligand receptor pairs. Entries are uppertail p-values describing
whether a particular ligand receptor interaction is observed more frequently between 2 clusters than
expected. totalEdges - a vector of total edges between cluster pairs.

performLigandReceptorAnalysisPermutation
Given a seurat object, a spatial graph, clusters and species this
function identifies ligand-receptor interactions between neighbouring
cells, identifies ligand-receptor interactions within and between clus-
ters and calculates whether these are observed more frequently than
expected by chance using a permutation-based approach.

Description

Given a seurat object, a spatial graph, clusters and species this function identifies ligand-receptor
interactions between neighbouring cells, identifies ligand-receptor interactions within and between
clusters and calculates whether these are observed more frequently than expected by chance using
a permutation-based approach.

Usage
performLigandReceptorAnalysisPermutation(
obj,
spatialGraph,

58

performLigandReceptorAnalysisPermutation

species,

clusters,

nSim = 1000,

1rn = getLigandReceptorNetwork(species),
minEdgesPos = 10,

verbose = TRUE

Arguments

obj * a Seurat object

spatialGraph * adata frame of neighbouring cell pairs.

species e either ’human’ or ’mouse’

clusters * named vector of clusters where names are each cell and clusters are a factor
nSim * number of simulations to perform for p value calculation.

lrn * aligand-receptor network, i.e., a data frame with columns from and to. By
default, it retrieves the nichenetr ligand receptor network

minEdgesPos * the minimum edges that need to be positive for a ligand-receptor interac-
tion between two clusters for a p-value to be calculated. Only taken into
consideration when the analytical method is selected.

verbose » whether to print trace, defaults to TRUE

Value

A list containing: interactionsOnEdges - a sparse matrix where the rownames give pairs of neigh-
bouring cells and column names give ligand-receptor pairs. Entries are TRUE if the ligand is ex-
pressed in the first cell and the receptor is expressed in the second cell and FALSE if not. interac-
tionsOnEdgesMeta - a dataframe where the first two columns are the cells that comprise the edges
in interactionsOnEdges, and the next two columns are their clusters. totallnteractionsByCluster - a
dataframe where the rownames are sender-receiver cluster pairs and column names are ligand re-
ceptor pairs. Entries are total numbers of edges on which particular ligand receptor interactions are
present. meanInteractionsByCluster - a dataframe where the rownames are sender-receiver cluster
pairs and column names are ligand receptor pairs. Entries are total numbers of edges on which
particular ligand receptor i nteractions are present (for that cluster pair) divided by the total number
of edges between those clusters. simResults - a dataframe where the rownames are sender-receiver
cluster pairs and column names are ligand receptor pairs. Values give the number of simulations for
which observed values are greater than simulated values. pValues - a dataframe where the rownames
are sender-receiver cluster pairs and column names are ligand receptor pairs. Entries are uppertail
p-values describing whether a particular ligand receptor interaction is observed more frequently
between 2 clusters than expected. totalEdges - a vector of total edges between cluster pairs.

Examples

getExample = make.getExample()

smallXenium = getExample('smallXenium')
delaunayNeighbours = getExample('delaunayNeighbours')
clusters = getExample('clusters"')

permuteColumns 59

performLigandReceptorAnalysis(smallXenium, delaunayNeighbours,
"mouse”, clusters, minEdgesPos = 10, nSim = 10,
verbose=FALSE)

permuteColumns This function permutes the columns of a sparse dcG matrix.

Description

This function permutes the columns of a sparse dcG matrix.

Usage
permuteColumns (M)
Arguments
M * a binarised expression matrix in sparse format where rows are cells and
columns
Value

This returns a matrix in which the values have been permuted within columns.

permuteMatrix This function permutes the rows of a matrix.

Description

This function permutes the rows of a matrix.

Usage

permuteMatrix (M)

Arguments

M * a binarised expression matrix where rows are genes and columns

Value

This returns a matrix in which the values have been permuted within rows.

