
Package ‘COTAN’
January 30, 2026

Type Package

Title COexpression Tables ANalysis

Version 2.11.1

Description Statistical and computational method to analyze the co-expression of
gene pairs at single cell level. It provides the foundation for single-cell gene
interactome analysis. The basic idea is studying the zero UMI counts' distribution
instead of focusing on positive counts; this is done with a generalized contingency
tables framework. COTAN can effectively assess the correlated or anti-correlated
expression of gene pairs. It provides a numerical index related to the correlation and an
approximate p-value for the associated independence test. COTAN can also evaluate whether
single genes are differentially expressed, scoring them with a newly defined global
differentiation index. Moreover, this approach provides ways to plot and cluster genes
according to their co-expression pattern with other genes, effectively helping the study
of gene interactions and becoming a new tool to identify cell-identity marker genes.

URL https://github.com/seriph78/COTAN

BugReports https://github.com/seriph78/COTAN/issues

Depends R (>= 4.3)

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)

Imports stats, methods, grDevices, Matrix, ggplot2, ggrepel, ggdist,
ggthemes, graphics, parallel, parallelly, tibble, tidyr, dplyr,
BiocSingular, parallelDist, ComplexHeatmap, circlize, grid,
scales, RColorBrewer, utils, rlang, Rfast, stringr, Seurat,
dendextend, zeallot, assertthat, withr, SingleCellExperiment,
proxy, RSpectra

Suggests testthat (>= 3.2.0), proto, spelling, knitr, conflicted,
data.table, gsubfn, R.utils, tidyverse, rmarkdown, htmlwidgets,
MASS, Rtsne, plotly, BiocStyle, cowplot, qpdf, GEOquery, sf,
torch, SummarizedExperiment, S4Vectors

Config/testthat/edition 3

1

https://github.com/seriph78/COTAN
https://github.com/seriph78/COTAN/issues

2 Contents

Language en-US

biocViews SystemsBiology, Transcriptomics, GeneExpression, SingleCell

VignetteBuilder knitr

LazyData false

git_url https://git.bioconductor.org/packages/COTAN

git_branch devel

git_last_commit 0293be8

git_last_commit_date 2026-01-02

Repository Bioconductor 3.23

Date/Publication 2026-01-30

Author Galfrè Silvia Giulia [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2770-0344>),

Morandin Francesco [aut] (ORCID:
<https://orcid.org/0000-0002-2022-2300>),

Fantozzi Marco [aut] (ORCID: <https://orcid.org/0000-0002-0708-5495>),
Pietrosanto Marco [aut] (ORCID:

<https://orcid.org/0000-0001-5129-6065>),
Puttini Daniel [aut] (ORCID: <https://orcid.org/0009-0006-8401-9949>),
Priami Corrado [aut] (ORCID: <https://orcid.org/0000-0002-3261-6235>),
Cremisi Federico [aut] (ORCID: <https://orcid.org/0000-0003-4925-2703>),
Helmer-Citterich Manuela [aut] (ORCID:

<https://orcid.org/0000-0001-9530-7504>)

Maintainer Galfrè Silvia Giulia <silvia.galfre@di.unipi.it>

Contents
ClustersList . 3
Conversions . 5
COTAN-class . 7
COTAN_Legacy . 7
COTAN_ObjectCreation . 9
Datasets . 12
getColorsVector . 14
getGDI,COTAN-method . 14
getMu . 18
HandleMetaData . 28
HandleStrings . 31
HandlingClusterizations . 32
HandlingConditions . 41
HeatmapPlots . 44
Installing_torch . 46
LoggingFunctions . 47
MultiThreading . 48
NumericUtilities . 49

https://orcid.org/0000-0002-2770-0344
https://orcid.org/0000-0002-2022-2300
https://orcid.org/0000-0002-0708-5495
https://orcid.org/0000-0001-5129-6065
https://orcid.org/0009-0006-8401-9949
https://orcid.org/0000-0002-3261-6235
https://orcid.org/0000-0003-4925-2703
https://orcid.org/0000-0001-9530-7504

ClustersList 3

ParametersEstimations . 52
RawDataCleaning . 56
RawDataGetters . 61
UniformClusters . 63
UniformTranscriptCheckers . 68

Index 72

ClustersList Clusters utilities

Description

Handle clusterization <-> clusters list conversions, clusters grouping and merge

Usage

asClusterization(clusters, allCells = NULL)

toClustersList(clusters)

fromClustersList(
clustersList,
elemNames = vector(mode = "character"),
throwOnOverlappingClusters = TRUE

)

groupByClustersList(elemNames, clustersList, throwOnOverlappingClusters = TRUE)

groupByClusters(clusters)

mergeClusters(clusters, names, mergedName = "")

multiMergeClusters(clusters, namesList, mergedNames = NULL)

Arguments

clusters A named vector or factor that defines the clusters

allCells A vector of cells’ names that should list the same names in the clusters in
any order

clustersList A named list whose elements define the various clusters

elemNames A list of names to which associate a cluster
throwOnOverlappingClusters

When TRUE, in case of overlapping clusters, the function fromClustersList
and groupByClustersList will throw. This is the default. When FALSE, in-
stead, in case of overlapping clusters, fromClustersList will return the last
cluster to which each element belongs, while groupByClustersList will re-
turn a vector of positions that is longer than the given elemNames

4 ClustersList

names A list of clusters names to be merged

mergedName The name of the new merged clusters

namesList A list of lists of clusters names to be respectively merged

mergedNames The names of the new merged clusters

Details

asClusterization() given a clusterization in the form of a data.frame or a vector or a factor,
returns a named factor

toClustersList() given a clusterization, creates a list of clusters (i.e. for each cluster, which
elements compose the cluster)

fromClustersList() given a list of clusters returns a clusterization (i.e. a named vector that
for each element indicates to which cluster it belongs)

groupByClusters() given a clusterization returns a permutation, such that using the permutation
on the input the clusters are grouped together

groupByClustersList() given the elements’ names and a list of clusters returns a permutation,
such that using the permutation on the given names the clusters are grouped together.

mergeClusters() given a clusterization, creates a new one where the given clusters are merged.

multiMergeClusters() given a clusterization, creates a new one where the given sets of clusters
are merged.

Value

asClusterization() returns the clusterization as a named factor

toClustersList() returns a list of clusters

fromClustersList() returns a clusterization. If the given elemNames contain values not present
in the clustersList, those will be marked as "-1"

groupByClusters() and groupByClustersList() return a permutation that groups the clusters
together. For each cluster the positions are guaranteed to be in increasing order. In case, all elements
not corresponding to any cluster are grouped together as the last group

mergeClusters() returns a new clusterization with the wanted clusters being merged. If less than
2 cluster names were passed the function will emit a warning and return the initial clusterization

multiMergeClusters() returns a new clusterization with the wanted clusters being merged by
consecutive iterations of mergeClusters() on the given namesList

Examples

create a clusterization
clusters <- paste0("",sample(7, 100, replace = TRUE))
names(clusters) <- paste0("E_",formatC(1:100, width = 3, flag = "0"))

create a clusters list from a clusterization
clustersList <- toClustersList(clusters)
head(clustersList, 1)

Conversions 5

recreate the clusterization from the cluster list
clusters2 <- fromClustersList(clustersList, names(clusters))
all.equal(factor(clusters), clusters2)

cl1Size <- length(clustersList[["1"]])

establish the permutation that groups clusters together
perm <- groupByClusters(clusters)
!is.unsorted(head(names(clusters)[perm],cl1Size))
head(clusters[perm], cl1Size)

it is possible to have the list of the element names different
from the names in the clusters list
selectedNames <- paste0("E_",formatC(11:110, width = 3, flag = "0"))
perm2 <- groupByClustersList(selectedNames, toClustersList(clusters))
all.equal(perm2[91:100], c(91:100))

is is possible to merge a few clusters together
clustersMerged <- mergeClusters(clusters, names = c("7", "2"),

mergedName = "7__2")
sum(table(clusters)[c(2, 7)]) == table(clustersMerged)[["7__2"]]

it is also possible to do multiple merges at once!
Note the default new clusters' names
clustersMerged2 <-

multiMergeClusters(clusters2, namesList = list(c("2", "7"),
c("1", "3", "5")))

table(clustersMerged2)

Conversions Data class conversions

Description

All functions to convert a COTAN object to/from other data classes used by the BioConductor
analysis packages

Usage

convertToSingleCellExperiment(objCOTAN)

convertFromSingleCellExperiment(objSCE, clNamesPattern = "")

Arguments

objCOTAN a COTAN object
objSCE A SingleCellExperiment::SingleCellExperiment object to be converted
clNamesPattern A regular expression pattern used to identify the clustering columns in colData.

Default supports Seurat conventions: "^(COTAN_clusters_|seurat_clusters$|.*_snn_res\\..*|wsnn_res\\..*)"

6 Conversions

Details

convertToSingleCellExperiment() converts a COTAN object into a SingleCellExperiment::SingleCellExperiment
object. Stores the raw counts in the "counts" SummarizedExperiment::Assays, the metadata for
genes and cells as rowData and colData slots respectively and finally the genes’ and cells’ COEX
along the dataset metadata into the metadata slot.

The function performs the following steps:

• Extracts the raw counts matrix, gene metadata, cell metadata, gene and cell co-expression
matrix from the COTAN object; the clustersCoex slot is not converted

• Identifies clusterizations and conditions in the cell metadata by the prefixes "CL_" and "COND_"

• Renames clusterization columns with the prefix "COTAN_clusters_" and condition columns
with the prefix "COTAN_conditions_"

• Constructs a SingleCellExperiment object with the counts matrix, gene metadata, updated
cell metadata, and stores the co-expression matrices in the metadata slot.

The resulting SingleCellExperiment object is compatible with downstream analysis packages
and workflows within the Bioconductor ecosystem

convertFromSingleCellExperiment() converts a SingleCellExperiment::SingleCellExperiment
object back into a COTAN object. It supports SCE objects that were originally created from either a
COTAN object or a Seurat object. The function extracts the "counts" matrix, genes’ metadata, cells’
metadata, co-expression matrices (if available), and reconstructs the COTAN object accordingly. The
function performs the following steps:

• Extracts the raw matrix from the "counts" SummarizedExperiment::Assays

• Extracts gene metadata from rowData

• Extracts cell metadata from colData, excluding any clusterizations or conditions present

• Attempts to retrieve co-expression matrices from the metadata slot if they exist

• Constructs a COTAN object using the extracted data

• Adds back the clusterizations and conditions using COTAN methods If the COEX is not present
(e.g., in SCE objects created from Seurat), the genesCoex and cellsCoex slots in the resulting
COTAN object will be empty matrices

Value

A SingleCellExperiment::SingleCellExperiment object containing the data from the input COTAN
object, with clusterizations and conditions appropriately prefixed and stored in the cell metadata.

A COTAN object containing the data extracted from the input SingleCellExperiment::SingleCellExperiment
object

See Also

COTAN, SingleCellExperiment::SingleCellExperiment

COTAN, SingleCellExperiment::SingleCellExperiment

COTAN-class 7

Examples

data("test.dataset")
obj <- COTAN(raw = test.dataset)
obj <- proceedToCoex(obj, calcCoex = FALSE, saveObj = FALSE)

sce <- convertToSingleCellExperiment(objCOTAN = obj)

newObj <- convertFromSingleCellExperiment(sce)

stopifnot(identical(getDims(newObj), getDims(obj)))

COTAN-class Definition of the COTAN class

Description

Definition of the COTAN class

Slots

raw dgCMatrix - the raw UMI count matrix n×m (gene number × cell number)

genesCoex dspMatrix - the correlation of COTAN between genes, n× n

cellsCoex dspMatrix - the correlation of COTAN between cells, m×m

metaDataset data.frame

metaCells data.frame

clustersCoex a list of COEX data.frames for each clustering in the metaCells

COTAN_Legacy Handle legacy scCOTAN-class and related symmetric matrix <-> vec-
tor conversions

Description

A class and some functions related to the V1 version of the COTAN package

Usage

clustersDeltaExpression(objCOTAN, clName = "", clusters = NULL)

vec2mat_rfast(x, genes = "all")

mat2vec_rfast(mat)

8 COTAN_Legacy

Arguments

objCOTAN a COTAN object

clName The name of the clusterization. If not given the last available clusterization will
be used, as it is probably the most significant!

clusters A clusterization to use. If given it will take precedence on the one indicated by
clName

x a list formed by two arrays: genes with the unique gene names and values
with all the values.

genes an array with all wanted genes or the string "all". When equal to "all" (the
default), it recreates the entire matrix.

mat a square (possibly symmetric) matrix with all genes as row and column names.

Details

Define the legacy scCOTAN-class

Automatically converts an object from class scCOTAN into COTAN

Explicitly converts an object from class COTAN into scCOTAN

clustersDeltaExpression() is a legacy function now superseded by DEAOnClusters(). It esti-
mates the change in genes’ expression inside the cluster compared to the average situation in the
data set.

This is a deprecated function related to old scCOTAN objects. Use the more appropriate Matrix::dspMatrix
type for similar functionality.

mat2vec_rfast converts a compacted symmetric matrix (that is an array) into a symmetric matrix.

This is a deprecated function related to old scCOTAN objects. Use the more appropriate Matrix::dspMatrix
type for similar functionality.

vec2mat_rfast converts a symmetric matrix into a compacted symmetric matrix. It will forcibly
make its argument symmetric.

Value

a scCOTAN object

clustersDeltaExpression() returns a data.frame with the ν weighted discrepancy of the ex-
pression of each gene within the cluster against the corresponding model expectations

mat2vec_rfast returns a list formed by two arrays:

• "genes" with the unique gene names,

• "values" with all the values.

vec2mat_rfast returns the reconstructed symmetric matrix

COTAN_ObjectCreation 9

Slots

raw ANY. To store the raw data matrix

raw.norm ANY. To store the raw data matrix divided for the cell efficiency estimated (nu)

coex ANY. The COEX matrix

nu vector.

lambda vector.

a vector.

hk vector.

n_cells numeric.

meta data.frame.

yes_yes ANY. Unused and deprecated. Kept for backward compatibility only

clusters vector.

cluster_data data.frame.

Examples

v <- list("genes" = paste0("gene_", c(1:9)), "values" = c(1:45))

M <- vec2mat_rfast(v)
all.equal(rownames(M), v[["genes"]])
all.equal(colnames(M), v[["genes"]])

genes <- paste0("gene_", sample.int(ncol(M), 3))

m <- vec2mat_rfast(v, genes)
all.equal(rownames(m), v[["genes"]])
all.equal(colnames(m), genes)

v2 <- mat2vec_rfast(M)
all.equal(v, v2)

COTAN_ObjectCreation COTAN shortcuts

Description

These functions create a COTAN object and/or also run all the necessary steps until the genes’ COEX
matrix is calculated.

10 COTAN_ObjectCreation

Usage

COTAN(raw = "ANY")

S4 method for signature 'COTAN'
proceedToCoex(
objCOTAN,
calcCoex = TRUE,
optimizeForSpeed = TRUE,
deviceStr = "cuda",
cores = 1L,
cellsCutoff = 0.003,
genesCutoff = 0.002,
cellsThreshold = 0.99,
genesThreshold = 0.99,
saveObj = FALSE,
outDir = "."

)

automaticCOTANObjectCreation(
raw,
GEO,
sequencingMethod,
sampleCondition,
calcCoex = TRUE,
optimizeForSpeed = TRUE,
deviceStr = "cuda",
cores = 1L,
cellsCutoff = 0.003,
genesCutoff = 0.002,
cellsThreshold = 0.99,
genesThreshold = 0.99,
saveObj = FALSE,
outDir = "."

)

Arguments

raw a matrix or dataframe with the raw counts
objCOTAN a newly created COTAN object
calcCoex a Boolean to determine whether to calculate the genes’ COEX or stop just after

the estimateDispersionViaSolver() step
optimizeForSpeed

Boolean; when TRUE COTAN tries to use the torch library to run the matrix cal-
culations. Otherwise, or when the library is not available will run the slower
legacy code

deviceStr On the torch library enforces which device to use to run the calculations. Pos-
sible values are "cpu" to us the system CPU, "cuda" to use the system GPUs
or something like "cuda:0" to restrict to a specific device

COTAN_ObjectCreation 11

cores number of cores to use. Default is 1.

cellsCutoff clean() will delete from the raw data any gene that is expressed in less cells
than threshold times the total number of cells. Default cutoff is 0.003 (0.3%)

genesCutoff clean() will delete from the raw data any cell that is expressing less genes than
threshold times the total number of genes. Default cutoff is 0.002 (0.2%)

cellsThreshold any gene that is expressed in more cells than threshold times the total number of
cells will be marked as fully-expressed. Default threshold is 0.99 (99.0%)

genesThreshold any cell that is expressing more genes than threshold times the total number of
genes will be marked as fully-expressing. Default threshold is 0.99 (99.0%)

saveObj Boolean flag; when TRUE saves intermediate analyses and plots to file

outDir an existing directory for the analysis output.

