Package ‘Bioc.gff’

February 1, 2026
Title Read and write GFF and GTF files

Version 1.1.0
Date 2025-09-24

Description Parse GFF and GTF files using C++ classes. The package also
provides utilities to read and write GFF3 files. The GFF (General Feature
Format) format is a tab-delimited file format for describing genes and
other features of DNA, RNA, and protein sequences. GFF files are often
used to describe the features of genomes.

Depends R (>=4.5.0)

Imports BiocBaseUtils, BiocGenerics, BioclO, curl, GenomicRanges,
IRanges, methods, Rsamtools, S4Vectors, Seqinfo, stats, utils,
XVector

Suggests BiocFileCache, BiocStyle, GenomicFeatures, GenomeInfoDbData,
knitr, httr2, rmarkdown, rvest, tinytest, txdbmaker,
TxDb.Hsapiens.UCSC.hg19.knownGene

VignetteBuilder knitr

LinkingTo S4Vectors, XVector, IRanges
License Artistic-2.0

biocViews Software, Infrastructure, Datalmport
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

URL https://github.com/Bioconductor/Bioc.gff

BugReports https://github.com/Bioconductor/Bioc.gff/issues

Collate 'Bioc.gff-package.R' 'GFF-coercion.R' read GFE.R'
'GFFFile-class.R' 'index.R' 'metadataFromNCBI.R' 'utilities.R'

git_url https://git.bioconductor.org/packages/Bioc.gff
git_branch devel
git_last_commit a3d3863

https://github.com/Bioconductor/Bioc.gff
https://github.com/Bioconductor/Bioc.gff/issues

2 Bioc.gff-package

git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Michael Lawrence [aut],
Hervé Pages [aut],
Marcel Ramos [ctb],
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Contents
Bioc.gff-package 2
asGFF e 3
GFFFile-class e e e 4
metadataFromNCBI 9
readGFF e e e 11

Index 14

Bioc.gff-package Bioc.gff: Read and write GFF and GTF files
Description

Parse GFF and GTF files using C++ classes. The package also provides utilities to read and write
GFF3 files. The GFF (General Feature Format) format is a tab-delimited file format for describing
genes and other features of DNA, RNA, and protein sequences. GFF files are often used to describe
the features of genomes.

Author(s)

Maintainer: Bioconductor Package Maintainer <maintainer@bioconductor.org>
Authors:

¢ Michael Lawrence

* Hervé Pages
Other contributors:

e Marcel Ramos [contributor]

See Also
Useful links:

* https://github.com/Bioconductor/Bioc.gff
* Report bugs at https://github.com/Bioconductor/Bioc.gff/issues

https://github.com/Bioconductor/Bioc.gff
https://github.com/Bioconductor/Bioc.gff/issues

asGFF 3

asGFF Coerce to GFF structure

Description

Coerce the structure of an object to one following GFF-like conventions, i.e., using the Parent
GFF3 attribute to encode the hierarchical structure. This object is then suitable for export as GFF3.
Usage

asGFF(x, ...)

S4 method for signature 'GRangeslList'
asGFF(x, parentType = "mRNA", childType = "exon")

Arguments
X Generally, a tabular object to structure as GFF(3)
Arguments to pass to methods
parentType The value to store in the type column for the top-level (e.g., transcript) ranges.
childType The value to store in the type column for the child (e.g., exon) ranges.
Value

For the GRangesList method: A GRanges, with the columns: ID (unique identifier), Name (from
names(x), and the names on each element of x, if any), type (as given by parentType and
childType), and Parent (to relate each child range to its parent at the top-level).

Methods (by class)

* asGFF (GRangesList): Coerce to GFF GRanges structure

Author(s)

Michael Lawrence

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(GenomicFeatures)

exons <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene)
mcols(asGFF (exons))

4 GFFFile-class

GFFFile-class GFFFile objects

Description

These functions support the import and export of the GFF format, of which there are three versions
and several flavors.

Usage
GFFFile(resource, version = c("", "1", "2", "3"))
export.gff(object, con, ...)

S4 method for signature 'ANY'
export.gff(object, con, ...)

S4 method for signature 'ANY,GFFFile,ANY'
export(object, con, format, ...)

S4 method for signature 'CompressedGRangeslList,GFFFile,ANY'
export(object, con, format, ...)

S4 method for signature 'GenomicRanges,GFFFile,ANY'
export(

object,

con,

format,

version = c("1", "2", "3"),

source = "Bioc.gff",

append = FALSE,

index = FALSE

)

S4 method for signature 'SimpleGRangesList,GFFFile,ANY'
export(object, con, format, ...)

export.gffi1(object, con, ...)