60 plotLRDotplot

plotLRDotplot This is a function to create a dotplot using the ligand receptor results

Description

This is a function to create a dotplot using the ligand receptor results

Usage

plotLRDotplot(
ligandReceptorResults,
senderClusters = unique(ligandReceptorResults$interactionsOnEdgesMeta$cellTypeA),
receiverClusters = unique(ligandReceptorResults$interactionsOnEdgesMeta$cellTypeB),
padjCutoff = 0.05,
pvalCutoff = F,
splitBy = "sender”

)

Arguments

ligandReceptorResults
* ligandReceptorResults calculated using performLigandReceptorAnalysis().

senderClusters * sender clusters to plot (defaults to all).

receiverClusters
* receiver clusters to plot (defaults to all).
padjCutoff * only plot results with p-adj < padjCutoff (defaults to 0.05).
pvalCutoff * only plot results with p-value < pvalCutoff (defaults to False in which case
padjCutoff is used).
splitBy * split plots by "sender" or "receiver" cell types (defaults to sender).
Value

matrix of total ligand receptor interactions that underlies the heatmap.

Examples

getExample = make.getExample()

centroids = getExample('centroids')

ligandReceptorResults = getExample('ligandReceptorResults')
p = plotLRDotplot(ligandReceptorResults)

predictAnnotation

61

predictAnnotation This function makes annotation predictions for a set of genes based on
gene sets (e.g., hallmark) and a CatsCradle object by considering the
annotations of its neighboring genes.
Description

This function makes annotation predictions for a set of genes based on gene sets (e.g., hallmark)
and a CatsCradle object by considering the annotations of its neighboring genes.

Usage

predictAnnotation(
genes,
geneSets,
fPrime,
radius,
metric = "umap”,
numPCs = NULL,

normaliseByGeneSet = TRUE,
normaliseByDistance = TRUE,
normaliseToUnitVector = TRUE

)
Arguments

genes .
geneSets .
fPrime .
radius .
metric .
numPCs .
normaliseByGeneSet
normaliseByDistance

a character vector of genes
a set of annotations, e.g., hallmark or GO

a Seurat object of genes SingleCellExperiment to be converted to a Seurat
object

radius for prediction neighborhood
reduction or NN, defaults to umap
used only if reduction is pca, defaults to NULL

determines whether vector annotations are normalised by gene set size. De-
faults to TRUE

determines whether neighbor contributions are normalised by edge weight.
Defaults to TRUE.

normaliseToUnitVector

Value

determines whether to normalise returned values to unit length. Defaults to
TRUE

This returns a list of prediction vectors, one vector for each gene in genes, each vector corresponding

to the sets in geneSets

62 predictAnnotationAllGenes

Examples

getExample = make.getExample()

STranspose = getExample('STranspose',toy=TRUE)

STranspose_sce = getExample('STranspose_sce',toy=TRUE)

hallmark = getExample('hallmark',toy=TRUE)

set.seed(100)

genes = sample(colnames(STranspose),5)

predictions = predictAnnotation(genes,hallmark,STranspose,radius=.5)
predictions_sce = predictAnnotation(genes,hallmark,STranspose_sce,radius=.5)

predictAnnotationAllGenes
This function predicts the functions of all genes based on the functions
of their neighbours.

Description

This function predicts the functions of all genes based on the functions of their neighbours.

Usage
predictAnnotationAllGenes(
geneSets,
fPrime,
radius,
metric = "umap”,

normaliseByGeneSet = TRUE,
normaliseByDistance = TRUE,
normaliseToUnitVector = TRUE

)
Arguments
geneSets * aset of gene sets, e.g., hallmark
fPrime * a transposed Seurat object (generated with transposeObject()) or Single-
CellExperiment to be converted to a Seurat object
radius * radius of the region to use for prediction
metric ¢ reduction or NN, defaults to umap
normaliseByGeneSet
* normalise by size of each gene set, defaults to TRUE
normaliseByDistance

* attenutate neighbour contributions based on distance, defaults to TRUE

normaliseToUnitVector
e return results as unit vectors, defaults to TRUE

predictGeneAnnotationImpl 63

Value

* A list where names are genes and values are vectors of gene annotations whose entries corre-
spond to the geneSets

Examples

getExample = make.getExample()

STranspose = getExample('STranspose',toy=TRUE)

hallmark = getExample('hallmark',toy=TRUE)

predictions = predictAnnotationAllGenes(hallmark,STranspose,radius=.5)

predictGeneAnnotationImpl
This function is the implementation for predicting the functions of a
gene based on the functions of its neighbours.

Description

This function is the implementation for predicting the functions of a gene based on the functions of
its neighbours.

