Package ‘CAGEr’

February 1, 2026

Title Analysis of CAGE (Cap Analysis of Gene Expression) sequencing
data for precise mapping of transcription start sites and
promoterome mining

Version 2.17.0
Date 2025-10-10

Imports BiocGenerics, BiocParallel, Biostrings, BSgenome, CAGEfightR,
data.table, formula.tools, Seqinfo, GenomicAlignments (>=
1.45.1), GenomicFeatures (>= 1.61.4), GenomicRanges (>=
1.61.1), ggplot2 (>=4.0.0), gtools, IRanges (>=2.18.0),
KernSmooth, Matrix, memoise, plyr, rlang, Rsamtools (>=
2.25.1), reshape2, rtracklayer (>= 1.69.1), S4Vectors (>=
0.27.5), scales, som, stringdist, stringi, SummarizedExperiment
(>=1.39.1), utils, vegan, VGAM

Depends methods, MultiAssayExperiment, R (>=4.1.0)

Suggests BSgenome.Dmelanogaster. UCSC.dm3,
BSgenome.Drerio.UCSC.danRer7, BSgenome.Hsapiens.UCSC.hg18,
BSgenome.Hsapiens.UCSC.hg19, BSgenome.Mmusculus.UCSC.mm09,
DESeq2, FANTOM3and4CAGE, ggseqlogo, BiocStyle, knitr, rmarkdown

Description The _CAGEr_ package identifies transcription start sites (TSS) and
their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data.
It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and
aggregates them across multiple CAGE experiments to construct consensus
clusters (CC) representing the promoterome. CAGETr provides functions to
profile expression levels of these clusters by cumulative expression and
rarefaction analysis, and outputs the plots in ggplot2 format for further
facetting and customisation. After clustering, CAGEr performs analyses of
promoter width and detects differential usage of TSSs (promoter shifting)
between samples. CAGEr also exports its data as genome browser tracks, and as
R objects for downsteam expression analysis by other Bioconductor packages
such as DESeq2, CAGEfightR, or seqArchR.

License GPL-3

biocViews Preprocessing, Sequencing, Normalization,
FunctionalGenomics, Transcription, GeneExpression, Clustering,
Visualization

2 Contents

Collate 'Multicore.R' 'CTSS.R' 'CAGEexp.R' 'ClusteringFunctions.R'
'ClusteringMethods.R' 'CAGEr.R' 'Annotations.R'
'AggregationMethods.R' 'CAGEfightR .R' 'CAGEr-package.R'
"Paraclu.R' 'CorrelationMethods.R' 'GetMethods.R'
'CumulativeDistributionMethods.R' 'Distclu.R' 'ExportMethods.R'
'ExpressionProfilingMethods.R" TmportFunctions.R'
'SetMethods.R' TmportMethods.R' 'MergingMethods.R'
'NormalizationFunctions.R' 'NormalizationMethods.R'
'QCmethods.R' 'QuantileWidthMethods.R' 'ResetMethods.R'
'Richness.R' 'RleDataFrame.R' 'ShiftingFunctions.R'
'ShiftingMethods.R' 'StrandInvaders.R' 'TSSlogo.R'

LazyData true

VignetteBuilder knitr
RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)
Encoding UTF-8

git_url https://git.bioconductor.org/packages/CAGEr
git_branch devel
git_last_commit 0a93a41

git_last commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Vanja Haberle [aut],
Charles Plessy [cre],
Damir Baranasic [ctb],
Katalin Ferenc [ctb],
Sarvesh Nikumbh [ctb]

Maintainer Charles Plessy <charles.plessy@oist.jp>

Contents
CAGEr-package 4
byCtss . o 5
.ctss_summary_for_clusters L 6
LeLQUANEPOS .+ . v v e 7
powerLaw ..o e 7
aggregateTagClusters L o 8
annotateCTSS L e 10
bam2CTSS 12
CAGEexp-class e e e e 13
CAGEr-class e 14
CAGEr_Multicore e 15
coercelnBSgenome L L L 16

ConsensusClusters-class e 16

Contents

3
consensusCIUSters<- e 17
consensusClustersDESeq2 17
consensusClustersGR L L 18
consensusClustersQuantile e 20
consensusClustersTpm e 21
CTSS-class o e e e 22
CTSScoordinatesGR e 23
CTSScumulativesTagClusters o v i i e e e e e e e 24
CTSSnormalizedTpmDF 25
CTSStagCountDF o 27
CTSStoOGeNeS v v o o e it e e e e e 28
cumulativeCTSSdistribution L 29
CustomConsensusClusters i 30
distclu o e 32
exampleCAGEexp e 33
exampleZvO_annot e e e 34
exportToTrack L 36
expressionClasses e e e e 40
FANTOMShumanSamples o it e e e e e e 41
FANTOMSmouseSamples oo ottt 41
filteredCTSSidx o 42
flagByUpstreamSequences i e e 43
flagLowExpCTSS e 44
GeneExpDESeq2 46
GeneExpSE e e 47
genomeNaAME L e e e e e e e e e e 47
getCTSS . . . e 49
getExpressionProfiles 51
getShiftingPromoters 54
hanabi L 55
hanabi-class L. 58
hanabiPlot e 58
importbam e 59
IMportbam.Ctss e 60
importbedCTSS o e 61
import.bedmolecule 62
import.bedScore L 62
IMportbigwig e 63
import. CAGEscanMolecule 64
import. CTSS e 65
importPublicData 65
inputFiles e e e 68
inputFilesType e 69
librarySizes e 71
loadFileIntoGPos 72
MapSEaALS e e e e e e e e e e e e e e e 73
mapStatsSSCoOPES e 74

mergeCAGEsets 75

4 CAGEr-package
mergeSamples e e e e e e e e 76
moleculesGR2CTSS e 77
normalizeTagCount 78
paraclu. Lo e e 80
parseCAGEscanBlocksToGrangeTSS 83
plothanabi e e e 84
PIOLANNOL L e e e e e 85
plotCorrelation 87
plotExpressionProfiles 92
plotlnterquantileWidth 93
plotReverseCumulatives 95
quantilePositions L e e 97
quickEnhancers L 99
ranges2annot Lu e e e e e e e e e e e 100
TANZES2ZENES .« . v v ot e 101
TANGES2NAMES . . .« « o e v e e e e e e e e e e e e e e e e e e e 102
resetCAGEeXp o o e e e 103
rowsum.RleDataFrame o 104
rowSums.RleDataFrame L 105
sampleLabels L 106
scoreShift L 107
seqNameTotalsSE e 110
SetColors e e 111
Strand invaders e 112
summariseChrExpr L 113
TagClusters-class e 114
tagClustersGR L 114
TSSIOZO e e 115

Index 117

CAGEr-package CAGEr: Analysis of CAGE (Cap Analysis of Gene Expression) se-
quencing data for precise mapping of transcription start sites and pro-
moterome mining

Description

The _CAGETr_ package identifies transcription start sites (TSS) and their usage frequency from
CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count,
clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to
construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to
profile expression levels of these clusters by cumulative expression and rarefaction analysis, and
outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr
performs analyses of promoter width and detects differential usage of TSSs (promoter shifting)
between samples. CAGEr also exports its data as genome browser tracks, and as R objects for
downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR, or
seqArchR.

.byCtss 5

Author(s)

Maintainer: Charles Plessy <charles.plessy@oist.jp>

Authors:
* Vanja Haberle <vanja.haberle@gmail.com>
Other contributors:

e Damir Baranasic <damir.baranasic@lms.mrc.ac.uk> [contributor]
e Katalin Ferenc <k.t.ferenc@ncmbm.uio.no> [contributor]

e Sarvesh Nikumbh <s.nikumbh@lms.mrc.ac.uk> [contributor]

.byCtss Apply functions to identical CTSSes.

Description

.byCTSS is a private function using data.table objects to preform grouping operations at a high
performance. These functions use non-standard evaluation in a context that raises warnings in
R CMD check. By separating these functions from the rest of the code, I hope to make the
workarounds easier to manage.

Usage
.byCtss(ctssDT, colName, fun)

S4 method for signature 'data.table'
.byCtss(ctssDT, colName, fun)

Arguments
ctssDT A data.table: :data.table representing CTSSes.
colName The name of the column on which to apply the function.
fun The function to apply.

Examples

ctssDT <- data.table::data.table(

chr = c¢("chr1”, "chr1”, "chr1”, "chr2"),

pos = c(1 , 1 , 2 , 1),

strand = c("+" , " , = , "=,

tag_count = c(1 , 1 , 1 , 1))
ctssDT

CAGEr: ::.byCtss(ctssDT, "tag_count”, sum)

6 .ctss_summary_tfor_clusters

.ctss_summary_for_clusters
Summarise CTSSs included in clusters

Description

Summarise CTSSs included in clusters

Usage

.ctss_summary_for_clusters(ctss, clusters)

Arguments
ctss A CTSS object.
clusters A TagClusters, ConsensusClusters or any other object implementing the
GenomicRanges: : GRanges class.
Value

The clusters object with a new dominant_CTSS metadata in CTSS format reporting the genomic
coordinate and expression score of most highly expressed position in each cluster, plus a nr_ctss
metadata reporting the number of expressed CTSSs in each cluster.

Examples

See also benchmarks/dominant_ctss.md
(ctss <= CTSS('chr1', IRanges(start = 1:10, end = 1:10)
, '+', score = c(1, 0, @, 1, 2, 0, 2, 1, 0, 1)))
(clusters <- GRanges('chri1', IRanges(start = c(1,9)
, end = c(8,10)), '+')) |> as("TagClusters")

The function assumes that all CTSSes have a score above zero
.ctss_summary_for_clusters(ctss[score(ctss)>0], clusters)

If not the case, it will give incorrect nr_ctss and fail to remove singletons
.ctss_summary_for_clusters(ctss, clusters)

The function needs its output to be sorted and is not going to check it.
.ctss_summary_for_clusters(rev(ctss), clusters)
.ctss_summary_for_clusters(ctss, rev(clusters))

Ties are resolved with 5' preference for both plus and minus strands.
This may create a small bias.

ctss_minus <- ctss

strand(ctss_minus) <- '-'
clusters_minus <- clusters

strand(clusters_minus) <- '-
.ctss_summary_for_clusters(ctss_minus, clusters_minus)

.get.quant.pos

.get.quant.pos Get quantile positions

Description

Private function that calculates position of quantiles for CTSS clusters based on distribution of tags
within the clusters.

Usage

.get.quant.pos(cum.sums, clusters, q)

Arguments
cum. sums Named list of vectors containing cumulative sum for each cluster (returned by
the CTSScumulativesTagClusters or CTSScumulativesCC function).
clusters TagClusters or ConsensusClusters object representing tag clusters or con-
sensus clusters.
q desired quantiles - single value or a vector of values.
Value

Returns the clusters object with one more metadata column per value in g, containing R1e integers
giving the relative distance of the quantile boundaries to the start position.

Examples

cum.sums <- RleList("1° = Rle(1), “2° = cumsum(Rle(c(1, 1, 1, 2, 4, 0, 1, 1))))
clusters <- GRanges(c("chr1:100-101", "chr1:120-127"))
CAGEr:::.get.quant.pos(cum.sums, clusters, c(.2, .8))

.powerLaw .powerLaw

Description

Private funtion for normalizing CAGE tag count to a referent power-law distribution.

Usage

.powerLaw(tag.counts, fitInRange = c(10, 1000), alpha = 1.25, T = 10"6)

8 aggregateTagClusters

Arguments
tag.counts Numerical values whose reverse cumulative distribution will be fitted to power-
law (e.g. tag count or signal for regions, peaks, etc.)
fitInRange Range in which the fitting is done (values outside of this range will not be con-
sidered for fitting)
alpha Slope of the referent power-law distribution (the actual slope has negative sign
and will be -1*alpha)
T total number of tags (signal) in the referent power-law distribution.
Details

S4 Methods are provided for integer vectors, Rle objects, data.frame objects and DataFrame ob-
jects, so that the most complex objects can be deconstructed in simpler parts, normalized and re-
constructed.

Value

Normalized values (vector of the same length as input values); i.e. what would be the value of input
values in the referent distribution. Ouptut objects are numeric, possibly R1e-encoded or wrapped in
data.frames or DataFrames according to the input.

References

Balwierz, P. J., Carninci, P., Daub, C. O., Kawali, J., Hayashizaki, Y., Van Belle, W., Beisel, C., et
al. (2009). Methods for analyzing deep sequencing expression data: constructing the human and
mouse promoterome with deepCAGE data. Genome Biology, 10(7), R79.

aggregateTagClusters Aggregate TCs across all samples

Description

Aggregates tag clusters (TCs) across all CAGE datasets within the CAGEr object to create a referent
set of consensus clusters.

Usage

aggregateTagClusters(
object,
tpmThreshold = 5,
excludeSignalBelowThreshold = TRUE,
gLow = NULL,
qUp = NULL,
maxDist = 100,
useMulticore = FALSE,
nrCores = NULL

aggregateTagClusters 9

)

S4 method for signature 'CAGEr'
aggregateTagClusters(
object,
tpmThreshold = 5,
excludeSignalBelowThreshold = TRUE,
gLow = NULL,
qUp = NULL,
maxDist = 100,
useMulticore = FALSE,
nrCores = NULL

Arguments

object A CAGEr object

tpmThreshold Ignore tag clusters with normalized signal < tpmThreshold when constructing
the consensus clusters.

excludeSignalBelowThreshold
When TRUE the tag clusters with normalized signal < tpmThreshold will not
contribute to the total CAGE signal of a consensus cluster. When set to FALSE all
TCs that overlap consensus clusters will contribute to the total signal, regardless
whether they pass the threshold for constructing the clusters or not.

gLow, qUp Set which "lower" (or "upper") quantile should be used as 5’ (or 3’) boundary
of the tag cluster. If NULL the start (for gLow) or end (for qUp) position of the TC
is used.

maxDist Maximal length of the gap (in base-pairs) between two tag clusters for them to

be part of the same consensus clusters.
useMulticore Logical, should multicore be used (supported only on Unix-like platforms).

nrCores Number of cores to use when useMulticore = TRUE. Default (NULL) uses all
detected cores.

Details

Since the tag clusters (TCs) returned by the CTSS clustering functions function are constructed
separately for every CAGE sample within the CAGEr object, they can differ between samples in
both their number, genomic coordinates, position of dominant TSS and overall signal. To be able
to compare all samples at the level of clusters of TSSs, TCs from all CAGE datasets are aggregated
into a single set of consensus clusters. First, TCs with signal >= tpmThreshold from all CAGE
datasets are selected, and their 5’ and 3’ boundaries are determined based on provided gLow and
qUp parameter (or the start and end coordinates, if they are set to NULL). Finally, the defined set of
TCs from all CAGE datasets is reduced to a non-overlapping set of consensus clusters by merging
overlapping TCs and TCs <= maxDist base-pairs apart. Consensus clusters represent a referent set
of promoters that can be further used for expression profiling or detecting "shifting" (differentially
used) promoters between different CAGE samples.

10 annotateCTSS

Value

Returns the object in which the experiment consensusClusters will be occupied by a SummarizedExperiment: :RangedSun
containing the cluster coordinates as row ranges, and their expression levels in the counts and

normalized assays. These genomic ranges are returned by the consensusClustersGR function

and the whole object can be accessed with the consensusClustersSE function. The CTSS ranges

of the tagCountMatrix experiment will gain a cluster column indicating which cluster they be-

long to. Lastly, the number of CTSS outside clusters will be documented in the outOfClusters

column data.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGETr object modifiers: CTSStoGenes(), CustomConsensusClusters(), annotateCTSS(),
cumulativeCTSSdistribution(), distclu(), getCTSS(), normalizeTagCount(), paraclu(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr()

Other CAGEr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(), distclu(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

consensusClustersGR(exampleCAGEexp)
ce <- aggregateTagClusters(exampleCAGEexp, tpmThreshold = 50

, excludeSignalBelowThreshold = FALSE, maxDist = 100)
consensusClustersGR(ce)

ce <- aggregateTagClusters(exampleCAGEexp, tpmThreshold = 50
, excludeSignalBelowThreshold = TRUE, maxDist = 100)
consensusClustersGR(ce)

ce <- aggregateTagClusters(exampleCAGEexp, tpmThreshold = 50
, excludeSignalBelowThreshold = TRUE, maxDist = 100
, qlow = 0.1, qUp = 0.9)

consensusClustersGR(ce)

annotateCTSS Annotate and compute summary statistics

Description

annotateCTSS annotates the CTSS of a CAGEexp object and computes annotation statistics.

annotateConsensusClusters annotates the consensus clusters of a CAGEr object.

annotateCTSS 11

Usage
annotateCTSS(object, annot, upstream = 500, downstream = 500)
S4 method for signature 'CAGEexp,GRanges'
annotateCTSS(object, annot, upstream = 500, downstream = 500)

S4 method for signature 'CAGEexp,TxDb'
annotateCTSS(object, annot)

annotateTagClusters(object, annot, upstream = 500, downstream = 500)
S4 method for signature 'CAGEexp,GRanges'
annotateTagClusters(object, annot, upstream = 500, downstream = 500)

S4 method for signature 'CAGEexp,TxDb'
annotateTagClusters(object, annot)

annotateConsensusClusters(object, annot, upstream = 500, downstream = 500)
S4 method for signature 'CAGEexp,GRanges'
annotateConsensusClusters(object, annot, upstream = 500, downstream = 500)
S4 method for signature 'CAGEexp,TxDb'
annotateConsensusClusters(object, annot)
Arguments
object CAGEexp object.
annot A GenomicRanges: :GRanges or a GenomicFeatures: : TxDb object represent-
ing the genome annotation. See details for the GRanges object.
upstream Number of bases upstream the start of the transcript models to be considered as
part of the promoter region.
downstream Number of bases downstream the start of the transcript models to be considered
as part of the promoter region.
Details

If the annotation is a GenomicRanges: : GRanges, gene names will be extracted from the gene_name
metadata, the transcript_type metadata will be used to filter out entries that do not have promot-
ers (such as immunogloblulin VDJ segments), and the type metadata is used to extract positions of
introns and exons.

Value
annotateCTSS returns the input object with the following modifications:

* The Genomic Ranges of the tagCountMatrix experiment gains an annotation metadata
column, with levels such as promoter, exon, intron and unknown. If the annotation has a

12 bam2CTSS

gene_name metadata, then a genes column is also added, with gene symbols from the anno-
tation.

* The sample metadata gets new columns, indicating total counts in each of the annotation
levels. If the annotation has a gene_name metadata, then a genes column is added to indicate
the number of different gene symbols detected.

annotateTagClusters returns the input object with the same modifications as above.

annotateConsensusClusters returns the input object with the same modifications as above.

Author(s)

Charles Plessy

See Also

CTSStoGenes, and the exampleZv9_annot example data.

Other CAGETr object modifiers: CTSStoGenes (), CustomConsensusClusters(), aggregateTagClusters(),
cumulativeCTSSdistribution(), distclu(), getCTSS(), normalizeTagCount(), paraclu(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr ()

Other CAGEr annotation functions: plotAnnot (), ranges2annot(), ranges2genes(), ranges2names()

Examples

annotateCTSS(exampleCAGEexp, exampleZv9_annot)
colData(exampleCAGEexp)

exampleCAGEexp <- annotateTagClusters(exampleCAGEexp, exampleZv9_annot)
tagClustersGR(exampleCAGEexp, 1)

annotateConsensusClusters(exampleCAGEexp, exampleZv9_annot)
consensusClustersGR(exampleCAGEexp)

bam2CTSS bam2CTSS

Description

Converts from BAM to CTSS

Usage

bam2CTSS(gr, removeFirstG, correctSystematicG, genome)

CAGEexp-class 13

Arguments
gr A GenomicRanges: :GRanges object returned by import.bam().
removeFirstG See getCTSS().
correctSystematicG
See getCTSS().
genome See coerceInBSgenome().
Details

Converts genomic ranges representing SAM/BAM alignments into a CTSS object.

Value

Returns a CTSS object.

See Also

Other loadFileIntoGPos: import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

CAGEexp-class CAGEr class to hold all data and metadata about one CAGE experi-
ment.

Description

The CAGEr class is aMultiAssayExperiment: :MultiAssayExperiment object containing all data
and metadata about a set of CAGE libraries. It replaced the CAGEset class in 2017. The main differ-
ence is that the expression data is stored in S4Vectors: :DataFrame objects of S4Vectors: :Rle-
encoded expression values, instead of plain data. frames. With large datasets, this saves consider-
able amounts of memory.

Details

If genomeName is NULL, checks of chromosome names will be disabled and G-correction will not be
possible. See https://support.bioconductor.org/p/86437/ for an example on how to create
a BSgenome package.

Sample labels must be syntactically valid in the sense of the make.names() function, because they
will be used as column names in some tables.

Slots

metadata A list that must at least contain a genomeName member.

See Also

make . names

https://support.bioconductor.org/p/86437/

14 CAGEr-class

Examples

pathsTolnputFiles <- list.files(system.file("extdata”, package = "CAGEr")
, "ctss$”
, full.names = TRUE)

samplelLabels <- sub(".chr17.ctss”, "", basename(pathsToInputFiles))

The CAGEexp object can be created using specific constructor commands

exampleCAGEexp <-

CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7"”
, inputFiles = pathsToInputFiles
, inputFilesType = "ctss”
, sampleLabels = sub(".chr17.ctss”, "", basename(pathsToInputFiles)))

Alternatively, it can be created just like another MultiAssayExperiment.
This is useful when providing pre-existing colData with many columns.

exampleCAGEexp <-
CAGEexp(metadata = list(genomeName = "BSgenome.Drerio.UCSC.danRer7")

, colData = DataFrame(inputFiles = pathsToInputFiles
, sampleLabels = samplelLabels
, inputFilesType = "ctss"
, row.names = samplelLabels))

Expression data is loaded by the getCTSS() function, that also calculates
library sizes and store them in the object's column data.

exampleCAGEexp <- getCTSS(exampleCAGEexp)
librarySizes(exampleCAGEexp)
colData(exampleCAGEexp)

CTSS data is stored internally as a SummarizedExperiemnt that can be retreived
as a whole, or as GRanges, or as an expression DataFrame.

CTSStagCountSE (exampleCAGEexp)
CTSScoordinatesGR(exampleCAGEexp)
CTSStagCountDF (exampleCAGEexp)

Columns of the "colData" table are accessible directly via the "$" operator.

exampleCAGEexp$1l1 <- CTSStagCountDF (exampleCAGEexp) |> sapply (\(col) sum(col > @))
exampleCAGEexp$11

CAGEr-class CAGEYr objects

CAGEr_Multicore 15

Description

The CAGEYr package provides one class of objects to load, contain and process CAGE data: the
CAGEexp class, introduced 2017, which is based on the MultiAssayExperiment: :MultiAssayExperiment
class. In comparison with the original CAGEset class (removed in 2021) CAGEexp objects benefit

from a a more efficient data storage, using DataFrames of run-length-encoded (R1e) integers, al-
lowing for the loading and use of much larger transcriptome datasets.