GEO a code reporting the GEO identification or other specific dataset code
sequencingMethod

a string reporting the method used for the sequencing
sampleCondition

a string reporting the specific sample condition or time point.

Details

Constructor of the class COTAN

proceedToCoex() takes a newly created COTAN object (or the result of a call to dropGenesCells())
and runs calculateCoex()

automaticCOTANObjectCreation() takes a raw dataset, creates and initializes a COTAN object and
runs proceedToCoex()

Value

a COTAN object

proceedToCoex() returns the updated COTAN object with genes’ COEX calculated. If asked to, it will
also store the object, along all relevant clean-plots, in the output directory.

automaticCOTANObjectCreation() returns the new COTAN object with genes’ COEX calculated.
When asked, it will also store the object, along all relevant clean-plots, in the output directory.

Examples

data("test.dataset")
obj <- COTAN(raw = test.dataset)

options(parallelly.fork.enable = TRUE)

#
In case one needs to run more steps to clean the datatset
the following might apply
if (FALSE) {

objCOTAN <- initializeMetaDataset(objCOTAN,
GEO = "test",

12 Datasets

sequencingMethod = "artificial",
sampleCondition = "test dataset")

#
doing all the cleaning...
#
in case the genes' `COEX` is not needed it can be skipped
(e.g. when calling [cellsUniformClustering()])

objCOTAN <- proceedToCoex(objCOTAN, calcCoex = FALSE,
cores = 6L, optimizeForSpeed = TRUE,
deviceStr = "cuda", saveObj = FALSE)

}

Otherwise it is possible to run all at once.
objCOTAN <- automaticCOTANObjectCreation(

raw = test.dataset,
GEO = "code",
sequencingMethod = "10X",
sampleCondition = "mouse_dataset",
calcCoex = TRUE,
saveObj = FALSE,
outDir = tempdir(),
cores = 6L)

Datasets Data-sets

Description

Simple data-sets included in the package

Usage

data(raw.dataset)

data(ERCCraw)

data(test.dataset)

data(test.dataset.clusters1)

data(test.dataset.clusters2)

data(vignette.split.clusters)

data(vignette.merge.clusters)

data(vignette.merge2.clusters)

Datasets 13

Format

raw.dataset is a data frame with 2000 genes and 815 cells

ERCCRaw is a data.frame

test.dataset is a data.frame with 600 genes and 1200 cells

test.dataset.clusters1 is a character array

test.dataset.clusters2 is a character array

vignette.split.clusters is a factor

vignette.merge.clusters is a factor

vignette.merge2.clusters is a factor

Details

raw.dataset is a sub-sample of a real scRNA-seq data-set

ERCCRaw dataset

test.dataset is an artificial data set obtained by sampling target negative binomial distributions
on a set of 600 genes on 2 two cells clusters of 600 cells each. Each clusters has its own set of
parameters for the distributions even, but a fraction of the genes has the same expression in both
clusters.

test.dataset.clusters1 is the clusterization obtained running cellsUniformClustering() on
the test.dataset

test.dataset.clusters2 is the clusterization obtained running mergeUniformCellsClusters()
on the test.dataset using the previous clusterization

vignette.split.clusters is the clusterization obtained running cellsUniformClustering()
on the vignette dataset (mouse cortex E17.5, GEO: GSM2861514)

vignette.merge.clusters is the clusterization obtained running mergeUniformCellsClusters()
on the vignette dataset (mouse cortex E17.5, GEO: GSM2861514) using the previous clusterization

vignette.merge2.clusters is the clusterization obtained re-running mergeUniformCellsClusters()
on the vignette dataset (mouse cortex E17.5, GEO: GSM2861514) using the vignette.split.clusters
clusterization, but with a sequence of progressively relaxed checks

Source

GEO GSM2861514

ERCC

14 getGDI,COTAN-method

getColorsVector getColorsVector

Description

This function returns a list of colors based on the RColorBrewer::brewer.pal() function

Usage

getColorsVector(numNeededColors = 0L)

Arguments

numNeededColors

The number of returned colors. If omitted it returns all available colors

Details

The colors are taken from the RColorBrewer::brewer.pal.info() sets with Set1, Set2, Set3
placed first.

Value

an array of RGB colors of the wanted size

Examples

colorsVector <- getColorsVector(17)

getGDI,COTAN-method Calculations of genes statistics

Description

A collection of functions returning various statistics associated to the genes. In particular the dis-
crepancy between the expected probabilities of zero and their actual occurrences, both at single
gene level or looking at genes’ pairs

To make the GDI more specific, it may be desirable to restrict the set of genes against which GDI
is computed to a selected subset, with the recommendation to include a consistent fraction of cell-
identity genes, and possibly focusing on markers specific for the biological question of interest (for
instance neural cortex layering markers). In this case we denote it as Local Differentiation Index
(LDI) relative to the selected subset.

getGDI,COTAN-method 15

Usage

S4 method for signature 'COTAN'
getGDI(objCOTAN)

S4 method for signature 'COTAN'
storeGDI(objCOTAN, genesGDI)

genesCoexSpace(objCOTAN, primaryMarkers, numGenesPerMarker = 25L)

establishGenesClusters(
objCOTAN,
groupMarkers,
numGenesPerMarker = 25L,
kCuts = 6L,
distance = "cosine",
hclustMethod = "ward.D2"

)

calculateGenesCE(objCOTAN)

calculateGDIGivenS(S, rowsFraction = 0.05, cores = 1L, chunkSize = 1024L)

calculateGDIGivenCorr(corr, numDegreesOfFreedom, rowsFraction = 0.05)

calculateGDI(
objCOTAN,
statType = "S",
rowsFraction = 0.05,
cores = 1L,
chunkSize = 1024L

)

calculatePValue(
objCOTAN,
statType = "S",
geneSubsetCol = vector(mode = "character"),
geneSubsetRow = vector(mode = "character")

)

calculatePDI(
objCOTAN,
statType = "S",
geneSubsetCol = vector(mode = "character"),
geneSubsetRow = vector(mode = "character")

)

16 getGDI,COTAN-method

Arguments

objCOTAN a COTAN object

genesGDI the named genes’ GDI array to store or the output data.frame of the function
calculateGDI()

primaryMarkers A vector of primary marker names.
numGenesPerMarker

the number of correlated genes to keep as other markers (default 25)

groupMarkers a named list with an element for each group comprised of one or more marker
genes

kCuts the number of estimated cluster (this defines the height for the tree cut)

distance type of distance to use. Default is "cosine". Can be chosen among those sup-
ported by parallelDist::parDist()

hclustMethod default is "ward.D2" but can be any method defined by stats::hclust() func-
tion

S a matrix object

rowsFraction The fraction of rows that will be averaged to calculate the GDI. Defaults to 5%

cores number of cores to use. Default is 1.

chunkSize number of elements to solve in batch in a single core. Default is 1024.

corr a matrix object, possibly a subset of the columns of the full symmetric matrix
numDegreesOfFreedom

a int that determines the number of degree of freedom to use in the χ2 test

statType Which statistics to use to compute the p-values. By default it will use the "S"
(Pearson’s χ2 test) otherwise the "G" (G-test)

geneSubsetCol an array of genes. It will be put in columns. If left empty the function will do it
genome-wide.

geneSubsetRow an array of genes. It will be put in rows. If left empty the function will do it
genome-wide.

Details

getGDI() extracts the genes’ GDI array as it was stored by the method storeGDI()

storeGDI() stored and already calculated genes’ GDI array in a COTAN object. It can be retrieved
using the method getGDI()

genesCoexSpace() calculates genes groups based on the primary markers and uses them to prepare
the genes’ COEX space data.frame.

establishGenesClusters() perform the genes’ clustering based on a pool of gene markers, using
the genes’ COEX space

calculateGenesCE() is used to calculate the discrepancy between the expected probability of zero
and the observed zeros across all cells for each gene as cross-entropy: −

∑
c ⊮Xc==0 log(pc)− ⊮Xc!=0 log(1− pc)

where Xc is the observed count and pc the probability of zero

calculateGDIGivenS() produces a vector with the GDI for each column based on the S matrix
(Pearson’s χ2 test)

getGDI,COTAN-method 17

calculateGDIGivenCorr() produces a vector with the GDI for each column based on the given
correlation matrix, using the Pearson’s χ2 test

calculateGDI() produces a data.frame with the GDI for each gene based on the COEX matrix

calculatePValue() computes the p-values for genes in the COTAN object. It can be used genome-
wide or by setting some specific genes of interest. By default it computes the p-values using the S
statistics (χ2)

calculatePDI() computes the p-values for genes in the COTAN object using calculatePValue()
and takes their log (− log (·)) to calculate the genes’ Pair Differential Index

Value

getGDI() returns the genes’ GDI`` array if available or NULL‘ otherwise

storeGDI() returns the given COTAN object with updated GDI genes’ information

genesCoexSpace() returns a list with:

• "SecondaryMarkers" a named list that for each secondary marker, gives the list of pri-
mary markers that selected for it

• "GCS" the relevant subset of COEX matrix

• "rankGenes" a data.frame with the rank of each gene according to its p-value

establishGenesClusters() a list of:

• "g.space" the genes’ COEX space data.frame

• "plot.eig" the eigenvalues plot

• "pca_clusters" the PCA components data.frame

• "tree_plot" the tree plot for the genes’ COEX space

calculateGenesCE() returns a named array with the cross-entropy of each gene

calculateGDIGivenS() returns a vector with the GDI data for each column of the input

calculateGDIGivenCorr() returns a vector with the GDI data for each column of the input

calculateGDI() returns a data.frame with:

• "sum.raw.norm" the sum of the normalized data rows

• "GDI" the GDI data

• "exp.cells" the percentage of cells expressing the gene

calculatePValue() returns a p-value matrix as dspMatrix

calculatePDI() returns a Pair Differential Index matrix as dspMatrix

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- proceedToCoex(objCOTAN, cores = 6L, saveObj = FALSE)

markers <- getGenes(objCOTAN)[sample(getNumGenes(objCOTAN), 10)]

18 getMu

GCS <- genesCoexSpace(objCOTAN, primaryMarkers = markers,
numGenesPerMarker = 15)

groupMarkers <- list(G1 = c("g-000010", "g-000020", "g-000138"),
G2 = c("g-000300"),
G3 = c("g-000510", "g-000530", "g-000550",

"g-000570", "g-000590"))

resList <- establishGenesClusters(objCOTAN, groupMarkers = groupMarkers,
numGenesPerMarker = 11)

getMu Calculating the COEX matrix for genes and cells

Description

These are the functions and methods used to calculate the COEX matrices according to the COTAN
model. From there it is possible to calculate the associated p-value and the GDI (Global Differential
Expression)

The COEX matrix is defined by following formula:

∑
i,j∈{Y, N} (−1)#{i,j}Oij−Eij

1∨Eij√
n
∑

i,j∈{Y, N}
1

1∨Eij

where O and E are the observed and expected contingency tables and n is the relevant number of
genes/cells (depending on given actOnCells flag).

The formula can be more effectively implemented as:

√√√√ 1

n

∑
i,j∈{Y, N}

1

1 ∨ Eij

(
OYY − EYY

)

once one notices that Oij − Eij = (−1)#{i,j} r for some constant r for all i, j ∈ {Y, N}.

The latter follows from the fact that the relevant marginal sums of the expected contingency tables
were enforced to match the marginal sums of the observed ones.

The new implementation of the function relies on the torch package. This implies that it is po-
tentially able to use the system GPU to run the heavy duty calculations required by this method.
However installing the torch package on a system can be finicky, so we tentatively provide a short
help page Installing_torch hoping that it will help...

getMu 19

Usage

getMu(objCOTAN)

S4 method for signature 'COTAN'
getGenesCoex(
objCOTAN,
genes = vector(mode = "character"),
zeroDiagonal = TRUE,
ignoreSync = FALSE

)

S4 method for signature 'COTAN'
getCellsCoex(
objCOTAN,
cells = vector(mode = "character"),
zeroDiagonal = TRUE,
ignoreSync = FALSE

)

S4 method for signature 'COTAN'
isCoexAvailable(objCOTAN, actOnCells = FALSE, ignoreSync = FALSE)

S4 method for signature 'COTAN'
dropGenesCoex(objCOTAN)

S4 method for signature 'COTAN'
dropCellsCoex(objCOTAN)

calculateLikelihoodOfObserved(objCOTAN, formula = "raw")

getDataMatrix(objCOTAN, dataMethod = "")

observedContingencyTablesYY(
objCOTAN,
actOnCells = FALSE,
asDspMatrices = FALSE

)

observedPartialContingencyTablesYY(
objCOTAN,
columnsSubset,
zeroOne = NULL,
actOnCells = FALSE

)

observedContingencyTables(objCOTAN, actOnCells = FALSE, asDspMatrices = FALSE)

observedPartialContingencyTables(

20 getMu

objCOTAN,
columnsSubset,
zeroOne = NULL,
actOnCells = FALSE

)

expectedContingencyTablesNN(
objCOTAN,
actOnCells = FALSE,
asDspMatrices = FALSE,
optimizeForSpeed = TRUE

)

expectedPartialContingencyTablesNN(
objCOTAN,
columnsSubset,
probZero = NULL,
actOnCells = FALSE,
optimizeForSpeed = TRUE

)

expectedContingencyTables(
objCOTAN,
actOnCells = FALSE,
asDspMatrices = FALSE,
optimizeForSpeed = TRUE

)

expectedPartialContingencyTables(
objCOTAN,
columnsSubset,
probZero = NULL,
actOnCells = FALSE,
optimizeForSpeed = TRUE

)

contingencyTables(objCOTAN, g1, g2)

S4 method for signature 'COTAN'
calculateCoex(
objCOTAN,
actOnCells = FALSE,
returnPPFract = FALSE,
optimizeForSpeed = TRUE,
deviceStr = "cuda"

)

calculatePartialCoex(

getMu 21

objCOTAN,
columnsSubset,
probZero = NULL,
zeroOne = NULL,
actOnCells = FALSE,
optimizeForSpeed = TRUE

)

calculateS(
objCOTAN,
geneSubsetCol = vector(mode = "character"),
geneSubsetRow = vector(mode = "character")

)

calculateG(
objCOTAN,
geneSubsetCol = vector(mode = "character"),
geneSubsetRow = vector(mode = "character")

)

getSelectedGenes(objCOTAN, genesSel = "", numGenes = 2000L)

calculateReducedDataMatrix(
objCOTAN,
useCoexEigen = FALSE,
dataMethod = "",
numComp = 25L,
genesSel = "",
numGenes = 2000L

)

Arguments

objCOTAN a COTAN object

genes The given genes’ names to select the wanted COEX columns. If missing all
columns will be returned. When not empty a proper result is provided by calcu-
lating the partial COEX matrix on the fly

zeroDiagonal When TRUE sets the diagonal to zero.

ignoreSync When TRUE ignores whether the lambda/nu/dispersion have been updated since
the COEX matrix was calculated.

cells The given cells’ names to select the wanted COEX columns. If missing all columns
will be returned. When not empty a proper result is provided by calculating the
partial COEX matrix on the fly

actOnCells Boolean; when TRUE the function works for the cells, otherwise for the genes

formula a string indicating which function of the likelihood is actually returned. Sup-
ported formulas are:

22 getMu

• "raw" just the likelihood (default): p(1−z)×(1−p)z = (1.0−z)p+z(1.0−
p)

• "log" the log of the likelihood: (1.0− z) log(p) + z log(1.0− p)

• "der" the derivative of the log of the likelihood: (1.0− z)/p− z/(1.0− p)

• "sLog" the signed log of the likelihood: (1.0− z) log(p)− z log(1.0− p)

where z is the binarized projection and p is the probability of zero

dataMethod selects the method to use to create the data.frame to pass to the UMAPPlot().
To calculate, for each cell, a statistic for each gene based on available data/model,
the following methods are supported:

• "RW", "Raw", "RawData" uses the raw counts
• "NN", "NuNorm", "Normalized" uses the ν-normalized counts
• "LN", "LogNorm", "LogNormalized" uses the log-normalized counts (de-

fault)
• "BI", "Bin", "Binarized" uses the binarized data matrix
• "BD", "BinDiscr", "BinarizedDiscrepancy" uses the difference be-

tween the binarized data matrix and the estimated probability of one
• "AB", "AdjBin", "AdjBinarized" uses the absolute value of the bina-

rized discrepancy above
• "LH", "Like", "Likelihood" uses the likelihood of binarized data matrix
• "LL", "LogLike", "LogLikelihood" uses the log-likelihood of binarized

data matrix
• "DL", "DerLogL", "DerivativeLogLikelihood" uses the derivative of

the log-likelihood of binarized data matrix
• "SL", "SignLogL", "SignedLogLikelihood" uses the signed log-likelihood

of binarized data matrix

For the last four options see calculateLikelihoodOfObserved() for more
details

asDspMatrices Boolean; when TRUE the function will return only packed dense symmetric ma-
trices

columnsSubset a sub-set of the columns of the matrices that will be returned

zeroOne the raw count matrix projected to 0 or 1. If not given the appropriate one will be
calculated on the fly

optimizeForSpeed

Boolean; deprecated: always TRUE

probZero is the expected probability of zero for each gene/cell pair. If not given the
appropriate one will be calculated on the fly

g1 a gene

g2 another gene

returnPPFract Boolean; when TRUE the function returns the fraction of genes/cells pairs for
which the expected contingency table is smaller than 0.5. Default is FALSE

deviceStr On the torch library enforces which device to use to run the calculations. Pos-
sible values are "cpu" to us the system CPU, "cuda" to use the system GPUs
or something like "cuda:0" to restrict to a specific device

getMu 23

geneSubsetCol an array of genes. It will be put in columns. If left empty the function will do it
genome-wide.

geneSubsetRow an array of genes. It will be put in rows. If left empty the function will do it
genome-wide.

genesSel Decides whether and how to perform the gene-selection. used for the clustering
and the UMAP. It is a string indicating one of the following selection methods:

• "HGDI" Will pick-up the genes with highest GDI (default)
• "HVG_Seurat" Will pick-up the genes with the highest variability via the

Seurat package
• "HVG_Scanpy" Will pick-up the genes with the highest variability according

to the Scanpy package (using the Seurat implementation)

numGenes the number of genes to select using the above method. Will be ignored when an
explicit list of genes has been passed in

useCoexEigen Boolean to determine whether to project the data matrix onto the first eigen-
vectors of the COEX matrix or instead restrict the data matrix to the selected
genes before applying the PCA reduction

numComp Number of components of the reduced matrix, it defaults to 25L.