Usage

predictGeneAnnotationImpl(
gene,
fPrime,
genesAnno,
radius,
metric,
numPCs = NULL,
normaliseByDistance = TRUE

)
Arguments

gene * gene to annotate

fPrime * a Seurat object of genes or SingleCellExperiment to be converted to a Seu-
rat object

genesAnno * genes annotated with gene sets

radius * radius of neighbours to consider

metric * which metric to use to discover neighbours, can be one of 'umap’, ’tsne’,
pca’, "NN’, defaults to umap

numPCs * used only if metric is pca. Defaults to NULL

normaliseByDistance

* choose whether to normalise contributions of neighbors by their distance,
defaults to TRUE

64 randomiseGraph

Value

This returns a named list. The names are the anotations that apply to the neighbour genes, the values
are the relative wieghts of the contributions.

Examples

getExample = make.getExample()

STranspose = getExample('STranspose',toy=TRUE)

hallmark = getExample('hallmark',toy=TRUE)

genesAnno = annotateGenesByGeneSet(hallmark)

predictions = predictGeneAnnotationImpl('Myc',STranspose,genesAnno,
radius=.5,metric="umap')

randomiseGraph This function performs degree-preserving randomisation of neighbour
graphs.

Description

This function performs degree-preserving randomisation of neighbour graphs.

Usage

randomiseGraph(spatialGraph, maxTries = 1000)

Arguments
spatialGraph * a spatial graph in neighbour list format.
maxTries * the maximum number of tries to remove self edges during graph randomi-
sation. If self edges are remaining this will be reported.
Value

A randomised graph where degree from the original graph is preserved. We also report any dupli-
cated edges.

randomiseNodelndices 65

randomiseNodeIndices This function generates random indices for node B

Description

This function generates random indices for node B

Usage

randomiseNodeIndices(neighborListDf, n = 100, useWeights = FALSE)

Arguments

neighborListDf * adataframe containing the neighborlist

n ¢ the number of times to randomise indices
useWeights * whether to preserve edgeweights.
Value

e a matrix with randomised indices for node B

Examples

NN = make.getExample() ('NN')
NN = desymmetriseNN(NN)
randomIndices = randomiseNodeIndices(NN,1@,TRUE)

readGmt This function reads in gene sets in .gmt format

Description

This function reads in gene sets in .gmt format

Usage

readGmt (gmtFile, addDescr = FALSE)

Arguments

gmtFile » a.gmt file containing gene sets, e.g., Hallmark of GO

addDescr * include gene set description (2nd column in .gmt file) in gene set name
Value

* A named list of gene sets

66 runGeometricClusteringTrials

runGeometricClusteringTrials
This runs random trials to determine the statistical significance of the
clustering of a set of points within a larger set.

Description

This function takes a matrix whose rows are geometric coordinates and a subset of these points
either given as a character vector which is a subset of the rownames or as a logical vector. It returns
statistics on the mean distance of the complement to the subset.

Usage

runGeometricClusteringTrials(S, geneSubset, numTrials)

Arguments
S * a set of points given as a matrix. The rows are the coordinates of these
points
geneSubset * this is either a subset of the rownames of S or a logical whose length is
nrow(S)
numTrials ¢ the number or random trials to perform
Value

This returns a list. subsetDistance gives the median complement distance for the actual set, ran-
domSubsetDistance gives the complement distances for the numTrials random sets, pValue gives a
p-value based on the rank of the actual distance among the random distances and zScore gives its
z-score.

Examples

library(Seurat)

getExample = make.getExample()

STranspose = getExample('STranspose', toy=TRUE)

hallmark = getExample('hallmark"')

S = data.matrix(FetchData(STranspose,c('umap_1"', 'umap_2')))

geneSubset = rownames(S) %in% hallmark[["HALLMARK_TNFA_SIGNALING_VIA_NFKB"1]
geneClustering = runGeometricClusteringTrials(S,geneSubset,100)

runMoransl 67

runMoranslI This function takes a matrix where rows are features and columns are
cells, and a neighbourhood list, and computes Moran’s 1.

Description

This function takes a matrix where rows are features and columns are cells, and a neighbourhood
list, and computes Moran’s 1.