References

Haberle V, Forrest ARR, Hayashizaki Y, Carninci P and Lenhard B (2015). “CAGEr: precise TSS
data retrieval and high-resolution promoterome mining for integrative analyses.” Nucleic Acids
Research, 43, pp. €51., http://nar.oxfordjournals.org/content/43/8/e51

CAGEr_Multicore Multicore support in CAGEr

Description

CAGE:T is in the transition towards using the BiocParallel for multicore parallelisation. On Windows
platforms, the multicore support is disabled transparently, that is, attempts to use multiple cores are
silently ignored.

Usage
CAGEr_Multicore(useMulticore = FALSE, nrCores = NULL)

Arguments

useMulticore TRUE or FALSE

nrCores number of cores to use (leave NULL to let BiocParallel choose).

Value

Returns either a MulticoreParam object or a SerialParam object.

Author(s)

Charles Plessy

Examples

CAGEr: : :CAGEr_Multicore()

CAGEr: : :CAGEr_Multicore(TRUE,)
CAGEr: : :CAGEr_Multicore(TRUE, 2)
CAGEr: : :CAGEr_Multicore(FALSE, 2)

http://nar.oxfordjournals.org/content/43/8/e51

16 ConsensusClusters-class

coercelnBSgenome coercelnBSgenome

Description

A private (non-exported) function to discard any range that is not compatible with the CAGEr
object’s BSgenome.

Usage

coercelnBSgenome(gr, genome)

Arguments
gr The genomic ranges to coerce.
genome The name of a BSgenome package, which must me installed, or NULL to skip
coercion.
Value

A GRanges object in which every range is guaranteed to be compatible with the given BSgenome
object. The sequnames of the GRanges are also set accordingly to the BSgenome.

ConsensusClusters-class
ConsensusClusters

Description
The ConsensusClusters class represents consensus clusters. It is used internally by CAGEr for
type safety.

Details

Consensus clusters must not overlap, so that a single TSS in the genome can only be attributed to a
single cluster.

consensusClusters<- 17

consensusClusters<- Set consensus clusters from CAGE¥ objects

Description

Set the information on consensus clusters in a CAGEr object.
Usage
consensusClustersSE(object) <- value

S4 replacement method for signature 'CAGEexp,RangedSummarizedExperiment'
consensusClustersSE(object) <- value

consensusClustersGR(object) <- value

S4 replacement method for signature 'CAGEexp'
consensusClustersGR(object) <- value

Arguments

object A CAGEr object.

value A data. frame of consensus clusters
Details

These setter methods are mostly for internal use, but are exported in case they may be useful to
advanced users.
Author(s)

Vanja Haberle
Charles Plessy

consensusClustersDESeq2
Export consensus cluster expression data for DESeq2 analysis

Description

Creates a DESegqDataSet using the consensus cluster expression data in the experiment slot consensusClusters
and the sample metadata of the CAGEexp object. The formula must be built using factors already
present in the sample metadata.

18 consensusClustersGR

Usage

consensusClustersDESeq2(object, design)

S4 method for signature 'CAGEexp'
consensusClustersDESeq2(object, design)

Arguments

object A CAGEexp object.
design A formula for the DESeq2 analysis.

Author(s)
Charles Plessy

See Also

DESegDataSet in the DESeq2 package.

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersGR(), cumulativeCTSSdistribution(),distclu(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

exampleCAGEexp$group <- c("a", "a", "b", "b", "a")
consensusClustersDESeq2(exampleCAGEexp, ~group)

consensusClustersGR Get consensus clusters from CAGEr objects

Description

Extracts the information on consensus clusters from a CAGEr object.

Usage
consensusClustersGR(object, sample = NULL, gLow = NULL, qUp = NULL)
S4 method for signature 'CAGEexp'
consensusClustersGR(object, sample = NULL, gLow = NULL, qUp = NULL)

consensusClustersSE(object)

S4 method for signature 'CAGEexp'
consensusClustersSE (object)

consensusClustersGR 19

Arguments
object A CAGEr object.
sample Optional. Label of the CAGE dataset (experiment, sample) for which to extract
sample-specific information on consensus clusters.
gLow, qUp Lower and upper quantiles to compute interquantile width.
Value

consensusClustersGR returns a ConsensusClusters object, which wraps the GenomicRanges: : GRanges
class. The score columns indicates the normalised expression value of each cluster, either across

all samples (sample = NULL), or for the selected sample. The legacy tpm column may be removed in

the future. When sample argument is NOT specified, total CAGE signal across all CAGE datasets
(samples) is returned in the tpm column. When sample argument is specified, the tpm column
contains CAGE signal of consensus clusters in that specific sample. In addition, sample-specific
information is returned, including position of the dominant TSS, and (if applicable) interquantile

width of the consensus clusters in the specified sample or otherwise, sample-agnostic information

is returned.

consensusClustersSE returns the SummarizedExperiment: :SummarizedExperiment stored in
the consensusClusters experiment slot of the CAGEexp object.

Author(s)

Vanja Haberle
Charles Plessy

See Also

consensusClusters<-()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), expressionClasses(), filteredCTSSidx(),

genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), cumulativeCTSSdistribution(), distclu(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

consensusClustersGR(exampleCAGEexp, sample = 2
, qbow = 0.1, qUp = 0.9)

20 consensusClustersQuantile

consensusClustersQuantile
Quantile metadata stored in CAGET objects.

Description

Accessors for consensus cluster quantile data in CAGEr objects.

Usage

NULL)

consensusClustersQuantileLow(object, samples

S4 method for signature 'CAGEexp'
consensusClustersQuantileLow(object, samples = NULL)

consensusClustersQuantileUp(object, samples = NULL)

S4 method for signature 'CAGEexp'
consensusClustersQuantileUp(object, samples = NULL)

consensusClustersQuantile(object, sample = NULL, q)

S4 method for signature 'CAGEexp'
consensusClustersQuantile(object, sample = NULL, q)

consensusClustersQuantileLow(object, samples = NULL) <- value

consensusClustersQuantileUp(object, samples = NULL) <- value

Arguments
object A CAGEr object.
samples Sample name(s), number(s) or NULL (default) for all samples.
sample A single sample name or number, or NULL (default) for all samples.
q A quantile.
value A list (one entry per sample) of data frames with multiple columns: cluster

for the cluster ID, and then q_@.n where @.n indicates a quantile.

consensusClustersTpm 21

consensusClustersTpm Extracting consensus clusters tpm matrix from CAGEr object

Description

Extracts a table with normalized CAGE tag values for consensus clusters across all samples from a
CAGEr object.

Usage
consensusClustersTpm(object)
S4 method for signature 'CAGEexp'

consensusClustersTpm(object)

Arguments

object A CAGEr object.

Value

Returns the matrix of normalized expression values of CAGE clusters across all samples.

Author(s)

Vanja Haberle

See Also

consensusClustersSE

Other CAGEtr clustering methods: distclu(), paraclu()

Examples

head(consensusClustersTpm(exampleCAGEexp))

22 CTSS-class

CTSS-class CAGE Transcription Start Sites

Description

The CTSS class represents CAGE transcription start sites (CTSS) at single-nucleotide resolution,
using GenomicRanges: :UnstitchedGPos as base class. It is used by CAGET for type safety.

The CTSS constructor takes the same arguments as GenomicRanges: :GPos, plus bsgenomeName,
and minus stitch, which is hardcoded to FALSE.
Usage

S4 method for signature 'CTSS'
show(object)

S4 method for signature 'CTSS'

initialize(.Object, ..., bsgenomeName = NULL)
CTSS(

segnames = NULL,

pos = NULL,

strand = NULL,

seqinfo = NULL,

seqlengths = NULL,

bsgenomeName = NULL
)

S4 method for signature 'CTSS,GRanges'
coerce(from, to = "GRanges"”, strict = TRUE)

S4 method for signature 'GRanges,CTSS'
coerce(from, to = "CTSS", strict = TRUE)

Arguments
object See methods: : show
.Object See methods: : new

bsgenomeName String containing the name of a BSgenome package.

segnames, pos, strand, seqinfo, seqlengths, ...
See the documentation of GenomicRanges: : GPos for further details.

from, to, strict See methods: :coerce.

CTSScoordinatesGR 23

Details

The genomeName element of the metadata slot is used to store the name of the BSgenome package
used when constructing the CAGEr object.

Coercion from GRanges to CTSS loses information, but it seems to be fine, since other coercions like
as(1.2, "integer") do the same.

Author(s)

Charles Plessy

Examples

Convert an UnstitchedGPos object using the new() constructor.

gp <- GPos("chri1:2:-", stitch = FALSE)
ctss <- new("CTSS"”, gp, bsgenomeName = "BSgenome.Drerio.UCSC.danRer7")
genomeName (ctss)

Create a new object using the CTSS() constructor.
CTSS("chr1", 2, "-", bsgenomeName = "BSgenome.Drerio.UCSC.danRer7")

Coerce CTSS to GRanges
as(ctss, "GRanges")

Coerce a GRanges object to CTSS using the as() method.

gr <- GRanges("chr1:1-10:-"

gr$seq <- "AAAAAAAAAA"

seqlengths(gr) <- 100

genome(gr) <- "foo"

as(gr, "CTSS")

identical(seqinfo(gr), seqginfo(as(gr, "CTSS")))

as(as(gr, "CTSS"), "CTSS") # Make sure it works twice in a row

CTSScoordinatesGR Genomic coordinates of TSSs from a CAGEr object

Description

Extracts the genomic coordinates of all detected TSSs from CAGEexp objects.

Usage

CTSScoordinatesGR(object)

S4 method for signature 'CAGEexp'
CTSScoordinatesGR(object)

CTSScoordinatesGR(object) <- value

24 CTSScumulativesTagClusters

S4 replacement method for signature 'CAGEexp'
CTSScoordinatesGR(object) <- value

CTSStagCountSE (object) <- value

S4 replacement method for signature 'CAGEexp'
CTSStagCountSE(object) <- value

Arguments

object A CAGEexp object.

value Coordinates to update, in a format according to the function name.
Value

CTSScoordinatesGR returns the coordinates as a CTSS() object wrapping genomic ranges. A
filteredCTSSidx column metadata will be present if filterLowExpCTSS was ran earlier.

Author(s)

Vanja Haberle
Charles Plessy

See Also

getCTSS

Other CAGEr accessor methods: CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), inputFilesType(), librarySizes(), samplelLabels(),
segqNameTotalsSE(), tagClustersGR()

Examples

CTSScoordinatesGR(exampleCAGEexp)

CTSScoordinatesGR(exampleCAGEexp)

CTSScumulativesTagClusters
Get/set CTSS cumulative TC or CC data

Description

Accessor function.

CTSSnormalizedTpmDF 25

Usage

CTSScumulativesTagClusters(object, samples = NULL)

S4 method for signature 'CAGEexp'
CTSScumulativesTagClusters(object, samples = NULL)

CTSScumulativesCC(object, samples = NULL)

S4 method for signature 'CAGEexp'
CTSScumulativesCC(object, samples = NULL)

CTSScumulativesTagClusters(object) <- value

S4 replacement method for signature 'CAGEexp'
CTSScumulativesTagClusters(object) <- value

Arguments
object A CAGEexp object.
samples One or more valid sample names.
value CTSScumulativesTagClusters data
Value

List of numeric Rle.

See Also

Other CAGE:t clusters functions: CustomConsensusClusters(), aggregateTagClusters(), consensusClustersDESeq2(
consensusClustersGR(), cumulativeCTSSdistribution(), distclu(), paraclu(), plotInterquantileWidth(),
quantilePositions(), tagClustersGR()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSSnormalizedTpmDF (), CTSStagCountDF (),
GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(), filteredCTSSidx(),
genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), segNameTotalsSE(),
tagClustersGR()

CTSSnormalizedTpmDF Extracting normalized CAGE signal for TSSs from CAGEr objects

Description

Extracts the normalized CAGE signal for all detected TSSs in all CAGE datasets from CAGEexp
objects.

26 CTSSnormalizedTpmDF
Usage
CTSSnormalizedTpmDF (object)

S4 method for signature 'CAGEexp'
CTSSnormalizedTpmDF (object)

CTSSnormalizedTpmGR(object, samples)

S4 method for signature 'CAGEexp'
CTSSnormalizedTpmGR(object, samples)

Arguments
object A CAGEexp object.
samples The name of sample(s) as reported by sampleLabels(object), or the number
identifying the sample(s).
Value

CTSSnormalizedTpmDF returns a DataFrame of normalised expression values.

Author(s)

Vanja Haberle
Charles Plessy

See Also

normalizeTagCount

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSStagCountDF (),
GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(), filteredCTSSidx(),
genomeName (), inputFiles(), inputFilesType(), librarySizes(), samplelLabels(), seqNameTotalsSE(),
tagClustersGR()

Examples
CTSSnormalizedTpmDF (exampleCAGEexp)

CTSSnormalizedTpmGR (exampleCAGEexp, 1)
exampleCAGEexp |> CTSSnormalizedTpmGR("all")

CTSStagCountDF 27

CTSStagCountDF Raw CAGE TSSs expression counts

Description

Extracts the tag count for all detected TSSs in all CAGE datasets from CAGEexp objects.
Usage
CTSStagCountDF (object)

S4 method for signature 'CAGEexp'
CTSStagCountDF (object)

CTSStagCountGR(object, samples)

S4 method for signature 'CAGEexp'
CTSStagCountGR(object, samples)

CTSStagCountSE (object)

S4 method for signature 'CAGEexp'
CTSStagCountSE (object)

Arguments
object A CAGEexp object.
samples For CTSStagCountGR only: name(s) or number(s) identifying sample(s) or "all"
to return a GRangesList of all the samples.
Value

Returns an object with number of CAGE tags supporting each TSS (rows) in every CAGE dataset
(columns). The class of the object depends on the function being called:
* CTSStagCountDF: A S4Vectors: :DataFrame of S4Vectors: :R1le integers.

e CTSStagCountSE: A SummarizedExperiment: :RangedSummarizedExperimentcontaining aDataFrameofRle*
integers.

* CTSStagCountGR: A CTSS object (wrapping GRanges) containing a score column indicating
expression values for a given sample, or a GRangesList of CTSS objects.
Author(s)

Vanja Haberle
Charles Plessy

28 CTSStoGenes

See Also

getCTSS()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
GeneExpDESeq2(), GeneExpSE (), consensusClustersGR(), expressionClasses(), filteredCTSSidx(),
genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

Examples

CTSStagCountDF (exampleCAGEexp)

CTSStagCountGR(exampleCAGEexp, 1)
CTSStagCountGR(exampleCAGEexp, "all")

CTSStagCountSE (exampleCAGEexp)

CTSStoGenes Make a gene expression table.

Description

Add a gene expression table in the GeneExpSE experiment slot of an annotated CAGEexp object.

Usage

CTSStoGenes(object)

S4 method for signature 'CAGEexp'

CTSStoGenes(object)
Arguments

object A CAGEexp object that was annotated with the annotateCTSS() function.
Value

The input object with the following modifications:

* A new geneExpMatrix experiment containing gene expression levels as a SummarizedExperiment: : SummarizedExpe
object with one assay called counts, which is plain matrix of integers. (This plays better
than Rle DataFrames when interfacing with downstream packages like DESeq?2, and since
the number of genes is limited, a matrix will not cause problems of performance.)

* New genes column data added, indicating total number of gene symbols detected per library.

* New unannotated column data added, indicating for each sample the number of counts that
did not overlap with a known gene.

cumulativeCTSSdistribution

Author(s)

Charles Plessy

See Also

annotateCTSS().

29

Other CAGETr object modifiers: CustomConsensusClusters(), aggregateTagClusters(), annotateCTSS(),
cumulativeCTSSdistribution(), distclu(), getCTSS(), normalizeTagCount(), paraclu(),

quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr ()

Other CAGEr gene expression analysis functions: GeneExpDESeq2(), ranges2genes()

Examples

CTSStoGenes (exampleCAGEexp)
all(librarySizes(exampleCAGEexp) -

colSums (SummarizedExperiment: :assay(GeneExpSE (exampleCAGEexp))) ==

exampleCAGEexp$unannotated)

cumulativeCTSSdistribution

Cumulative sums of CAGE counts along genomic regions

Description

Calculates the cumulative sum of normalised CAGE counts along each tag cluster or consensus

cluster in every sample within a CAGEr object.

Usage
cumulativeCTSSdistribution(
object,
clusters = c("tagClusters”, "consensusClusters"),

useMulticore = FALSE,
nrCores = NULL

)

S4 method for signature 'CAGEexp'
cumulativeCTSSdistribution(
object,

clusters = c("tagClusters”, "consensusClusters"),

useMulticore = FALSE,
nrCores = NULL

30 CustomConsensusClusters

Arguments
object A CAGEr object
clusters tagClusters or consensusClusters.

useMulticore Logical, should multicore be used. useMulticore = TRUE has no effect on non-
Unix-like platforms.

nrCores Number of cores to use when useMulticore = TRUE (set to NULL to use all de-
tected cores).

Value

In CAGEexp objects, cumulative sums for the tag clusters are stored in the metadata slot using
the RleList class. For consensus clusters, they are stored in assays of the consensusClusters
experiment slot of the CAGEexp object.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), distclu(), getCTSS(), normalizeTagCount(), paraclu(), quantilePositions(),
quickEnhancers(), resetCAGEexp (), summariseChrExpr()

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), distclu(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

cumulativeCTSSdistribution(exampleCAGEexp, clusters = "tagClusters")
CTSScumulativesTagClusters(exampleCAGEexp)[[1]11[1:6]
cumulativeCTSSdistribution(exampleCAGEexp, clusters = "consensusClusters")
CTSScumulativesCC(exampleCAGEexp)[[1]1]1[1:6]

CustomConsensusClusters
Expression levels of consensus cluster

Description

Intersects custom consensus clusters with the CTSS data in a CAGEexp object, and stores the result
as a expression matrices (raw and normalised tag counts).

CustomConsensusClusters 31

Usage

CustomConsensusClusters(
object,
clusters,
threshold = 0,
nrPassThreshold = 1,
thresholdIsTpm = TRUE
)

S4 method for signature 'CAGEexp,GRanges'
CustomConsensusClusters(

object,

clusters,

threshold = 0,

nrPassThreshold = 1,

thresholdIsTpm = TRUE

)
Arguments
object A CAGEexp object
clusters Consensus clusters in GenomicRanges: : GRanges format.

threshold, nrPassThreshold

Only CTSSs with signal >= threshold in >= nrPassThreshold experiments
will be used for clustering and will contribute towards total signal of the cluster.

thresholdIsTpm Logical, is threshold raw tag count value (FALSE) or normalized signal (TRUE).

Details

Consensus clusters must not overlap, so that a single base of the genome can only be attributed to a
single cluster. This is enforced by the . ConsensusClusters constructor.

Value

stores the result as a new SummarizedExperiment: :RangedSummarizedExperiment in the experiment

slot of the object. The assays of the new experiment are called counts and normalized. An
outOfClusters column is added to the sample metadata to reflect the number of molecules that do
not have their TSS in a consensus cluster.

Author(s)

Charles Plessy

See Also

Other CAGEr object modifiers: CTSStoGenes(), aggregateTagClusters(), annotateCTSS(),
cumulativeCTSSdistribution(), distclu(), getCTSS(), normalizeTagCount(), paraclu(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr()

32 distclu

Other CAGEtr clusters functions: CTSScumulativesTagClusters(), aggregateTagClusters(),
consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(), distclu(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

cc <- consensusClustersGR(exampleCAGEexp)
CustomConsensusClusters(exampleCAGEexp, cc)

distclu Distance clustering

Description

The "distclu” method is an implementation of simple distance-based clustering of data attached to
sequences, where two neighbouring TSSs are joined together if they are closer than some specified
distance (see GenomicRanges: : reduce for implementation details.

Usage

distclu(object, maxDist = 20, keepSingletonsAbove = @)

S4 method for signature 'SummarizedExperiment'
distclu(object, maxDist = 20, keepSingletonsAbove = @)

S4 method for signature 'CTSS'
distclu(object, maxDist = 20, keepSingletonsAbove = @)

S4 method for signature 'CAGEexp'
distclu(object, maxDist = 20, keepSingletonsAbove = @)

Arguments
object The SummarizedExperiment: :RangedSummarizedExperiment object contain-
ing CTSS information, or just a CTSS object.
maxDist Maximal distance between two neighbouring CTSSs for them to be part of the
same cluster.
keepSingletonsAbove
Remove "singleton" tag clusters of width 1 with signal < keepSingletonsAbove.
Default value @ results in keeping all TCs by default. Setting it to Inf removes
all singletons.
Details

Clustering is done for every CAGE dataset within the CAGETr object separately, resulting in a differ-
ent set of tag clusters for every CAGE dataset. TCs from different datasets can further be aggregated
into a single referent set of consensus clusters by calling the aggregateTagClusters function.

exampleCAGEexp 33

Value

For CTSS input, a TagClusters object, for SummarizedExperiment input, a GenomicRanges: : GRangesList
of TagClusters objects, and for CAGEexp input, a modified object containing the tag clusters stored
as a GRangesList of TagClusters objects in its metadata slot tagClusters.

Author(s)

Vanja Haberle
Charles Plessy

See Also

aggregateTagClusters
Other CAGEtr clustering methods: consensusClustersTpm(), paraclu()

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(), getCTSS(), normalizeTagCount(), paraclu(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr()

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(),
paraclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

distclu(CTSSnormalizedTpmGR (exampleCAGEexp, 1)[1:10])
distclu(CTSStagCountSE (exampleCAGEexp)[1:25,1)

ce <- distclu(exampleCAGEexp, maxDist = 20, keepSingletonsAbove = 100)
tagClustersGR(ce, "Zf.30p.dome")

exampleCAGEexp Example CAGEexp object.

Description
Lazy-loaded example CAGEexp object, containing most of the CAGEr data structures created with
the CAGEr modifier functions.

Usage

exampleCAGEexp

Format

A CAGEgexp object.