S4 method for signature 'ANY'
export.gffi(object, con, ...)

export.gff2(object, con, ...)

S4 method for signature 'ANY'
export.gff2(object, con, ...)

GFFFile-class 5

export.gff3(object, con, ...)

S4 method for signature 'ANY'
export.gff3(object, con, ...)

S4 method for signature 'GFFFile,ANY,ANY'
import(
con,
format,
text,
version = c("", "1", "2", "3"),
genome = NA,
colnames = NULL,
which = NULL,
feature.type = NULL,
sequenceRegionsAsSeqinfo = FALSE

)
import.gffi(con, ...)

S4 method for signature 'ANY'
import.gffi(con, ...)

import.gff2(con, ...)

S4 method for signature 'ANY'
import.gff2(con, ...)

import.gff3(con, ...)

S4 method for signature 'ANY'
import.gff3(con, ...)

S4 method for signature 'GFFFile'

genome (x)
Arguments

resource character(1) or connection A low-level resource typically a path, URL, or
connection.

version If the format is given as "gff", i.e., it does not specify a version, then this should
indicate the GFF version as one of “”” (for import only, from the gff-version
directive in the file or "1" if none), "1", "2" or "3".

object The object to export, should be a GRanges or something coercible to a GRanges.

If the object has a method for asGFF, it is called prior to coercion. This makes it
possible to export a GRangesList or TxDb in a way that preserves the hierarchi-
cal structure. For exporting multiple tracks, in the UCSC track line metaformat,
pass a GenomicRangesList, or something coercible to one.

con

format

source

append

index

text

genome

colnames

which

feature.type

GFFFile-class

A path, URL, connection or GFFFile object. For the functions ending in .gff,
.gff1, etc, the file format is indicated by the function name. For the base export
and import functions, the format must be indicated another way. If con is a path,
URL or connection, either the file extension or the format argument needs to be
one of "gff", "gff1" "gff2", "gff3", "gvf", or "gtf". Compressed files ("gz", "bz2"
and "xz") are handled transparently.

Arguments to pass down to methods to other methods. For import, the flow
eventually reaches the GFFFile method on import. When trackLine is TRUE
or the target format is BED15, the arguments are passed through export.ucsc,
so track line parameters are supported.

If not missing, should be one of "gff", "gff1" "gff2", "gff3", "gvf", or "gtf".

The value for the source column in GFF. This is typically the name of the pack-
age or algorithm that generated the feature.

If TRUE, and con points to a file path, the data is appended to the file. Obviously,
if con is a connection, the data is always appended.

If TRUE, automatically compress and index the output file with bgzf and tabix.
Note that tabix indexing will sort the data by chromosome and start. Tabix
supports a single track in a file.

If con is missing, a character vector to use as the input.

The identifier of a genome, or a Seqinfo, or NA if unknown. Typically, this is
a UCSC identifier like "hg19". An attempt will be made to derive the Seqinfo
on the return value using either an installed BSgenome package or UCSC, if
network access is available.

A character vector naming the columns to parse. These should name either fixed
fields, like source or type, or, for GFF2 and GFF3, any attribute.

A GRanges or other range-based object supported by findOverlaps. Only the
intervals in the file overlapping the given ranges are returned. This is much more
efficient when the file is indexed with the tabix utility.

NULL (the default) or a character vector of valid feature types. If not NULL, then
only the features of the specified type(s) are imported.

sequenceRegionsAsSeqinfo

Details

If TRUE, attempt to infer the Seqinfo (seqlevels and seqlengths) from the
“##sequence-region” directives as specified by GFF3.

A GFFFile object.

The Generic Feature Format (GFF) format is a tab-separated table of intervals. There are three dif-
ferent versions of GFF, and they all have the same number of columns. In GFF1, the last column is
a grouping factor, whereas in the later versions the last column holds application-specific attributes,
with some conventions defined for those commonly used. This attribute support facilitates speci-
fying extensions to the format. These include GTF (Gene Transfer Format, an extension of GFF2)
and GVF (Genome Variation Format, an extension of GFF3). The Bioc.gff package recognizes
the "gtf" and "gvf" extensions and parses the extra attributes into columns of the result; however, it
does not perform any extension-specific processing. Both GFF1 and GFF2 have been proclaimed

GFFFile-class 7

obsolete; however, the UCSC Genome Browser only supports GFF1 (and GTF), and GFF2 is still
in broad use.