Usage

runMoransI (
obj,
spatialGraph,
assay = "RNA",
layer = "data",
nSim = 100,
verbose = TRUE

Arguments

obj * a Seurat object

spatialGraph * adata frame of neighbouring cell pairs.

assay * assay to pull data from, defaults to RNA.

layer * layer to pull data from, defaults to data.

nSim * number of simulations to perform for p value calculation. Defaults to 100.

verbose » whether to print trace, defaults to TRUE

Value

a dataframe containing Moran’s I and p values for each feature.

Examples

getExample = make.getExample()

smallXenium = getExample('smallXenium',toy=TRUE)

delaunayNeighbours = getExample('delaunayNeighbours', toy=TRUE)
moransl = runMoransI(smallXenium, delaunayNeighbours, assay = "SCT",
layer = "data”, nSim = 10, verbose = FALSE)

68

sankeyFromMatrix

sankeyFromMatrix This makes a sankey graph from a matrix of average expression. Our

"Cat’s Cradle".

Description

This makes a sankey graph from a matrix of average expression. Our "Cat’s Cradle".

Usage
sankeyFromMatrix(
M,
disambiguation = c("R_", "C_"),
fontSize = 20,
minus = "red”,
plus = "blue”,
height = 1200,
width = 900
)
Arguments
M * a matrix of gene expression

disambiguation ¢ used to distinguish between the row names and the column names if these

overlap
fontSize ¢ defaults to 20
minus * colour to use for links with negative values
plus * colour for positive values
height * height in pixels, defaults to 1200
width width in pixels, defaults to 900

Value

A sankey graph

Examples

set.seed(100)

M = matrix(runif(12)-.3,nrow=3)
rownames(M) = as.character(seg_len(3))
colnames(M) = as.character(seq_len(4))
sankey = sankeyFromMatrix(M)

seuratCells 69

seuratCells seuratCells

Description

A vector of cells used for subsetting exSeuratObj

Usage

seuratCells

Format

A vector of cells

A vector of cells consisting of half the cells from each seurat_cluster in exSeuratObj used to
subset this object to give toy examples.

Source

Computed by retrieving half the cells from each cluster in exSeuratObj

seuratGenes seuratGenes

Description

A vector of genes used for subsetting exSeuratObj

Usage

seuratGenes

Format

A vector of genes

A vector of the top 100 most variable genes in exSeuratObj used to subset this object to give
toy examples.

Source

Computed by retrieving the data layer from exSeuratObj and subsetting to the 100 genes with the
highest standard deviation.

70 stripGeneSet

smallXenium smallXenium

Description

A spatial Seurat object of 4261 cells and 248 genes

Usage

smallXenium

Format

A Seurat object
A spatial Seurat object subset from the Xenium object used in https://satijalab.org/seurat/articles/seurat5_spatial_vignett

Source

This is subset from the Xenium spatial Seurat object https://cf.10xgenomics.com/samples/xenium/1.0.2/Xenium_V1_FF Mo
to include a small region of the field of view surrounding the dentate gyrus.

stripGeneSet This function strips out non-gene information from the beginning of
GO sets, etc.

Description

This function strips out non-gene information from the beginning of GO sets, etc.

Usage

stripGeneSet (geneSet)

Arguments

geneSet * alist of gene sets

Value

a named list of gene sets

symmetriseNN 71

symmetriseNN This symmetrises a nearest neighbors graph.

Description

This first checks to see if the NN graph is symmetric and if not symmetrises it.

Usage
symmetriseNN(NN)

Arguments

NN * anearest neighbors graph as returned by getNearestNeighbourLists

Value

a nearest neighbors graph

Examples

NN = make.getExample() ('NN',toy=TRUE)
NNStar = symmetriseNN(NN)

symmetryCheckNN Tests whether a nearest neighbor graph is symmetric

Description
The nearest neighbor relationship is not inherently symmetric. This tests whether the nearest neigh-
bor graph retrieved from a Seurat object is.