34 exampleZv9_annot

Examples

Not run:
pathsTolnputFiles <- list.files(system.file("extdata”, package = "CAGEr")
, "ctss$”
, full.names = TRUE)
samplelLabels <- sub(".chr17.ctss”, "", basename(pathsToInputFiles))
exampleCAGEexp <-

CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7"”
, inputFiles = pathsToInputFiles
, inputFilesType = "ctss”
, sampleLabels = sub(".chr17.ctss”, "", basename(pathsToInputFiles)))

exampleCAGEexp <- getCTSS(exampleCAGEexp)

librarySizes(exampleCAGEexp)

colData(exampleCAGEexp)

exampleCAGEexp$11 <- NULL

exampleCAGEexp <- exampleCAGEexp[,c(5, 2, 1, 3, 4)] # Non-aplhabetic order may help catch bugs
CTSStagCountSE (exampleCAGEexp) <- CTSStagCountSE (exampleCAGEexp)[1:5000,] # Slim the object
exampleCAGEexp$librarySizes <- sapply(CTSStagCountDF (exampleCAGEexp), sum) # Repair metadata
exampleCAGEexp <-

summariseChrExpr (exampleCAGEexp) |>
annotateCTSS(exampleZv9_annot) |>
CTSStoGenes () |>
normalizeTagCount() |>
getExpressionProfiles("”CTSS") |>
filterLowExpCTSS() |>
distclu() |>
annotateTagClusters(exampleZv9_annot) |>
cumulativeCTSSdistribution(”tagClusters”) |>
quantilePositions("tagClusters”) |>
aggregateTagClusters() |>
annotateConsensusClusters(exampleZv9_annot) |>
cumulativeCTSSdistribution(”consensusClusters”) |>
quantilePositions("”consensusClusters") |>
getExpressionProfiles(”consensusClusters”) |>

scoreShift(groupX = c("Zf.unfertilized.egg")
, groupY = "Zf.30p.dome"
, testKS = TRUE, useTpmKS = FALSE)
save(exampleCAGEexp, file = "data/exampleCAGEexp.RData”, compress = "xz")

End(Not run)

exampleZv9_annot Example zebrafish annotation data

Description

Annotation data for zebrafish’s chromosome 17’s interval 26000000-54000000 (Zv9/danRer7 genome),
to be used in documentation examples.

exampleZv9_annot 35

Usage

exampleZv9_annot

Format

An object of class GRanges of length 7467.

Details
Data was retreived from ENSEMBL’s Biomart server using a query to extract gene, transcripts and
exon coordinates. For the record, here it is as URL (long, possibly overflowing).
http://mar2015.archive.ensembl.org/biomart/martview/78d86c 1d6b4ef51568ba6d46f7d8b254?VIRTUALSCHEMANAME-
And here it is as XML.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Query>

<Query virtualSchemaName = "default” formatter = "TSV" header = "0" uniqueRows = "0" count = "" datasetC
<Dataset name = "drerio_gene_ensembl” interface = "default” >
<Attribute name = "ensembl_gene_id" />
<Attribute name = "ensembl_transcript_id" />
<Attribute name = "start_position” />
<Attribute name = "end_position” />
<Attribute name = "transcript_start” />
<Attribute name = "transcript_end” />
<Attribute name = "strand” />
<Attribute name = "chromosome_name" />
<Attribute name = "external_gene_name" />
<Attribute name = "gene_biotype" />
<Attribute name = "exon_chrom_start"” />
<Attribute name = "exon_chrom_end" />
<Attribute name = "is_constitutive"” />
<Attribute name = "rank" />
</Dataset>
</Query>

The downloaded file was then transformed as follows.

x <- read.delim("~/Downloads/mart_export.txt"”, stringsAsFactors = FALSE)

e <- GRanges(paste@d("chr”, x$Chromosome.Name), IRanges(x$Exon.Chr.Start..bp., x$Exon.Chr.End. .bp.), i
e$gene_name <- Rle(x$Associated.Gene.Name)

e$transcript_type <- Rle(x$Gene.type)

e$type <- "exon”

e$type <- Rle(e$type)

e <- GRanges(paste@("chr"”, x$Chromosome.Name), IRanges(x$Exon.Chr.Start..bp., x$Exon.Chr.End. .bp.), i
e$gene_name <- Rle(x$Associated.Gene.Name)

e$transcript_type <- Rle(x$Gene.type)

e$type <- "exon”

36 exportToTrack

e$type <- Rle(e$type)
e <- sort(unique(e))

g <- GRanges(paste@("chr"”, x$Chromosome.Name)
, IRanges(x$Gene.Start..bp., x$Gene.End..bp.)
, ifelse(x$Strand + 1, "+", "-=-"))

g$gene_name <- Rle(x$Associated.Gene.Name)
g$transcript_type <- Rle(x$Gene.type)
g$type <- "gene"

g$type <- Rle(g$type)

g <- sort(unique(g))

t <- GRanges(paste@("chr”, x$Chromosome.Name)
, IRanges(x$Transcript.Start..bp., x$Transcript.End..bp.)
, ifelse(x$Strand + 1, "+", "="))

t$gene_name <- Rle(x$Associated.Gene.Name)
t$transcript_type <- Rle(x$Gene.type)
t$type <- "transcript”

t$type <- Rle(t$type)

t <- sort(unique(t))

gff <- sort(c(g, t, e))

gff <- gfflsegnames(gff) == "chr17"]

gff <- gfflstart(gff) > 26000000 & end(gff) < 54000000]
seqlevels(gff) <- seqlevelsInUse(gff)

n

save(gff, "data/exampleZv9_annot.RData"”, compress = "xz")

Author(s)
Prepared by Charles Plessy <plessy@riken. jp> using archive ENSEMBL data.

References

http://mar2015.archive.ensembl.org/biomart/

exportToTrack Converts TSSs and clusters of TSSs to a genome browser track format

Description

Converts CTSS, tag clusters or consensus clusters to the UCSCData format of the rtracklayer
package, that can be exported to BED file(s) with track information for genome browsers. CTSSes
and consensus clusters are optionally colored by their expression class. Tag clusters and consensus
clusters can be displayed in a whiskerplot-like representation with a line showing full span on the

http://mar2015.archive.ensembl.org/biomart/

exportToTrack 37

cluster, filled block showing interquantile range and a thick box denoting position of the dominant
(most frequently) used TSS.

Usage

exportToTrack(
object,
what = c("CTSS"”, "tagClusters”, "consensusClusters"),
gLow = NULL,
qUp = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE

)

S4 method for signature 'CAGEexp'
exportToTrack(
object,
what = c("CTSS"”, "tagClusters”, "consensusClusters"),
gLow = NULL,
qUp = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE

)

S4 method for signature 'GRangeslList'
exportToTrack(
object,
what = c("CTSS"”, "tagClusters"”, "consensusClusters"),
gLow = NULL,
qUp = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE

)

S4 method for signature 'GRanges'
exportToTrack(
object,
what = c("CTSS"”, "tagClusters"”, "consensusClusters"),
gLow = NULL,
qUp = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE

)
S4 method for signature 'CTSS'
exportToTrack(
object,
what = c("CTSS"”, "tagClusters"”, "consensusClusters"),

gLow = NULL,

38 exportToTrack

qUp = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE

)

S4 method for signature 'TagClusters'
exportToTrack(
object,
what = c("CTSS"”, "tagClusters"”, "consensusClusters"),
gLow = NULL,
qup = NULL,
colorByExpressionProfile = FALSE,
oneTrack = TRUE
)

S4 method for signature 'ConsensusClusters'
exportToTrack(

object,

what = c("CTSS"”, "tagClusters”, "consensusClusters"),

gLow = NULL,

qUp = NULL,

colorByExpressionProfile = FALSE,

oneTrack = TRUE

)
Arguments
object A CAGEexp object.
what Which elements should be exported: CTSS for individual CTSSs, tagClusters
for tag clusters or consensusClusters for consensus clusters.
gLow, qUp Position of which "lower" (resp. "upper") quantile should be used as 5’ (resp.

3’) boundary of the filled block in whiskerplot-like representation of the cluster.

Default: NULL (plain line representation). Ignored when what = "CTSS".
colorByExpressionProfile

Logical, should blocks be colored in the color of their corresponding expression

class. Ignored when what equals”tagClusters”.

oneTrack Logical, should the data be converted in an individual object or a list of objects?

Details

The BED representations of CTSSs, tag cluster and consensus clusters can be directly visualised in
the ZENBU or UCSC Genome Browsers.

When what = "CTSS", one UCSCData object with single track of 1 bp blocks representing all de-
tected CTSSs (in all CAGE samples) is created. CTSSs can be colored according to their expression
class (see getExpressionProfiles and plotExpressionProfiles). For colorByExpressionProfile
= FALSE, CTSSs included in the clusters are shown in black and CTSSs that were filtered out in gray.

When what = "tagClusters”, one track per CAGE dataset is created, which can be exported to
a single UCSCData object (by setting oneFile = TRUE) or separate ones (FALSE). If no quantile

exportToTrack 39

boundaries were provided (qLow and gUp are NULL, TCs are represented as simple blocks showing
the full span of TC fromthe start to the end. Setting qLow and/or qUp parameters to a value of the
desired quantile creates a gene-like representation with a line showing full span of the TC, filled
block showing specified interquantile range and a thick 1 bp block denoting position of the dominant
(most frequently used) TSS. All TCs in one track (one CAGE dataset) are shown in the same color.

When what = "consensusClusters"” consensus clusters are exported. Since there is only one set
of consensus clusters common to all CAGE datasets, only one track is created in case of a simple
representation. This means that when gLow = NULL and qUp = NULL one track with blocks showing
the full span of consensus cluster from the start to the end is created. However, the distribution of
the CAGE signal within consensus cluster can be different in different CAGE samples, resulting
in different positions of quantiles and dominant TSS. Thus, when gLow and/or qUp parameters are
set to a value of the desired quantile, a separate track with a gene-like representation is created
for every CAGE dataset. These tracks can be exported to a single UCSCData object (by setting
oneFile = TRUE) or separate ones (by setting oneFile = FALSE). The gene-like representation is
analogous to the one described above for the TCs. In all cases consensus clusters can be colored
according to their expression class (provided the expression profiling of consensus clusters was
done by calling getExpressionProfiles function). Colors of expression classes match the col-
ors in which they are shown in the plot returned by the plotExpressionProfiles function. For
colorByExpressionProfile = FALSE all consensus clusters are shown in black.

Value

Returns either a rtracklayer UCSCData object, or a GRangesList of them.

Author(s)

Vanja Haberle
Charles Plessy

Examples

You can export from a CAGEexp object or from a cluster object directly:
exportToTrack(exampleCAGEexp, what = "CTSS") # Is same as:
exportToTrack(CTSScoordinatesGR(exampleCAGEexp)) # Or:

exampleCAGEexp |> CTSScoordinatesGR() |> exportToTrack()

Export a single sample,
exampleCAGEexp |> CTSStagCountGR(2) |> exportToTrack()
exampleCAGEexp |> CTSSnormalizedTpmGR(2) |> exportToTrack()

Exporting multiple samples results in a GRangesList of UCSCData objects.
exportToTrack(exampleCAGEexp, what = "CTSS", oneTrack = FALSE)
exampleCAGEexp |> CTSStagCountGR("all") |> exportToTrack()
exampleCAGEexp |> CTSSnormalizedTpmGR("all") |> exportToTrack()

exporting CTSSs colored by expression class
Temporarly disabled
exportToTrack(exampleCAGEexp, what = "CTSS"”, colorByExpressionProfile = TRUE)

exporting tag clusters in gene-like representation

40 expressionClasses

exportToTrack(exampleCAGEexp, what = "tagClusters”, gLow = 0.1, qUp = 0.9)
tagClustersGR(exampleCAGEexp, 1) |> exportToTrack(gLow = 0.1, qUp = 0.9)

#i## exporting consensus clusters
exportToTrack(exampleCAGEexp, what = "consensusClusters")
exampleCAGEexp |>
consensusClustersGR("Zf.high”, gLow = .1, qUp = .9) |>
exportToTrack(gLow = .1, gUp = .9)
exportToTrack(exampleCAGEexp, what = "consensusClusters”
, gbow = 0.1, gUp = 0.9, oneTrack = FALSE)

expressionClasses Extract labels of expression classes

Description

Retrieves labels of expression classes of individual CTSSs or consensus clusters from a CAGEr
object.

Usage

expressionClasses(object)

S4 method for signature 'CTSS'
expressionClasses(object)

S4 method for signature 'ConsensusClusters'
expressionClasses(object)

Arguments

object A CAGEr object.

Value

Returns a S4Vectors: :Rle-encoded vector of labels of expression classes. The number of labels
matches the number of expression clusters returned by getExpressionProfiles function.

See Also

Other CAGETr expression clustering functions: getExpressionProfiles(), plotExpressionProfiles()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), filteredCTSSidx (),

genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

FANTOMS5humanSamples 41

Examples

expressionClasses(CTSScoordinatesGR(exampleCAGEexp))
exampleCAGEexp |> consensusClustersGR() |> expressionClasses()

FANTOM5humanSamples FANTOMYS human samples

Description
Lazy-loaded data.frame object, containing information about FANTOMS libraries. Its use is de-
scribed in more details in the vignette “Use of CAGE resources with CAGEr”.

Usage

FANTOM5humanSamples

Format

A data. frame with sample, type, description, library_id and data_url columns.

See Also
Other FANTOM data: FANTOM5mouseSamples, importPublicData()

FANTOM5mouseSamples FANTOMS mouse samples

Description
Lazy-loaded data. frame object, containing information about FANTOMS libraries. Its use is de-
scribed in more details in the vignette “Use of CAGE resources with CAGEr”.

Usage
FANTOM5mouseSamples

Format

A data. frame with sample, type, description, library_id and data_url columns.

See Also
Other FANTOM data: FANTOM5humanSamples, importPublicData()

42 filteredCTSSidx

filteredCTSSidx The filteredCTSSidx () function is in CAGEr functions to retrieve
the result of the f1lagLowExpCTSS() function in a safe way.

Description

The filteredCTSSidx () function is in CAGEr functions to retrieve the result of the flagLowExpCTSS()
function in a safe way.

Usage
filteredCTSSidx(object)

S4 method for signature 'CAGEexp'
filteredCTSSidx(object)

Arguments

object A CAGEexp object

Value

Returns the value of filteredCTSSidx in the row ranges of the tag count matrix experiment of the
CAGEexp object, or R1e (TRUE) if it was NULL

See Also

Other CAGEr filter functions: flagByUpstreamSequences(), flaglLowExpCTSS()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),

genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

Examples

filteredCTSSidx (exampleCAGEexp)

flagByUpstreamSequences 43

flagByUpstreamSequences
Filter by upstream sequences

Description

Looks up the bases directly upstream provided genomic ranges and searches for a gapless match
with a farget seqence within a given edit distance.

Usage
flagByUpstreamSequences(object, target, distance = 0)

S4 method for signature 'CTSS'
flagByUpstreamSequences(object, target, distance = 0)

S4 method for signature 'TagClusters'
flagByUpstreamSequences(object, target, distance = @)

S4 method for signature 'ConsensusClusters'
flagByUpstreamSequences(object, target, distance = 0)

S4 method for signature 'GRanges'
flagByUpstreamSequences(object, target, distance = @)

Arguments
object A CTSS, a TagClusters, ConsensusClusters or a GenomicRanges: : GRanges
object from which a BSgenome object can be reached.
target A target sequence.
distance The maximal edit distance between the genome and the target sequence (default:
0).
Details

If the provided object represents tag clusters or consensus clusters, the search will be done up-
stream its dominant peak. Convert the object to the GRanges class if this is not the behaviour you
want.

Value

A logical-RLe vector indicating if ranges matched the target.

Author(s)

Charles Plessy

44

See Also

Other CAGEr filter functions: filteredCTSSidx(), flagLowExpCTSS()

flagLowExpCTSS

flaglLowExpCTSS

Flag CTSSes based on sample expression

Description

Flag CTSSes for that do not pass an expression threshold in at least a given number of samples.
This is typically used to ignore CTSSes that have been seen only once in a single sample, as they
can be considered to not be reproduced.

Usage

flaglLowExpCTSS(

)

object,

threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE

S4 method for signature
flaglLowExpCTSS(

)

object,

threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE

S4 method for signature
flaglLowExpCTSS(

)

object,

threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE

S4 method for signature
flaglLowExpCTSS(

)

object,

threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE

S4 method for signature

"CAGEr'

'RangedSummarizedExperiment'

'DataFrame’

'matrix’

flagLowExpCTSS 45

flaglLowExpCTSS(
object,
threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE
)

filterLowExpCTSS(
object,
threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE
)

S4 method for signature 'CAGEr'
filterLowExpCTSS(
object,
threshold = 1,
nrPassThreshold = 1,
thresholdIsTpm = TRUE

)
Arguments
object An object from the CAGEr package that contains expression values for multiple
samples.
threshold Flag CTSSs with signal < threshold.
nrPassThreshold

Only flag CTSSs when signal is below threshold in at least nrPassThreshold
samples.

thresholdIsTpm Logical, is threshold raw tag count value (FALSE) or normalized signal (TRUE).

Value

flaglLowExpCTSS returns a S4Vectors: :Rle vector where TRUE indicates the index of a CTSS that
passes the filter.

filterLowExpCTSS returns the CAGEr object where the output of flaglLowExpCTSS was stored in-
ternally.

See Also

Other CAGEr filter functions: filteredCTSSidx (), flagByUpstreamSequences()

Examples

flaglLowExpCTSS(exampleCAGEexp, threshold = 100, nrPassThreshold = 2)

46 GeneExpDESeq?2

GeneExpDESeq2 Export gene expression data for DESeq?2 analysis

Description

Creates a DESegDataSet using the gene expression data in the experiment slot geneExpMatrix and
the sample metadata of the CAGEexp object. The formula must be built using factors already present
in the sample metadata.

Usage

GeneExpDESeq2(object, design)

S4 method for signature 'CAGEexp'
GeneExpDESeqg2(object, design)

Arguments

object A CAGEexp object.

design A formula for the DESeq?2 analysis.

Author(s)

Charles Plessy

See Also

DESegDataSet in the DESeq2 package.
Other CAGETr gene expression analysis functions: CTSStoGenes (), ranges2genes()

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpSE (), consensusClustersGR(), expressionClasses(), filteredCTSSidx(),
genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), segNameTotalsSE(),
tagClustersGR()

Examples

exampleCAGEexp$group <- factor(c("a", "a", "b", "b", "a"))
GeneExpDESeq2 (exampleCAGEexp, ~group)

GeneExpSE 47

GeneExpSE Retreives the SummarizedExperiment containing gene expression lev-
els.

Description

Getor set a SummarizedExperiment using the gene expression data in the experiment slot geneExpMatrix
and the sample metadata of the CAGEexp object.

Usage

GeneExpSE (object)

S4 method for signature 'CAGEexp'
GeneExpSE (object)

Arguments

object A CAGEexp object.

Author(s)

Charles Plessy

See Also

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2(), consensusClustersGR(), expressionClasses(), filteredCTSSidx(),
genomeName (), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

Examples

GeneExpSE (exampleCAGEexp)

genomeName Extracting genome name from CAGEr objects

Description

Extracts the name of a referent genome from a CAGEexp or a CTSS object.

48 genomeName
Usage
genomeName (object)

S4 method for signature 'CAGEexp'
genomeName (object)

S4 method for signature 'CTSS'
genomeName (object)

genomeName (object) <- value

S4 replacement method for signature 'CAGEexp'
genomeName (object) <- value

S4 replacement method for signature 'CTSS'
genomeName (object) <- value

Arguments
object A CAGEexp or a CTSS object.
value The name of a BSgenome package.
Details

CAGEexp objects constructed with NULL in place of the genome name can not run some commands
that need access to genomic data, such as BigWig export or G-correction.
Value

Returns a name of a BSgenome package used as a referent genome.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), inputFiles(), inputFilesType(), librarySizes(), samplelLabels(),
segNameTotalsSE(), tagClustersGR()

Other CAGE:tr setter methods: inputFiles(), inputFilesType(), sampleLabels(), setColors()

Examples

genomeName (exampleCAGEexp)

getCTSS 49

getCTSS Reading CAGE data from input file(s) and detecting TSSs

Description

Reads input CAGE datasets into CAGEr object, constructs CAGE transcriptions start sites (CTSSs)

and counts number of CAGE tags supporting every CTSS in each input experiment. See inputFilesType
for details on the supported input formats. Preprocessing and quality filtering of input CAGE tags,

as well as correction of CAGE-specific G’ nucleotide addition bias can be also performed before
constructing TSSs.

Usage

getCTSS(
object,
sequencingQualityThreshold = 10,
mappingQualityThreshold = 20,
removeFirstG = TRUE,
correctSystematicG = TRUE,
useMulticore = FALSE,
nrCores = NULL

)

S4 method for signature 'CAGEexp'
getCTSS(
object,
sequencingQualityThreshold = 10,
mappingQualityThreshold = 20,
removeFirstG = TRUE,
correctSystematicG = TRUE,
useMulticore = FALSE,
nrCores = NULL

Arguments

object A CAGEexp object.
sequencingQualityThreshold
Only CAGE tags with average sequencing quality >= sequencingQualityThreshold
and mapping quality >=mappingQualityThreshold are kept. Used only if
inputFileType(object) == "bam” or inputFileType(object) == "bamPairedEnd"”,
i.e when input files are BAM files of aligned sequenced CAGE tags, otherwise
ignored. If there are no sequencing quality values in the BAM file (e.g. HeliS-
cope single molecule sequencer does not return sequencing qualities) all reads
will by default have this value set to -1. Since the default value of sequencingQualityThreshold
is 10, all the reads will consequently be discarded. To avoid this behaviour and

50 getCTSS

keep all sequenced reads set sequencingQualityThreshold to -1 when pro-

cessing data without sequencing qualities. If there is no information on mapping

quality in the BAM file (e.g. software used to align CAGE tags to the referent

genome does not provide mapping quality) the mappingQualityThreshold pa-

rameter is ignored. In case of paired-end sequencing BAM file (i.e. inputFileType(object)
== "bamPairedEnd") only the first mate of the properly paired reads (i.e. the five

prime end read) will be read and subject to specified thresholds.

mappingQualityThreshold
See sequencingQuality Threshold.

removeFirstG Logical, should the first nucleotide of the CAGE tag be removed in case it
is a G and it does not map to the referent genome (i.e. it is a mismatch).
Used only if inputFileType(object) == "bam"” or inputFileType(object)
== "bamPairedEnd", i.e when input files are BAM files of aligned sequenced
CAGE tags, otherwise ignored. See Details.

correctSystematicG
Logical, should the systematic correction of the first G nucleotide be performed
for the positions where there is a G in the CAGE tag and G in the genome.
This step is performed in addition to removing the first G of the CAGE tags
when it is a mismatch, i.e. this option can only be used when removeFirstG
= TRUE, otherwise it is ignored. The frequency of adding a G to CAGE tags is
estimated from mismatch cases and used to systematically correct the G addition
for positions with G in the genome. Used only if inputFileType(object) ==
"bam” or inputFileType(object) == "bamPairedEnd”, i.e when input files
are BAM files of aligned sequenced CAGE tags, otherwise ignored. See Details.

useMulticore Logical, should multicore be used. useMulticore = TRUE has no effect on non-
Unix-like platforms.

nrCores Number of cores to use when useMulticore = TRUE (set to NULL to use all de-
tected cores).