Details

getMu() calculates the vector µ = λ× νT

getGenesCoex() extracts a complete (or a partial after genes dropping) genes’ COEX matrix from
the COTAN object.

getCellsCoex() extracts a complete (or a partial after cells dropping) cells’ COEX matrix from the
COTAN object.

isCoexAvailable() allows to query whether the relevant COEX matrix from the COTAN object is
available to use

dropGenesCoex() drops the genesCoex member from the given COTAN object

dropCellsCoex() drops the cellsCoex member from the given COTAN object

calculateLikelihoodOfObserved() gives for each cell and each gene the likelihood of the ob-
served zero/one data

getDataMatrix() gives for each cell and each gene the result of the selected formula as function
of the observed counts and their expected value

observedContingencyTablesYY() calculates observed Yes/Yes field of the contingency table

observedPartialContingencyTablesYY() calculates observed Yes/Yes field of the contingency
table

observedContingencyTables() calculates the observed contingency tables. When the parameter
asDspMatrices == TRUE, the method will effectively throw away the lower half from the returned
observedYN and observedNY matrices, but, since they are transpose one of another, the full infor-
mation is still available.

observedPartialContingencyTables() calculates the observed contingency tables.

expectedContingencyTablesNN() calculates the expected No/No field of the contingency table

24 getMu

expectedPartialContingencyTablesNN() calculates the expected No/No field of the contingency
table

expectedContingencyTables() calculates the expected values of contingency tables. When the
parameter asDspMatrices == TRUE, the method will effectively throw away the lower half from the
returned expectedYN and expectedNY matrices, but, since they are transpose one of another, the
full information is still available.

expectedPartialContingencyTables() calculates the expected values of contingency tables, re-
stricted to the specified column sub-set

contingencyTables() returns the observed and expected contingency tables for a given pair of
genes. The implementation runs the same algorithms used to calculate the full observed/expected
contingency tables, but restricted to only the relevant genes and thus much faster and less memory
intensive

calculateCoex() estimates and stores the COEX matrix in the cellCoex or genesCoex field de-
pending on given actOnCells flag. It also calculates the percentage of problematic genes/cells
pairs. A pair is problematic when one or more of the expected counts were significantly smaller
than 1 (< 0.5). These small expected values signal that scant information is present for such a pair.

calculatePartialCoex() estimates a sub-section of the COEX matrix in the cellCoex or genesCoex
field depending on given actOnCells flag. It also calculates the percentage of problematic genes/cells
pairs. A pair is problematic when one or more of the expected counts were significantly smaller
than 1 (< 0.5). These small expected values signal that scant information is present for such a pair.

calculateS() calculates the statistics S for genes contingency tables. It always has the diagonal
set to zero.

calculateG() calculates the statistics G-test for genes contingency tables. It always has the diag-
onal set to zero. It is proportional to the genes’ presence mutual information.

getSelectedGenes() selects the most representative genes of the data.set

calculateReducedDataMatrix() calculates the reduced data-matrix to be used for clusterizations
or UMAP plots.

It uses the given dataMethod to determine with which data to start, then, depending on the value of
useCoexEigen, either uses the genesSel to restrict evaluation to the relevant genes’ before the PCA
is run, or it calculates the first COEX eigenvectors and projects the data matrix to their sub-space.

Value

getMu() returns the mu matrix

getGenesCoex() returns the genes’ COEX values

getCellsCoex() returns the cells’ COEX values

isCoexAvailable() returns whether relevant COEX matrix has been calculated and, in case, if it is
still aligned to the estimators.

dropGenesCoex() returns the updated COTAN object

dropCellsCoex() returns the updated COTAN object

calculateLikelihoodOfObserved() returns a matrix with the selected formula of the likelihood
of the observed zero/one

getDataMatrix() returns a matrix with the same shape as the raw data

observedContingencyTablesYY() returns a list with:

getMu 25

• observedYY the Yes/Yes observed contingency table as matrix

• observedY the full Yes observed vector

observedPartialContingencyTablesYY() returns a list with:

• observedYY the Yes/Yes observed contingency table as matrix, restricted to the selected
columns as named list with elements

• observedY the full Yes observed vector

observedContingencyTables() returns the observed contingency tables as named list with ele-
ments:

• "observedNN"

• "observedNY"

• "observedYN"

• "observedYY"

observedPartialContingencyTables() returns the observed contingency tables, restricted to the
selected columns, as named list with elements:

• "observedNN"

• "observedNY"

• "observedYN"

• "observedYY"

expectedContingencyTablesNN() returns a list with:

• expectedNN the No/No expected contingency table as matrix

• expectedN the No expected vector

expectedPartialContingencyTablesNN() returns a list with:

• expectedNN the No/No expected contingency table as matrix, restricted to the selected columns,
as named list with elements

• expectedN the full No expected vector

expectedContingencyTables() returns the expected contingency tables as named list with ele-
ments:

• "expectedNN"

• "expectedNY"

• "expectedYN"

• "expectedYY"

expectedPartialContingencyTables() returns the expected contingency tables, restricted to the
selected columns, as named list with elements:

• "expectedNN"

• "expectedNY"

26 getMu

• "expectedYN"

• "expectedYY"

contingencyTables() returns a list containing the observed and expected contingency tables

calculateCoex() returns the updated COTAN object

calculatePartialCoex() returns the asked section of the COEX matrix

calculateS() returns the S matrix

calculateG() returns the G matrix

getSelectedGenes() returns an array with the genes’ names

calculateReducedDataMatrix() returns the reduced matrix. The returned matrix has dimen-
sions: (number of cells, number of components)

Note

The sum of the matrices returned by the function observedContingencyTables() and expectedContingencyTables()
will have the same value on all elements. This value is the number of genes/cells depending on the
parameter actOnCells being TRUE/FALSE.

See Also

ParametersEstimations for more details.

Installing_torch about the torch package

Examples

options(parallelly.fork.enable = TRUE)

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- initializeMetaDataset(objCOTAN, GEO = "test_GEO",

sequencingMethod = "distribution_sampling",
sampleCondition = "reconstructed_dataset")

objCOTAN <- clean(objCOTAN)

objCOTAN <- estimateLambdaLinear(objCOTAN)
objCOTAN <- estimateDispersionViaSolver(objCOTAN, cores = 6L)

Now the `COTAN` object is ready to calculate the genes' `COEX`

mu <- getMu(objCOTAN)
observedY <- observedContingencyTablesYY(objCOTAN, asDspMatrices = TRUE)
obs <- observedContingencyTables(objCOTAN, asDspMatrices = TRUE)

expectedN <- expectedContingencyTablesNN(objCOTAN, asDspMatrices = TRUE)
exp <- expectedContingencyTables(objCOTAN, asDspMatrices = TRUE)

objCOTAN <- calculateCoex(objCOTAN, actOnCells = FALSE)

stopifnot(isCoexAvailable(objCOTAN))

getMu 27

genesCoex <- getGenesCoex(objCOTAN)
genesSample <- sample(getNumGenes(objCOTAN), 10)
partialGenesCoex <- calculatePartialCoex(objCOTAN, genesSample,

actOnCells = FALSE)

stopifnot(all(5.0e-6 >
abs(partialGenesCoex -

getGenesCoex(objCOTAN,
getGenes(objCOTAN)[sort(genesSample)],
zeroDiagonal = FALSE))))

S <- calculateS(objCOTAN)
G <- calculateG(objCOTAN)
pValue <- calculatePValue(objCOTAN)
gdiDF <- calculateGDI(objCOTAN)
objCOTAN <- storeGDI(objCOTAN, genesGDI = gdiDF)

Touching any of the `lambda`/`nu`/`dispersion` parameters invalidates the
`COEX` matrix and derivatives, so it can be dropped it from the `COTAN`
object
objCOTAN <- dropGenesCoex(objCOTAN)
stopifnot(!isCoexAvailable(objCOTAN))

objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L)

Now the `COTAN` object is ready to calculate the cells' `COEX`
In case one needs to calculate both, it is more sensible to run the above
before any `COEX` evaluation

g1 <- getGenes(objCOTAN)[sample(getNumGenes(objCOTAN), 1)]
g2 <- getGenes(objCOTAN)[138L]
tables <- contingencyTables(objCOTAN, g1 = g1, g2 = g2)
tables

objCOTAN <- calculateCoex(objCOTAN, actOnCells = TRUE)
stopifnot(isCoexAvailable(objCOTAN, actOnCells = TRUE, ignoreSync = TRUE))
cellsCoex <- getCellsCoex(objCOTAN, zeroDiagonal = FALSE)

cellsSample <- sample(getNumCells(objCOTAN), 10)
partialCellsCoex <- calculatePartialCoex(objCOTAN, cellsSample,

actOnCells = TRUE)

stopifnot(all(1e-6 >
abs(partialCellsCoex - cellsCoex[, sort(cellsSample)])))

objCOTAN <- dropCellsCoex(objCOTAN)
stopifnot(!isCoexAvailable(objCOTAN, actOnCells = TRUE))

signedLikelhood <- calculateLikelihoodOfObserved(objCOTAN, formula = "sLog")

28 HandleMetaData

HandleMetaData Handling meta-data in COTAN objects

Description

Much of the information stored in the COTAN object is compacted into three data.frames:

• "metaDataset" - contains all general information about the data-set

• "metaGenes" - contains genes’ related information along the lambda and dispersion vectors
and the fully-expressed flag

• "metaCells" - contains cells’ related information along the nu vector, the fully-expressing
flag, the clusterizations and the conditions

Usage

S4 method for signature 'COTAN'
getMetadataDataset(objCOTAN)

S4 method for signature 'COTAN'
getMetadataElement(objCOTAN, tag)

S4 method for signature 'COTAN'
getMetadataGenes(objCOTAN)

S4 method for signature 'COTAN'
getMetadataCells(objCOTAN)

S4 method for signature 'COTAN'
getDims(objCOTAN)

datasetTags()

S4 method for signature 'COTAN'
initializeMetaDataset(objCOTAN, GEO, sequencingMethod, sampleCondition)

S4 method for signature 'COTAN'
addElementToMetaDataset(objCOTAN, tag, value)

getColumnFromDF(df, colName)

setColumnInDF(df, colToSet, colName, rowNames = vector(mode = "character"))

getMetaInfoRow(meta, tag)

updateMetaInfo(meta, tag, value)

HandleMetaData 29

Arguments

objCOTAN a COTAN object

tag The tag associated to the wanted value

GEO a code reporting the GEO identification or other specific data-set code

sequencingMethod

a string reporting the method used for the sequencing

sampleCondition

a string reporting the specific sample condition or time point

value The value or the values to associate to the tag

df the data.frame

colName the name of the new or existing column in the data.frame

colToSet the column to add

rowNames when not empty, if the input data.frame has no real row names, the new row
names of the resulting data.frame

meta The information data.frame to update

Details

getMetadataDataset() extracts the meta-data stored for the current data-set.

getMetadataElement() extracts the value associated with the given tag if present or an empty
string otherwise.

getMetadataGenes() extracts the meta-data stored for the genes

getMetadataCells() extracts the meta-data stored for the cells

getDims() extracts the sizes of all slots of the COTAN object

datasetTags() defines a list of short names associated to an enumeration. It also defines the
relative long names as they appear in the meta-data

initializeMetaDataset() initializes meta-data data-set

addElementToMetaDataset() is used to add a line of information to the meta-data data.frame.
If the tag was already used it will update the associated value(s) instead

getColumnFromDF() is a function to extract a column from a data.frame, while keeping the
rowNames as vector names

setColumnInDF() is a function to append, if missing, or resets, if present, a column into a data.frame,
whether the data.frame is empty or not. The given rowNames are used only in the case the
data.frame has only the default row numbers, so this function cannot be used to override row
names

getMetaInfoRow() is an internal function: it extracts the row\ associated with the given tag if
present or zero otherwise.

updateMetaInfo() is an internal function: updates an information data.frame

30 HandleMetaData

Value

getMetadataDataset() returns the meta-data data.frame

getMetadataElement() returns a string with the relevant value

getMetadataGenes() returns the genes’ meta-data data.frame

getMetadataCells() returns the cells’ meta-data data.frame

getDims() returns a named list with the sizes of the slots

datasetTags() a named character array with the standard labels used in the metaDataset of
the COTAN objects

initializeMetaDataset() returns the given COTAN object with the updated metaDataset

addElementToMetaDataset() returns the updated COTAN object

getColumnFromDF() returns the column in the data.frame as named array, NULL if the wanted
column is not available

setColumnInDF() returns the updated, or the newly created, data.frame

getMetaInfoRow() returns the last relevant row position if any or zero otherwise.

updateMetaInfo() returns the updated data.frame

Examples

options(parallelly.fork.enable = TRUE)

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)

objCOTAN <- initializeMetaDataset(objCOTAN, GEO = "test_GEO",
sequencingMethod = "distribution_sampling",
sampleCondition = "reconstructed_dataset")

objCOTAN <- addElementToMetaDataset(objCOTAN, "Test",
c("These are ", "some values"))

dataSetInfo <- getMetadataDataset(objCOTAN)

numInitialCells <- getMetadataElement(objCOTAN, datasetTags()[["cells"]])

metaGenes <- getMetadataGenes(objCOTAN)

metaCells <- getMetadataCells(objCOTAN)

allSizes <- getDims(objCOTAN)

HandleStrings 31

HandleStrings Handle names and factors’ levels

Description

Internal functions dedicated to solve strings or factors related simple tasks

Usage

handleNamesSubsets(names, subset = vector(mode = "character"))

conditionsFromNames(names, splitPattern = " ", fragmentNum = 2L)

isEmptyName(name)

niceFactorLevels(v)

factorToVector(f)

Arguments

names The full list of the names to handle

subset The names’ subset. When empty all names are returned instead!

splitPattern the pattern to use to split the names

fragmentNum the string fragment to use as condition from the split names

name the name to check

v an array or factor object

f a factor object

Details

handleNamesSubsets() returns the given subset or the full list of names if none were specified

conditionsFromNames() retrieves a condition from the given names by picking the asked fragment
after having them split according to the given pattern

isEmptyName() returns whether the passed name is not null and has non-zero characters

niceFactorLevels() provides nicer factor labels that have all the same number of characters

factorToVector() converts a named factor to a named character vector

Value

handleNamesSubsets() returns the updated list of names’ subset, reordered according to the given
names’ list

conditionsFromNames() returns the extracted conditions

32 HandlingClusterizations

isEmptyName() returns whether the passed name is equivalent to an empty string

niceFactorLevels() returns a factor that is preserving the names of the input with the new nicer
levels

factorToVector() returns a character vector that preserves the names of the input factor

HandlingClusterizations

Handling cells’ clusterization and related functions

Description

These functions manage the clusterizations and their associated cluster COEX data.frames.