GFF is distinguished from the simpler BED format by its flexible attribute support and its hier-
archical structure, as specified by the group column in GFF1 (only one level of grouping) and
the Parent attribute in GFF3. GFF2 does not specify a convention for representing hierarchies,
although its GTF extension provides this for gene structures. The combination of support for hier-
archical data and arbitrary descriptive attributes makes GFF(3) the preferred format for representing
gene models.

Although GFF features a score column, large quantitative data belong in a format like BigWig
and alignments from high-throughput experiments belong in BAM. For variants, the VCF format
(supported by the VariantAnnotation package) seems to be more widely adopted than the GVF
extension.

A note on the UCSC track line metaformat: track lines are a means for passing hints to visualization
tools like the UCSC Genome Browser and the Integrated Genome Browser (IGB), and they allow
multiple tracks to be concatenated in the same file. Since GFF is not a UCSC format, it is not
common to annotate GFF data with track lines, but Bioc. gff still supports it. To export or import
GFF data in the track line format, call export.ucsc or import.ucsc.

The following is the mapping of GFF elements to a GRanges object. NA values are allowed only

non

where indicated. These appear as a "." in the file. GFF requires that all columns are included, so
export generates defaults for missing columns.

seqid, start, end the ranges component.
source character vector in the source column; defaults to "Bioc.gff" on export.
type character vector in the type column; defaults to "sequence_feature" in the output, i.e., SO:0000110.

score numeric vector (NA’s allowed) in the score column, accessible via the score accessor; de-
faults to NA upon export.

strand strand factor (NA’s allowed) in the strand column, accessible via the strand accessor;
defaults to NA upon export.

phase integer vector, either 0, 1 or 2 (NA’s allowed); defaults to NA upon export.
group a factor (GFF1 only); defaults to the seqid (e.g., chromosome) on export.
In GFF versions 2 and 3, attributes map to arbitrary columns in the result. In GFF3, some attributes

(Parent, Alias, Note, DBxref and Ontology_term) can have multiple, comma-separated values;
these columns are thus always CharacterList objects.

Value

A GRanges with the metadata columns described in the details.

Functions
e export.gff():
e export.gff(ANY):
* export(object = ANY, con = GFFFile, format = ANY):
* export(object = CompressedGRangesList, con = GFFFile, format = ANY):

GFFFile-class

export(object = GenomicRanges, con = GFFFile, format = ANY):
export(object = SimpleGRangesList, con =GFFFile, format = ANY):
export.gff1():

export.gff1(ANY):

export.gff2():

export.gff2(ANY):

export.gff3():

export.gff3(ANY):

import(con = GFFFile, format = ANY, text = ANY):
import.gff1():

import.gff1(ANY):

import.gff2():

import.gff2(ANY):

import.gff3():

import.gff3(ANY):

genome (GFFFile): Gets the genome identifier from the "genome-build" header directive.

GFFFile objects

The GFFFile class extends BiocFile and is a formal representation of a resource in the GFF format.
To cast a path, URL or connection to a GFFFile, pass it to the GFFFile constructor. The GFF1File,
GFF2File, GFF3File, GVFFile and GTFFile classes all extend GFFFile and indicate a particular
version of the format.

Author(s)

Michael Lawrence

References

GFF1, GFF2: http://www.sanger.ac.uk/resources/software/gff/spec.html
GFF3: http://www.sequenceontology.org/gff3.shtml

GVF: http://www.sequenceontology.org/resources/gvf.html

GTF: http://mblab.wustl.edu/GTF22.html

Examples

test_
'extdata”, "genes.gff3", package = "Bioc.gff"”, mustWork = TRUE

)

gff3 <- system.file(

basic import

test
test

<- import(test_gff3)

http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sequenceontology.org/gff3.shtml
http://www.sequenceontology.org/resources/gvf.html
http://mblab.wustl.edu/GTF22.html

metadataFromNCBI

import.gff functions
import.gff(test_gff3)
import.gff3(test_gff3)

GFFFile derivatives

test_gff_file <- GFF3File(test_gff3)
import(test_gff_file)

test_gff_file <- GFFFile(test_gff3)
import(test_gff_file)

test_gff_file <- GFFFile(test_gff3, version = "3")
import(test_gff_file)

from connection
test_gff_con <- file(test_gff3)
test <- import(test_gff_con, format = "gff")

various arguments

import(test_gff3, genome = "hgl19")
import(test_gff3, colnames = character())
import(test_gff3, colnames = c("type"”, "geneName"))

'which'

library(GenomicRanges)

which <- GRanges("chr10:90000-93000")
import(test_gff3, which = which)