Details

In the CAGE experimental protocol an additional G nucleotide is often attached to the 5’ end of
the tag by the template-free activity of the reverse transcriptase used to prepare cDNA (Harbers and
Carninci, Nature Methods 2005). In cases where there is a G at the 5° end of the CAGE tag that
does not map to the corresponding genome sequence, it can confidently be considered spurious and
should be removed from the tag to avoid misannotating actual TSS. Thus, setting removeFirstG =
TRUE is highly recommended.

However, when there is a G both at the beginning of the CAGE tag and in the genome, it is not
clear whether the original CAGE tag really starts at this position or the G nucleotide was added
later in the experimental protocol. To systematically correct CAGE tags mapping at such posi-
tions, a general frequency of adding a G to CAGE tags can be calculated from mismatch cases and
applied to estimate the number of CAGE tags that have G added and should actually start at the
next nucleotide/position. The option correctSystematicG is an implementation of the correction
algorithm described in Carninci et al., Nature Genetics 2006, Supplementary Information section
3-e.

getExpressionProfiles 51

Value

Returns the object, in which the tagCountMatrix experiment will be occupied by a SummarizedExperiment: :RangedSumma
containing the expression data as a DataFrame of Rle integers, and the CTSS coordinates as ge-
nomic ranges in a CTSS object. The expression data can be retrieved with the CTSStagCountDF
function. In addition, the library sizes are calculated and stored in the object’s sample data (see
librarySizes).
Author(s)

Vanja Haberle

References

Harbers and Carninci (2005) Tag-based approaches for transcriptome research and genome annota-
tion, Nature Methods 2(7):495-502.

Carninci et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution,
Nature Genetics 38(7):626-635.

See Also

inputFilesType, librarySizes.

Other CAGETr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), normalizeTagCount(), paraclu(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr()

Examples
library(BSgenome.Drerio.UCSC.danRer7)

pathsToInputFiles <- system.file("extdata”, c("Zf.unfertilized.egg.chr17.ctss”,
"Zf.30p.dome.chr17.ctss”, "Zf.prim6.repl.chr17.ctss"), package="CAGEr")

labels <- paste(”sample”, seq(1,3,1), sep = "")

myCAGEexp <- new("CAGEexp", genomeName = "BSgenome.Drerio.UCSC.danRer7",
inputFiles = pathsTolInputFiles, inputFilesType = "ctss"”, samplelLabels = labels)

myCAGEexp <- getCTSS(myCAGEexp)

getExpressionProfiles CAGE data based expression clustering

Description

Clusters CAGE expression across multiple experiments, both at level of individual TSSs or entire
clusters of TSSs.

52

Usage

getExpressionProfiles(

)

object,

what = c("CTSS"”, "consensusClusters"),
tpmThreshold = 5,

nrPassThreshold = 1,

method = c(”"som”, "kmeans"),
xDim = 5,
yDim = 5

S4 method for signature 'CAGEexp'
getExpressionProfiles(

)

object,
what = c("CTSS"”, "consensusClusters"),
tpmThreshold = 5,

nrPassThreshold = 1,

method = c(”"som”, "kmeans"),

xDim =

5,
yDim = 5

S4 method for signature 'matrix’
getExpressionProfiles(

object,
what = c("CTSS"”, "consensusClusters"),
tpmThreshold = 5,

nrPassThreshold = 1,

method = c("som”, "kmeans"),

xDim = 5,

yDim = 5

Arguments

object A CAGEexp object

what

tpmThreshold, nrPassThreshold
Ignore clusters when their normalized CAGE signal is lower than tpmThreshold

method

xDim, yDim

in at least nrPassThreshold experiments.

getExpressionProfiles

At which level the expression clustering is done (CTSS or consensusClusters)

Method to be used for expression clustering. som uses the self-organizing map

(SOM) algorithm of Toronen and coll., FEBS Letters (1999) som: : som] function
from som package. kmeans uses the K-means algorithm implemented in the

stats: :kmeans] function.

With method = "kmeans"”, xDim specifies number of clusters that will be re-

turned by K-means algorithm and yDim is ignored. With method = "som”, xDim
specifies the the first and yDim the second dimension of the self-organizing map,
which results in total $xDim x yDim$ clusters returned by SOM.

getExpressionProfiles 53

Details

Expression clustering can be done at level of individual CTSSs, in which case the feature vector
used as input for clustering algorithm contains log-transformed and scaled (divided by standard
deviation) normalized CAGE signal at individual TSS across multiple experiments. Only TSSs
with normalized CAGE signal >= tpmThreshold in at least nrPassThreshold CAGE experiments
are used for expression clustering. However, CTSSs along the genome can be spatially clustered
into tag clusters for each experiment separately using a CTSS clustering function, and then aggre-
gated across experiments into consensus clusters using aggregateTagClusters function. Once
the consensus clusters have been created, expression clustering at the level of these wider genomic
regions (representing entire promoters rather than individual TSSs) can be performed. In that case
the feature vector used as input for clustering algorithm contains normalized CAGE signal within
entire consensus cluster across multiple experiments, and threshold values in tpmThreshold and
nrPassThreshold are applied to entire consensus clusters.

Value

Returns a modified CAGEexp object. If what = "CTSS" the objects’s metadata elements CTSSexpressionClusteringMethod
and CTSSexpressionClasses will be set accordingly, and if what = "consensusClusters” the el-

ements consensusClustersExpressionClusteringMethod and consensusClustersExpressionClasses

will be set. Labels of expression classes (clusters) can be retrieved using expressionClasses func-

tion.

Author(s)

Vanja Haberle
Charles Plessy

References

Toronen et al. (1999) Analysis of gene expression data using self-organizing maps, FEBS Letters
451:142-146.

See Also

Other CAGEr expression clustering functions: expressionClasses(), plotExpressionProfiles()

Examples

getExpressionProfiles(exampleCAGEexp, "CTSS"
, tpmThreshold = 50, nrPassThreshold = 1

n

, method = "som”, xDim = 3, yDim = 3)
getExpressionProfiles(exampleCAGEexp, "CTSS"
, tpmThreshold = 5@, nrPassThreshold = 1

, method = "kmeans”, xDim = 3)

getExpressionProfiles(exampleCAGEexp, "consensusClusters")

54 getShiftingPromoters

getShiftingPromoters Select consensus clusters with shifting score above threshold

Description

Extracts consensus clusters with shifting score and/or FDR (adjusted P-value from Kolmogorov-
Smirnov test) above specified threshold. Returns their genomic coordinates, total CAGE signal and
the position of dominant TSS in the two compared groups of CAGE samples, along with the value
of the shifting score, P-value and FDR. Scores and P-values/FDR have to be calculated beforehand
by calling scoreShift function.

Usage

getShiftingPromoters(
object,
groupX,
groupy,
tpmThreshold =
scoreThreshold
fdrThreshold =

)

9,
= -Inf,
1

S4 method for signature 'CAGEexp'

getShiftingPromoters(
object,
groupX,
groupy,
tpmThreshold =
scoreThreshold
fdrThreshold =

9,
= -Inf,
1

Arguments

object A CAGEexp object.

groupX, groupY Character vector of the one or more CAGE dataset labels in the first (groupX)
and in the second group (groupY). Shifting promoters for the specified group
pair are returned.

tpmThreshold Consensus clusters with total CAGE signal >= tpmThreshold in each of the
compared groups will be returned.

scoreThreshold Consensus clusters with shifting score >= scoreThreshold will be returned.
The default value -Inf returns all consensus clusters (for which score could
be calculated, i.e. the ones that have at least one tag in each of the compared
samples).

hanabi 55

fdrThreshold Consensus clusters with adjusted P-value (FDR) from Kolmogorov-Smirnov test
>= fdrThreshold will be returned. The default value 1 returns all consensus
clusters (for which K-S test could be performed, i.e. the ones that have at least
one tag in each of the compared samples).

Value

Returns a data. frame of shifting promoters with genomic coordinates and positions of dominant
TSS and CAGE signal in the two compared (groups of) samples, along with shifting score and
adjusted P-value (FDR).

Author(s)

Vanja Haberle
Sarvesh Nikumbh

See Also

Other CAGEr promoter shift functions: scoreShift()

Examples

getShiftingPromoters(exampleCAGEexp
, groupX = "Zf.unfertilized.egg"
, groupY = "Zf.30p.dome") |> head()

hanabi Calcultate richness in preparation for plotting

Description

Rarefy data at multiple sample sizes using the vegan package and return a ‘hanabi’ object that can
be passed to plot functions.

The computation can be long, so the steps of rarefaction and plotting are kept separate.

Usage
hanabi (
X,
n = 20,
step = 0.75,
from = NULL,

useMulticore = FALSE,
nrCores = NULL

56

S4 method for

hanabi (
X,
n = 20,
step = 0.75,
from = NULL,
useMulticore =

nrCores = NULL
)

S4 method for

hanabi (
X!
n = 20,
step = 0.75,
from = NULL,
useMulticore =

nrCores = NULL
)

S4 method for

hanabi (
X!
n = 20,
step = 0.75,
from = NULL,
useMulticore =

nrCores = NULL
)

S4 method for

hanabi (
X)
n = 20,
step = 0.75,
from = NULL,
useMulticore =

nrCores = NULL
)

S4 method for

hanabi (
X,
n = 20,
step = 0.75,
from = NULL,
useMulticore =

nrCores = NULL

signature 'Rle’

FALSE,

signature 'numeric’

FALSE,

signature 'integer'

FALSE,

signature 'GRanges'

FALSE,

signature 'List'

FALSE,

hanabi

hanabi

)

57

S4 method for signature 'list'

hanabi (
X,
n = 20,

step = 0.75,
from = NULL,

useMulticore = FALSE,

nrCores =

)

NULL

S4 method for signature 'matrix’

hanabi (
X)
n = 20,

step = 0.75,
from = NULL,
useMulticore

= FALSE,

nrCores = NULL

Arguments

X

n

step

from

useMulticore

nrCores

Details

An object contained expression counts on which richness scores can be calcu-
lated. For example an expression table in DataFrame or data.frame format
where columns are samples and rows are featuressuch as genes, TSS, etc, or a
vector of counts (tag counts, molecule counts, ...), or GRanges or GRangesList
objects, etc.

The maximum number of rarefactions per sample.

Subsample sizes are calculated by taking the largest sample and multiplying it

n_n

by the step "n" times.

Add one sample size (typically "0") in order to extend the plot on the left-hand
side.

Logical, should multicore be used. useMulticore = TRUE has no effect on non-
Unix-like platforms. At the moment, it also has only effects on lists and list-
derived classes (data frames but not matrices).

Number of cores to use when useMulticore = TRUE (set to NULL to use all de-
tected cores).

This function does not take directly CAGEr objects as input, because hanabi plots can be made from
CTSS, clustered or gene-level data, therefore it is not possible to guess which one to use.

Value

A list-based object of class "hanabi".

58

Author(s)

Charles Plessy

See Also

vegan: :rarecurve.
Other CAGE:r richness functions: hanabiPlot (), plot.hanabi()

Examples

h <- hanabi(CTSStagCountDF (exampleCAGEexp))
h

plot(h)

hanabi (CTSStagCountGR(exampleCAGEexp, 2))

hanabiPlot

hanabi-class Hanabi class

Description

TBD

Details
TBD

hanabiPlot hanabiPlot

Description

Plot feature discovery curves

Usage

hanabiPlot(x, group, col = NULL, legend.pos = "topleft”, pch = 1,

Arguments
X A hanabi object.
group A character vector or a factor grouping the samples.
col A character vector colors (at most one per group).
legend. pos Position of the legend, passed to the legend function.
pch Plot character at the tip of the lines and in the legend.

Further arguments to be passed to the plot.hanabi function.

import.bam 59

Details

Plots the number of features (genes, transcripts, ...) detected for a given number of counts (reads,
unique molecules, ...). Each library is sub-sampled by rarefaction at various sample sizes, picked to
provide enough points so that the curves look smooth. The final point is plotted as an open circle,
hence the name "hanabi", which means fireworks in Japanese.

The rarefactions take time to do, so this step is done by a separate function, so that the result is
easily cached.

Author(s)

Charles Plessy

See Also

Other CAGETr richness functions: hanabi, plot.hanabi()
Other CAGE:r richness functions: hanabi, plot.hanabi()

Other CAGETr plot functions: TSSlogo(), plotAnnot (), plotCorrelation(), plotExpressionProfiles(),
plotInterquantileWidth(), plotReverseCumulatives()

Examples

h <- hanabi(CTSStagCountDF (exampleCAGEexp))

hanabiPlot(h, group = 1:5)

hanabiPlot (hanabi (CTSStagCountDF (exampleCAGEexp), n = 20, step = 0.8, from = 25000), group = 1:5)
hanabiPlot (hanabi (CTSStagCountDF (exampleCAGEexp), n = 10, step = 0.98), group = 1:5)
hanabiPlot(h, group=c("A", "A", "B", "C", "B"), col=c("red”, "green”, "blue"))

hanabiPlot(h, group = 1:5, pch=1:5, col="purple")

import.bam import.bam

Description

Imports CTSS data from a BAM file.

Usage

import.bam(
filepath,
filetype,
sequencingQualityThreshold = 10,
mappingQualityThreshold = 20

60 import.bam.ctss

Arguments
filepath The path to the BAM file.
filetype bam or bamPairedEnd.
sequencingQualityThreshold
See getCTSS().
mappingQualityThreshold
See getCTSS().
See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

Examples

TODO: add exmaple file
import.bam(system.file("extdata”, "example.bam”, package = "CAGEr"))

import.bam.ctss import.bam.ctss

Description

Imports CTSS data from a BAM file.

Usage

import.bam.ctss(
filepath,
filetype,
sequencingQualityThreshold,
mappingQualityThreshold,
removeFirstgG,
correctSystematicG,
genome

Arguments

filepath The path to the BAM file.

filetype bam or bamPairedEnd.
sequencingQualityThreshold

See getCTSS().
mappingQualityThreshold

See getCTSS().

removeFirstG See getCTSS().

import.bedCTSS 61

correctSystematicG
See getCTSS().
genome See coerceInBSgenome().
Value

Returns a CTSS object.

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bedCTSS(), import.bedScore(),
import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

import.bedCTSS import.bedCTSS

Description
Imports a BED file where each line represents a single base, with a score counting the number of
CAGE transcription start sites (CTSS).

Usage

import.bedCTSS(filepath)

Arguments

filepath The path to the BED file.

Value

A GRanges object where each line represents one nucleotide.

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedScore(),
import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

Examples

TODO: add exmaple file
import.BED(system.file("extdata”, "example.bed", package = "CAGEr"))

62 import.bedScore

import.bedmolecule import.bedmolecule

Description
Imports a BED file where each line counts for one molecule in a GRanges object where each line
represents one nucleotide.

Usage

import.bedmolecule(filepath)

Arguments

filepath The path to the BED file.

Value

Returns a CTSS object.

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

Examples

TODO: add exmaple file
import.BED(system.file("extdata”, "example.bed”, package = "CAGEr"))

import.bedScore import.bedScore

Description

Imports a BED file where the score indicates a number of counts for a given alignment.

Usage

import.bedScore(filepath)

Arguments

filepath The path to the BED file.

import.bigwig 63

Value

A GRanges object where each line represents one nucleotide.

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

Examples

TODO: add exmaple file
import.bedScore(system.file("extdata”, "example.bed", package = "CAGEr"))

import.bigwig Read in BigWig files to CAGEexp object

Description

Read in BigWig files to CAGEexp object

Usage

import.bigwig(filepath)

Arguments

filepath Path to an input bigwig file on the plus strand.

Value

a CAGEexp object

Note

The filename must contain the string str1 and have a pair for the minus strand that has identical path
except with the str2 substring, so that inputFiles CAGEexp object will only point to plus-strand
BigWig files.

Author(s)

Katalin Ferenc

Damir Baranasic

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), loadFileIntoGPos(), moleculesGR2CTSS()

64 import. CAGEscanMolecule

Examples

pathsToInputFiles <- list.files(system.file("extdata", package = "CAGEr")
, "strl.out.wig.bw$” , full.names = TRUE)

CAGEr: ::import.bigwig(pathsToInputFiles[1])

Not run:
sampleLabels <- sub("_subsampled_str1.Signal.Unique.strl.out.wig.bw"

s , basename(pathsToInputFiles))
"BSgenome.Drerio.UCSC.danRer7"

CAGEexp(genomeName

, inputFiles = pathsTolnputFiles
, inputFilesType = "bigwig”
, samplelLabels = samplelLabels) |> getCTSS()

End(Not run)

import.CAGEscanMolecule
import. CAGEscanMolecule

Description

Imports a CAGEscan “molecule” file in a GenomicRanges: : GRanges object

Usage

import.CAGEscanMolecule(filepath)

Arguments

filepath The path to the “molecule” file.

See Also

parseCAGEscanBlocksToGrangeTSS

Examples

TODO import.CAGEscanMolecule(system.file("extdata”, "example.molecule.txt”, package = "CAGEr"))

import.CTSS 65

import.CTSS import.CTSS

Description

Imports a "CTSS" file in a GenomicRanges::GPos object

Usage
import.CTSS(filepath)

Arguments
filepath The path to the "CTSS" file.
Note that the format of the "CTSS" files handled in this function is not the same
as the FANTOMS "CTSS" files (which are plain BED).
See Also

Other loadFileIntoGPos: bam2CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), import.bigwig(), loadFileIntoGPos(), moleculesGR2CTSS()

Examples

CAGEr: ::import.CTSS(system.file("extdata"”, "Zf.high.chr17.ctss"”, package = "CAGEr"))

importPublicData importPublicData

Description

Imports CAGE data from different sources into a CAGEexp object. After the object has been created
the data can be further manipulated and visualized using other functions available in the CAGEr
package and integrated with other analyses in R. Available resources include:

Usage
importPublicData(
origin = c("FANTOM5"”, "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"),
dataset,
group,
sample
)

S4 method for signature 'character,character,ANY,character'
importPublicData(

66 importPublicData

origin = c("FANTOM5"”, "FANTOM3and4", "ENCODE", "ZebrafishDevelopment"),
dataset,

group,
sample

Arguments

origin Character vector specifying one of the available resources for CAGE data ("FANTOM5",
"FANTOM3and4", "ENCODE" or "ZebrafishDevelopment"”).

dataset Character vector specifying one or more of the datasets available in the selected
resource. For FANTOMS it can be either "human” or "mouse”, and only one of
them can be specified at a time. For other resources please refer to the vignette
of the corresponding data package for the list of available datasets. Multiple
datasets mapped to the same genome can be specified to combine selected sam-
ples from each.

group Character string specifying one or more groups within specified dataset(s), from
which the samples should be selected. The group argument is used only when
importing TSSs from data packages and ignored for "FANTOMS". For avail-
able groups in each dataset please refer to the vignette of the corresponding data
package. Either only one group has to be specified (if all selected samples be-
long to the same group) or one group per sample (if samples belong to different
groups). In the latter case, the number of elements in group must match the
number of elements in sample.

sample Character string specifying one or more CAGE samples. Check the corre-
sponding data package for available samples within each group and their la-
bels. For FANTOMS resource, list of all human (~1000) and mouse (~) sam-
ples can be obtained in CAGEr by loading data(FANTOM5humanSamples) and
data(FANTOM5mouseSamples), respectively. Use the names from the sample
column to specify which samples should be imported.

Details

* FANTOMS datasets (Forrest et al., Nature 2014) for numerous human and mouse samples
(primary cells, cell lines and tissues), which are fetched directly from FANTOMS online re-
source at https://fantom.gsc.riken.jp/5/data.

e FANTOMS3 and 4 datasets (Carninci _et al., _ Science 2005, Faulkner et al., Nature Genetics
2009, Suzuki et al. Nature Genetics 2009) from FANTOM3and4CAGE data package available
from Bioconductor.

* ENCODE datasets (Djebali ef al. Nature 2012) for numerous human cell lines from ENCODE-
projectCAGE data package, which is available for download from http://promshift.genereg.net/CAGEr/.

» Zebrafish (Danio rerio) developmental timecourse datasets (Nepal et al. Genome Research
2013) from ZebrafishDevelopmental CAGE data package, which is available for download
from http://promshift.genereg.net/CAGEx/.

https://fantom.gsc.riken.jp/5/data
http://promshift.genereg.net/CAGEr/
http://promshift.genereg.net/CAGEr/

importPublicData 67

Value

A CAGEexp object is returned, containing information on library size, CTSS coordinates and tag
count matrix. The object is ready for CAGEr analysis (normalisation, tag clustering, ...).

Author(s)

Vanja Haberle

Charles Plessy

References

See Also

Carninci et al., (2005). The Transcriptional Landscape of the Mammalian Genome. Science
309(5740):1559-1563.

Djebali et al., (2012). Landscape of transcription in human cells. Nature 488(7414):101-108.

Faulkner et al., (2009). The regulated retrotransposon transcriptome of mammalian cells.,
Nature Genetics 41:563-571.

Forrest et al., (2014). A promoter-level mammalian expression atlas. Nature 507(7493):462-
470.

Nepal et al., (2013). Dynamic regulation of the transcription initiation landscape at single
nucleotide resolution during vertebrate embryogenesis. Genome Research 23(11):1938-1950.

Suzuki_et al.,_ (2009). The transcriptional network that controls growth arrest and differenti-
ation in a human myeloid leukemia cell line_. Nature Genetics 41:553-562.