A clusterization is any partition of the cells where to each cell it is assigned a label; a group of cells
with the same label is called cluster.

For each cluster is also possible to define a COEX value for each gene, indicating its increased
or decreased expression in the cluster compared to the whole background. A data.frame with
these values listed in a column for each cluster is stored separately for each clusterization in the
clustersCoex member.

The formulae for this In/Out COEX are similar to those used in the calculateCoex() method, with
the role of the second gene taken by the In/Out status of the cells with respect to each cluster.

Usage

S4 method for signature 'COTAN'
estimateNuLinearByCluster(objCOTAN, clName = "", clusters = NULL)

S4 method for signature 'COTAN'
getClusterizations(objCOTAN, dropNoCoex = FALSE, keepPrefix = FALSE)

S4 method for signature 'COTAN'
getClusterizationName(objCOTAN, clName = "", keepPrefix = FALSE)

S4 method for signature 'COTAN'
getClusterizationData(objCOTAN, clName = "")

getClusters(objCOTAN, clName = "")

S4 method for signature 'COTAN'
getClustersCoex(objCOTAN)

S4 method for signature 'COTAN'
addClusterization(
objCOTAN,
clName,
clusters,

HandlingClusterizations 33

coexDF = data.frame(),
override = FALSE

)

S4 method for signature 'COTAN'
addClusterizationCoex(objCOTAN, clName, coexDF)

S4 method for signature 'COTAN'
dropClusterization(objCOTAN, clName)

DEAOnClusters(objCOTAN, clName = "", clusters = NULL)

clusterGeneContingencyTables(objCOTAN, gene, cells)

pValueFromDEA(coexDF, numCells, adjustmentMethod)

logFoldChangeOnClusters(
objCOTAN,
clName = "",
clusters = NULL,
floorLambdaFraction = 0.05

)

distancesBetweenClusters(
objCOTAN,
clName = "",
clusters = NULL,
coexDF = NULL,
useDEA = TRUE,
distance = NULL

)

UMAPPlot(
dataIn,
clusters = NULL,
elements = NULL,
title = "",
colors = NULL,
numNeighbors = 0L,
minPointsDist = NaN

)

cellsUMAPPlot(
objCOTAN,
clName = "",
clusters = NULL,
useCoexEigen = FALSE,
dataMethod = "",

34 HandlingClusterizations

numComp = 25L,
genesSel = "",
numGenes = 200L,
colors = NULL,
numNeighbors = 0L,
minPointsDist = NA

)

clustersMarkersHeatmapPlot(
objCOTAN,
groupMarkers = list(),
clName = "",
clusters = NULL,
coexDF = NULL,
kCuts = 3L,
adjustmentMethod = "bonferroni",
condNameList = NULL,
conditionsList = NULL

)

clustersSummaryData(
objCOTAN,
clName = "",
clusters = NULL,
condName = "",
conditions = NULL

)

clustersSummaryPlot(
objCOTAN,
clName = "",
clusters = NULL,
condName = "",
conditions = NULL,
plotTitle = ""

)

clustersTreePlot(
objCOTAN,
kCuts,
clName = "",
clusters = NULL,
useDEA = TRUE,
distance = NULL,
hclustMethod = "ward.D2"

)

findClustersMarkers(

HandlingClusterizations 35

objCOTAN,
n = 10L,
markers = NULL,
clName = "",
clusters = NULL,
coexDF = NULL,
adjustmentMethod = "bonferroni"

)

geneSetEnrichment(clustersCoex, groupMarkers = list())

reorderClusterization(
objCOTAN,
clName = "",
clusters = NULL,
coexDF = NULL,
reverse = FALSE,
keepMinusOne = TRUE,
useDEA = TRUE,
distance = NULL,
hclustMethod = "ward.D2"

)

Arguments

objCOTAN a COTAN object
clName The name of the clusterization. If not given the last available clusterization will

be used, as it is probably the most significant!
clusters A clusterization to use. If given it will take precedence on the one indicated by

clName

dropNoCoex When TRUE drops the names from the clusterizations with empty associated
COEX data.frame

keepPrefix When TRUE returns the internal name of the clusterization: the one with the CL_
prefix.

coexDF a data.frame where each column indicates the COEX for each of the clusters of
the clusterization

override When TRUE silently allows overriding data for an existing clusterization name.
Otherwise the default behavior will avoid potential data losses

gene a gene
cells a sub-set of the cells
numCells the number of overall cells in all clusters
adjustmentMethod

p-value multi-test adjustment method, see stats::p.adjust.methods(). De-
faults to "bonferroni"; use "none" for no adjustment

floorLambdaFraction

Indicates the lower bound to the average count sums inside or outside the cluster
for each gene as fraction of the relevant lambda parameter. Default is 5%

36 HandlingClusterizations

useDEA Boolean indicating whether to use the DEA to define the distance; alternatively
it will use the average Zero-One counts, that is faster but less precise.

distance type of distance to use. Default is "cosine" for DEA and "euclidean" for
Zero-One. Can be chosen among those supported by parallelDist::parDist()

dataIn The matrix to plot. It must have a row names containing the given elements
(the columns are features)

elements a named list of elements to label. Each array in the list will be shown with a
different color

title a string giving the plot title. Will default to UMAP Plot if not specified

colors an array of colors to use in the plot. If not sufficient colors are given it will
complete the list using colors from getColorsVector()

numNeighbors Overrides the default n_neighbors value

minPointsDist Overrides the default min_dist value

useCoexEigen Boolean to determine whether to project the data matrix onto the first eigen-
vectors of the COEX matrix or instead restrict the data matrix to the selected
genes before applying the PCA reduction

dataMethod selects the method to use to create the data.frame to pass to the UMAPPlot().
See getDataMatrix() for more details.

numComp Number of components of the reduced matrix, it defaults to 25L.

genesSel Decides whether and how to perform gene-selection. See getSelectedGenes()
for more details.

numGenes the number of genes to select using the above method. Will be ignored when an
explicit list of genes has been passed in

groupMarkers an optional named list with an element for each group comprised of one or
more marker genes

kCuts the number of estimated cluster (this defines the height for the tree cut)

condNameList a list of conditions’ names to be used for additional columns in the final plot.
When none are given no new columns will be added using data extracted via the
function clustersSummaryData()

conditionsList a list of conditions to use. If given they will take precedence on the ones
indicated by condNameList

condName The name of a condition in the COTAN object to further separate the cells in more
sub-groups. When no condition is given it is assumed to be the same for all cells
(no further sub-divisions)

conditions The conditions to use. If given it will take precedence on the one indicated
by condName that will only indicate the relevant column name in the returned
data.frame

plotTitle The title to use for the returned plot

hclustMethod It defaults is "ward.D2" but can be any of the methods defined by the stats::hclust()
function.

n the number of extreme COEX values to return

markers a list of marker genes

HandlingClusterizations 37

clustersCoex the COEX data.frame

reverse a flag to the output order

keepMinusOne a flag to decide whether to keep the cluster "-1" (representing the non-clustered
cells) untouched

Details

estimateNuLinearByCluster() does a linear estimation of nu: cells’ counts averages normalized
cluster by cluster

getClusterizations() extracts the list of the clusterizations defined in the COTAN object.

getClusterizationName() normalizes the given clusterization name or, if none were given, re-
turns the name of last available clusterization in the COTAN object. It can return the clusterization
internal name if needed

getClusterizationData() extracts the asked clusterization and its associated COEX data.frame
from the COTAN object

getClusters() extracts the asked clusterization from the COTAN object

getClustersCoex() extracts the full clusterCoex member list

addClusterization() adds a clusterization to the current COTAN object, by adding a new column
in the metaCells data.frame and adding a new element in the clustersCoex list using the
passed in COEX data.frame or an empty data.frame if none were passed in.

addClusterizationCoex() adds a clusterization COEX data.frame to the current COTAN object. It
requires the named clusterization to be already present.

dropClusterization() drops a clusterization from the current COTAN object, by removing the
corresponding column in the metaCells data.frame and the corresponding COEX data.frame
from the clustersCoex list.

DEAOnClusters() is used to run the Differential Expression analysis using the COTAN contingency
tables on each cluster in the given clusterization

clusterGeneContingencyTables() returns the observed and expected contingency tables for a
given gene and a given set of cells (a cluster). The implementation runs the same algorithms used
to calculate the full observed/expected contingency tables used for DEA, but restricted to only the
relevant gene and cluster, thus much faster and less memory intensive

pValueFromDEA() is used to convert to p-value the Differential Expression analysis using the COTAN
contingency tables on each cluster in the given clusterization

logFoldChangeOnClusters() is used to get the log difference of the expression levels for each
cluster in the given clusterization against the rest of the data-set

distancesBetweenClusters() is used to obtain a distance between the clusters. Depending on the
value of the useDEA flag will base the distance on the DEA columns or the averages of the Zero-One
matrix.

UMAPPlot() plots the given data.frame containing genes information related to clusters after ap-
plying the umap transformation via Seurat::RunUMAP()

cellsUMAPPlot() returns a ggplot2 plot where the given clusters are placed on the base of their
relative distance. Also if needed calculates and stores the DEA of the relevant clusterization.

38 HandlingClusterizations

clustersMarkersHeatmapPlot() returns the heatmap plot of a summary score for each clus-
ter and each gene marker in the given clusterization. It also returns the size and percentage of
each cluster on the right and a clusterization dendogram on the left, as returned by the function
clustersTreePlot(). The heatmap cells’ colors express the DEA, that is whether a gene is en-
riched or depleted in the cluster, while the stars are aligned to the corresponding adjusted p−value:
*** for p < 0.1%, ** for p < 1%, * for p < 5%, . for p < 10%

clustersSummaryData() calculates various statistics about each cluster (with an optional further
condition to separate the cells).

clustersSummaryPlot() calculates various statistics about each cluster via clustersSummaryData()
and puts them together into a plot.

clustersTreePlot() returns the dendogram plot where the given clusters are placed on the base
of their relative distance. Also if needed calculates and stores the DEA of the relevant clusterization.

findClustersMarkers() takes in a COTAN object and a clusterization and produces a data.frame
with the n most positively enriched and the n most negatively enriched genes for each cluster. The
function also provides whether and the found genes are in the given markers list or not. It also
returns the adjusted p-value for multi-tests using the stats::p.adjust()

geneSetEnrichment() returns a cumulative score of enrichment in a cluster over a gene set. In for-
mulae it calculates 1

n

∑
i(1− e−θXi), where the Xi are the positive values from DEAOnClusters()

and θ = − 1
0.1 ln(0.25)

reorderClusterization() takes in a clusterizations and reorder its labels so that in the new order
near labels indicate near clusters according to a DEA (or Zero-One) based distance

Value

estimateNuLinearByCluster() returns the updated COTAN object

getClusterizations() returns a vector of clusterization names, usually without the CL_ prefix

getClusterizationName() returns the normalized clusterization name or NULL if no clusteriza-
tions are present

getClusterizationData() returns a list with 2 elements:

• "clusters" the named cluster labels array

• "coex" the associated COEX data.frame. This will be an empty data.frame when not spec-
ified for the relevant clusterization

getClusters() returns the named cluster labels array

getClustersCoex() returns the list with a COEX data.frame for each clusterization. When not
empty, each data.frame contains a COEX column for each cluster.

addClusterization() returns the updated COTAN object

addClusterizationCoex() returns the updated COTAN object

dropClusterization() returns the updated COTAN object

DEAOnClusters() returns the co-expression data.frame for the genes in each cluster

clusterGeneContingencyTables() returns a list containing the observed and expected contin-
gency tables

HandlingClusterizations 39

pValueFromDEA() returns a data.frame containing the p-values corresponding to the given COEX
adjusted for multi-test

logFoldChangeOnClusters() returns the log-expression-change data.frame for the genes in each
cluster

distancesBetweenClusters() returns a dist object

UMAPPlot() returns a ggplot2 object

cellsUMAPPlot() returns a list with 2 objects:

• "plot" a ggplot2 object representing the umap plot

• "cellsRDM" the Reduced Data Matrix used to create the plot

clustersMarkersHeatmapPlot() returns a list with:

• "heatmapPlot" the complete heatmap plot

• "dataScore" the data.frame with the score values

• "pValueDF" the data.frame with the corresponding adjusted p−values

clustersSummaryData() returns a data.frame with the following statistics: The calculated statis-
tics are:

• "clName" the cluster labels
• "condName" the relevant condition (that sub-divides the clusters)

• "CellNumber" the number of cells in the group

• "MeanUDE" the average UDE in the group of cells

• "MedianUDE" the median UDE in the group of cells

• "ExpGenes25" the number of genes expressed in at the least 25% of the cells in the group

• "ExpGenes" the number of genes expressed at the least once in any of the cells in the group

• "CellPercentage" fraction of the cells with respect to the total cells

clustersSummaryPlot() returns a list with a data.frame and a ggplot objects

• "data" contains the data,

• "plot" is the returned plot

clustersTreePlot() returns a list with 2 objects:

• "dend" a ggplot2 object representing the dendrogram plot

• "objCOTAN" the updated COTAN object

findClustersMarkers() returns a data.frame containing n genes for each cluster scoring top/bottom
COEX scores. The data.frame also contains:

• "CL" the cluster

• "Gene" the gene

• "Score" the COEX score of the gene

• "adjPVal" the p-values associated to the COEX adjusted for multi-testing

40 HandlingClusterizations

• "DEA" the differential expression of the gene

• "IsMarker" whether the gene is among the given markers

• "logFoldCh" the log-fold-change of the gene expression inside versus outside the cluster from
logFoldChangeOnClusters()

geneSetEnrichment() returns a data.frame with the cumulative score

reorderClusterization() returns a list with 3 elements:

• "clusters" the newly reordered cluster labels array

• "coex" the associated COEX data.frame

• "permMap" the reordering mapping

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- proceedToCoex(objCOTAN, cores = 6L, calcCoex = TRUE,

optimizeForSpeed = TRUE, saveObj = FALSE)

data("test.dataset.clusters1")
clusters <- test.dataset.clusters1

coexDF <- DEAOnClusters(objCOTAN, clusters = clusters)

groupMarkers <- list(G1 = c("g-000010", "g-000020", "g-000138",
"g-000150", "g-000160", "g-000170"),

G2 = c("g-000300", "g-000330", "g-000450",
"g-000460", "g-000470"),

G3 = c("g-000510", "g-000530", "g-000550",
"g-000570", "g-000590"))

geneClusters <- rep(1:3, each = 240)[1:600]
names(geneClusters) <- getGenes(objCOTAN)

umapPlot <- UMAPPlot(coexDF, clusters = NULL, elements = groupMarkers)
plot(umapPlot)

objCOTAN <- addClusterization(objCOTAN, clName = "first_clusterization",
clusters = clusters, coexDF = coexDF)

lfcDF <- logFoldChangeOnClusters(objCOTAN, clusters = clusters)
umapPlot2 <- UMAPPlot(lfcDF, clusters = geneClusters)
plot(umapPlot2)

if (FALSE) {
objCOTAN <- estimateNuLinearByCluster(objCOTAN, clusters = clusters)

}

clSummaryPlotAndData <-
clustersSummaryPlot(objCOTAN, clName = "first_clusterization",

plotTitle = "first clusterization")

HandlingConditions 41

plot(clSummaryPlotAndData[["plot"]])

if (FALSE) {
objCOTAN <- dropClusterization(objCOTAN, "first_clusterization")

}

clusterizations <- getClusterizations(objCOTAN, dropNoCoex = TRUE)
stopifnot(length(clusterizations) == 1)

cellsUmapPlotAndDF <- cellsUMAPPlot(objCOTAN, dataMethod = "LogLikelihood",
useCoexEigen = TRUE, numComp = 25L,
clName = "first_clusterization")

plot(cellsUmapPlotAndDF[["plot"]])

enrichment <- geneSetEnrichment(clustersCoex = coexDF,
groupMarkers = groupMarkers)

clHeatmapPlotAndData <- clustersMarkersHeatmapPlot(objCOTAN, groupMarkers)
clHeatmapPlotAndData[["heatmapPlot"]]

conditions <- as.integer(substring(getCells(objCOTAN), 3L))
conditions <- factor(ifelse(conditions <= 600, "L", "H"))
names(conditions) <- getCells(objCOTAN)

objCOTAN <- addCondition(objCOTAN, condName = "High/Low",
conditions = conditions)

clHeatmapPlotAndData2 <-
clustersMarkersHeatmapPlot(objCOTAN, groupMarkers, kCuts = 2,

condNameList = list("High/Low"))
clHeatmapPlotAndData2[["heatmapPlot"]]

clName <- getClusterizationName(objCOTAN)

clusterDataList <- getClusterizationData(objCOTAN, clName = clName)

clusters <- getClusters(objCOTAN, clName = clName)

allClustersCoexDF <- getClustersCoex(objCOTAN)

summaryData <- clustersSummaryData(objCOTAN)

treePlotAndObj <- clustersTreePlot(objCOTAN, 2)
objCOTAN <- treePlotAndObj[["objCOTAN"]]
plot(treePlotAndObj[["dend"]])

clMarkers <- findClustersMarkers(objCOTAN, markers = list(),
clusters = clusters)

HandlingConditions Handling cells’ conditions and related functions

42 HandlingConditions

Description

These functions manage the conditions.