Usage
symmetryCheckNN(NN)

Arguments
NN * anearest neighbor graph. This is in the form of a data frame as returned by
getNearestNeighbourLists. Its coloumns include nodeA and nodeB.
Value

TRUE or FALSE

Examples

NN = make.getExample() ('NN', toy=TRUE)
symmetryTest = symmetryCheckNN(NN)

72 transposeObject

tagRowAndColNames This gussies up the rownames and colnames of M

Description

This gussies up the rownames and colnames of M

Usage

tagRowAndColNames(M, ccTag = "CC_", gcTag = "GC_")

Arguments
M * a matrix, typically the average expression matrix
ccTag * a prefix for the row (cell cluster) names
gcTag * a prefix for the column (gene cluster) names
Value

The same matrix with fancier row and col names

Examples

getExample = make.getExample()
averageExpMatrix = getExample('averageExpMatrix', toy=TRUE)

averageExpMatrix = tagRowAndColNames(averageExpMatrix, 'cellCluster_"', 'geneCluster_"')
transposeObject Create the transpose of a Seurat object
Description

This takes a Seurat object f and creates a new Seurat object whose expression matrix is the transpose
of that of f. This can also be a SingleCellExperiment which will be converted to a Seurat object

Usage
transposeObject(
f,
active.assay = "RNA",
npcs = 30,
dims = seqg_len(20),
res =1,
returnType = "Seurat”,

verbose = FALSE

xeniumCells

Arguments

.F
active.assay
npcs

dims

res

returnType

verbose

Value

73

a Seurat object

the assay to use. Defaults to "TRNA’

number of principal components, defaults to 30

dimensions to use for umap and nearest neighbors, defaults to 1:20
the clustering resolution, defaults to 1

Will return a SingleCellExperiment if this is either of SCE, SingleCellEx-
periment or their lower-case equivalents. Otherwise, returns a Seurat object

Controls whether to display trace from the Seurat functions. Defaults to
FALSE

A Seurat object or SingleCellExperiment

Examples

exSeuratObj = make.getExample() ('exSeuratObj', toy=TRUE)
STranspose = transposeObject(exSeuratObj)
STransposeAsSCE = transposeObject(exSeuratObj,returnType="'SCE")

xeniumCells

xeniumCells

Description

A vector of cells used for subsetting exSeuratObj

Usage

xeniumCells

Format

A vector of cells

A vector of cells consisting of approximately one quarter of the cells in smallXenium used to
subset this object to give toy examples.

Source

We extracted a rectangle whose width and height were one half the width and height of smallXenium
and which was centered in the field of view of smallXenium

Index

+ datasets

exSeuratObj, 28
humanLRN, 42
ligandReceptorResults, 42
moransI, 50
moransILigandReceptor, 50
mouseLRN, 51
seuratCells, 69
seuratGenes, 69
smallXenium, 70
xeniumCells, 73

aggregateFeatureMatrix, 4
aggregateGeneExpression, 5
annotateGeneAsVector, 6
annotateGenesByGeneSet, 6
annotatelLRInteractionCounts, 7

cellTypesPerCellTypeGraphFromCellMatrix,
8
cellTypesPerCellTypeGraphFromNbhdMatrix,
9
collapseExtendedNBHDs, 10
combinatorialSpheres, 11
computeCellTypesPerCellTypeMatrix, 12
computeEdgeGraph, 12
computeEdgeObject, 13
computeGraphEmbedding, 14
computeMoranslI, 15
computeNBHDByCTMatrix, 15
computeNBHDVsCTObject, 16
computeNeighbourEnrichment, 17
computeNeighboursDelaunay, 18
computeNeighboursEuclidean, 19
convertTolLong, 19
countLRInteractionsPerCell, 20
cullEdges, 21

desymmetriseNN, 21
directedHausdorfDistance, 22

74

edgeCutoffsByClustering, 23
edgeCutoffsByPercentile, 24
edgeCutoffsByWatershed, 24
edgeCutoffsByZScore, 25
edgeLengthPlot, 26
edgelLengthsAndCellTypePairs, 27
exampleObjects, 27
exSeuratObj, 28

formatData, 28

geneSetsVsGeneClustersPValueMatrix, 29
getAverageExpressionDF, 30
getAverageExpressionMatrix, 30
getBinarisedMatrix, 31
getClusterOrder, 32
getExtendedNBHDs, 32
getFeatureZScores, 33
getGeneClusterAveragesPerCell, 34
getGeneNeighbors, 35
getInteractionsOnEdges, 35
getlLigandReceptorNetwork, 36
getlLigandReceptorPairsInPanel, 37
getNearbyGenes, 37
getNearestNeighbourLists, 38
getObjectSubsetClusteringPValue, 39
getObjectSubsetClusteringStatistics,
40
getSubsetComponents, 41

humanLRN, 42
ligandReceptorResults, 42

make.getExample, 43
makeLRInteractionHeatmap, 44
makeSummedLRInteractionHeatmap, 45
meanGeneClusterOnCellUMAP, 46
meanZPerCluster, 46
meanZPerClusterOnUMAP, 47
medianComplementDistance, 48