Other FANTOM data: FANTOM5humanSamples, FANTOM5mouseSamples

Examples

Not run:
importing FANTOM5 data

list of FANTOM5 human tissue samples

data(FANTOM5humanSamples)
head(subset (FANTOM5humanSamples, type == "tissue"))

import selected samples
f5 <- importPublicData(
origin="FANTOM5", dataset = "human”,
sample = c("adipose_tissue__adult__pool1"”, "adrenal_gland__adult__pooll1”,

"aorta__adult__pool1"))

CTSScoordinatesGR(f5)

importing FANTOM3/4 data from a data package

library (FANTOM3and4CAGE)

68 inputFiles
list of mouse datasets available in this package
data(FANTOMmouseSamples)
unique (FANTOMmouseSamples$dataset)
head(subset (FANTOMmouseSamples, dataset == "FANTOMtissueCAGEmouse"))
head(subset (FANTOMmouseSamples, dataset == "FANTOMtimecourseCAGEmouse"))
import selected samples from two different mouse datasets
34 <- importPublicData(
origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse", "FANTOMtimecourseCAGEmouse"),
group = c("brain”, "adipogenic_induction"),
sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+" 6 "DFAT-D1_preadipocytes_2days"))
34 <- importPublicData(
origin="FANTOM3and4", dataset = c("FANTOMtissueCAGEmouse"),
group = c("brain"),
sample = c("CCL-131_Neuro-2a_treatment_for_6hr_with_MPP+"))
CTSScoordinatesGR(f34)
End(Not run)
inputFiles Extracting paths to input files from CAGE¥ objects
Description
Extracts the paths to CAGE data input files from CAGEexp objects.
Usage
inputFiles(object)
S4 method for signature 'CAGEexp'
inputFiles(object)
inputFiles(object) <- value
S4 replacement method for signature 'CAGEexp'
inputFiles(object) <- value
Arguments

object A CAGEexp object.

value A character vector with one file path per sample.

inputFilesType 69

Value

Returns a character vector of paths to CAGE data input files.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFilesType(), librarySizes(), samplelLabels(),
segNameTotalsSE(), tagClustersGR()

Other CAGE:t setter methods: genomeName (), inputFilesType(), sampleLabels(), setColors()

Examples

inputFiles(exampleCAGEexp)

inputFilesType Input file formats for CAGEr objects

Description

Get or set the information on the type of CAGE data input files from CAGEexp objects.
Usage
inputFilesType(object)

S4 method for signature 'CAGEexp'
inputFilesType(object)

inputFilesType(object) <- value

S4 replacement method for signature 'CAGEexp'
inputFilesType(object) <- value
Arguments

object A CAGEexp object.

value A character vector with one file type per sample.

70 inputFilesType

Details

The following input file types are supported:

* bam: A single-ended BAM file.

* bamPairedEnd: A paired-ended BAM file.

* bed: A BED file where each line counts for one molecule.

* bedScore: A BED file where the score indicates a number of counts for a given alignment.
* CAGEscanMolecule: Experimental. For the CAGEscan 3.0 pipeline.

* ctss: A tabulation-delimited file describing CAGE Transcription Start Sites (CTSS) with four
columns indicating chromosome, 1-based coordinate, strand and score respectively.

e CTSStable

* FANTOM5

* ENCODE

* FANTOM3and4

e ZebrafishDevelopment

Value

Returns the type of the file format of CAGE data input files, e.g. "bam” or "ctss”. In the case of
CAGEexp objects, the return value is character vector with one member per sample.

Author(s)

Vanja Haberle
Charles Plessy

See Also

getCTSS

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), librarySizes(), samplelLabels(), seqNameTotalsSE(),
tagClustersGR()

Other CAGE:r setter methods: genomeName (), inputFiles(), samplelLabels(), setColors()

Examples

inputFilesType(exampleCAGEexp)

librarySizes 71

librarySizes Extracting library sizes from CAGEr objects

Description

Extracts the library sizes (total number of CAGE tags) for all CAGE datasets from CAGEexp objects.

Usage

librarySizes(object)

S4 method for signature 'CAGEexp'

librarySizes(object)
Arguments

object A CAGEgexp object.
Details

Library sizes are calculated when loading data with the getCTSS function and stored in the librarySizes
column of the colData of CAGEexp objects.

Value

Returns an integer vector of total number of CAGE tags (library size) for all CAGE datasets in the
CAGE:Tr object.

Author(s)

Vanja Haberle

See Also

getCTSS

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), inputFilesType(), sampleLabels(), seqNameTotalsSE(),
tagClustersGR()

Examples

librarySizes(exampleCAGEexp)

72 loadFilelntoGPos

loadFileIntoGPos loadFilelntoGPos

Description

A private (non-exported) function to load from each file format supported by CAGEr

Usage
loadFileIntoGPos(
filepath,
filetype = c("bam”", "bamPairedEnd"”, "bigwig"”, "bed”, "bedScore"”, "bedctss"”,

"CAGEscanMolecule”, "ctss"),
sequencingQualityThreshold,
mappingQualityThreshold,
removeFirstgG,
correctSystematicG,
genome

Arguments

filepath The path to the file to load.

filetype The type of the file
sequencingQualityThreshold

See getCTSS().
mappingQualityThreshold

See getCTSS().

removeFirstG See getCTSS().

correctSystematicG
See getCTSS().

genome See coerceInBSgenome().

Value

A GenomicRanges: :GPos () object where the score represents the number of CAGE tags starting
on that nucleotide.

See Also

import.CTSS

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), import.bigwig(), moleculesGR2CTSS()

mapStats 73

mapStats Process mapping statistics

Description

Using a data frame containing mapping statistics in counts, transform the data in percentages that
can be used for stacked barplots.

Usage

mapStats(libs, scope, group = "samplelLabels”, facet = NULL, normalise = TRUE)

Arguments
libs A data frame with containing columns required by the scope chosen.
scope The name of a “scope”, that defines which data is plotted and how it is nor-
malised, or a function that implements a custom scope. See mapStatsScopes()
for details on each scope.
group A vector of factors defining groups in the data. By default, the sample labels
(which means no grouping).
facet A vector of factors defining facets in the data (in the sense of ggplot2’s facet_wrap
function).
normalise Whether to normalise or not. Default: TRUE.
Details

See the plotAnnot vignette and the mapStatsScopes() help page for details on what the scopes
are.

See http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2
about stacked barplot.
Value

Returns a data frame with mean and standard deviation of normalised mapping statistics, plus ab-
solute positions for the error bars. The first column, group, is a vector of factors sorted with the
gtools: :mixedorder () function. The facet column, if any, is always called facet.

Author(s)

Charles Plessy

See Also

plotAnnot, mapStatsScopes

http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2

74 mapStatsScopes

Examples

CAGEr: ::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts”, sampleLabels(exampleCAGEexp))
CAGEr: ::mapStats(as.data.frame(colData(exampleCAGEexp)), "counts”, c("A", "A", "B", "B", "C"))

mapStatsScopes mapStats scopes

Description

Functions implementing the scope parameter of the \1ink{mapStats} function.

Usage

msScope_counts(libs)
msScope_mapped(libs)
msScope_qc(libs)
msScope_steps(libs)
msScope_all(libs)

msScope_annotation(libs)

Arguments

libs A data frame containing metadata describing samples in sequence libraries.

Details

The counts scope reports the number of molecules aligning in promoter, exon, intron and otherwise
intergenic. regions.

The mapped scope reports the number of molecules aligning in promoter, exon, intron and otherwise
intergenic, plus the number of PCR duplicates (mapped tags minus molecule counts), plus the
number of non-properly paired mapped tags.

The qc scope reports the number of tags removed as tag dust, rRNA, spikes, plus the unmapped tags,
plus the number of non-properly paired mapped tags, plus the number of PCR duplicates (mapped
tags minus molecule counts), plus the number of unique molecule counts.

The steps scope reports the number of tags removed by cleaning, mapping, and deduplication,
plus the number of unique molecule counts.

The legacy all scope reports the number of tags in promoters, exons, introns, or mapped elswhere,
or removed because they match rRNA or are likely primer artefacts, normalised by the total nubmer
of extracted tags.

mergeCAGEsets 75

The legacy annotation scope reports the number of tags in promoters, exons, introns, or mapped
elswhere, or removed because they match rRNA or are likely primer artefacts, normalised by the
total nubmer of mapped tags.

Value

Returns a list with three elements: 1ibs contains a modified version of the input data frame where
columns have been reorganised as needed, colums contains the names of the columns to use for
plotting and provides the order of the stacked bars of the plotAnnot function, total indicates the
total counts used for normalising the data.

mergeCAGEsets Merge two CAGET objects into one

Description

Merges two CAGEr objects into one by combining the CTSS genomic coordinates and raw tag
counts. The resulting object will contain a union of TSS positions present in the two input ob-
jects and raw tag counts for those TSSs in all samples from both input objects.

Usage

mergeCAGEsets(cs1, cs2)

S4 method for signature 'CAGEexp,CAGEexp'
mergeCAGEsets(cs1, cs2)

Arguments
cs1 A CAGEr object
cs2 A CAGEr object
Value

Note that merging discards all other information present in the two CAGEr objects, that is, the merged
object will not contain any normalised tag counts, CTSS clusters, quantile positions, etc., so these
have to be calculated again by calling the appropriate functions on the merged object. Also, it is
only possible to merge two objects that contain TSS information for the same reference genome
and do not share any sample names.

Returns a CAGEexp object, which contains a union of TSS positions present in the two input objects
and raw tag counts for those TSSs in all samples from both input objects.

Author(s)

Vanja Haberle
Charles Plessy

76 mergeSamples

See Also

CAGEexp

Examples

library(BSgenome.Drerio.UCSC.danRer7)

pathsToInputFiles <- system.file("extdata”, c("Zf.unfertilized.egg.chr17.ctss”,
"Zf.30p.dome.chr17.ctss”, "Zf.prim6.repl.chr17.ctss"), package="CAGEr")

cel <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7",

inputFiles = pathsToInputFiles[1:2], inputFilesType = "ctss"”, samplelLabels =
c("samplel”, "sample2"))

cel <- getCTSS(cel)

ce2 <- CAGEexp(genomeName = "BSgenome.Drerio.UCSC.danRer7",
inputFiles = pathsToInputFiles[3], inputFilesType = "ctss"”, samplelLabels =
"sample3")

ce2 <- getCTSS(ce2)

ce <- mergeCAGEsets(cel, ce2)

mergeSamples Merge CAGE samples

Description
Merges individual CAGE samples (datasets, experiments) within the CAGEr object into specified
groups.

Usage

mergeSamples(object, mergeIndex, mergedSamplelLabels)

S4 method for signature 'CAGEexp'
mergeSamples(object, mergelndex, mergedSamplelLabels)

Arguments
object A CAGEr object.
mergeIndex Integer vector specifying which experiments should be merged. (one value per
sample, see Details).
mergedSamplelLabels

Labels for the merged datasets (same length as the number of unique values in
mergelndex)

moleculesGR2CTSS 77

Details

The samples within the CAGEr object are merged by adding the raw tag counts of individual CTSS
that belong tho the same group. After merging, all other slots in the CAGEr object will be reset and
any previous data for individual experiments will be removed.

mergeIndex controls which samples will be merged. It is an integer vector that assigns a group
identifier to each sample, in the same order as they are returned by samplelLabels(object). For ex-
ample, if there are 8 CAGE samples in the CAGEr object and mergeIndex = c(1,1,2,2,3,2,4,4),
this will merge a) samples 1 and 2, b) samples 3, 4 and 6, c¢) samples 7 and 8, and d) it will leave
sample 5 as it is, resulting in 4 final merged datasets.

Labels provided in mergedSampleLabels will be assigned to merged datasets in the ascending
order of mergeIndex values, i.e. first label will be assigned to a dataset created by merging datasets
labeled with lowest mergeIndex value (in this case 1), etc.

Value

The slots sampleLabels, librarySizes and tagCountMatrix of the provided CAGEr object will be
updated with the information on merged CAGE datasets and will replace the previous information
on individual CAGE datasets. All further slots with downstream information will be reset.

Author(s)

Vanja Haberle
Charles Plessy

Examples

mergeSamples(exampleCAGEexp
, mergelndex = c¢(3,2,4,4,1)
, mergedSamplelLabels = c("zf_unfertilized”, "zf_high", "zf_30@p_dome”, "zf_primé6"))
exampleCAGEexp

moleculesGR2CTSS moleculesGR2CTSS

Description
Calculates CTSS positions from a GenomicRanges object where each element represents a single
molecule.

Usage
moleculesGR2CTSS(gr)

Arguments

gr A GenomicRanges::GRanges object.

78 normalizeTagCount

Value

Returns a GenomicRanges::GRanges object.

See Also

Other loadFileIntoGPos: bam2CTSS(), import.CTSS(), import.bam(), import.bam.ctss(), import.bedCTSS(),
import.bedScore(), import.bedmolecule(), import.bigwig(), loadFileIntoGPos()
Examples

gr <- GenomicRanges::GRanges("chr1”, IRanges::IRanges(1, 10), c("+", "=", "+"))
CAGEr: : :moleculesGR2CTSS(gr)

normalizeTagCount Normalizing raw CAGE tag count

Description

Normalizes raw CAGE tag count per CTSS in all experiments to a same referent distribution. A
simple tag per million normalization or normalization to a referent power-law distribution (Balwierz
et al., Genome Biology 2009) can be specified.

Usage
normalizeTagCount(
object,
method = c("powerLaw”, "simpleTpm”, "none"),
fitInRange = c(10, 1000),
alpha = 1.25,
T =106
)
S4 method for signature 'CAGEexp'
normalizeTagCount(
object,
method = c("powerLaw”, "simpleTpm”, "none"),
fitInRange = c(10, 1000),
alpha = 1.25,
T =106
)
Arguments
object A CAGEexp object
method Method to be used for normalization. Can be either "simpleTpm" to convert tag

counts to tags per million or "powerLaw” to normalize to a referent power-law
distribution, or "none” to keep using the raw tag counts in downstream analyses.

normalizeTagCount 79

fitInRange An integer vector with two values specifying a range of tag count values to be
used for fitting a power-law distribution to reverse cumulatives. Used only when
method = "powerLaw”, otherwise ignored. See Details.

alpha -1 * alpha will be the slope of the referent power-law distribution in the log-log
representation. Used only when method = "powerLaw”, otherwise ignored. See
Details.

T Total number of CAGE tags in the referent power-law distribution. Setting T =

106 results in normalized values that correspond to tags per million in the ref-
erent distribution. Used only when method = "powerLaw”, otherwise ignored.
See Details.

Details

It has been shown that many CAGE datasets follow a power-law distribution (Balwierz et al.,
Genome Biology 2009). Plotting the number of CAGE tags (X-axis) against the number of TSSs
that are supported by >= of that number of tags (Y-axis) results in a distribution that can be approx-
imated by a power-law. On a log-log scale this theoretical referent distribution can be described by
a monotonically decreasing linear function y = -1 * alpha * x + beta, which is fully determined
by the slope alpha and total number of tags T (which together with alpha determines the value
of beta). Thus, by specifying parameters alpha and T a desired referent power-law distribution
can be selected. However, real CAGE datasets deviate from the power-law in the areas of very low
and very high number of tags, so it is advisable to discard these areas before fitting a power-law
distribution. fitInRange parameter allows to specify a range of values (lower and upper limit of
the number of CAGE tags) that will be used to fit a power-law. Plotting reverse cumulatives using
plotReverseCumulatives function can help in choosing the best range of values. After fitting a
power-law distribution to each CAGE dataset individually, all datasets are normalized to a referent
distribution specified by alpha and T. When T = 106, normalized values are expressed as tags per
million (tpm).

Value

The slot normalizedTpmMatrix of the provided CAGEexp object will be occupied by normalized
CAGE signal values per CTSS across all experiments, or with the raw tag counts (in case method =
"none").

Author(s)

Vanja Haberle

References
Balwierz et al. (2009) Methods for analyzing deep sequencing expression data: constructing the
human and mouse promoterome with deepCAGE data, Genome Biology 10(7):R79.

See Also

plotReverseCumulatives, CTSSnormalizedTpmDF

80 paraclu

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), paraclu(), quantilePositions(),
quickEnhancers(), resetCAGEexp (), summariseChrExpr()

Other CAGEr normalised data functions: plotReverseCumulatives()

Examples
cel <- normalizeTagCount(exampleCAGEexp, method = "simpleTpm")
ce2 <- normalizeTagCount(exampleCAGEexp, method = "powerLaw")
paraclu Parametric clustering
Description

"paraclu” is an implementation of Paraclu algorithm for parametric clustering of data attached to
sequences (Frith et al., Genome Research, 2007). Since Paraclu finds clusters within clusters (unlike
distclu), additional parameters (minStability, maxLength and reduceToNonoverlapping) can
be specified to simplify the output by discarding too big clusters, and to reduce the clusters to a final
set of non-overlapping clusters.

Usage

paraclu(
object,
minStability = 1,
maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,
useMulticore = FALSE,
nrCores = NULL

)

S4 method for signature 'Pairs'
paraclu(
object,
minStability = 1,
maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,
useMulticore = FALSE,
nrCores = NULL

)

S4 method for signature 'CTSS'
paraclu(

paraclu

object,
minStability

81

:'I,

maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,

useMulticore

= FALSE,

nrCores = NULL

)

S4 method for signature 'GRanges'

paraclu(
object,
minStability

:‘],

maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,

useMulticore

= FALSE,

nrCores = NULL

)

S4 method for signature 'SummarizedExperiment'’

paraclu(
object,
minStability

:‘],

maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,

useMulticore

= FALSE,

nrCores = NULL

)

S4 method for signature 'CAGEexp'

paraclu(
object,
minStability

:‘],

maxLength = 500,
keepSingletonsAbove = 0,
reduceToNonoverlapping = TRUE,

useMulticore

= FALSE,

nrCores = NULL

Arguments

object

minStability

A CTSS, or a S4Vectors: :Pairs object with positions first and scores second.

Minimal stability of the cluster, where stability is defined as ratio between max-
imal and minimal density value for which this cluster is maximal scoring. For
definition of stability refer to Frith et al., Genome Research, 2007. Clusters with

82 paraclu
stability < minStability will be discarded.
maxLength Maximal length of cluster in base-pairs. Clusters with length > maxLength will
be discarded.
keepSingletonsAbove
Remove "singleton" tag clusters of width 1 with signal < keepSingletonsAbove.
Default value @ results in keeping all TCs by default. Setting it to Inf removes
all singletons.
reduceToNonoverlapping
Logical, should smaller clusters contained within bigger cluster be removed to
make a final set of tag clusters non-overlapping.
useMulticore Logical, should multicore be used. useMulticore = TRUE has no effect on non-
Unix-like platforms.
nrCores Number of cores to use when useMulticore = TRUE. Default value NULL uses
all detected cores.
Details

Clustering is done for every CAGE dataset within the CAGEr object separately, resulting in a differ-
ent set of tag clusters for every CAGE dataset. TCs from different datasets can further be aggregated
into a single referent set of consensus clusters by calling the aggregateTagClusters function.

Value

Running Paraclu on a Pairs object containing positions and scores returns an IRanges object con-
taining the start and end positions of the clusters, as well as the minimum and maximum density in
min_d and max_d metadata columns.

Running Paraclu on a CTSS object dispatches the computation on each strand of each sequence level
of the object, collects the IRanges and assemble them back in a TagClusters object after filtering
them by size and by expression following the minStability, maxLength, keepSingletonsAbove
and reduceToNonoverlapping parameters.

Running Paraclu on a SummarizedExperiment: :RangedSummarizedExperiment object will loop
on each sample, and return the results as a GenomicRanges: :GRangesList of TagClusters.

Running Paraclu on a CAGEexp returnts is with the clusters stored as a GRangesList of TagClusters
objects in its metadata slot tagClusters.

Author(s)

Vanja Haberle
Charles Plessy

References

MC Frith, E Valen, A Krogh, Y Hayashizaki, P Carninci, A Sandelin. A code for transcription
initiation in mammalian genomes. Genome Research 2008 18(1):1-12)

parseCAGEscanBlocksToGrangeTSS 83

See Also

aggregateTagClusters
Other CAGEtr clustering methods: consensusClustersTpm(), distclu()

Other CAGETr object modifiers: CTSStoGenes (), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), normalizeTagCount(),
quantilePositions(), quickEnhancers(), resetCAGEexp(), summariseChrExpr ()

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(),
distclu(), plotInterquantileWidth(), quantilePositions(), tagClustersGR()

Examples

(ctss <- CTSSnormalizedTpmGR(exampleCAGEexp,1))
(pair <- Pairs(pos(ctss), score(ctss)))
CAGEr: ::.paraclu_params(first(pair), second(pair))
CAGEr: ::.paraclu(first(pair)[1:10], second(pair)[1:10])
paraclu(pair[1:10])
paraclu(ctss[1:10])
paraclu(CTSStagCountSE (exampleCAGEexp)[1:25,1)
ce <- paraclu(exampleCAGEexp,

, keepSingletonsAbove = 100

, maxLength = 500, minStability = 1

, reduceToNonoverlapping = TRUE)
tagClustersGR(ce, "Zf.30p.dome")

parseCAGEscanBlocksToGrangeTSS
parseCAGEscanBlocksToGrangeTSS

Description
Parse a string describing a block in a CAGEscan molecule, as output by the "CAGEscan 3.0"
pipeline.

Usage
parseCAGEscanBlocksToGrangeTSS(blocks)

Arguments

blocks A character string representing a block in a CAGEscan molecule.

Value

A GRanges object representing a TSS.
In CAGEscan molecules, blocks are separated by ‘I’, ¢, or ;” for gap of coverage, splice junction
(confident) and splice junction (maybe) respectively. Strand is "+" if first coordinate is lower than

the second one, and "-" otherwise.

84 plot.hanabi

See Also

import. CAGEscanMolecule

Examples

myMolecule <- paste@("chr11:66268633-66268693,"
, "chr11:66271796-66271869;"
, "chr11:66272156-66272252|"
, "chr11:66272364-66272460")

myFirstBlock <- sub("[,;|].*x", "", myMolecule)

CAGEr: : :parseCAGEscanBlocksToGrangeTSS(myFirstBlock)

plot.hanabi Plotting Hanabi objects

Description

S3 method to plot hanabi objects. Used by the hanabiPlot function.

Usage
S3 method for class 'hanabi'
plot(
X7
alpha = 0.5,
col = "black”,
xlab = "Total counts”,
ylab = "Unique features”,
main = "Hanabi plot”,
pch = 1,
)

S3 method for class 'hanabi'
points(x, ...)

S3 method for class 'hanabi'

lines(x, ...)
Arguments
X The hanabi object to plot.
alpha The alpha transparency of the plot lines.
col A vector indicating a color per sample (or a vector that can be recycled that

way).

xlab Horizontal axis label.

plotAnnot 85

ylab Vertical axis label.
main Plot title.
pch Plot character at the tip of the lines.

Other parameters passed to the generic plot, points or lines functions.

Author(s)

Charles Plessy

See Also

Other CAGEr richness functions: hanabi, hanabiPlot ()

plotAnnot Plot annotation statistics

Description

Extracts processing and alignment statistics from a CAGEr object and plots them as counts or
percentages in stacked barplots.