A condition is a set of labels that can be assigned to cells: one label per cell. This is especially
useful in cases when the data-set is the result of merging multiple experiments’ raw data

Usage

S4 method for signature 'COTAN'
getAllConditions(objCOTAN, keepPrefix = FALSE)

S4 method for signature 'COTAN'
getConditionName(objCOTAN, condName = "", keepPrefix = FALSE)

S4 method for signature 'COTAN'
getCondition(objCOTAN, condName = "")

normalizeNameAndLabels(objCOTAN, name = "", labels = NULL, isCond = FALSE)

S4 method for signature 'COTAN'
addCondition(objCOTAN, condName, conditions, override = FALSE)

S4 method for signature 'COTAN'
dropCondition(objCOTAN, condName)

Arguments

objCOTAN a COTAN object

keepPrefix When TRUE returns the internal name of the condition: the one with the COND_
prefix.

condName the name of an existing condition.

name the name of the clusterization/condition. If not given the last available clusteri-
zation will be used, or no conditions

labels a clusterization/condition to use. If given it will take precedence on the one
indicated by name

isCond a Boolean to indicate whether the function is dealing with clusterizations FALSE
or conditions TRUE

conditions a (factors) array of condition labels
override When TRUE silently allows overriding data for an existing condition name. Oth-

erwise the default behavior will avoid potential data losses

Details

getAllConditions() extracts the list of the conditions defined in the COTAN object.

getConditionName() normalizes the given condition name or, if none were given, returns the name
of last available condition in the COTAN object. It can return the condition internal name if needed

getCondition() extracts the asked condition from the COTAN object

HandlingConditions 43

normalizeNameAndLabels() takes a pair of name/labels and normalize them based on the available
information in the COTAN object

addCondition() adds a condition to the current COTAN object, by adding a new column in the
metaCells data.frame

dropCondition() drops a condition from the current COTAN object, by removing the corresponding
column in the metaCells data.frame

Value

getAllConditions() returns a vector of conditions names, usually without the COND_ prefix

getConditionName() returns the normalized condition name or NULL if no conditions are present

getCondition() returns a named factor with the condition

normalizeNameAndLabels() returns a list with:

• "name" the relevant name

• "labels" the relevant clusterization/condition

addCondition() returns the updated COTAN object

dropCondition() returns the updated COTAN object

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)

cellLine <- rep(c("A", "B"), getNumCells(objCOTAN) / 2)
names(cellLine) <- getCells(objCOTAN)
objCOTAN <- addCondition(objCOTAN, condName = "Line", conditions = cellLine)

if (FALSE) {
objCOTAN <- dropCondition(objCOTAN, "Genre")

}

conditionsNames <- getAllConditions(objCOTAN)

condName <- getConditionName(objCOTAN)

condition <- getCondition(objCOTAN, condName = condName)
isa(condition, "factor")

nameAndCond <- normalizeNameAndLabels(objCOTAN, name = condName,
isCond = TRUE)

isa(nameAndCond[["labels"]], "factor")

44 HeatmapPlots

HeatmapPlots Heatmap Plots

Description

These functions create heatmap COEX plots.

Usage

singleHeatmapDF(objCOTAN, genesLists, sets, pValueThreshold = 0.01)

heatmapPlot(
objCOTAN = NULL,
genesLists,
sets = NULL,
pValueThreshold = 0.01,
conditions = NULL,
dir = "."

)

genesHeatmapPlot(
objCOTAN,
primaryMarkers,
secondaryMarkers = vector(mode = "character"),
pValueThreshold = 0.01,
symmetric = TRUE

)

cellsHeatmapPlot(objCOTAN, cells = NULL, clusters = NULL)

plotTheme(plotKind = "common", textSize = 14L)

Arguments

objCOTAN a COTAN object

genesLists A list of genes’ arrays. The first array defines the genes in the columns

sets A numeric array indicating which fields in the previous list should be used.
Defaults to all fields

pValueThreshold

The p-value threshold. Default is 0.01

conditions An array of prefixes indicating the different files

dir The directory in which are all COTAN files (corresponding to the previous pre-
fixes)

primaryMarkers A set of genes plotted as rows
secondaryMarkers

A set of genes plotted as columns

HeatmapPlots 45

symmetric A Boolean: default TRUE. When TRUE the union of primaryMarkers and secondaryMarkers
is used for both rows and column genes

cells Which cells to plot (all if no argument is given)

clusters Use this clusterization to select/reorder the cells to plot

plotKind a string indicating the plot kind

textSize axes and strip text size (default=14)

Details

singleHeatmapDF() creates the heatmap data.frame of one COTAN object

heatmapPlot() creates the heatmap of one or more COTAN objects

genesHeatmapPlot() is used to plot an heatmap made using only some genes, as markers, and
collecting all other genes correlated with these markers with a p-value smaller than the set threshold.
Than all relations are plotted. Primary markers will be plotted as groups of rows. Markers list will
be plotted as columns.

cellsHeatmapPlot() creates the heatmap plot of the cells’ COEX matrix

plotTheme() returns the appropriate theme for the selected plot kind. Supported kinds are: "common",
"pca", "genes", "UDE", "heatmap", "GDI", "UMAP", "size-plot"

Value

singleHeatmapDF() returns a data.frame

heatmapPlot() returns a ggplot2 object

genesHeatmapPlot() returns a ggplot2 object

cellsHeatmapPlot() returns the cells’ COEX heatmap plot

plotTheme() returns a ggplot2::theme object

See Also

ggplot2::theme() and ggplot2::ggplot()

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)
objCOTAN <- clean(objCOTAN)
objCOTAN <- estimateLambdaLinear(objCOTAN)
objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = FALSE)
objCOTAN <- calculateCoex(objCOTAN, actOnCells = TRUE)

some genes
primaryMarkers <- c("g-000010", "g-000020", "g-000138")

an example of named list of different gene set
groupMarkers <- list(G1 = primaryMarkers,

G2 = c("g-000300", "g-000330"),

46 Installing_torch

G3 = c("g-000510", "g-000530", "g-000550",
"g-000570", "g-000590"))

hPlot <- heatmapPlot(objCOTAN, pValueThreshold = 0.05,
genesLists = groupMarkers, sets = 2L:3L)

plot(hPlot)

ghPlot <- genesHeatmapPlot(objCOTAN, primaryMarkers = primaryMarkers,
secondaryMarkers = groupMarkers,
pValueThreshold = 0.05, symmetric = FALSE)

plot(ghPlot)

clusters <- c(rep_len("1", getNumCells(objCOTAN)/2),
rep_len("2", getNumCells(objCOTAN)/2))

names(clusters) <- getCells(objCOTAN)

chPlot <- cellsHeatmapPlot(objCOTAN, clusters = clusters)
plot(chPlot)

theme <- plotTheme("pca")

Installing_torch Installing torch R library (on WSL-Linux)

Description

A brief explanation of how to install the torch package on WSL2 (Windows Subsystem for Linux),
but it might work the same for other Linux systems. Naturally it makes a difference whether one
wants to install support only for the CPU or also have the system GPU at the ready!

This are just suggestions, no guarantees are given: try at your own peril!
The main resources to install torch is https://torch.mlverse.org/docs/articles/installation.
html or https://cran.r-project.org/web/packages/torch/vignettes/installation.html

Details

For the CPU-only support one need to ensure that also numeric libraries are installed, like BLAS and
LAPACK and/or MKL if your CPU is from Intel. Otherwise torch will be stuck at using a single core
for all computations.

For the GPU, currently only cuda devices are supported. Moreover only some specific versions of
cuda (and corresponding cudnn) are effectively usable, so one needs to install them to actually use
the GPU.

As of today only cuda 12.8 is supported, but check the torch documentation for more up-to-date
information. Before downgrading your cuda version, please be aware that it is possible to maintain
separate main versions of cuda at the same time on the system.

Below a link to install cuda 12.8 for WSL2 given: use a local installer to be sure the wanted cuda
version is being installed, and not the latest one: cuda 12.8 for WSL2

https://torch.mlverse.org/docs/articles/installation.html
https://torch.mlverse.org/docs/articles/installation.html
https://cran.r-project.org/web/packages/torch/vignettes/installation.html
https://developer.nvidia.com/cuda-12-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local

LoggingFunctions 47

It can happen that after the installation of the new torch version, including the dependencies, torch
actually fails to run claiming that lantern dependency was not installed. This can happen due to
presence of old cache files, so one can simply delete the relevant cache folder as in the example
below...

Examples

find the relevant cache folder and delete it
folder <- tools::R_user_dir("torch","cache")
print(folder)
unlink(folder, recursive = TRUE, force = TRUE)

reinstall explicitly for the toolchain you want
torch::install_torch(cuda_version = "12.8", reinstall = TRUE)

run this only **AFTER** restarting `R`
COTAN:::canUseTorch(TRUE, "cuda")

LoggingFunctions Logging in the COTAN package

Description

Logging is currently supported for all COTAN functions. It is possible to see the output on the
terminal and/or on a log file. The level of output on terminal is controlled by the COTAN.LogLevel
option while the logging on file is always at its maximum verbosity

Usage

setLoggingLevel(newLevel = 1L)

setLoggingFile(logFileName)

logThis(msg, logLevel = 2L, appendLF = TRUE)

Arguments

newLevel the new default logging level. It defaults to 1

logFileName the log file.

msg the message to print

logLevel the logging level of the current message. It defaults to 2

appendLF whether to add a new-line character at the end of the message

48 MultiThreading

Details

setLoggingLevel() sets the COTAN logging level. It set the COTAN.LogLevel options to one of the
following values:

• 0 - Always on log messages

• 1 - Major log messages

• 2 - Minor log messages

• 3 - All log messages

setLoggingFile() sets the log file for all COTAN output logs. By default no logging happens on
a file (only on the console). Using this function COTAN will use the indicated file to dump the logs
produced by all logThis() commands, independently from the log level. It stores the connection
created by the call to bzfile() in the option: COTAN.LogFile

logThis() prints the given message string if the current log level is greater or equal to the given log
level (it always prints its message on file if active). It uses message() to actually print the messages
on the stderr() connection, so it is subject to suppressMessages()

Value

setLoggingLevel() returns the old logging level or default level if not set yet.

logThis() returns TRUE if the message has been printed on the terminal

Examples

setLoggingLevel(3) # for debugging purposes only

logFile <- file.path(".", "COTAN_Test1.log")
setLoggingFile(logFile)
logThis("Some log message")
setLoggingFile("") # closes the log file
file.remove(logFile)

logThis("LogLevel 0 messages will always show, ",
logLevel = 0, appendLF = FALSE)

suppressMessages(logThis("unless all messages are suppressed",
logLevel = 0))

MultiThreading Handling Multi-Core and GPU environments

Description

Check whether session supports multi-core and/or GPU evaluation and utilities about their activa-
tion

NumericUtilities 49

Usage

handleMultiCore(cores)

canUseTorch(optimizeForSpeed, deviceStr)

Arguments

cores the number of cores asked for
optimizeForSpeed

A Boolean to indicate whether to try to use the faster torch library

deviceStr The name of the device to be used by torch

Details

handleMultiCore() uses parallelly::supportsMulticore() and parallelly::availableCores()
to actually check whether the session supports multi-core evaluation. Provides an effective upper
bound to the number of cores.

canUseTorch() is an internal function to handle the torch library: it returns whether torch is ready
to be used. It obeys the opt-out flag set via the COTAN.UseTorch option

Value

handleMultiCore() returns the maximum sensible number of cores to use

canUseTorch() returns a list with 2 elements:

• "useTorch": a Boolean indicating whether the torch library can be used

• "deviceStr": the updated name of the device to be used: if no cuda GPU is available it will
fallback to CPU calculations

See Also

the help page of parallelly::supportsMulticore() about the flags influencing the multi-core
support; e.g. the usage of R option parallelly.fork.enable.

torch::install_torch() and torch::torch_is_installed() for installation. Note the torch::torch_set_num_threads()
has effect also on the Rfast package methods

NumericUtilities Numeric Utilities

Description

A set of function helper related to the statistical model underlying the COTAN package

50 NumericUtilities

Usage

funProbZero(dispersion, mu)

dispersionBisection(
sumZeros,
lambda,
nu,
threshold = 0.001,
maxIterations = 100L

)

parallelDispersionBisection(
genes,
sumZeros,
lambda,
nu,
threshold = 0.001,
maxIterations = 100L

)

dispersionNewton(sumZeros, lambda, nu, threshold = 0.001, maxIterations = 100L)

parallelDispersionNewton(
genes,
sumZeros,
lambda,
nu,
threshold = 0.001,
maxIterations = 100L

)

nuBisection(
sumZeros,
lambda,
dispersion,
initialGuess,
threshold = 0.001,
maxIterations = 100L

)

parallelNuBisection(
cells,
sumZeros,
lambda,
dispersion,
initialGuess,
threshold = 0.001,
maxIterations = 100L

NumericUtilities 51

)

calcDist(data, method, diag = FALSE, upper = FALSE)

Arguments

dispersion the estimated dispersion (a n-sized vector)

mu the lambda times nu values (a n×m matrix)

sumZeros the number of genes not expressed in the relevant cell (a m-sized vector)

lambda the estimated lambda (a n-sized vector)

nu the estimated nu (a m-sized vector)

threshold minimal solution precision

maxIterations max number of iterations (avoids infinite loops)

genes names of the relevant genes

initialGuess the initial guess for nu (a m-sized vector)

cells names of the relevant cells

data a matrix or a data.frame of which we want to calculate the distance between
columns

method type of distance to use. Can be chosen among those supported by parallelDist::parDist()

diag logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist.upper

upper logical value indicating whether the upper triangle of the distance matrix should
be printed by print.dist

Details

funProbZero is a private function that gives the probability that a sample gene’s reads are zero,
given the dispersion and mu parameters.

Using d for disp and µ for mu, it returns: (1 + dµ)−
1
d when d > 0 and exp ((d− 1)µ) otherwise.

The function is continuous in d = 0, increasing in d and decreasing in µ. It returns 0 when d = −∞
or µ = ∞. It returns 1 when µ = 0.

dispersionBisection is a private function for the estimation of dispersion slot of a COTAN object
via a bisection solver

The goal is to find a dispersion value that reduces to zero the difference between the number of
estimated and counted zeros

parallelDispersionBisection is a private function that was invoked by estimateDispersionViaSolver()
for the estimation of the dispersion slot of a COTAN object via a parallel bisection solver. It is now
deprecated

The goal is to find a dispersion array that reduces to zero the difference between the number of
estimated and counted zeros

dispersionNewton is a private function for the estimation of dispersion slot of a COTAN object
via a Newton-Raphson solver

52 ParametersEstimations

The goal is to find a dispersion value that reduces to zero the difference between the number of
estimated and counted zeros

parallelDispersionNewton is a private function invoked by parallelDispersionNewton() for
the estimation of the dispersion slot of a COTAN object via a parallel Newton-Raphson solver

The goal is to find a dispersion array that reduces to zero the difference between the number of
estimated and counted zeros

nuBisection is a private function for the estimation of nu slot of a COTAN object via a bisection
solver

The goal is to find a nu value that reduces to zero the difference between the number of estimated
and counted zeros

parallelNuBisection is a private function invoked by estimateNuBisection() for the estima-
tion of nu slot of a COTAN object via a parallel bisection solver

The goal is to find a nu array that reduces to zero the difference between the number of estimated
and counted zeros

calcDist is a wrapper function that invokes parallelDist::parDist(): the main goal is to re-
cover and finish the calculations via a fallback when there is a problem with the main algorithm

Value

the probability matrix that a read count is identically zero

the dispersion value

the dispersion values

the dispersion value

the dispersion values

the nu value

the dispersion values

a dist object with all distances

ParametersEstimations Estimation of the COTAN model’s parameters

Description

These functions are used to estimate the COTAN model’s parameters. That is the average count for
each gene (lambda) the average count for each cell (nu) and the dispersion parameter for each
gene to match the probability of zero.