'append’
test_gff3_out <- file.path(tempdir(), "genes.gff3")

export(test[seqnames(test) == "chr10"], test_gff3_out)
export(test[seqnames(test) == "chr12"], test_gff3_out, append = TRUE)
import(test_gff3_out)

'index'
export(test, test_gff3_out, index = TRUE)
test_bed_gz <- paste(test_gff3_out, ".bgz", sep = "")

import(test_bed_gz, which = which)

cleanup
file.remove(
test_gff3_out, test_bed_gz, paste(test_bed_gz, "tbi"”, sep = ".")

metadataFromNCBI Obtain metadata from NCBI

10 metadataFromNCBI

Description

These helper functions obtain both the Taxonomy ID and the Organism name from the NCBI Tax-
onomy Browser. They are a modern re-write of the old functions in rtracklayer. They use httr2
and rvest to parse the HTML content.

Usage

isNCBISpeciesURL (url)
metadataFromNCBI (url)
parseOrganismFromNCBI (html)

parseTaxonomyIDFromNCBI (html, url)

Arguments
url A URL to the NCBI Taxonomy Browser, typically obtained from a GFF file
with the ## species line.
Value

* metadataFromNCBI: A list with two elements: Taxonomy ID and Organism.
* parseOrganismFromNCBI: A character with the Organism name.
* iSNCBISpeciesURL: A logical indicating if the URL is from the NCBI Taxonomy Browser.

* parseTaxonomyIDFromNCBI: A character with the Taxonomy ID.

Examples

isNCBISpeciesURL (.NCBI_TAX_URL)

metadataFromNCBI (
paste@(.NCBI_TAX_URL, "?mode=Info&id=9606")
)
metadataFromNCBI (
paste@(.NCBI_TAX_URL, "?id=3702")
)
metadataFromNCBI (
paste@(.NCBI_TAX_URL, "?name=drosophila+melanogaster")
)
metadataFromNCBI (
paste@(.NCBI_TAX_URL, "?name=drosophilat+miranda”)
)

readGFF

11

readGFF Reads a file in GFF format

Description

Reads a file in GFF format and creates a data frame or S4Vectors: :DataFrame() object from it.
This is a lower-level function that should not be called by the end user. Users are recommended to

use the import () function on the GFFFile or file path.

Usage

GFFcolnames(GFF1 = FALSE)

readGFF (

filepath,
version = 0,
columns = NULL,

tags = NULL,
filter = NULL,
nrows = -1,
raw_data = FALSE
)
Arguments
GFF1 logical(1) Use "group" instead of "attributes" for the 9th column name. De-
fault is FALSE.
filepath A single string containing the path or URL to the file to read. Alternatively can
be a connection.
version readGFF should do a pretty descent job at detecting the GFF version. Use this
argument only if it doesn’t or if you want to force it to parse and import the file
as if its 9-th column was in a different format than what it really is (e.g. specify
version=1 on a GTF or GFF3 file to interpret its 9-th column as the "group”
column of a GFF1 file). Supported versions are 1, 2, and 3.
columns The standard GFF columns to load. All of them are loaded by default.
tags The tags to load. All of them are loaded by default.
filter named list() Specify to load only desired features, e.g., list (type = c("gene”,
"mRNA"), seqid = "chr10").
nrows -1 or the maximum number of rows to read in (after filtering).
raw_data logical(1) If TRUE, numeric columns (e.g. "start" or "score") are loaded as
character vectors and as-is i.e. how they are found in the file.
Value

A DataFrame with columns corresponding to those in the GFF.

12 readGFF

Author(s)
H. Pages

See Also

* import for importing a GFF file as a GenomicRanges: : GRanges () object.

* GenomicRanges: :makeGRangesFromDataFrame() in the GenomicRanges package for mak-
ing a GenomicRanges: : GRanges() object from a data. frame or S4Vectors: :DataFrame()
object.

* txdbmaker: :makeTxDbFromGFF () in the txdbmaker package for importing a GFF file as a
TxDb object.

* The S4Vectors: :DataFrame() class in the S4Vectors package.