Usage

plotAnnot(
X,
scope,
title,
group = "samplelabels”,
facet = NULL,
normalise = TRUE

)

S4 method for signature 'data.frame'
plotAnnot(

X,

scope,

title,

group = "samplelLabels”,

facet = NULL,

normalise = TRUE

)

S4 method for signature 'DataFrame’
plotAnnot(

X,

scope,

86 plotAnnot
title,
group = "samplelLabels”,
facet = NULL,
normalise = TRUE
)
S4 method for signature 'CAGEexp'
plotAnnot(
X)
scope,
title,
group = "samplelLabels”,
facet = NULL,
normalise = TRUE
)
S4 method for signature 'GRangesList'
plotAnnot(
X ’
scope,
title,
group = "samplelLabels”,
facet = NULL,
normalise = TRUE
)
Arguments
X An object from which can be extracted a table with columns named promoter,
exon, intron, mapped, extracted, rdna, and tagdust, that will be passed to
the mapStats function.
scope The name of a scope, that defines which data is plotted and how it is normalised,
or a function implementing that scope. See mapStatsScopes for details on each
scope.
title The title of the plot.
group A factor to group the samples, or the name of a colData column of a CAGEexp
object, or a formula giving the names of columns to be pasted together. If no
group is provided the sample labels will be used.
facet A factor or the name of a colData column of a CAGEexp object, to facet the
samples in the sense of ggplot2’s ggplot2: : facet_wrap() function.
normalise Whether to normalise or not. Default: TRUE.
Details

When given a CAGEexp object or its column data, what will be counted is the number of CAGE
When given cluster objects (CTSS, TagClusters or ConsensusClusters) wrapped as a
GenomicRanges: :GRangesList, what will be counted is the number of clusters.

tags.

plotCorrelation 87

Stacked barplots with error bars inspired from http: //stackoverflow.com/questions/10417003/
stacked-barplot-with-errorbars-using-ggplot2. See http://www.biomedcentral.com/
1471-2164/14/665/figure/F1 for example.

Value

Returns a ggplot2: :ggplot object.

Author(s)

Charles Plessy

See Also

mapStats for a list of scopes.
Other CAGEr annotation functions: annotateCTSS(), ranges2annot (), ranges2genes(), ranges2names()

Other CAGEt plot functions: TSSlogo(), hanabiPlot(), plotCorrelation(), plotExpressionProfiles(),
plotInterquantileWidth(), plotReverseCumulatives()

Examples

p <- plotAnnot(exampleCAGEexp, 'counts', 'Here is the title')

print(p)

p + ggplot2::theme_bw()

ggplot2::theme_set(ggplot2::theme_bw()) ; p

plotAnnot (exampleCAGEexp, 'counts', 'Same, non-normalised', normalise = FALSE)
exampleCAGEexp$myGroups <- factor(c("A", "A", "B", "B", "C"))

plotAnnot (exampleCAGEexp, 'counts', group = "myGroups”)

plotAnnot (exampleCAGEexp, 'counts', group = ~myGroups)

plotAnnot (exampleCAGEexp, 'counts', group = ~samplelLabels + myGroups)
plotAnnot (exampleCAGEexp, CAGEr:::msScope_counts , group = "myGroups”)

plotCorrelation Pairwise scatter plots and correlations of CAGE signal

Description

Functions to compute pairwise sample correlations and display them in a matrix with scatter plots
below the diagonal, sample names on the diagonal, and correlation coefficients above.

Usage
plotCorrelation(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),

samples = "all”,

http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2
http://stackoverflow.com/questions/10417003/stacked-barplot-with-errorbars-using-ggplot2
http://www.biomedcentral.com/1471-2164/14/665/figure/F1
http://www.biomedcentral.com/1471-2164/14/665/figure/F1

plotCorrelation

method = "pearson”,
tagCountThreshold = 1,
applyThresholdBoth = FALSE,
plotSize = 800

)
S4 method for signature 'CAGEr'
plotCorrelation(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all",
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE,
plotSize = 800

)

plotCorrelation2(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all",
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE,

digits = 3
)
S4 method for signature 'CAGEexp'
plotCorrelation2(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE,

digits = 3
)
S4 method for signature 'SummarizedExperiment'’
plotCorrelation2(

object,

what = c("CTSS"”, "consensusClusters"),

values = c("raw”, "normalized"),

samples = "all”,

method = "pearson”,

plotCorrelation

tagCountThreshold = 1,
applyThresholdBoth = FALSE,

digits = 3
)
S4 method for signature 'DataFrame’
plotCorrelation2(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all",
method = "pearson”,
tagCountThreshold = 1,
applyThresholdBoth = FALSE,
digits = 3
)
S4 method for signature 'data.frame'
plotCorrelation2(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE,

digits = 3
)
S4 method for signature 'matrix’
plotCorrelation2(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE,

digits = 3

)

correlationMatrix(
object,
what = c("CTSS"”, "consensusClusters”),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,

90

applyThresholdBoth = FALSE

)
S4 method for signature 'CAGEexp'
correlationMatrix(
object,
what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE
)

S4 method for signature 'SummarizedExperiment'’
correlationMatrix(

object,

what = c("CTSS"”, "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,

method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE
)

S4 method for signature 'DataFrame’
correlationMatrix(

object,

what = c("CTSS"”, "consensusClusters"),
values = c("raw"”, "normalized"),
samples = "all”,

method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE

)
S4 method for signature 'data.frame'
correlationMatrix(
object,
what = c("CTSS", "consensusClusters"),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,

tagCountThreshold = 1,
applyThresholdBoth = FALSE
)

S4 method for signature 'matrix’

plotCorrelation

plotCorrelation 91

correlationMatrix(
object,
what = c("CTSS", "consensusClusters”),
values = c("raw”, "normalized"),
samples = "all”,
method = "pearson”,
tagCountThreshold = 1,
applyThresholdBoth = FALSE

)

Arguments
object A CAGEexp object or a SummarizedExperiment: :SummarizedExperiment or

an expression table as a S4Vectors: :DataFrame, data.frame or matrix ob-
ject. plotCorrelation() only supports CAGEexp input.

what The clustering level to be used for plotting and calculating correlations: CTSS
(individual TSSs) or consensusClusters. Ignored for anything else than CAGEexp
and SummarizedExperiment objects.

values Use either raw (default) or normalized CAGE signal. Ignored for plain expres-
sion tables.

samples Character vector indicating which samples to use. Can be either all to select all
samples in a CAGEexp object, or a subset of valid sample labels as returned by
samplelLabels().

method A character string indicating which correlation coefficient should be computed.

Passed to cor (). Can be one of pearson, spearman, or kendall.
tagCountThreshold, applyThresholdBoth

Only TSSs with tag count >= tagCountThreshold in either one (applyThresholdBoth

= FALSE) or both samples (applyThresholdBoth = TRUE) are plotted and used

to calculate correlation.

plotSize Size of the individual comparison plot in pixels - the total size of the result-
ing png will be length(samples) * plotSize in both dimensions. Ignored in
plotCorrelation2.

digits The number of significant digits for the data to be kept in log scale. Ignored

in plotCorrelation. In plotCorrelation2, the number of points plotted is
considerably reduced by rounding the point coordinates to a small number of
significant digits before removing duplicates. Chose a value that makes the plot
visually indistinguishable with non-deduplicated data, by making tests on a sub-
set of the data.

Details
In the scatter plots, a pseudo-count equal to half the lowest score is added to the null values so that
they can appear despite logarithmic scale.

SummarizedExperiment objects are expected to contain raw tag counts in a counts assay and the
normalized expression scores in a normalized assay.

Avoid using large matrix objects as they are coerced to DataFrame class without special care for
efficiency.

92 plotExpressionProfiles

plotCorrelation2 speeds up the plotting by a) deduplicating that data: no point is plot twice at
the same coordinates, b) rounding the data so that indistinguishable positions are plotted only once,
¢) using a black square glyph for the points, d) caching some calculations that are made repeatedly
(to determine where to plot the correlation coefficients), and e) preventing coercion of DataFrames
to data.frames.

Value

Displays the plot and returns a matrix of pairwise correlations between selected samples. The scat-
terplots of plotCorrelation are colored according to the density of points, and in plotCorrelation2
they are just black and white, which is much faster to plot. Note that while the scatterplots are on a
logarithmic scale with pseudocount added to the zero values, the correlation coefficients are calcu-
lated on untransformed (but thresholded) data.

correlationMatrix() returns a matrix of pairwise correlations between selected samples.

Author(s)

Vanja Haberle
Charles Plessy

Katalin Ferenc

See Also

Other CAGETr plot functions: TSSlogo(), hanabiPlot(), plotAnnot(), plotExpressionProfiles(),
plotInterquantileWidth(), plotReverseCumulatives()

Examples
plotCorrelation2(exampleCAGEexp, what = "consensusClusters”, value = "normalized")
correlationMatrix(exampleCAGEexp, what = "consensusClusters”, value = "normalized")

plotExpressionProfiles
Plot CAGE expression profiles

Description

Beanplot of distribution of normalized expression across CAGE experiments for individual expres-
sion classes, colored and labeled according to the information set when expression clustering was
performed.

Usage

plotExpressionProfiles(object, what)

S4 method for signature 'CAGEexp'
plotExpressionProfiles(object, what = c("CTSS", "consensusClusters"))

plotInterquantile Width 93

Arguments

object A CAGEr object.

what CTSS or consensusClusters.
Details

The beanplots are shown in one labeled box per expression class. Each beanplot represents one
CAGE experiment. The vertical axis represents scaled normalized expression. The color of each
class is determined by the labels returned by expression clustering.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGETr plot functions: TSSlogo(), hanabiPlot(), plotAnnot(), plotCorrelation(),
plotInterquantileWidth(), plotReverseCumulatives()

Other CAGEr expression clustering functions: expressionClasses(), getExpressionProfiles()

Examples

plotExpressionProfiles(exampleCAGEexp, what = "CTSS")
exampleCAGEexp |> plotExpressionProfiles("”consensusClusters”)

plotInterquantileWidth
Plot cluster widths

Description

Histograms of the interquantile width of tag clusters or consensus clusters in each CAGE experi-
ment.

Usage

plotInterquantileWidth(
object,
clusters = c("tagClusters”, "consensusClusters"),
tpmThreshold = 5,
gLow = 0.1,
qUp = 0.9,
xlim = c(@, 150)

94 plotInterquantile Width

S4 method for signature 'CAGEexp'
plotInterquantileWidth(

object,
clusters = c("tagClusters”, "consensusClusters"),
tpmThreshold = 5,
gLow = 0.1,
qUp = 0.9,
xlim = c(@, 150)

)

Arguments
object A CAGEexp object
clusters tagClusters or consensusClusters.

tpmThreshold Exclude clusters with normalized signal lower than tpmThreshold.

gLow, qUp Quantile defining the 5’ ("lower") and 3’ ("upper") boundaries of the clusters.
x1lim Range of width to be plotted.
Details

Interquantile width is a more robust measure of the promoter width than the total span of the region,
because it takes into account the magnitude of the expression in the region. Positions of specified
quantiles within each cluster have to be calculated beforehand by calling quantilePositions.

Value

Plots the histograms with the ggplot2 engine and returns the plot object invisibly.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr plot functions: TSSlogo(), hanabiPlot(), plotAnnot(), plotCorrelation(),
plotExpressionProfiles(), plotReverseCumulatives()

Other CAGE:t clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(),
distclu(), paraclu(), quantilePositions(), tagClustersGR()

Examples

plotInterquantileWidth(exampleCAGEexp, clusters = "tagClusters”
, tpmThreshold = 50, gLow = @.1, qUp = 0.9
, xlim = ¢(2,200))

plotInterquantileWidth(exampleCAGEexp, clusters = "consensusClusters”

plotReverseCumulatives 95

, tpmThreshold = 50, gLow = ©.1, qUp = 0.9
, xlim = c(2,200))

plotReverseCumulatives
Plot reverse cumulative number of CAGE tags per CTSS

Description

Plots the reverse cumulative distribution of the expression values of the CTSS for all CAGE datasets
present in the CAGEexp object. The horizontal axis represents an expression value and the vertical
axis represents the number of CTSS positions supported by >= of that value. The plot uses a log-log
scale. Use these plots as help in choosing the parameters range of values and the referent slope for
power-law normalization (Balwierz et al., 2009).

Usage
plotReverseCumulatives(
object,
values = c("raw”, "normalized"),
fitInRange = c(10, 1000),
group = NULL

)

S4 method for signature 'CAGEexp'
plotReverseCumulatives(

object,

values = c("raw”, "normalized"),
fitInRange = c(10, 1000),

group = NULL

)

S4 method for signature 'GRangeslList
plotReverseCumulatives(

object,

values = c("raw”, "normalized"),
fitInRange = c(10, 1000),

group = NULL

)

S4 method for signature 'GRanges'
plotReverseCumulatives(

object,

values = c("raw”, "normalized"),
fitInRange = c(10, 1000),

group = NULL

)

96 plotReverseCumulatives

Arguments
object A CAGEexp object
values Plot raw CAGE tag counts (default) or normalized values.
fitInRange An integer vector with two values specifying a range of tag count values to be
used for fitting a power-law distribution to reverse cumulatives. Ignored is set to
NULL. See Details.
group The name of a column data of the CAGEexp object, to be used to facet the
plot. If NULL (default), all the distributions will be plotted together. Set to
samplelLabels to plot each sample separately.
Details

A power law distribution is fitted to each reverse cumulative using the values in the range specified
fitInRange. The fitted distribution is defined by

y = —1 xalpha x z + beta

on the log-log scale, and the value of alpha for each sample is shown on the plot’s legend. In
addition, a suggested referent power law distribution to which all samples could be normalized
is drawn on the plot and corresponding parameters (slope alpha and total number of tags T) are
denoted on the plot. This referent distribution is chosen so that its slope (alpha) is the median of
slopes fitted to individual samples and its total number of tags (7)) is the power of 10 nearest to
the median number of tags of individual samples. Resulting plots are helpful in deciding whether
power-law normalization is appropriate for given samples and reported alpha values aid in choosing
optimal alpha value power law normalization (see normalizeTagCount for details).

Value

A ggplot2::ggplot object containing the plots. The plot can be further modified to change its title

or axis labels (see ggplot2: : 1abs). The legend can be removed with ggplot2: : guides(col=FALSE).
The alpha parameter of the power law is saved in the reference. slope element of the meta slot of
the object.

Author(s)

Vanja Haberle (original work)

Charles Plessy (port to ggplot2)

References

Balwierz et al. (2009) Methods for analyzing deep sequencing expression data: constructing the
human and mouse promoterome with deepCAGE data, Genome Biology 10(7):R79. https://doi.
org/10.1186/gbh-2009-10-7-r79

https://doi.org/10.1186/gb-2009-10-7-r79
https://doi.org/10.1186/gb-2009-10-7-r79

quantilePositions 97

See Also

normalizeTagCount

Other CAGEr plot functions: TSSlogo(), hanabiPlot(), plotAnnot(), plotCorrelation(),
plotExpressionProfiles(), plotInterquantileWidth()

Other CAGEr normalised data functions: normalizeTagCount()

Examples

exampleCAGEexp <- setColors(exampleCAGEexp,

c("salmon”, "darkkhaki", "darkturquoise”, "blueviolet”, "blueviolet”))
exampleCAGEexp$grp <- c("a”, "b", "b", "c", "c")
plotReverseCumulatives(exampleCAGEexp, fitInRange = c(5,100))
plotReverseCumulatives(exampleCAGEexp, values = "normalized”

, fitInRange = c(200, 2000), group = "samplelLabels")

plotReverseCumulatives(exampleCAGEexp[,4:5], fitInRange = c(5,100)) +

ggplot2::ggtitle("primé replicates”)
tagClustersGR(exampleCAGEexp) |> plotReverseCumulatives()

quantilePositions Determine CTSS quantile positions within clusters

Description

Calculates the positions of “upper” and “lower” quantiles of CAGE signal along tag clusters or
consensus clusters in each sample of a CAGEexp object.

Usage

quantilePositions(
object,
clusters =
gLow = 0.1,
qUp = 0.9,
useMulticore = FALSE,
nrCores = NULL

c("tagClusters”, "consensusClusters"),

)
S4 method for signature 'CAGEexp'
quantilePositions(
object,
clusters = c("tagClusters”, "consensusClusters"),
gLow = 0.1,
qUp = 0.9,

useMulticore = FALSE,
nrCores = NULL

98 quantilePositions

Arguments
object A CAGEexp object.
clusters Either tagClusters or consensusClusters.
gLow, qUp Which “lower” or “upper” quantiles should be calculated. Numeric vector of

values in range [0,1].
useMulticore Logical, should multicore be used. useMulticore = TRUE has only effect on
Unix-like platforms.

nrCores Number of cores to use when useMulticore = TRUE. Default value NULL uses
all detected cores.

Details

From the 5’ end the position, the position of a quantile g is determined as the first base in which
of the cumulative expression is higher or equal to g% of the total CAGE signal of that cluster.
Promoter interquantile width is defined as the distance (in base pairs) between a “lower” and an
“upper” quantile position.

Value

Returns the objects, in which the positions of the quantiles are defined relatively to the start point of
their cluster, for more efficient Rle compression. The quantile data for tag clusters are stored in the
TagClusters objects directly. The quantile data for consensus clusters are stored in integer
matrices named “q_x", where x represents the quantile (for instance, g_0. 1), and these matrices are
assays of the consensusClusters SummarizedExperiment: :RangedSummarizedExperiment.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), normalizeTagCount(),
paraclu(), quickEnhancers(), resetCAGEexp(), summariseChrExpr ()

Other CAGE:tr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(),
distclu(), paraclu(), plotInterquantileWidth(), tagClustersGR()

Examples

quantilePositions(exampleCAGEexp, "tagClusters”, glow =c(0.1, 0.2), qUp =c(0.8, 0.9))
tagClustersGR(exampleCAGEexp)
quantilePositions(exampleCAGEexp, "consensusClusters”, gqLow = c(0.1, 0.2), qUp =c(0.8, 0.9))

quickEnhancers 99

quickEnhancers Identify and quantify enhancers.

Description

A convenient wrapper to the function CAGEfightR: :quickEnhancers().

Usage

quickEnhancers(object)

S4 method for signature 'CAGEexp'
quickEnhancers(object)
Arguments

object A CAGEexp object

Details

The CAGEr object will be converted to a format similar to the output of CAGEfightR: :quantifyCTSSs(),
and then passed to the quickEnhancers function.

Value

A RangedSummarizedExperiment object. See the example below on how to attach it to the exper-
iment list of a CAGEexp object.

Author(s)

Charles Plessy

Katalin Ferenc

See Also

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), normalizeTagCount(),
paraclu(), quantilePositions(), resetCAGEexp(), summariseChrExpr ()

Examples

Can not run as long as the test data has nothing on the minus strand!
Not run:
quickEnhancers(exampleCAGEexp)

End(Not run)

100 ranges2annot

ranges2annot Hierarchical annotation of genomic regions.

Description
Assigns region types such as promoter, exon or unknown to genomic regions such as CTSS, tag
clusters, or consensus clusters.

Usage

ranges2annot(ranges, annot, upstream = 500, downstream = 500)

Arguments
ranges A GenomicRanges: : GRanges object, for example extracted from a RangedSummarizedExperiment
object with the MatrixGenerics: : rowRanges command.
annot A GRanges from which promoter positions will be inferred. Typically GEN-
CODE. If the type metadata is present, it should contain gene, exon and transcript
among its values. Otherwise, all entries are considered transcripts. If the transcript_type
metadata is available, the entries that may not be primary products (for instance
‘snoRNA) are discarded.
upstream Number of bases upstream the start of the transcript models to be considered as
part of the promoter region.
downstream Number of bases downstream the start of the transcript models to be considered
as part of the promoter region.
Details

Only the biotypes that are likely to have a pol II promoter will be filtered in. This is currently
hardcoded in the function; see its source code. Example of biotypes without a pol II promoter:
VDJ segments, miRNA, but also snoRNA, etc. Thus, the Intergenic category displayed in output of
the plotAnnot may include counts overlaping with real exons of discarded transcribed regions: be
careful that large percentages do not necessarly suggest abundance of novel promoters.

Value

A Run-length-encoded (S4Vectors: :R1le) factor of same length as the CTSS object, indicating if
the interval is promoter, exon, intron or unknown, or just promoter, gene, unknown if the type
metadata is absent.

Author(s)

Charles Plessy

See Also

CTSScoordinatesGR, exampleZv9_annot
Other CAGEr annotation functions: annotateCTSS(), plotAnnot (), ranges2genes(), ranges2names()

ranges2genes 101

Examples

CAGEr: : :ranges2annot (CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)

ctss <- GenomicRanges: :GRanges("chr1”, IRanges::IPos(c(1,100,200,1500)), "+")
ctss <- GenomicRanges: :GPos(ctss, stitch = FALSE)
ctss <- as(ctss, "CTSS")
gri <- GenomicRanges: :GRanges("chr1”

, IRanges::IRanges(c(650, 650, 1400), 2000), "+")
CAGEr: : :ranges2annot(ctss, gr1)
gr2 <- gri
gr2$type <- c("transcript”, "exon", "transcript”)
gr2$transcript_type <- c("protein_coding”, "protein_coding"”, "miRNA")
CAGEr: ::ranges2annot(ctss, gr2, up=500, down=20)

ranges2genes ranges2genes

Description

Assign gene symbol(s) to Genomic Ranges.

Usage

ranges2genes(ranges, genes)

Arguments
ranges GenomicRanges: : GRanges object, for example extracted from a SummarizedExperiment
object with the SummarizedExperiment: : rowRanges command.
genes A GRanges object containing gene_name metadata.
Details

This private (non-exported) function is used to assign gene symbols to genomic ranges. It is run by
annotateCTSS, which has to be run before CTSStoGenes.
Value
A S4Vectors: :Rle factor of same length as the GRanges object, indicating one gene symbol or a
semicolon-separated list of gene symbols for each range. The levels are alphabetically sorted.
Author(s)

Charles Plessy

: :RangedSumm:

102 rangesZ2names

See Also

CTSScoordinatesGR, exampleZv9_annot
Other CAGEr annotation functions: annotateCTSS(), plotAnnot(), ranges2annot(), ranges2names()
Other CAGETr gene expression analysis functions: CTSStoGenes (), GeneExpDESeq2()

Examples

CAGEr: : :ranges2genes (CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)

ranges2names ranges2names

Description

Intersection of genomic ranges

Usage

ranges2names(rangesA, rangesB)

Arguments
rangesA A GenomicRanges: :GRanges object.
rangesB A second GRanges object.

Details

This private (non-exported) function intersects two genomic ranges and for each element of the first
object returns the name of the elements of the second object that it intersects with.
Value

A S4Vectors: :Rle factor of same length as the rangesA GRanges object, indicating one name
or a semicolon-separated list of names from the each rangesB object. The levels are in order of
appearance to to maintain genomic coordinate sort order when the names are cluster names.

Author(s)

Charles Plessy

See Also

Other CAGEr annotation functions: annotateCTSS(), plotAnnot (), ranges2annot(), ranges2genes()

resetCAGEexp 103

Examples

names (exampleZv9_annot) <- exampleZv9_annot$gene_name
CAGEr: : :ranges2names (CTSScoordinatesGR(exampleCAGEexp), exampleZv9_annot)

resetCAGEexp Reset a CAGEexp object

Description

Removes all data but the raw CTSS counts and coordinates from a CAGEexp object. Useful after
removing samples.