The estimator methods are named Linear if they can be calculated as a linear statistic of the raw
data or Bisection if they are found via a parallel bisection solver.

ParametersEstimations 53

Usage

S4 method for signature 'COTAN'
estimateLambdaLinear(objCOTAN)

S4 method for signature 'COTAN'
estimateNuLinear(objCOTAN)

S4 method for signature 'COTAN'
estimateDispersionViaSolver(
objCOTAN,
threshold = 0.001,
cores = 1L,
maxIterations = 100L,
chunkSize = 1024L

)

S4 method for signature 'COTAN'
estimateNuBisection(
objCOTAN,
threshold = 0.001,
cores = 1L,
maxIterations = 100L,
chunkSize = 1024L

)

S4 method for signature 'COTAN'
estimateDispersionNuBisection(
objCOTAN,
threshold = 0.001,
cores = 1L,
maxIterations = 100L,
chunkSize = 1024L,
enforceNuAverageToOne = TRUE

)

S4 method for signature 'COTAN'
estimateDispersionNuNlminb(
objCOTAN,
threshold = 0.001,
maxIterations = 50L,
chunkSize = 1024L,
enforceNuAverageToOne = TRUE

)

S4 method for signature 'COTAN'
getNu(objCOTAN)

S4 method for signature 'COTAN'

54 ParametersEstimations

getLambda(objCOTAN)

S4 method for signature 'COTAN'
getDispersion(objCOTAN)

estimatorsAreReady(objCOTAN)

getNuNormData(objCOTAN)

getLogNormData(objCOTAN)

getNormalizedData(objCOTAN, retLog = FALSE)

getProbabilityOfZero(objCOTAN)

Arguments

objCOTAN a COTAN object

threshold minimal solution precision

cores number of cores to use. Default is 1.

maxIterations max number of iterations (avoids infinite loops)

chunkSize number of elements to solve in batch in a single core. Default is 1024.
enforceNuAverageToOne

a Boolean on whether to keep the average nu equal to 1

retLog When TRUE calls getLogNormData(), calls getNuNormData()

Details

estimateLambdaLinear() does a linear estimation of lambda (genes’ counts averages)

estimateNuLinear() does a linear estimation of nu (normalized cells’ counts averages)

estimateDispersionViaSolver() estimates the negative binomial dispersion factor for each gene
(dispersion). Determines the value such that, for each gene, the probability of zero count matches
the number of observed zeros. It assumes estimateNuLinear() being already run.

estimateNuBisection() estimates the nu vector of a COTAN object by bisection. It determines the
nu parameters such that, for each cell, the probability of zero counts matches the number of ob-
served zeros. It assumes estimateDispersionViaSolver() being already run. Since this breaks
the assumption that the average nu is one, it is recommended not to run this in isolation but use
estimateDispersionNuBisection() instead.

estimateDispersionNuBisection() estimates the dispersion and nu field of a COTAN object by
running sequentially a bisection for each parameter.

estimateDispersionNuNlminb() estimates the nu and dispersion parameters to minimize the
discrepancy between the observed and expected probability of zero. It uses the stats::nlminb()
solver, but since the joint parameters have too high dimensionality, it converges too slowly to be
actually useful in real cases.

getNu() extracts the nu array (normalized cells’ counts averages)

ParametersEstimations 55

getLambda() extracts the lambda array (mean expression for each gene)

getDispersion() extracts the dispersion array (one value for each gene)

estimatorsAreReady() checks whether the estimators arrays lambda, nu, dispersion are avail-
able

getNuNormData() extracts the ν-normalized count table (i.e. where each column is divided by nu)
and returns it

getLogNormData() extracts the log-normalized count table (i.e. where each column is divided by
the getCellsSize()), takes its log10 and returns it.

getNormalizedData() is deprecated: please use getNuNormData() or getLogNormData() di-
rectly as appropriate

getProbabilityOfZero() gives for each cell and each gene the probability of observing zero reads

Value

estimateLambdaLinear() returns the updated COTAN object

estimateNuLinear() returns the updated COTAN object

estimateDispersionViaSolver() returns the updated COTAN object

estimateNuBisection() returns the updated COTAN object

estimateDispersionNuBisection() returns the updated COTAN object

estimateDispersionNuNlminb() returns the updated COTAN object

getNu() returns the nu array

getLambda() returns the lambda array

getDispersion() returns the dispersion array

estimatorsAreReady() returns a boolean specifying whether all three arrays are non-empty

getNuNormData() returns the ν-normalized count data.frame

getLogNormData() returns a data.frame after applying the formula log10 (10
4 ∗ x+ 1) to the raw

counts normalized by cells-size

getNormalizedData() returns a data.frame

getProbabilityOfZero() returns a data.frame with the probabilities of zero

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)

objCOTAN <- estimateLambdaLinear(objCOTAN)
lambda <- getLambda(objCOTAN)

objCOTAN <- estimateNuLinear(objCOTAN)
nu <- getNu(objCOTAN)

objCOTAN <- estimateDispersionViaSolver(objCOTAN, cores = 6L)
dispersion <- getDispersion(objCOTAN)

56 RawDataCleaning

objCOTAN <- estimateDispersionNuBisection(objCOTAN, cores = 6L,
enforceNuAverageToOne = TRUE)

nu <- getNu(objCOTAN)
dispersion <- getDispersion(objCOTAN)

nuNorm <- getNuNormData(objCOTAN)

logNorm <- getLogNormData(objCOTAN)

logNorm <- getNormalizedData(objCOTAN, retLog = TRUE)

probZero <- getProbabilityOfZero(objCOTAN)

RawDataCleaning Raw data cleaning

Description

These methods are to be used to clean the raw data. That is drop any number of genes/cells that are
too sparse or too present to allow proper calibration of the COTAN model.

We call genes that are expressed in all cells Fully-Expressed while cells that express all genes in
the data are called Fully-Expressing. In case it has been made quite easy to exclude the flagged
genes/cells in the user calculations.

Usage

S4 method for signature 'COTAN'
flagNotFullyExpressedGenes(objCOTAN)

S4 method for signature 'COTAN'
flagNotFullyExpressingCells(objCOTAN)

S4 method for signature 'COTAN'
getFullyExpressedGenes(objCOTAN)

S4 method for signature 'COTAN'
getFullyExpressingCells(objCOTAN)

S4 method for signature 'COTAN'
findFullyExpressedGenes(objCOTAN, cellsThreshold = 0.99)

S4 method for signature 'COTAN'
findFullyExpressingCells(objCOTAN, genesThreshold = 0.99)

S4 method for signature 'COTAN'
setLambda(objCOTAN, lambda)

RawDataCleaning 57

S4 method for signature 'COTAN'
setDispersion(objCOTAN, dispersion)

S4 method for signature 'COTAN'
setNu(objCOTAN, nu)

S4 method for signature 'COTAN'
dropGenesCells(
objCOTAN,
genes = vector(mode = "character"),
cells = vector(mode = "character")

)

ECDPlot(objCOTAN, yCut = NaN, condName = "", conditions = NULL)

S4 method for signature 'COTAN'
clean(
objCOTAN,
cellsCutoff = 0.003,
genesCutoff = 0.002,
cellsThreshold = 0.99,
genesThreshold = 0.99

)

cleanPlots(objCOTAN, includePCA = TRUE)

screePlot(pcaStdDev)

cellSizePlot(objCOTAN, condName = "", conditions = NULL)

genesSizePlot(objCOTAN, condName = "", conditions = NULL)

mitochondrialPercentagePlot(
objCOTAN,
genePrefix = "^MT-",
condName = "",
conditions = NULL

)

scatterPlot(objCOTAN, condName = "", conditions = NULL, splitSamples = TRUE)

Arguments

objCOTAN a COTAN object

cellsThreshold any gene that is expressed in more cells than threshold times the total number of
cells will be marked as fully-expressed. Default threshold is 0.99 (99.0%)

genesThreshold any cell that is expressing more genes than threshold times the total number of
genes will be marked as fully-expressing. Default threshold is 0.99 (99.0%)

58 RawDataCleaning

lambda a named array that gives the values for lambda

dispersion a named array that gives the values for the dispersion

nu A named array that gives

genes an array of gene names

cells an array of cell names

yCut y threshold of library size to drop. Default is NaN

condName The name of a condition in the COTAN object to further separate the cells in more
sub-groups. When no condition is given it is assumed to be the same for all cells
(no further sub-divisions)

conditions The conditions to use. If given it will take precedence on the one indicated
by condName that will only indicate the relevant column name in the returned
data.frame

cellsCutoff clean() will delete from the raw data any gene that is expressed in less cells
than threshold times the total number of cells. Default cutoff is 0.003 (0.3%)

genesCutoff clean() will delete from the raw data any cell that is expressing less genes than
threshold times the total number of genes. Default cutoff is 0.002 (0.2%)

includePCA a Boolean flag to determine whether to calculate the PCA associated with the
normalized matrix. When TRUE the first four elements of the returned list will
be NULL

pcaStdDev a vector with the standard deviations of the various components

genePrefix Prefix for the mitochondrial genes (default "^MT-" for Human, mouse "^mt-")

splitSamples Boolean. Whether to plot each sample in a different panel (default FALSE)

Details

flagNotFullyExpressedGenes() returns a Boolean array with TRUE for those genes that are not
fully-expressed.

flagNotFullyExpressingCells()returns a Boolean vector with TRUE for those cells that are not
expressing all genes

getFullyExpressedGenes() returns the genes expressed in all cells of the dataset

getFullyExpressingCells() returns the cells that did express all genes of the dataset

findFullyExpressedGenes() determines the fully-expressed genes inside the raw data

findFullyExpressingCells() determines the cells that are expressing all genes in the dataset

setLambda() adds a column to the genes’ metadata with the lambda (genes’ counts averages) for
the given batch

setDispersion() adds a column to the genes’ metadata with the negative binomial dispersion
factor for the given batch

setNu()

dropGenesCells() removes an array of genes and/or cells from the current COTAN object.

ECDPlot() plots the Empirical Cumulative Distribution function of library sizes (UMI number). It
helps to define where to drop "cells" that are simple background signal.

RawDataCleaning 59

clean() is the main method that can be used to check and clean the dataset. It will discard any
genes that has less than 3 non-zero counts per thousand cells and all cells expressing less than 2 per
thousand genes. also produces and stores the estimators for nu

cleanPlots() creates the plots associated to the output of the clean() method.

screePlot() creates a plots showing the explained variance of the components of a PCA

cellSizePlot() plots the raw library size for each cell and sample.

genesSizePlot() plots the raw gene number (reads > 0) for each cell and sample

mitochondrialPercentagePlot() plots the raw library size for each cell and sample.

scatterPlot() creates a plot that check the relation between the library size and the number of
genes detected.

Value

flagNotFullyExpressedGenes() returns a Booleans array with TRUE for genes that are not fully-
expressed

flagNotFullyExpressingCells() returns an array of Booleans with TRUE for cells that are not
expressing all genes

getFullyExpressedGenes() returns an array containing all genes that are expressed in all cells

getFullyExpressingCells() returns an array containing all cells that express all genes

findFullyExpressedGenes() returns the given COTAN object with updated fully-expressed genes’
information

findFullyExpressingCells() returns the given COTAN object with updated fully-expressing cells’
information

setLambda() returns the updated COTAN object

setDispersion() returns the updated COTAN object

setNu() returns the updated COTAN object

dropGenesCells() returns a completely new COTAN object with the new raw data obtained after
the indicated genes/cells were expunged. All remaining data is dropped too as no more relevant
with the restricted matrix. Exceptions are:

• the meta-data for the data-set that gets kept unchanged

• the meta-data of genes/cells that gets restricted to the remaining elements. The columns cal-
culated via estimate and find methods are dropped too

ECDPlot() returns an ECD plot

clean() returns the updated COTAN object

cleanPlots() returns a list of ggplot2 plots:

• "pcaCells" is for PCA cells

• "pcaCellsData" is the data of the PCA cells (can be plotted)

• "genes" is for B group cells’ genes

• "UDE" is for cells’ UDE against their PCA

• "nu" is for cell nu

60 RawDataCleaning

• "zoomedNu" is the same but zoomed on the left and with an estimate for the low nu threshold
that defines problematic cells

screePlot() returns a ggplot2 plot for the explained variances

cellSizePlot() returns a half-violin-boxplot object

genesSizePlot() returns a half-violin-boxplot object

mitochondrialPercentagePlot() returns a list with:

• "plot" a half-violin-boxplot object

• "sizes" a sizes data.frame

scatterPlot() returns the scatter plot

Examples

library(zeallot)

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)

genes.to.rem <- getGenes(objCOTAN)[grep('^MT', getGenes(objCOTAN))]
cells.to.rem <- getCells(objCOTAN)[which(getCellsSize(objCOTAN) == 0)]
objCOTAN <- dropGenesCells(objCOTAN, genes.to.rem, cells.to.rem)

objCOTAN <- clean(objCOTAN)

objCOTAN <- findFullyExpressedGenes(objCOTAN)
goodPos <- flagNotFullyExpressedGenes(objCOTAN)

objCOTAN <- findFullyExpressingCells(objCOTAN)
goodPos <- flagNotFullyExpressingCells(objCOTAN)

feGenes <- getFullyExpressedGenes(objCOTAN)

feCells <- getFullyExpressingCells(objCOTAN)

These plots might help to identify genes/cells that need to be dropped
ecdPlot <- ECDPlot(objCOTAN, yCut = 100.0)
plot(ecdPlot)

This creates many infomative plots useful to determine whether
there is still something to drop...
Here we use the tuple-like assignment feature of the `zeallot` package
clPlots <- cleanPlots(objCOTAN)
plot(clPlots[["pcaCells"]])
plot(clPlots[["UDE"]])
plot(clPlots[["zoomedNu"]])

lsPlot <- cellSizePlot(objCOTAN)
plot(lsPlot)

gsPlot <- genesSizePlot(objCOTAN)

RawDataGetters 61

plot(gsPlot)

mitPercPlot <-
mitochondrialPercentagePlot(objCOTAN, genePrefix = "g-0000")[["plot"]]

plot(mitPercPlot)

scPlot <- scatterPlot(objCOTAN)
plot(scPlot)

RawDataGetters Raw data COTAN accessors

Description

These methods extract information out of a just created COTAN object. The accessors have read-only
access to the object.

Usage

S4 method for signature 'COTAN'
getRawData(objCOTAN)

S4 method for signature 'COTAN'
getNumCells(objCOTAN)

S4 method for signature 'COTAN'
getNumGenes(objCOTAN)

S4 method for signature 'COTAN'
getCells(objCOTAN)

S4 method for signature 'COTAN'
getGenes(objCOTAN)

S4 method for signature 'COTAN'
getZeroOneProj(objCOTAN)

S4 method for signature 'COTAN'
getCellsSize(objCOTAN)

S4 method for signature 'COTAN'
getNumExpressedGenes(objCOTAN)

S4 method for signature 'COTAN'
getGenesSize(objCOTAN)

S4 method for signature 'COTAN'
getNumOfExpressingCells(objCOTAN)

62 RawDataGetters

Arguments

objCOTAN a COTAN object

Details

getRawData() extracts the raw count table.

getNumCells() extracts the number of cells in the sample (m)

getNumGenes() extracts the number of genes in the sample (n)

getCells() extract all cells in the dataset.

getGenes() extract all genes in the dataset.

getZeroOneProj() extracts the raw count table where any positive number has been replaced with
1

getCellsSize() extracts the cell raw library size.

getNumExpressedGenes() extracts the number of genes expressed for each cell. Exploits a feature
of Matrix::CsparseMatrix

getGenesSize() extracts the genes raw library size.

getNumOfExpressingCells() extracts, for each gene, the number of cells that are expressing it.
Exploits a feature of Matrix::CsparseMatrix

Value

getRawData() returns the raw count sparse matrix

getNumCells() returns the number of cells in the sample (m)

getNumGenes() returns the number of genes in the sample (n)

getCells() returns a character array with the cells’ names

getGenes() returns a character array with the genes’ names

getZeroOneProj() returns the raw count matrix projected to 0 or 1

getCellsSize() returns an array with the library sizes

getNumExpressedGenes() returns an array with the library sizes

getGenesSize() returns an array with the library sizes

getNumOfExpressingCells() returns an array with the library sizes

Examples

data("test.dataset")
objCOTAN <- COTAN(raw = test.dataset)

rawData <- getRawData(objCOTAN)

numCells <- getNumCells(objCOTAN)

numGenes <- getNumGenes(objCOTAN)

cellsNames <- getCells(objCOTAN)

UniformClusters 63

genesNames <- getGenes(objCOTAN)

zeroOne <- getZeroOneProj(objCOTAN)

cellsSize <- getCellsSize(objCOTAN)

numExpGenes <- getNumExpressedGenes(objCOTAN)

genesSize <- getGenesSize(objCOTAN)

numExpCells <- getNumOfExpressingCells(objCOTAN)

UniformClusters Uniform Clusters

Description

This group of functions takes in input a COTAN object and handle the task of dividing the dataset into
Uniform Clusters, that is clusters that have an homogeneous genes’ expression. This condition is
checked by calculating the GDI of the cluster and verifying that no more than a small fraction of the
genes have their GDI level above the given GDIThreshold

Usage

GDIPlot(
objCOTAN,
genes,
condition = "",
statType = "S",
GDIThreshold = 1.43,
GDIIn = NULL

)

cellsUniformClustering(
objCOTAN,
checker = NULL,
GDIThreshold = NaN,
initialResolution = 0.8,
maxIterations = 25L,
cores = 1L,
optimizeForSpeed = TRUE,
deviceStr = "cuda",
useDEA = TRUE,
distance = NULL,
useCoexEigen = FALSE,
dataMethod = "",

64 UniformClusters

genesSel = "HVG_Seurat",
numGenes = 2000L,
numReducedComp = 25L,
hclustMethod = "ward.D2",
initialClusters = NULL,
initialIteration = 1L,
saveObj = TRUE,
outDir = "."