INDEX

medianComplementPValue, 49
moransI, 50
moransILigandReceptor, 50
mouseLRN, 51

nbhdsAsEdgesToNbhdsAsList, 51
neighbourhoodDiameter, 52

orderGeneSetPValues, 53

performLigandReceptorAnalysis, 53

performLigandReceptorAnalysisAnalytical,
56

performLigandReceptorAnalysisPermutation
57

permuteColumns, 59

permuteMatrix, 59

plotLRDotplot, 60

predictAnnotation, 61

predictAnnotationAllGenes, 62

predictGeneAnnotationImpl, 63

randomiseGraph, 64
randomiseNodeIndices, 65
readGmt, 65
runGeometricClusteringTrials, 66
runMoranslI, 67

sankeyFromMatrix, 68
seuratCells, 69
seuratGenes, 69
smallXenium, 70
stripGeneSet, 70
symmetriseNN, 71
symmetryCheckNN, 71

tagRowAndColNames, 72
transposeObject, 72

xeniumCells, 73

75

	aggregateFeatureMatrix
	aggregateGeneExpression
	annotateGeneAsVector
	annotateGenesByGeneSet
	annotateLRInteractionCounts
	cellTypesPerCellTypeGraphFromCellMatrix
	cellTypesPerCellTypeGraphFromNbhdMatrix
	collapseExtendedNBHDs
	combinatorialSpheres
	computeCellTypesPerCellTypeMatrix
	computeEdgeGraph
	computeEdgeObject
	computeGraphEmbedding
	computeMoransI
	computeNBHDByCTMatrix
	computeNBHDVsCTObject
	computeNeighbourEnrichment
	computeNeighboursDelaunay
	computeNeighboursEuclidean
	convertToLong
	countLRInteractionsPerCell
	cullEdges
	desymmetriseNN
	directedHausdorfDistance
	edgeCutoffsByClustering
	edgeCutoffsByPercentile
	edgeCutoffsByWatershed
	edgeCutoffsByZScore
	edgeLengthPlot
	edgeLengthsAndCellTypePairs
	exampleObjects
	exSeuratObj
	formatData
	geneSetsVsGeneClustersPValueMatrix
	getAverageExpressionDF
	getAverageExpressionMatrix
	getBinarisedMatrix
	getClusterOrder
	getExtendedNBHDs
	getFeatureZScores
	getGeneClusterAveragesPerCell
	getGeneNeighbors
	getInteractionsOnEdges
	getLigandReceptorNetwork
	getLigandReceptorPairsInPanel
	getNearbyGenes
	getNearestNeighbourLists
	getObjectSubsetClusteringPValue
	getObjectSubsetClusteringStatistics
	getSubsetComponents
	humanLRN
	ligandReceptorResults
	make.getExample
	makeLRInteractionHeatmap
	makeSummedLRInteractionHeatmap
	meanGeneClusterOnCellUMAP
	meanZPerCluster
	meanZPerClusterOnUMAP
	medianComplementDistance
	medianComplementPValue
	moransI
	moransILigandReceptor
	mouseLRN
	nbhdsAsEdgesToNbhdsAsList
	neighbourhoodDiameter
	orderGeneSetPValues
	performLigandReceptorAnalysis
	performLigandReceptorAnalysisAnalytical
	performLigandReceptorAnalysisPermutation
	permuteColumns
	permuteMatrix
	plotLRDotplot
	predictAnnotation
	predictAnnotationAllGenes
	predictGeneAnnotationImpl
	randomiseGraph
	randomiseNodeIndices
	readGmt
	runGeometricClusteringTrials
	runMoransI
	sankeyFromMatrix
	seuratCells
	seuratGenes
	smallXenium
	stripGeneSet
	symmetriseNN
	symmetryCheckNN
	tagRowAndColNames
	transposeObject
	xeniumCells
	Index