Usage

resetCAGEexp(object)

S4 method for signature 'CAGEexp'

resetCAGEexp(object)
Arguments

object A CAGEexp object
Value

Returns a CAGEexp object, which contains a non-normalised tagCountMatrix experiment.

Author(s)

Charles Plessy

See Also

Other CAGEr object modifiers: CTSStoGenes (), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), normalizeTagCount(),
paraclu(), quantilePositions(), quickEnhancers(), summariseChrExpr()

Examples

resetCAGEexp (exampleCAGEexp)

104 rowsum.RleDataFrame

rowsum.RleDataFrame rowsum function for Rle DataFrames

Description

Drop-in replacement for the rowsum function, which does not work natively on S4Vectors: :DataFrame
objects containing S4Vectors: :Rle-encoded numerical values.

Usage
S3 method for class 'RleDataFrame’
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)
Arguments
X A DataFrame containing only numerical R1e columns.
group a vector or factor giving the grouping, with one element per row of x. Missing

values will be treated as another group and a warning will be given.

reorder If TRUE, then the result will be in order of sort(unique(group)), if FALSE, it
will be in the order that groups were encountered.

na.rm Logical (TRUE or FALSE). Should NA (including NaN) values be discarded?

Other arguments to be passed to or from methods.

Details

See the file benchmarks/rowsum_on_Rle_DF.md in the source Git repository of CAGEr for the
alternatives that were considered.

Author(s)

Charles Plessy

See Also

Other Rle DataFrames: rowSums.RleDataFrame()

Examples

exampleCAGEexp |> CTSStagCountDF() |>
CAGEr: : :rowsum.RleDataFrame(decode (CTSScoordinatesGR(exampleCAGEexp)$cluster), reorder = FALSE)

rowSums.RleDataFrame 105

rowSums.RleDataFrame rowSums function for Rle DataFrames

Description

Drop-in replacement for the rowSums function, which does not work natively on S4Vectors: :DataFrame
objects containing S4Vectors: :Rle-encoded numerical values.

Usage

rowSums.RleDataFrame(x, na.rm = FALSE)

Arguments

X A DataFrame containing only numerical R1le columns.

na.rm logical. Should missing values (including NaN) be omitted from the calculations?
Details

See the file benchmarks/rowSums_on_Rle_DF.md in the source Git repository of CAGEr for the
alternatives that were considered.

Value

A Rle-encoded numerical vector of the same class as in the DataFrame.

Author(s)

Charles Plessy

See Also

Other Rle DataFrames: rowsum.RleDataFrame()

Examples

exampleCAGEexp |> CTSStagCountDF() |> CAGEr:::rowSums.RleDataFrame(na.rm = TRUE)

106 sampleLabels

samplelLabels Get and set sample labels

Description

samplelLabels gets or sets the labels and colors of CAGE datasets (samples) from CAGEr objects.

samplelList is an accessory function for convenience iteration in functions such as lapply or
mapply. There is no set method for samplelList.

Usage
samplelLabels(object)

S4 method for signature 'CAGEexp'
samplelLabels(object)

S4 method for signature 'CTSS'
samplelLabels(object)

sampleList(object)

S4 method for signature 'CAGEr'
sampleList(object)

samplelLabels(object) <- value

S4 replacement method for signature 'CAGEexp'
samplelLabels(object) <- value

S4 replacement method for signature 'CTSS'
samplelLabels(object) <- value

Arguments
object A CAGEtr object.
value A character vector with a unique and valid name for each sample. The names
attributes indicate the colors.
Details

In CAGEexp objects, renaming samples is possible only before data is loaded.

Value

samplelLabels returns a named character vector representing labels of all CAGE datasets present
in the CAGEr object. The vector values are the labels and the vector names are the colors.

scoreShift 107

samplelList returns a named list where elements and their names are the sample names, for in-
stance: list(sampleA = "sampleA”,sampleB = "sampleB"). Thus, after iterating on it with lapply,
the element names will be sample names.

Note

If no colors are supplied, then default colors will be assigned usign the rainbow function. Assigned
colors are not guaranteed to be stable.

Author(s)

Vanja Haberle
Charles Plessy

See Also

setColors

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), inputFilesType(), librarySizes(), seqNameTotalsSE(),
tagClustersGR()

Other CAGE:r setter methods: genomeName (), inputFiles(), inputFilesType(), setColors()

Examples

samplelLabels(exampleCAGEexp)

samplelList (exampleCAGEexp)

scoreShift Calculate promoter shifting score

Description

Calculates the shifting score for all consensus clusters (promoters) between two specified (groups
of) CAGE datasets. Shifting score is a measure of differential usage of TSSs within consensus
cluster between two samples, which indicates the degree of physical separation of TSSs used in
these samples within given consensus cluster. In addition to shifting score, a statistical signifi-
cance (P-value and FDR) of differential TSS usage is calculated for each consensus cluster using
Kolmogorov-Smirnov test.

108

Usage

scoreShift(
object,
groupX,
groupy,

scoreShift

testkKS = TRUE,
useTpmKS = TRUE,

useMulticore

:F,

nrCores = NULL

)

S4 method for signature 'CAGEexp'

scoreShift(
object,
groupX,
groupy,

testKS = TRUE,
useTpmKS = TRUE,

:F,

useMulticore
nrCores = NULL
)
Arguments
object

groupX, groupY

testKS

useTpmKS

useMulticore

nrCores

Details

A CAGEr object.

Character vector of the one or more CAGE dataset labels in the first (groupX)
and in the second group (groupY). Shifting score for each consensus cluster will
be calculated by comparing CAGE signal in the samples from groupX against
the signal in the samples from groupY. If there is more than one CAGE dataset
in the group, the datasets within that group will be merged together before com-
parison with the other group. See Details.

Logical, should Kolomogorov-Smirnov test for statistical significance of differ-
ential TSS usage be performed, and P-values and FDR returned. See Details.

Logical, should normalized (tpm) values (TRUE) or raw tag counts (FALSE) be
used to derive sample sizes for Kolomogorov-Smirnov test. Used only when
testKS = TRUE, otherwise ignored. See Details.

Logical, should multicore be used. useMulticore = TRUE is supported only on
Unix-like platforms.

Number of cores to use when useMulticore = TRUE. Default value NULL uses
all detected cores.

TSSs within one consensus cluster (promoter) can be used differently in different samples (cell
types, tissues, developmental stages), with respect to their position and frequency of usage detected

scoreShift 109

by CAGE. This function calculates shifting scores of all consensus clusters between two speci-
fied (groups of) CAGE samples to detect promoters that are used differently in these two samples.
Shifting score is a measure of differential TSS usage defined as:

score =max(F1 - F2) / max(F1)

where F1 is a cuamulative sum of CAGE signal along consensus cluster in the group of samples with
lower total signal in that consensus cluster, and F2 in the opposite group. Since cumulative sum can
be calculated in both forward (5’ -> 3’) and reverse (3’ -> 5’) direction, shifting score is calculated
for both cases and the bigger value is selected as final shifting score. Value of the shifting score is
in the range [-Inf, 1], where value of 1 means complete physical separation of TSSs used in the
two samples for given consensus cluster. In general, any non-negative value of the shifting score
can be interpreted as the proportion of transcription initiation in the sample with lower expression
that is happening "outside" (either upstream or downstream) of the region used for transcription
initiation in the other sample. Negative values indicate no physical separation, i.e. the region used
for transcription initiation in the sample with lower expression is completely contained within the
region used for transcription initiation in the other sample.

In addition to shifting score which indicates only physical separation (upstream or downstream shift
of TSSs), a more general assessment of differential TSS usage can be obtained by performing a two-
sample Kolmogorov-Smirnov test on cumulative sums of CAGE signal along the consensus cluster.
In that case, cumulative sums in both samples are scaled to range [@,1] and are considered to be
empirical cumulative distribution functions (ECDF) reflecting sampling of TSS positions during
transcription initiation. Kolmogorov-Smirnov test is performed to assess whether the two underly-
ing probability distributions differ. To obtain P-value (i.e. the level at which the null-hypothesis can
be rejected), sample sizes that generated the ECDFs are required, in addition to actual K-S statistics
calculated from ECDFs. These are derived either from raw tag counts, i.e. exact number of times
each TSS in the cluster was sampled during sequencing (when useTpmKS = FALSE), or from normal-
ized tpm values (when useTpmKS = TRUE). P-values obtained from K-S tests are further adjusted for
multiple testing using Benjamini & Hochberg (BH) method and for each P-value a corresponding
false-discovery rate (FDR) is also reported.

Since calculation of shifting scores and Kolmogorov-Smirnov test require cumulative sums along
consensus clusters, they have to be calculated beforehand by calling cumulativeCTSSdistribution
function.

The slots shiftingGroupX, shiftingGroupY and consensusClustersShiftingScores of the
provided CAGEexp object will be occupied by the information on the groups of CAGE datasets
that have been compared and shifting scores of all consensus clusters. Consensus clusters (pro-
moters) with shifting score and/or FDR above specified threshold can be extracted by calling
getShiftingPromoters function.

Author(s)

Vanja Haberle
Sarvesh Nikumbh

See Also

cumulativeCTSSdistribution

Other CAGEr promoter shift functions: getShiftingPromoters()

110 seqNameTotalsSE

Examples

scoreShift(exampleCAGEexp
, groupX = c("Zf.unfertilized.egg")
, groupY = "Zf.30p.dome"
, testKS = TRUE, useTpmKS = FALSE)

segNameTotalsSE Retreives the SummarizedExperiment containing chromosome expres-
sion totals.

Description
Get or set a SummarizedExperiment summarising whole-chromosome expression levels in the ex-
periment slot seqgNameTotals and the sample metadata of the CAGEexp object.

Usage
segNameTotalsSE(object)

S4 method for signature 'CAGEexp'
seqNameTotalsSE(object)

seqNameTotalsSE(object) <- value

Arguments

object A CAGEexp object.

value A SummarizedExperiment object where rows represent reference sequences such
as chromosomes.
Author(s)

Charles Plessy

See Also

summariseChrExpr

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2(), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), inputFilesType(), librarySizes(), sampleLabels(),
tagClustersGR()

Examples

segqNameTotalsSE (exampleCAGEexp)

setColors 111

setColors Set colors for samples

Description

Assigns one color to each sample in the CAGEr object. These colors are used in various plots and
exported tracks to consistently represent corresponding samples.

Usage

setColors(object, colors = NULL)

S4 method for signature 'CAGEr'
setColors(object, colors = NULL)

Arguments
object A CAGEr object.
colors A character vector of one valid R color specification per sample (see col2rgb
for details). Provided colors are assigned to samples in the order they are re-
turned by the samplelLabels function.
Value

Assigns one color to each sample in the CAGEr object and modifies it in place.

Author(s)

Vanja Haberle

See Also

Other CAGE:t setter methods: genomeName (), inputFiles(), inputFilesType(), sampleLabels()

Examples

samplelLabels(exampleCAGEexp)

setColors(exampleCAGEexp, 5)

samplelLabels(exampleCAGEexp)

setColors(exampleCAGEexp, c("#ffoeooff"”, "#CCFFQ@", "blue", "grey", 1))
samplelLabels(exampleCAGEexp)

setColors(exampleCAGEexp, c("red”, "darkgreen”, "blue", "grey"”, "black"))
samplelLabels(exampleCAGEexp)

112 Strand invaders

Strand invaders Detect and remove strand invasion artefacts

Description

findStrandInvaders detects strand invasion artefacts in the CTSS data. removeStrandInvaders
removes them.

Strand invaders are artefacts produced by template switching reactions used in methods such as
nanoCAGE and its derivatives (CI CAGE, ...). They are described in details in Tang et al., 2013.
Briefly, these artefacts create CAGE-like signal downstream of genome sequences highly similar
to the tail of template-switching oligonucleotides, which is TATAGGG in recent (2017) nanoCAGE
protocols. Since these artefacts represent truncated cDNAs, they do not indicate promoter regions.
It is therefore advisable to remove these artefacts. Moreover, when a sample barcode is near the
linker sequence (which is not the case in recent nanoCAGE protocols), the strand-invasion artefacts
can produce sample-specific biases, which can be confounded with biological effects depending
on how the barcode sequences were chosen. A barcode parameter is provided to incorporate this
information.

Usage
findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")

removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")

S4 method for signature 'CAGEexp'
findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")

S4 method for signature 'CAGEexp'
removeStrandInvaders(object, distance = 1, barcode = NULL, linker

"TATAGGG")

S4 method for signature 'CTSS'
findStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")

S4 method for signature 'CTSS'
removeStrandInvaders(object, distance = 1, barcode = NULL, linker = "TATAGGG")

Arguments

object A CAGEexp object object containing CTSS data and the name of a reference
genome.

distance The maximal edit distance between the genome and linker sequences. Regard-
less this parameter, only a single mismatch is allowed in the last three bases of
the linker.

barcode A vector of sample barcode sequences, or the name of a column metadata of the
CAGEexp object containing this information. (Not implemented yet)

linker The sequence of the tail of the template-switching oligonucleotide, that will be

matched with the genome sequence (defaults to TATAGGG).

summariseChrExpr 113

Value

findStrandInvaders returns a logical-S4Vectors::Rle vector indicating the position of the strand
invaders in the input ranges.

With CTSS objects as input removeStrandInvaders returns the object after removing the CTSS
positions identified as strand invaders. In the case of CAGEexp objects, a modified object is returned.
Its sample metadata is also updated by creating a new strandInvaders column that indicates the
number of molecule counts removed. This value is subtracted from the counts colum so that the
total number of tags is still equal to librarySizes.

References

Tang et al., “Suppression of artifacts and barcode bias in high-throughput transcriptome analyses
utilizing template switching.” Nucleic Acids Res. 2013 Feb 1;41(3):e44. PubMed ID: 23180801,
DOI: 10.1093/nar/gks112

Examples

Note that these examples do not do much on the example data since it was
not constructed using a protocol based using the template-switching method.

findStrandInvaders(exampleCAGEexp)
removeStrandInvaders(exampleCAGEexp)

summariseChrExpr Expression levels by chromosomes

Description

Counts the number of molecules detected per chromosome, normalises by library size and stores
the raw and normalised results in the CAGEr object.

Usage

summariseChrExpr(object)

S4 method for signature 'CAGEexp'
summariseChrExpr(object)
Arguments

object A CAGEexp object objects are not supported).

Value

Modifies the CAGEexp by adding a “seqNameTotals” experiment containing matrices where rows
represent chromosomes and columns represent samples.

https://pubmed.gov/23180801
https://doi.org/10.1093/nar/gks1128

114 tagClustersGR

Author(s)

Charles Plessy

See Also

seqNameTotals

Other CAGEr object modifiers: CTSStoGenes(), CustomConsensusClusters(), aggregateTagClusters(),
annotateCTSS(), cumulativeCTSSdistribution(),distclu(), getCTSS(), normalizeTagCount(),
paraclu(), quantilePositions(), quickEnhancers(), resetCAGEexp()

Examples

summariseChrExpr (exampleCAGEexp)

TagClusters-class TagClusters

Description

TagClusters

Details

The TagClusters class represents tag clusters. It is used internally by CAGEr for type safety.

tagClustersGR Extract tag clusters (TCs) for individual CAGE experiments

Description

Extracts tag clusters (TCs) for a specified CAGE experiment from a CAGEexp object.

Usage
tagClustersGR(object, sample = NULL, gLow = NULL, qUp = NULL)
S4 method for signature 'CAGEexp'
tagClustersGR(object, sample = NULL, gLow = NULL, qUp = NULL)

tagClustersGR(object, sample = NULL) <- value

S4 replacement method for signature 'CAGEexp,ANY,TagClusters'
tagClustersGR(object, sample = NULL) <- value

S4 replacement method for signature 'CAGEexp,missing,GRangesList'
tagClustersGR(object, sample = NULL) <- value

TSSlogo 115

Arguments
object A CAGEexp object.
sample Label of the CAGE dataset (experiment, sample) for which to extract tag clus-
ters. If samples = NULL, a list of all the clusters for each sample is returned.
glLow, qUp Position of which quantile should be used as a left (lower) or right (upper)
boundary (for qLow and qUp respectively) when calculating interquantile width.
Default value NULL results in using the start coordinate of the cluster.
value A TagClusters object.
Value

Returns a GRangesList or a TagClusters object with genomic coordinates, position of dominant
TSS, total CAGE signal and additional information for all TCs from specified CAGE dataset (sam-
ple). If quantile information is provided, interquantile width for each TC is also calculated. The
S4Vectors: :metadata slot of the object contains a copy of the CAGEexp object’s column data.

Author(s)

Vanja Haberle
Charles Plessy

See Also

Other CAGEr accessor methods: CTSScoordinatesGR(), CTSScumulativesTagClusters(), CTSSnormalizedTpmDF (),
CTSStagCountDF (), GeneExpDESeq2 (), GeneExpSE (), consensusClustersGR(), expressionClasses(),
filteredCTSSidx(), genomeName(), inputFiles(), inputFilesType(), librarySizes(), samplelLabels(),
segNameTotalsSE()

Other CAGEr clusters functions: CTSScumulativesTagClusters(), CustomConsensusClusters(),
aggregateTagClusters(), consensusClustersDESeq2(), consensusClustersGR(), cumulativeCTSSdistribution(),
distclu(), paraclu(), plotInterquantileWidth(), quantilePositions()

Examples

tagClustersGR(exampleCAGEexp, "Zf.high", 0.1, 0.9)
tagClustersGR(exampleCAGEexp, 1, gLow = 0.1, qUp = 0.9)
tagClustersGR(exampleCAGEexp)@metadata$colData

TSSlogo TSS logo

Description

Plot the sequence logo of the region flanking the TSS. When this function is given tag clusters or
consensus clusters, it uses the dominant peak as the transcription start site.

116 TSSlogo
Usage
TSSlogo(x, upstream = 10, downstream = 10)

S4 method for signature 'CAGEexp'
TSSlogo(x, upstream = 10, downstream

10)

S4 method for signature 'TagClusters'
TSSlogo(x, upstream = 10, downstream = 10)

S4 method for signature 'ConsensusClusters'
TSSlogo(x, upstream = 10, downstream = 10)

S4 method for signature 'CTSS'
TSSlogo(x, upstream = 10, downstream = 10)

Arguments

X A CTSS, a TagClusters or a ConsensusClusters object.

upstream Number of bases to plot upstream the TSS.

downstream Number of bases to plot downstream the TSS, including the TSS itself.
Details

This function will only work if the CAGEexp object was built with a BSgenome: : BSgenome package,
as it needs to extract genomic sequences.

Value
A ggplot2::ggplot object showing the sequence logo. The coordinates displayed are negative for
upstream sequences and positive downstream. The position of the TSS is set to 1.

Author(s)

Charles Plessy

See Also
Other CAGETr plot functions: hanabiPlot (), plotAnnot(), plotCorrelation(), plotExpressionProfiles(),
plotInterquantileWidth(), plotReverseCumulatives()

Examples

TSSlogo(exampleCAGEexp|>consensusClustersGR(), 20, 10)

Index

x CAGEfightR
quickEnhancers, 99

* CAGEr CTSS methods
CTSStagCountDF, 27

* CAGEr TSS functions
TSSlogo, 115

* CAGEr accessor methods
consensusClustersGRr, 18
CTSScoordinatesGR, 23
CTSScumulativesTagClusters, 24
CTSSnormalizedTpmDF, 25
CTSStagCountDF, 27
expressionClasses, 40
filteredCTSSidx, 42
GeneExpDESeq2, 46
GeneExpSE, 47
genomeName, 47
inputFiles, 68
inputFilesType, 69
librarySizes, 71
samplelLabels, 106
seqNameTotalsSE, 110
tagClustersGRr, 114

x CAGEr annotation functions
annotateCTSS, 10
plotAnnot, 85
ranges2annot, 100
ranges2genes, 101
ranges2names, 102

* CAGETr clustering methods
consensusClustersTpm, 21
distclu, 32
paraclu, 80

* CAGEr clusters functions
aggregateTagClusters, 8
consensusClustersDESeq2, 17
consensusClustersGR, 18
CTSScumulativesTagClusters, 24
cumulativeCTSSdistribution, 29

117

CustomConsensusClusters, 30
distclu, 32
paraclu, 80
plotInterquantileWidth, 93
quantilePositions, 97
tagClustersGR, 114

* CAGETr export functions
exportToTrack, 36

+* CAGETr expression analysis functions
consensusClustersDESeq2, 17

+* CAGETr expression clustering functions
expressionClasses, 40
getExpressionProfiles, 51
plotExpressionProfiles, 92

+* CAGEr filter functions
filteredCTSSidx, 42
flagByUpstreamSequences, 43
flaglowExpCTSS, 44

+* CAGETr gene expression analysis functions
CTSStoGenes, 28
GeneExpDESeq?2, 46
ranges2genes, 101

* CAGEr normalised data functions
normalizeTagCount, 78
plotReverseCumulatives, 95

* CAGETr object modifiers
aggregateTagClusters, 8
annotateCTSS, 10
CTSStoGenes, 28
cumulativeCTSSdistribution, 29
CustomConsensusClusters, 30
distclu, 32
getCTSS, 49
normalizeTagCount, 78
paraclu, 80
quantilePositions, 97
quickEnhancers, 99
resetCAGEexp, 103
summariseChrExpr, 113

118

* CAGETr plot functions
hanabiPlot, 58
plotAnnot, 85
plotCorrelation, 87
plotExpressionProfiles, 92
plotInterquantileWidth, 93
plotReverseCumulatives, 95
TSSlogo, 115

* CAGEr promoter shift functions
getShiftingPromoters, 54
scoreShift, 107

x CAGETr richness functions
hanabi, 55
hanabiPlot, 58
plot.hanabi, 84

x CAGETr setter methods
genomeName, 47
inputFiles, 68
inputFilesType, 69
samplelLabels, 106
setColors, 111

+ FANTOM data
FANTOM5humanSamples, 41
FANTOM5mouseSamples, 41
importPublicData, 65

+ Rle DataFrames
rowsum.RleDataFrame, 104
rowSums.RleDataFrame, 105

+ datasets
exampleCAGEexp, 33
exampleZv9_annot, 34
FANTOM5humanSamples, 41
FANTOM5mouseSamples, 41

* internal
CAGEr-package, 4

x loadFileIntoGPos
bam2CTSS, 12
import.bam, 59
import.bam.ctss, 60
import.bedCTSS, 61
import.bedmolecule, 62
import.bedScore, 62
import.bigwig, 63
import.CTSS, 65
loadFileIntoGPos, 72
moleculesGR2CTSS, 77