Examples

Standard GFF columns.
GFFcolnames()
GFFcolnames(GFF1=TRUE) # "group” instead of "attributes”

test_gff3 <- system.file(
"extdata”, "genes.gff3", package="Bioc.gff", mustWork=TRUE
)

Load everything.
dfe <- readGFF(test_gff3)
head (dfe)

Load some tags only (in addition to the standard GFF columns).
my_tags <- c("ID", "Parent”, "Name"”, "Dbxref”, "geneID")

df1 <- readGFF(test_gff3, tags=my_tags)

head(df1)

Load no tags (in that case, the "attributes” standard column
is loaded).

df2 <- readGFF(test_gff3, tags=character(0))

head(df2)

Load some standard GFF columns only (in addition to all tags).

my_columns <- c("seqid”, "start”, "end", "strand”, "type")
df3 <- readGFF(test_gff3, columns=my_columns)
df3

table(df3$seqid, df3$type)

library(GenomicRanges)
makeGRangesFromDataFrame(df3, keep.extra.columns=TRUE)

Combine use of 'columns' and 'tags' arguments.
readGFF (test_gff3, columns=my_columns, tags=c("ID", "Parent”, "Name"))
readGFF (test_gff3, columns=my_columns, tags=character(0))

readGFF

Use the 'filter' argument to load only features of type "gene"

or "mRNA" located on chrio.

my_filter <- list(type=c("gene”, "mRNA"), seqid="chr10")

readGFF (test_gff3, filter=my_filter)

readGFF (test_gff3, columns=my_columns, tags=character(@), filter=my_filter)

13

Index

* classes export.gff,ANY-method (GFFFile-class), 4
GFFFile-class, 4 export.gff1 (GFFFile-class), 4
+ internal export.gff1,ANY-method (GFFFile-class),
Bioc.gff-package, 2 4
metadataFromNCBI, 9 export.gff2 (GFFFile-class), 4
* manip export.gff2,ANY-method (GFFFile-class),
readGFF, 11 4
+ methods export.gff3 (GFFFile-class), 4
GFFFile-class, 4 export.gff3,ANY-method (GFFFile-class),
4
asGFF, 3
asGFF,GRangesList-method (asGFF), 3 findOverlaps, 6
BAM, 7 genome,GFFFile-method (GFFFile-class), 4
Bioc.gff (Bioc.gff-package), 2 GenomicRanges: :GRanges(), 12
Bioc.gff-package, 2 GenomicRanges: :makeGRangesFromDataFrame(),
BiocFile, 8 12
GFF1File (GFFFile-class), 4
class:GFF1File (GFFFile-class), 4 GFF1File-class (GFFFile-class), 4
class:GFF2File (GFFFile-class), 4 GFF2File (GFFFile-class), 4
class:GFF3File (GFFFile-class), 4 GFF2File-class (GFFFile-class), 4
class:GFFFile (GFFFile-class), 4 GFF3File (GFFFile-class), 4
class:GTFFile (GFFFile-class), 4 GFF3File-class (GFFFile-class), 4
class:GVFFile (GFFFile-class), 4 GFFcolnames (readGFF), 11
GFFFile (GFFFile-class), 4
export,ANY,GFFFile, ANY-method GFFFile-class, 4
(GFFFile-class), 4 GTFFile (GFFFile-class), 4
export,CompressedGRangesList,GFFFile,ANY-meth@fiFFile-class (GFFFile-class), 4
(GFFFile-class), 4 GVFFile (GFFFile-class), 4
export,GenomicRanges,GFFFile, ANY-method GVFFile-class (GFFFile-class), 4

(GFFFile-class), 4
export,GenomicRangesList,GFFFile,ANY-method import, /2

(GFFFile-class), 4 import,GFFFile, ANY, ANY-method
export,GRangesList,GFFFile, ANY-method (GFFFile-class), 4
(GFFFile-class), 4 import.gff (GFFFile-class), 4
export,GRangesList,GTFFile, ANY-method import.gff,ANY-method (GFFFile-class), 4
(GFFFile-class), 4 import.gff1 (GFFFile-class), 4
export,SimpleGRangesList,GFFFile,ANY-method import.gff1,ANY-method (GFFFile-class),
(GFFFile-class), 4 4
export.gff (GFFFile-class), 4 import.gff2 (GFFFile-class), 4

14

INDEX

import.gff2,ANY-method (GFFFile-class),
4

import.gff3 (GFFFile-class), 4

import.gff3,ANY-method (GFFFile-class),
4

isNCBISpeciesURL (metadataFromNCBI), 9

metadataFromNCBI, 9

parseOrganismFromNCBI
(metadataFromNCBI), 9

parseTaxonomyIDFromNCBI
(metadataFromNCBI), 9

readGFF, 11
S4Vectors: :DataFrame(), 11, 12

TxDb, 12
txdbmaker: :makeTxDbFromGFF (), 12

15

	Bioc.gff-package
	asGFF
	GFFFile-class
	metadataFromNCBI
	readGFF
	Index