)

checkClusterUniformity(
objCOTAN,
clusterName,
cells,
checker,
cores = 1L,
optimizeForSpeed = TRUE,
deviceStr = "cuda",
saveObj = TRUE,
outDir = "."

)

mergeUniformCellsClusters(
objCOTAN,
clusters = NULL,
checkers = NULL,
GDIThreshold = NaN,
batchSize = 0L,
cores = 1L,
optimizeForSpeed = TRUE,
deviceStr = "cuda",
useDEA = TRUE,
distance = NULL,
hclustMethod = "ward.D2",
allCheckResults = data.frame(),
initialIteration = 1L,
saveObj = TRUE,
outDir = "."

)

Arguments

objCOTAN a COTAN object

genes a named list of genes to label. Each array will have different color.

condition a string corresponding to the condition/sample (it is used only for the title).

statType type of statistic to be used. Default is "S": Pearson’s chi-squared test statistics.
"G" is G-test statistics

UniformClusters 65

GDIThreshold legacy. The threshold level that is used in a SimpleGDIUniformityCheck. It
defaults to 1.43

GDIIn when the GDI data frame was already calculated, it can be put here to speed up
the process (default is NULL)

checker the object that defines the method and the threshold to discriminate whether a
cluster is uniform transcript. See UniformTranscriptCheckers for more details

initialResolution

a number indicating how refined are the clusters before checking for uniformity.
It defaults to 0.8, the same as Seurat::FindClusters()

maxIterations max number of re-clustering iterations. It defaults to 25

cores number of cores to use. Default is 1.
optimizeForSpeed

Boolean; when TRUE COTAN tries to use the torch library to run the matrix cal-
culations. Otherwise, or when the library is not available will run the slower
legacy code

deviceStr On the torch library enforces which device to use to run the calculations. Pos-
sible values are "cpu" to us the system CPU, "cuda" to use the system GPUs
or something like "cuda:0" to restrict to a specific device

useDEA Boolean indicating whether to use the DEA to define the distance; alternatively
it will use the average Zero-One counts, that is faster but less precise.

distance type of distance to use. Default is "cosine" for DEA and "euclidean" for
Zero-One. Can be chosen among those supported by parallelDist::parDist()

useCoexEigen Boolean to determine whether to project the data matrix onto the first eigen-
vectors of the COEX matrix or instead restrict the data matrix to the selected
genes before applying the PCA reduction

dataMethod selects the method to use to create the data.frame to pass to the UMAPPlot().
See getDataMatrix() for more details.

genesSel Decides whether and how to perform the gene-selection (defaults to "HVG_Seurat").
See getSelectedGenes() for more details.

numGenes the number of genes to select using the above method. Will be ignored when an
explicit list of genes has been passed in

numReducedComp the number of calculated RDM components

hclustMethod It defaults is "ward.D2" but can be any of the methods defined by the stats::hclust()
function.

initialClusters

an existing clusterization to use as starting point: the clusters deemed uniform
will be kept and the remaining cells will be processed as normal

initialIteration

the number associated tot he first iteration; it defaults to 1. Useful in case of
restart of the procedure to avoid intermediate data override

saveObj Boolean flag; when TRUE saves intermediate analyses and plots to file

outDir an existing directory for the analysis output. The effective output will be paced
in a sub-folder.

66 UniformClusters

clusterName the tag of the cluster
cells the cells belonging to the cluster
clusters The clusterization to merge. If not given the last available clusterization will be

used, as it is probably the most significant!
checkers a list of objects that defines the method and the increasing thresholds to dis-

criminate whether to merge two clusters if deemed uniform transcript. See Uni-
formTranscriptCheckers for more details

batchSize Number pairs to test in a single round. If none of them succeeds the merge stops.
Defaults to 2(#cl)2/3

allCheckResults

An optional data.frame with the results of previous checks about the merging
of clusters. Useful to restart the merging process after an interruption.

Details

GDIPlot() directly evaluates and plots the GDI for a sample.

cellsUniformClustering() finds a Uniform clusterizations by means of the GDI. Once a pre-
liminary clusterization is obtained from the Seurat-package methods, each cluster is checked for
uniformity via the function checkClusterUniformity(). Once all clusters are checked, all cells
from the non-uniform clusters are pooled together for another iteration of the entire process, until
all clusters are deemed uniform. In the case only a few cells are left out (≤ 50), those are flagged
as "-1" and the process is stopped.

checkClusterUniformity() takes a COTAN object and a cells’ cluster and checks whether the latter
is uniform by looking at the genes’ GDI distribution. The function runs checkObjIsUniform() on
the given input checker

mergeUniformCellsClusters() takes in a uniform clusterization and progressively checks whether
merging two near clusters would form a uniform cluster still. Multiple thresholds will be used from
1.37 up to the given one in order to prioritize merge of the best fitting pairs.

This function uses the cosine distance to establish the nearest clusters pairs. It will use the checkClusterUniformity()
function to check whether the merged clusters are uniform. The function will stop once no tested
pairs of clusters can be merged after testing all pairs in a single batch

Value

GDIPlot() returns a ggplot2 object with a point got each gene, where on the ordinates are the GDI
levels and on the abscissa are the average gene expression (log scaled). Also marked are the given
threshold (in red) and the 50% and 75% quantiles (in blue).

cellsUniformClustering() returns a list with 2 elements:

• "clusters" the newly found cluster labels array
• "coex" the associated COEX data.frame

checkClusterUniformity returns a checker object of the same type as the input one, that contains
both threshold and results of the check: see UniformTranscriptCheckers for more details

a list with:

• "clusters" the merged cluster labels array
• "coex" the associated COEX data.frame

UniformClusters 67

Examples

data("test.dataset")

objCOTAN <- automaticCOTANObjectCreation(raw = test.dataset,
GEO = "S",
sequencingMethod = "10X",
sampleCondition = "Test",
cores = 6L,
saveObj = FALSE)

objCOTAN <- storeGDI(objCOTAN, genesGDI = calculateGDI(objCOTAN, cores = 6L))

groupMarkers <- list(G1 = c("g-000010", "g-000020", "g-000138"),
G2 = c("g-000300", "g-000330"),
G3 = c("g-000510", "g-000530", "g-000550",

"g-000570", "g-000590"))

gdiPlot <- GDIPlot(objCOTAN, genes = groupMarkers, cond = "test")
plot(gdiPlot)

Here we override the default checker as a way to reduce the number of
clusters as higher thresholds imply less stringent uniformity checks
##
In real applications it might be appropriate to do so in the cases when
the wanted resolution is lower such as in the early stages of the analysis
##

checker <- new("AdvancedGDIUniformityCheck")
stopifnot(identical(checker@firstCheck@GDIThreshold, 1.297))

checker2 <- shiftCheckerThresholds(checker, 0.1)
stopifnot(identical(checker2@firstCheck@GDIThreshold, 1.397))

splitList <- cellsUniformClustering(objCOTAN, cores = 6L,
dataMethod = "LogLikelihood",
useCoexEigen = TRUE,
genesSel = "HGDI",
numGenes = 2000L,
numReducedComp = 50L,
initialResolution = 0.8,
checker = checker2,
saveObj = FALSE)

clusters <- splitList[["clusters"]]

firstCluster <- getCells(objCOTAN)[clusters %in% clusters[[1L]]]

checkerRes <-
checkClusterUniformity(objCOTAN, checker = checker2,

clusterName = clusters[[1L]], cells = firstCluster,
cores = 6L, optimizeForSpeed = TRUE,
deviceStr = "cuda", saveObj = FALSE)

68 UniformTranscriptCheckers

objCOTAN <- addClusterization(objCOTAN,
clName = "split",
clusters = clusters,
coexDF = splitList[["coex"]],
override = FALSE)

stopifnot(identical(reorderClusterization(objCOTAN)[["clusters"]], clusters))

It is possible to pass a list of checkers tot the merge function that will
be applied each to the *resulting* merged *clusterization* obtained using
the previous checker. This ensures that the most similar clusters are
merged first improving the overall performance

mergedList <- mergeUniformCellsClusters(objCOTAN,
checkers = c(checker, checker2),
clusters = clusters,
cores = 6L,
optimizeForSpeed = TRUE,
deviceStr = "cpu",
distance = "cosine",
hclustMethod = "ward.D2",
saveObj = FALSE)

objCOTAN <- addClusterization(objCOTAN,
clName = "merged",
clusters = mergedList[["clusters"]],
coexDF = mergedList[["coex"]],
override = TRUE)

stopifnot(identical(reorderClusterization(objCOTAN)[["clusters"]],
mergedList[["clusters"]]))

UniformTranscriptCheckers

Definition of the Transcript Uniformity Checker classes

Description

A hierarchy of classes to specify the method for checking whether a cluster has the Uniform Tran-
script property. It also doubles as result object.

getCheckerThreshold() extracts the main GDI threshold from the given checker object

calculateThresholdShiftToUniformity() calculates by how much the GDI thresholds in the
given checker must be increased in order to have that the relevant cluster is deemed uniform tran-
script

shiftCheckerThresholds() returns a new checker object where the GDI thresholds where in-
creased in order to relax the conditions to achieve uniform transcript

UniformTranscriptCheckers 69

Usage

S4 method for signature 'SimpleGDIUniformityCheck'
checkObjIsUniform(currentC, previousC = NULL, objCOTAN = NULL)

S4 method for signature 'AdvancedGDIUniformityCheck'
checkObjIsUniform(currentC, previousC = NULL, objCOTAN = NULL)

checkersToDF(checkers)

dfToCheckers(df, checkerClass = "")

S4 method for signature 'SimpleGDIUniformityCheck'
getCheckerThreshold(checker)

S4 method for signature 'AdvancedGDIUniformityCheck'
getCheckerThreshold(checker)

S4 method for signature 'SimpleGDIUniformityCheck'
calculateThresholdShiftToUniformity(checker)

S4 method for signature 'AdvancedGDIUniformityCheck'
calculateThresholdShiftToUniformity(checker)

S4 method for signature 'SimpleGDIUniformityCheck,numeric'
shiftCheckerThresholds(checker, shift)

S4 method for signature 'AdvancedGDIUniformityCheck,numeric'
shiftCheckerThresholds(checker, shift)

Arguments

currentC the object that defines the method and the threshold to discriminate whether a
cluster is uniform transcript.

previousC the optional result object of an already done check

objCOTAN an optional COTAN object

checkers a list of objects that defines the method, the thresholds and the results of the
checks to discriminate whether a cluster is deemed uniform transcript.

df a data.frame with col-names being the member names and row-names the
names attached to each checker

checkerClass the type of the checker to be reconstructed from the given data.frame

checker An checker object that defines how to check for uniform transcript. It is derived
from BaseUniformityCheck

shift The amount by which to shift the GDI thresholds in the checker

Details

BaseUniformityCheck is the base class of the check methods

70 UniformTranscriptCheckers

GDICheck represents a single unit check using GDI data. It defaults to an above check with threshold
1.4 and ratio 1%

SimpleGDIUniformityCheck represents the simplified (and legacy) mechanism to determine whether
a cluster has the Uniform Transcript property

The method is based on checking whether the fraction of the genes’ GDI below the given threshold
is less than the given ratio

AdvancedGDIUniformityCheck represents the more precise and advanced mechanism to determine
whether a cluster has the Uniform Transcript property

The method is based on checking the genes’ GDI against three thresholds: if a cluster fails the first
below check is deemed not uniform. Otherwise if it passes either of the other two checks (one above
and one below) it is deemed uniform.

checkObjIsUniform() performs the check whether the given object is uniform according to the
given checker

checkersToDF() converts a list of checkers (i.e. objects that derive from BaseUniformityCheck)
into a data.frame with the values of the members

dfToCheckers() converts a data.frame of checkers values into an array of checkers ensuring
given data.frame is compatible with member types

Value

a copy of currentC with the results of the check. Note that the slot clusterSize will be set to zero
if it is not possible to get the result of the check

a data.frame with col-names being the member names and row-names the names attached to each
checker

dfToCheckers() returns a list of checkers of the requested type, each created from one of
data.frame rows

getCheckerThreshold() returns the appropriate member of the checker object representing the
main GDI threshold

calculateThresholdShiftToUniformity() returns the positive shift that would make the @isUniform
slot TRUE in the checker. It returns zero if the result is already TRUE and NaN in case no such shift
can exist (e.g. the check have been not done yet)

shiftCheckerThresholds() returns a copy of the checker object where all GDI thresholds have
been shifted by the same given shift amount

Slots

isUniform Logical. Output. The result of the check

clusterSize Integer. Output. The number of cells in the checked cluster. When zero implies no
check has been run yet

isCheckAbove Logical. Determines how to compare quantiles against given thresholds. It is
deemed passed if the relevant quantile is above/below the given threshold

GDIThreshold Numeric. The level of GDI beyond which the cluster is deemed not uniform. De-
faults

UniformTranscriptCheckers 71

maxRatioBeyond Numeric. The maximum fraction of the empirical GDI distribution that sits be-
yond the GDI threshold

maxRankBeyond Integer. The minimum rank in the empirical GDI distribution for the GDI threshold

fractionBeyond Numeric. Output. The fraction of genes whose GDI is above the threshold

thresholdRank Integer. Output. The rank that the GDI threshold would have in the genes’ GDI
vector

quantileAtRatio Numeric. Output. The quantile in the genes’ GDI corresponding at the given
ratio

quantileAtRatio Numeric. Output. The quantile in the genes’ GDI corresponding at the given
rank

check GDICheck. The single threshold check used to determine whether the cluster is deemed not
uniform. Threshold defaults to 1.4, maxRatioBeyond to 1%

firstCheck GDICheck. Single threshold below check used to determine whether the cluster is
deemed not uniform. Threshold defaults to 1.297, maxRatioBeyond to 5%

secondCheck GDICheck. Single threshold above check used to determine whether the cluster is
deemed uniform. Threshold defaults to 1.307, maxRatioBeyond to 2%

thirdCheck GDICheck. Single threshold below check used to determine whether the cluster is
deemed uniform. Threshold defaults to 1.4, maxRatioBeyond to 1%

fourthCheck GDICheck. Single threshold below check used to determine whether the cluster is
deemed uniform. Threshold defaults to 1.4, maxRankBeyond to 2

Index

∗ datasets
Datasets, 12

addClusterization
(HandlingClusterizations), 32

addClusterization,COTAN-method
(HandlingClusterizations), 32

addClusterizationCoex
(HandlingClusterizations), 32

addClusterizationCoex,COTAN-method
(HandlingClusterizations), 32

addCondition (HandlingConditions), 42
addCondition,COTAN-method

(HandlingConditions), 42
addElementToMetaDataset

(HandleMetaData), 28
addElementToMetaDataset,COTAN-method

(HandleMetaData), 28
AdvancedGDIUniformityCheck-class

(UniformTranscriptCheckers), 68
asClusterization (ClustersList), 3
automaticCOTANObjectCreation