.ConsensusClusters, 3/

.ConsensusClusters

INDEX

(ConsensusClusters-class), 16
.TagClusters (TagClusters-class), 114
.byCtss, 5
.byCtss,data. table-method (.byCtss), 5
.ctss_summary_for_clusters, 6
.get.quant.pos, 7
.hanabi (hanabi-class), 58
.powerLaw, 7

aggregateTagClusters, 8, 12, 18, 19, 25,
29-33,51, 53, 80, 82, 83, 94, 98, 99,
103,114, 115

aggregateTagClusters,CAGEr-method
(aggregateTagClusters), 8

annotateConsensusClusters
(annotateCTSS), 10

annotateConsensusClusters,CAGEexp, GRanges-method

(annotateCTSS), 10

annotateConsensusClusters, CAGEexp, TxDb-method

(annotateCTSS), 10
annotateCTSS, 10, 10, 29-31, 33, 51, 80, 83,
87,98-103, 114
annotateCTSS(), 28, 29
annotateCTSS, CAGEexp, GRanges-method
(annotateCTSS), 10
annotateCTSS,CAGEexp, TxDb-method
(annotateCTSS), 10
annotateTagClusters (annotateCTSS), 10

annotateTagClusters, CAGEexp,GRanges-method

(annotateCTSS), 10
annotateTagClusters,CAGEexp, TxDb-method
(annotateCTSS), 10

bam2CTSS, 12, 60-63, 65, 72, 78
BSgenome: :BSgenome, 116

CAGEexp, 10, 15, 17,23, 25, 27, 28, 30, 33, 38,
42,4649, 52, 54, 65, 67-69, 71, 76,
78, 79, 82, 86, 91, 94, 95, 97, 103,
109, 110,112,114, 116

CAGEexp (CAGEexp-class), 13

CAGEexp-class, 13

CAGEfightR: :quantifyCTSSs(), 99

CAGEfightR: :quickEnhancers(), 99

CAGEr, 9, 13, 17-21, 30, 40, 75-77, 93, 106,
108,111,113

CAGEr (CAGEr-package), 4

CAGEr-class, 14

CAGEr-package, 4

INDEX 119

CAGEr_Multicore, 15 (consensusClusters<-), 17
coerce,CTSS,GRanges-method consensusClustersSE<-,CAGEexp,RangedSummarizedExperiment-m
(CTSS-class), 22 (consensusClusters<-), 17
coerce,data. frame, CAGEexp-method consensusClustersTpm, 21, 33, 83
(CAGEexp-class), 13 consensusClustersTpm, CAGEexp-method
coerce,GRanges,CTSS-method (consensusClustersTpm), 21
(CTSS-class), 22 cor(), 91
coercelnBSgenome, 16 correlationMatrix (plotCorrelation), 87
col2rgh, 111 correlationMatrix, CAGEexp-method
ConsensusClusters, 6, 7, 19,43, 86, 116 (plotCorrelation), 87
ConsensusClusters correlationMatrix,data.frame-method
(ConsensusClusters-class), 16 (plotCorrelation), 87
ConsensusClusters-class, 16 correlationMatrix,DataFrame-method
consensusClusters<-, 17 (plotCorrelation), 87
consensusClustersDESeq2, 10, 17, 19, 25, correlationMatrix,matrix-method
30, 32, 33,83,94,98, 115 (plotCorrelation), 87
consensusClustersDESeq2, CAGEexp-method correlationMatrix, SummarizedExperiment-method
(consensusClustersDESeq2), 17 (plotCorrelation), 87
consensusClustersGR, 10, 18, 18, 24-26, 28, CTSS, 6, 13,32,43,51,61, 62,81,86,113,116
30, 32, 33,40, 42,4648, 69-71, 83, CTSS (CTSS-class), 22
94,98, 107,110, 115 CTSS(), 24
consensusClustersGR, CAGEexp-method CTSS-class, 22
(consensusClustersGR), 18 CTSScoordinatesGR, 19, 23, 25, 26, 28, 40,
consensusClustersGR<- 42,4648, 69-71, 100, 102, 107,
(consensusClusters<-), 17 110,115
consensusClustersGR<-,CAGEexp-method CTSScoordinatesGR, CAGEexp-method
(consensusClusters<-), 17 (CTSScoordinatesGR), 23
consensusClustersQuantile, 20 CTSScoordinatesGR<-
consensusClustersQuantile, CAGEexp-method (CTSScoordinatesGR), 23
(consensusClustersQuantile), 20 CTSScoordinatesGR<-,CAGEexp-method
consensusClustersQuantilelow (CTSScoordinatesGR), 23
(consensusClustersQuantile), 20 CTSScumulativesCC
consensusClustersQuantilelow, CAGEexp-method (CTSScumulativesTagClusters),
(consensusClustersQuantile), 20 24
consensusClustersQuantilelow<- CTSScumulativesCC, CAGEexp-method
(consensusClustersQuantile), 20 (CTSScumulativesTagClusters),
consensusClustersQuantileUp 24
(consensusClustersQuantile), 20 CTSScumulativesTagClusters, 10, 18, 19,
consensusClustersQuantileUp, CAGEexp-method 24,24, 26, 28, 30, 32, 33,40, 42,
(consensusClustersQuantile), 20 4648, 69-71, 83, 94, 98, 107, 110,
consensusClustersQuantileUp<- 115
(consensusClustersQuantile), 20 CTSScumulativesTagClusters,CAGEexp-method
consensusClustersSE, 10, 21 (CTSScumulativesTagClusters),
consensusClustersSE 24
(consensusClustersGR), 18 CTSScumulativesTagClusters<-
consensusClustersSE,CAGEexp-method (CTSScumulativesTagClusters),
(consensusClustersGR), 18 24

consensusClustersSE<- CTSScumulativesTagClusters<-,CAGEexp-method

120

(CTSScumulativesTagClusters),
24
CTSSnormalizedTpmDF, 19, 24, 25, 25, 28, 40,
42,4648, 69-71,79, 107,110, 115
CTSSnormalizedTpmDF ,CAGEexp-method
(CTSSnormalizedTpmDF), 25
CTSSnormalizedTpmGR
(CTSSnormalizedTpmDF), 25
CTSSnormalizedTpmGR, CAGEexp-method
(CTSSnormalizedTpmDF), 25
CTSStagCountDF, 19, 24-26, 27, 40, 42,
4648, 51,69-71, 107,110,115
CTSStagCountDF, CAGEexp-method
(CTSStagCountDF), 27
CTSStagCountGR (CTSStagCountDF), 27
CTSStagCountGR, CAGEexp-method
(CTSStagCountDF), 27
CTSStagCountSE (CTSStagCountDF), 27
CTSStagCountSE,CAGEexp-method
(CTSStagCountDF), 27
CTSStagCountSE<- (CTSScoordinatesGR), 23
CTSStagCountSE<-,CAGEexp-method
(CTSScoordinatesGR), 23
CTSStoGenes, 10, 12,28, 30, 31, 33,46, 51,
80, 83, 98, 99, 101-103, 114
CTSStoGenes,CAGEexp-method
(CTSStoGenes), 28
cumulativeCTSSdistribution, 10, 12, 18
19,25,29,29,31-33,51, 80, 83, 94,
98, 99, 103,109, 114, 115
cumulativeCTSSdistribution, CAGEexp-method
(cumulativeCTSSdistribution),
29
CustomConsensusClusters, 10, 12, 18, 19,
25,29, 30, 30, 33, 51, 80, 83, 94, 98,
99,103,114, 115

CustomConsensusClusters,CAGEexp, GRanges-method

(CustomConsensusClusters), 30

data.frame, 91

data.table::data.table, 5

distclu, 10, 12,18, 19, 21, 25, 29-32, 32, 51,
80, 83, 94, 98, 99, 103, 114, 115

distclu,CAGEexp-method (distclu), 32

distclu,CTSS-method (distclu), 32

distclu,SummarizedExperiment-method
(distclu), 32

exampleCAGEexp, 33

INDEX

exampleZv9_annot, 12, 34, 100, 102
exportToTrack, 36
exportToTrack,CAGEexp-method
(exportToTrack), 36
exportToTrack,ConsensusClusters-method
(exportToTrack), 36
exportToTrack,CTSS-method
(exportToTrack), 36
exportToTrack,GRanges-method
(exportToTrack), 36
exportToTrack,GRangesList-method
(exportToTrack), 36
exportToTrack,TagClusters-method
(exportToTrack), 36
expressionClasses, 19, 24-26, 28, 40, 42,
4648, 53, 69-71, 93, 107, 110, 115
expressionClasses,ConsensusClusters-method
(expressionClasses), 40
expressionClasses,CTSS-method
(expressionClasses), 40

facet_wrap, 73
FANTOM5humanSamples, 41, 41, 67
FANTOM5mouseSamples, 41, 41, 67
filteredCTSSidx, 19, 24-26, 28, 40, 42,
44-48, 69-71, 107, 110, 115
filteredCTSSidx,CAGEexp-method
(filteredCTSSidx), 42
filterLowExpCTSS, 24
filterLowExpCTSS (flaglLowExpCTSS), 44
filterLowExpCTSS,CAGEr-method
(flaglLowExpCTSS), 44
findStrandInvaders (Strand invaders),
112
findStrandInvaders,CAGEexp-method
(Strand invaders), 112
findStrandInvaders,CTSS-method (Strand
invaders), 112
flagByUpstreamSequences, 42, 43, 45

flagByUpstreamSequences,ConsensusClusters-method

(flagByUpstreamSequences), 43
flagByUpstreamSequences,CTSS-method
(flagByUpstreamSequences), 43
flagByUpstreamSequences, GRanges-method
(flagByUpstreamSequences), 43
flagByUpstreamSequences, TagClusters-method
(flagByUpstreamSequences), 43
flaglLowExpCTSS, 42, 44, 44

INDEX

flaglowExpCTSS, CAGEr-method
(flaglLowExpCTSS), 44

flaglLowExpCTSS,DataFrame-method
(flagLowExpCTSS), 44

flaglLowExpCTSS, matrix-method
(flagLowExpCTSS), 44

121

ggplot2::1labs, 96
gtools: :mixedorder(), 73

hanabi, 55, 59, 85
hanabi, GRanges-method (hanabi), 55
hanabi, integer-method (hanabi), 55

flagLowExpCTSS,RangedSummarizedExperiment-methadabi,List-method (hanabi), 55

(flagLowExpCTSS), 44

GeneExpDESeq2, 19, 24-26, 28, 29, 40, 42, 46,
47,48, 69-71, 102, 107, 110, 115

GeneExpDESeq2,CAGEexp-method
(GeneExpDESeq2), 46

GeneExpSE, 19, 24-26, 28, 40, 42, 46, 47, 48,
69-71, 107,110, 115

GeneExpSE , CAGEexp-method (GeneExpSE), 47

genomeName, 19, 24-26, 28, 40, 42, 46, 47, 47,
69-71,107,110, 111,115

genomeName , CAGEexp-method (genomeName),
47

genomeName, CTSS-method (genomeName), 47

genomeName<- (genomeName), 47

genomeName<-, CAGEexp-method
(genomeName), 47

genomeName<-, CTSS-method (genomeName),
47

GenomicFeatures: :TxDb, 1/

GenomicRanges: :GPos, 22, 65

GenomicRanges: :GPos(), 72

GenomicRanges: :GRanges, 6, 11, 13, 19, 31,
43,64, 77,78, 100-102

GenomicRanges: :GRangesList, 33, 82, 86

GenomicRanges: :reduce, 32

GenomicRanges: :UnstitchedGPos, 22

getCTSS, 10, 12, 24,29-31, 33,49, 70, 71, 80,
83,98, 99, 103, 114

getCTSS(), 28

getCTSS, CAGEexp-method (getCTSS), 49

getExpressionProfiles, 38, 40, 51, 93

getExpressionProfiles, CAGEexp-method
(getExpressionProfiles), 51

getExpressionProfiles,matrix-method
(getExpressionProfiles), 51

getShiftingPromoters, 54, 109

getShiftingPromoters, CAGEexp-method
(getShiftingPromoters), 54

ggplot2::facet_wrap(), 86

ggplot2: :ggplot, 87, 96, 116

ggplot2: :guides, 96

hanabi,list-method (hanabi), 55
hanabi,matrix-method (hanabi), 55
hanabi,numeric-method (hanabi), 55
hanabi,Rle-method (hanabi), 55
hanabi-class, 58
hanabiPlot, 58, 58, 84, 85, 87, 92-94, 97, 116

import.bam, 13,59, 61-63, 65,72, 78
import.bam(), 13
import.bam.ctss, 13, 60, 60, 61-63, 65, 72,
78
import.bedCTSS, 13, 60, 61, 61, 62, 63, 65,
72,78
import.bedmolecule, 13, 60, 61, 62, 63, 65,
72,78
import.bedScore, 13, 60-62, 62, 63,65, 72,
78
import.bigwig, 13, 60-63, 63, 65, 72, 78
import.CAGEscanMolecule, 64
import.CTSS, 13, 60-63, 65, 72, 78
importPublicData, 41, 65

importPublicData, character,character,ANY, character-method

(importPublicData), 65
initialize,CTSS-method (CTSS-class), 22
inputFiles, 19, 24-26, 28, 40, 42, 46—48, 68,

70, 71,107,110, 111,115
inputFiles,CAGEexp-method (inputFiles),

68
inputFiles<- (inputFiles), 68
inputFiles<-,CAGEexp-method

(inputFiles), 68
inputFilesType, 19, 24-26, 28, 40, 42,

46-49, 51, 69,69, 71,107, 110, 111,

115
inputFilesType, CAGEexp-method

(inputFilesType), 69
inputFilesType<- (inputFilesType), 69
inputFilesType<-,CAGEexp-method

(inputFilesType), 69
integer, 98

lapply, 106

122

librarySizes, 19, 24-26, 28, 40, 42, 4648,
51,69, 70,771,107, 110, 115
librarySizes,CAGEexp-method
(librarySizes), 71
lines.hanabi (plot.hanabi), 84
loadFilelIntoGPos, 13, 60-63, 65,72, 78

make.names, /3

make.names(), 13

mapply, 106

mapStats, 73, 86, 87

mapStatsScopes, 73, 74, 86

mapStatsScopes(), 73

matrix, 91

MatrixGenerics: :rowRanges, 100

mergeCAGEsets, 75

mergeCAGEsets, CAGEexp, CAGEexp-method
(mergeCAGEsets), 75

mergeSamples, 76

mergeSamples, CAGEexp-method
(mergeSamples), 76

methods: : coerce, 22

methods: : new, 22

methods: : show, 22

moleculesGR2CTSS, 13, 60-63, 65, 72,77

msScope_all (mapStatsScopes), 74

msScope_annotation (mapStatsScopes), 74

msScope_counts (mapStatsScopes), 74

msScope_mapped (mapStatsScopes), 74

msScope_qc (mapStatsScopes), 74

msScope_steps (mapStatsScopes), 74

MultiAssayExperiment: :MultiAssayExperiment,
13,15

normalizeTagCount, 10, 12, 26, 29-31, 33,
51,78, 83,96-99, 103, 114

normalizeTagCount,CAGEexp-method
(normalizeTagCount), 78

paraclu, 10, 12,18, 19, 21, 25, 29-33, 51, 80,
80, 94, 98, 99, 103, 114, 115
paraclu, CAGEexp-method (paraclu), 80
paraclu,CTSS-method (paraclu), 80
paraclu,GRanges-method (paraclu), 80
paraclu,Pairs-method (paraclu), 80
paraclu, SummarizedExperiment-method
(paraclu), 80
parseCAGEscanBlocksToGrangeTSS, 83
plot.hanabi, 58, 59, 84

INDEX

plotAnnot, 12, 59, 73, 85, 92-94, 97, 100,
102,116
plotAnnot,CAGEexp-method (plotAnnot), 85
plotAnnot,data.frame-method
(plotAnnot), 85
plotAnnot,DataFrame-method (plotAnnot),
85
plotAnnot,GRangesList-method
(plotAnnot), 85
plotCorrelation, 59, 87, 87, 93, 94, 97, 116
plotCorrelation(), 91
plotCorrelation,CAGEr-method
(plotCorrelation), 87
plotCorrelation2 (plotCorrelation), 87
plotCorrelation2,CAGEexp-method
(plotCorrelation), 87
plotCorrelation2,data.frame-method
(plotCorrelation), 87
plotCorrelation2,DataFrame-method
(plotCorrelation), 87
plotCorrelation2,matrix-method
(plotCorrelation), 87

plotCorrelation2, SummarizedExperiment-method

(plotCorrelation), 87
plotExpressionProfiles, 38, 40, 53, 59, 87,
92,92,94,97,116
plotExpressionProfiles, CAGEexp-method
(plotExpressionProfiles), 92
plotInterquantileWidth, 10, I8, 19, 25, 30,
32, 33,59, 83,87, 92, 93,93, 97, 98,
115,116
plotInterquantileWidth, CAGEexp-method
(plotInterquantileWidth), 93
plotReverseCumulatives, 59, 79, 80, 87.
92-94,95, 116
plotReverseCumulatives, CAGEexp-method
(plotReverseCumulatives), 95
plotReverseCumulatives,GRanges-method
(plotReverseCumulatives), 95
plotReverseCumulatives,GRangesList-method
(plotReverseCumulatives), 95
points.hanabi (plot.hanabi), 84

quantilePositions, 10, 12, 18, 19, 25,
29-33,51, 80, 83, 94,97, 99, 103,
114, 115

quantilePositions, CAGEexp-method
(quantilePositions), 97

INDEX

quickEnhancers, 10, 12, 29-31, 33, 51, 80,
83,98,99, 103, 114

quickEnhancers, CAGEexp-method
(quickEnhancers), 99

ranges2annot, 12, 87, 100, 102
ranges2genes, 12, 29, 46, 87, 100, 101, 102
ranges2names, 12, 87, 100, 102, 102
removeStrandInvaders (Strand invaders),
112
removeStrandInvaders, CAGEexp-method
(Strand invaders), 112
removeStrandInvaders,CTSS-method
(Strand invaders), 112
resetCAGEexp, 10, 12, 29-31, 33, 51, 80, 83,
98, 99,103, 114
resetCAGEexp, CAGEexp-method
(resetCAGEexp), 103
rowsum.RleDataFrame, 104, 105
rowSums.RleDataFrame, 104, 105

S4Vectors: :DataFrame, 13, 27, 91, 104, 105
S4Vectors: :metadata, /15
S4Vectors: :Pairs, 81
S4Vectors::Rle, 13, 27, 40, 45, 100-102,
104, 105, 113
samplelabels, 19, 24-26, 28, 40, 42, 4648,
69-71,106, 110, 111,115
samplelLabels(), 91
samplelLabels, CAGEexp-method
(samplelabels), 106
samplelLabels,CTSS-method
(samplelLabels), 106
samplelLabels<- (samplelLabels), 106
samplelLabels<-,CAGEexp-method
(samplelabels), 106
samplelLabels<-,CTSS-method
(samplelLabels), 106
samplelList (sampleLabels), 106
sampleList,CAGEr-method (samplelLabels),
106
scoreShift, 54, 55, 107
scoreShift,CAGEexp-method (scoreShift),
107
seqNameTotalsSE, 19, 24-26, 28, 40, 42,
4648, 69-71, 107,110, 115
seqNameTotalsSE, CAGEexp-method
(seqNameTotalsSE), 110
segqNameTotalsSE<- (seqNameTotalsSE), 110

123

setColors, 48, 69, 70, 107, 111

setColors,CAGEr-method (setColors), 111

show, CTSS-method (CTSS-class), 22

som: :som, 52

stats: :kmeans, 52

Strand invaders, 112

summariseChrExpr, 10, 12,29-31, 33, 51, 80,
83,98, 99,103,113

summariseChrExpr,CAGEexp-method
(summariseChrExpr), 113

SummarizedExperiment: :RangedSummarizedExperiment,
10,27,31, 32,51, 82,98, 101

SummarizedExperiment: :rowRanges, 101

SummarizedExperiment: :SummarizedExperiment
19,28, 91

TagClusters, 6, 7, 33,43,82,86, 115, 116
TagClusters (TagClusters-class), 114
TagClusters-class, 114
tagClustersGR, 10, 18, 19, 24-26, 28, 30, 32
33,40, 42,4648, 69-71, 83, 94, 98,
107,110, 114
tagClustersGR, CAGEexp-method
(tagClustersGR), 114
tagClustersGR<- (tagClustersGR), 114
tagClustersGR<-,CAGEexp,ANY,TagClusters-method
(tagClustersGR), 114
tagClustersGR<-,CAGEexp,missing,GRangesList-method
(tagClustersGR), 114
TSSlogo, 59, 87, 92-94, 97, 115
TSSlogo,CAGEexp-method (TSSlogo), 115
TSSlogo,ConsensusClusters-method
(TSSlogo), 115
TSSlogo,CTSS-method (TSSlogo), 115
TSSlogo, TagClusters-method (TSSlogo),
115

	CAGEr-package
	.byCtss
	.ctss_summary_for_clusters
	.get.quant.pos
	.powerLaw
	aggregateTagClusters
	annotateCTSS
	bam2CTSS
	CAGEexp-class
	CAGEr-class
	CAGEr_Multicore
	coerceInBSgenome
	ConsensusClusters-class
	consensusClusters<-
	consensusClustersDESeq2
	consensusClustersGR
	consensusClustersQuantile
	consensusClustersTpm
	CTSS-class
	CTSScoordinatesGR
	CTSScumulativesTagClusters
	CTSSnormalizedTpmDF
	CTSStagCountDF
	CTSStoGenes
	cumulativeCTSSdistribution
	CustomConsensusClusters
	distclu
	exampleCAGEexp
	exampleZv9_annot
	exportToTrack
	expressionClasses
	FANTOM5humanSamples
	FANTOM5mouseSamples
	filteredCTSSidx
	flagByUpstreamSequences
	flagLowExpCTSS
	GeneExpDESeq2
	GeneExpSE
	genomeName
	getCTSS
	getExpressionProfiles
	getShiftingPromoters
	hanabi
	hanabi-class
	hanabiPlot
	import.bam
	import.bam.ctss
	import.bedCTSS
	import.bedmolecule
	import.bedScore
	import.bigwig
	import.CAGEscanMolecule
	import.CTSS
	importPublicData
	inputFiles
	inputFilesType
	librarySizes
	loadFileIntoGPos
	mapStats
	mapStatsScopes
	mergeCAGEsets
	mergeSamples
	moleculesGR2CTSS
	normalizeTagCount
	paraclu
	parseCAGEscanBlocksToGrangeTSS
	plot.hanabi
	plotAnnot
	plotCorrelation
	plotExpressionProfiles
	plotInterquantileWidth
	plotReverseCumulatives
	quantilePositions
	quickEnhancers
	ranges2annot
	ranges2genes
	ranges2names
	resetCAGEexp
	rowsum.RleDataFrame
	rowSums.RleDataFrame
	sampleLabels
	scoreShift
	seqNameTotalsSE
	setColors
	Strand invaders
	summariseChrExpr
	TagClusters-class
	tagClustersGR
	TSSlogo
	Index