(COTAN_ObjectCreation), 9

BaseUniformityCheck, 69
BaseUniformityCheck-class

(UniformTranscriptCheckers), 68
bzfile(), 48

calcDist (NumericUtilities), 49
calculateCoex (getMu), 18
calculateCoex(), 11, 32
calculateCoex,COTAN-method (getMu), 18
calculateG (getMu), 18
calculateGDI (getGDI,COTAN-method), 14
calculateGDI(), 16
calculateGDIGivenCorr

(getGDI,COTAN-method), 14
calculateGDIGivenS

(getGDI,COTAN-method), 14

calculateGenesCE (getGDI,COTAN-method),
14

calculateLikelihoodOfObserved (getMu),
18

calculateLikelihoodOfObserved(), 22
calculateMu (getMu), 18
calculatePartialCoex (getMu), 18
calculatePDI (getGDI,COTAN-method), 14
calculatePValue (getGDI,COTAN-method),

14
calculatePValue(), 17
calculateReducedDataMatrix (getMu), 18
calculateS (getMu), 18
calculateThresholdShiftToUniformity

(UniformTranscriptCheckers), 68
calculateThresholdShiftToUniformity,AdvancedGDIUniformityCheck-method

(UniformTranscriptCheckers), 68
calculateThresholdShiftToUniformity,SimpleGDIUniformityCheck-method

(UniformTranscriptCheckers), 68
CalculatingCOEX (getMu), 18
canUseTorch (MultiThreading), 48
cellsHeatmapPlot (HeatmapPlots), 44
cellSizePlot (RawDataCleaning), 56
cellsUMAPPlot

(HandlingClusterizations), 32
cellsUniformClustering

(UniformClusters), 63
checkClusterUniformity

(UniformClusters), 63
checkClusterUniformity(), 66
checkersToDF

(UniformTranscriptCheckers), 68
checkObjIsUniform

(UniformTranscriptCheckers), 68
checkObjIsUniform(), 66
checkObjIsUniform,AdvancedGDIUniformityCheck-method

(UniformTranscriptCheckers), 68
checkObjIsUniform,SimpleGDIUniformityCheck-method

(UniformTranscriptCheckers), 68

72

INDEX 73

clean (RawDataCleaning), 56
clean(), 59
clean,COTAN-method (RawDataCleaning), 56
cleanPlots (RawDataCleaning), 56
clusterGeneContingencyTables

(HandlingClusterizations), 32
clustersDeltaExpression (COTAN_Legacy),

7
ClustersList, 3
clustersMarkersHeatmapPlot

(HandlingClusterizations), 32
clustersSummaryData

(HandlingClusterizations), 32
clustersSummaryData(), 36, 38
clustersSummaryPlot

(HandlingClusterizations), 32
clustersTreePlot

(HandlingClusterizations), 32
clustersTreePlot(), 38
conditionsFromNames (HandleStrings), 31
contingencyTables (getMu), 18
Conversions, 5
convertFromSingleCellExperiment

(Conversions), 5
convertToSingleCellExperiment

(Conversions), 5
COTAN, 5, 6, 9
COTAN (COTAN_ObjectCreation), 9
COTAN-class, 7
COTAN_coerce_to_scCOTAN (COTAN_Legacy),

7
COTAN_Legacy, 7
COTAN_ObjectCreation, 9

Datasets, 12
datasetTags (HandleMetaData), 28
DEAOnClusters

(HandlingClusterizations), 32
DEAOnClusters(), 8, 38
dfToCheckers

(UniformTranscriptCheckers), 68
dispersionBisection (NumericUtilities),

49
dispersionNewton (NumericUtilities), 49
distancesBetweenClusters

(HandlingClusterizations), 32
dropCellsCoex (getMu), 18
dropCellsCoex,COTAN-method (getMu), 18

dropClusterization
(HandlingClusterizations), 32

dropClusterization,COTAN-method
(HandlingClusterizations), 32

dropCondition (HandlingConditions), 42
dropCondition,COTAN-method

(HandlingConditions), 42
dropGenesCells (RawDataCleaning), 56
dropGenesCells,COTAN-method

(RawDataCleaning), 56
dropGenesCoex (getMu), 18
dropGenesCoex,COTAN-method (getMu), 18

ECDPlot (RawDataCleaning), 56
ERCCraw (Datasets), 12
establishGenesClusters

(getGDI,COTAN-method), 14
estimateDispersionBisection

(ParametersEstimations), 52
estimateDispersionNuBisection

(ParametersEstimations), 52
estimateDispersionNuBisection(), 54
estimateDispersionNuBisection,COTAN-method

(ParametersEstimations), 52
estimateDispersionNuNlminb

(ParametersEstimations), 52
estimateDispersionNuNlminb,COTAN-method

(ParametersEstimations), 52
estimateDispersionViaSolver

(ParametersEstimations), 52
estimateDispersionViaSolver(), 10, 51,

54
estimateDispersionViaSolver,COTAN-method

(ParametersEstimations), 52
estimateLambdaLinear

(ParametersEstimations), 52
estimateLambdaLinear,COTAN-method

(ParametersEstimations), 52
estimateNuBisection

(ParametersEstimations), 52
estimateNuBisection(), 52
estimateNuBisection,COTAN-method

(ParametersEstimations), 52
estimateNuLinear

(ParametersEstimations), 52
estimateNuLinear(), 54
estimateNuLinear,COTAN-method

(ParametersEstimations), 52

74 INDEX

estimateNuLinearByCluster
(HandlingClusterizations), 32

estimateNuLinearByCluster,COTAN-method
(HandlingClusterizations), 32

estimatorsAreReady
(ParametersEstimations), 52

expectedContingencyTables (getMu), 18
expectedContingencyTablesNN (getMu), 18
expectedPartialContingencyTables

(getMu), 18
expectedPartialContingencyTablesNN

(getMu), 18

factorToVector (HandleStrings), 31
FALSE, 42
findClustersMarkers

(HandlingClusterizations), 32
findFullyExpressedGenes

(RawDataCleaning), 56
findFullyExpressedGenes,COTAN-method

(RawDataCleaning), 56
findFullyExpressingCells

(RawDataCleaning), 56
findFullyExpressingCells,COTAN-method

(RawDataCleaning), 56
flagNotFullyExpressedGenes

(RawDataCleaning), 56
flagNotFullyExpressedGenes,COTAN-method

(RawDataCleaning), 56
flagNotFullyExpressingCells

(RawDataCleaning), 56
flagNotFullyExpressingCells,COTAN-method

(RawDataCleaning), 56
fromClustersList (ClustersList), 3
funProbZero (NumericUtilities), 49

GDICheck-class
(UniformTranscriptCheckers), 68

GDIPlot (UniformClusters), 63
genesCoexSpace (getGDI,COTAN-method), 14
geneSetEnrichment

(HandlingClusterizations), 32
genesHeatmapPlot (HeatmapPlots), 44
genesSizePlot (RawDataCleaning), 56
GenesStatistics (getGDI,COTAN-method),

14
getAllConditions (HandlingConditions),

42

getAllConditions,COTAN-method
(HandlingConditions), 42

getCells (RawDataGetters), 61
getCells,COTAN-method (RawDataGetters),

61
getCellsCoex (getMu), 18
getCellsCoex,COTAN-method (getMu), 18
getCellsSize (RawDataGetters), 61
getCellsSize(), 55
getCellsSize,COTAN-method

(RawDataGetters), 61
getCheckerThreshold

(UniformTranscriptCheckers), 68
getCheckerThreshold,AdvancedGDIUniformityCheck-method

(UniformTranscriptCheckers), 68
getCheckerThreshold,SimpleGDIUniformityCheck-method

(UniformTranscriptCheckers), 68
getClusterizationData

(HandlingClusterizations), 32
getClusterizationData,COTAN-method

(HandlingClusterizations), 32
getClusterizationName

(HandlingClusterizations), 32
getClusterizationName,COTAN-method

(HandlingClusterizations), 32
getClusterizations

(HandlingClusterizations), 32
getClusterizations,COTAN-method

(HandlingClusterizations), 32
getClusters (HandlingClusterizations),

32
getClustersCoex

(HandlingClusterizations), 32
getClustersCoex,COTAN-method

(HandlingClusterizations), 32
getColorsVector, 14
getColorsVector(), 36
getColumnFromDF (HandleMetaData), 28
getCondition (HandlingConditions), 42
getCondition,COTAN-method

(HandlingConditions), 42
getConditionName (HandlingConditions),

42
getConditionName,COTAN-method

(HandlingConditions), 42
getDataMatrix (getMu), 18
getDataMatrix(), 36, 65
getDims (HandleMetaData), 28

INDEX 75

getDims,COTAN-method (HandleMetaData),
28

getDispersion (ParametersEstimations),
52

getDispersion,COTAN-method
(ParametersEstimations), 52

getFullyExpressedGenes
(RawDataCleaning), 56

getFullyExpressedGenes,COTAN-method
(RawDataCleaning), 56

getFullyExpressingCells
(RawDataCleaning), 56

getFullyExpressingCells,COTAN-method
(RawDataCleaning), 56

getGDI (getGDI,COTAN-method), 14
getGDI(), 16
getGDI,COTAN-method, 14
getGenes (RawDataGetters), 61
getGenes,COTAN-method (RawDataGetters),

61
getGenesCoex (getMu), 18
getGenesCoex,COTAN-method (getMu), 18
getGenesSize (RawDataGetters), 61
getGenesSize,COTAN-method

(RawDataGetters), 61
getLambda (ParametersEstimations), 52
getLambda,COTAN-method

(ParametersEstimations), 52
getLogNormData (ParametersEstimations),

52
getLogNormData(), 54, 55
getMetadataCells (HandleMetaData), 28
getMetadataCells,COTAN-method

(HandleMetaData), 28
getMetadataDataset (HandleMetaData), 28
getMetadataDataset,COTAN-method

(HandleMetaData), 28
getMetadataElement (HandleMetaData), 28
getMetadataElement,COTAN-method

(HandleMetaData), 28
getMetadataGenes (HandleMetaData), 28
getMetadataGenes,COTAN-method

(HandleMetaData), 28
getMetaInfoRow (HandleMetaData), 28
getMu, 18
getNormalizedData

(ParametersEstimations), 52
getNu (ParametersEstimations), 52

getNu,COTAN-method
(ParametersEstimations), 52

getNumCells (RawDataGetters), 61
getNumCells,COTAN-method

(RawDataGetters), 61
getNumExpressedGenes (RawDataGetters),

61
getNumExpressedGenes,COTAN-method

(RawDataGetters), 61
getNumGenes (RawDataGetters), 61
getNumGenes,COTAN-method

(RawDataGetters), 61
getNumOfExpressingCells

(RawDataGetters), 61
getNumOfExpressingCells,COTAN-method

(RawDataGetters), 61
getNuNormData (ParametersEstimations),

52
getNuNormData(), 54, 55
getProbabilityOfZero

(ParametersEstimations), 52
getRawData (RawDataGetters), 61
getRawData,COTAN-method

(RawDataGetters), 61
getSelectedGenes (getMu), 18
getSelectedGenes(), 36, 65
getZeroOneProj (RawDataGetters), 61
getZeroOneProj,COTAN-method

(RawDataGetters), 61
ggplot2::ggplot(), 45
ggplot2::theme(), 45
groupByClusters (ClustersList), 3
groupByClustersList (ClustersList), 3

HandleMetaData, 28
handleMultiCore (MultiThreading), 48
handleNamesSubsets (HandleStrings), 31
HandleStrings, 31
HandlingClusterizations, 32
HandlingConditions, 41
heatmapPlot (HeatmapPlots), 44
HeatmapPlots, 44

initializeMetaDataset (HandleMetaData),
28

initializeMetaDataset,COTAN-method
(HandleMetaData), 28

Installing_torch, 18, 26, 46
isCoexAvailable (getMu), 18

76 INDEX

isCoexAvailable,COTAN-method (getMu), 18
isEmptyName (HandleStrings), 31

logFoldChangeOnClusters
(HandlingClusterizations), 32

logFoldChangeOnClusters(), 40
LoggingFunctions, 47
logThis (LoggingFunctions), 47
logThis(), 48

mat2vec_rfast (COTAN_Legacy), 7
Matrix::CsparseMatrix, 62
mergeClusters (ClustersList), 3
mergeClusters(), 4
mergeUniformCellsClusters

(UniformClusters), 63
message(), 48
mitochondrialPercentagePlot

(RawDataCleaning), 56
multiMergeClusters (ClustersList), 3
MultiThreading, 48

niceFactorLevels (HandleStrings), 31
normalizeNameAndLabels

(HandlingConditions), 42
nuBisection (NumericUtilities), 49
NumericUtilities, 49

observedContingencyTables (getMu), 18
observedContingencyTablesYY (getMu), 18
observedPartialContingencyTables

(getMu), 18
observedPartialContingencyTablesYY

(getMu), 18

parallelDispersionBisection
(NumericUtilities), 49

parallelDispersionNewton
(NumericUtilities), 49

parallelDispersionNewton(), 52
parallelDist::parDist(), 16, 36, 51, 52,

65
parallelly::availableCores(), 49
parallelly::supportsMulticore(), 49
parallelNuBisection (NumericUtilities),

49
ParametersEstimations, 26, 52
plotTheme (HeatmapPlots), 44
proceedToCoex (COTAN_ObjectCreation), 9

proceedToCoex(), 11
proceedToCoex,COTAN-method

(COTAN_ObjectCreation), 9
pValueFromDEA

(HandlingClusterizations), 32

raw.dataset (Datasets), 12
RawDataCleaning, 56
RawDataGetters, 61
RColorBrewer::brewer.pal(), 14
RColorBrewer::brewer.pal.info(), 14
reorderClusterization

(HandlingClusterizations), 32

scatterPlot (RawDataCleaning), 56
scCOTAN-class (COTAN_Legacy), 7
scCotan_coerce_to_COTAN (COTAN_Legacy),

7
screePlot (RawDataCleaning), 56
setColumnInDF (HandleMetaData), 28
setDispersion (RawDataCleaning), 56
setDispersion,COTAN-method

(RawDataCleaning), 56
setLambda (RawDataCleaning), 56
setLambda,COTAN-method

(RawDataCleaning), 56
setLoggingFile (LoggingFunctions), 47
setLoggingLevel (LoggingFunctions), 47
setNu (RawDataCleaning), 56
setNu,COTAN-method (RawDataCleaning), 56
Seurat::FindClusters(), 65
Seurat::RunUMAP(), 37
shiftCheckerThresholds

(UniformTranscriptCheckers), 68
shiftCheckerThresholds,AdvancedGDIUniformityCheck,numeric-method

(UniformTranscriptCheckers), 68
shiftCheckerThresholds,SimpleGDIUniformityCheck,numeric-method

(UniformTranscriptCheckers), 68
SimpleGDIUniformityCheck, 65
SimpleGDIUniformityCheck-class

(UniformTranscriptCheckers), 68
SingleCellExperiment::SingleCellExperiment,

5, 6
singleHeatmapDF (HeatmapPlots), 44
stats::hclust(), 16, 36, 65
stats::nlminb(), 54
stats::p.adjust(), 38
stats::p.adjust.methods(), 35
stderr(), 48

INDEX 77

storeGDI (getGDI,COTAN-method), 14
storeGDI(), 16
storeGDI,COTAN-method

(getGDI,COTAN-method), 14
SummarizedExperiment::Assays, 6
suppressMessages(), 48

test.dataset (Datasets), 12
toClustersList (ClustersList), 3
torch::install_torch(), 49
torch::torch_is_installed(), 49
torch::torch_set_num_threads(), 49
TRUE, 42

UMAPPlot (HandlingClusterizations), 32
UMAPPlot(), 22, 36, 65
UniformClusters, 63
UniformTranscriptCheckers, 65, 66, 68
updateMetaInfo (HandleMetaData), 28

vec2mat_rfast (COTAN_Legacy), 7
vignette.merge.clusters (Datasets), 12
vignette.merge2.clusters (Datasets), 12
vignette.split.clusters (Datasets), 12

	ClustersList
	Conversions
	COTAN-class
	COTAN_Legacy
	COTAN_ObjectCreation
	Datasets
	getColorsVector
	getGDI,COTAN-method
	getMu
	HandleMetaData
	HandleStrings
	HandlingClusterizations
	HandlingConditions
	HeatmapPlots
	Installing_torch
	LoggingFunctions
	MultiThreading
	NumericUtilities
	ParametersEstimations
	RawDataCleaning
	RawDataGetters
	UniformClusters
	UniformTranscriptCheckers
	Index

