
Package ‘BioTIP’
February 1, 2026

Type Package

Title BioTIP: An R package for characterization of Biological
Tipping-Point

Version 1.25.0

Author Zhezhen Wang, Andrew Goldstein, Yuxi Sun, Biniam Feleke, Qier An, Antonio Feliciano, Xi-
nan Yang

Maintainer Felix Yu <felixy@uchicago.edu> and X Holly Yang <xyang2@uchicago.edu>

Description Adopting tipping-point theory to transcriptome profiles
to unravel disease regulatory trajectory.

Depends R (>= 3.6)

License GPL-2

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.0

Suggests knitr, markdown, base, rmarkdown, ggplot2

VignetteBuilder knitr

biocViews Sequencing, RNASeq, GeneExpression, Transcription, Software

URL https://github.com/xyang2uchicago/BioTIP

Imports igraph, cluster, psych, stringr, GenomicRanges, MASS, scran,
methods, stats, utils, grDevices, graphics, foreach, doParallel

git_url https://git.bioconductor.org/packages/BioTIP

git_branch devel

git_last_commit ba9af28

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

https://github.com/xyang2uchicago/BioTIP

2 BioTIP-package

Contents
BioTIP-package . 2
avg.cor.shrink . 3
cod . 4
cor.shrink . 5
gencode . 6
getBiotypes . 7
getCluster_methods . 8
getCTS . 10
getIc . 11
getIc.new . 12
getMaxMCImember . 14
getMaxStats . 15
getMCI . 17
getMCI_inner . 18
getNetwork . 19
getReadthrough . 20
GSE6136_cli . 22
GSE6136_matrix . 22
ILEF . 23
intron . 23
optimize.sd_selection . 24
plotBar_MCI . 25
plotIc . 27
plotMaxMCI . 28
plot_Ic_Simulation . 29
plot_MCI_Simulation . 30
plot_SS_Simulation . 31
sd_selection . 32
simulationMCI . 34
simulation_Ic . 35
simulation_Ic_sample . 37

Index 39

BioTIP-package BioTIP: BioTIP: An R package for characterization of Biological
Tipping-Point

Description

Adopting tipping-point theory to transcriptome profiles to unravel disease regulatory trajectory.

See Also

Useful links:

• https://github.com/xyang2uchicago/BioTIP

https://github.com/xyang2uchicago/BioTIP

avg.cor.shrink 3

avg.cor.shrink Estimation of average values of correlation

Description

This function takes in ine (or two) matrix X (rows are genes, columns are samples) (or Y). It
then calculates the average pairwise correlation between genes or samples. This method uses the
method outlined by Schafer and Strimmer in "A Shrinkage Approach to Large-Scale Covariance
Matrix Estimation and Implications for Functional Genomics" (2005)

Usage

avg.cor.shrink(
X,
Y = NULL,
MARGIN = c(1, 2),
shrink = TRUE,
abs = FALSE,
target = c("zero", "average", "half")

)

Arguments

X A G1 x S matrix of counts. Rows correspond to genes, columns correspond to
samples.

Y A G2 x S matrix of counts. Rows correspond to genes, columns correspond to
samples. By default is NULL.

MARGIN An integer indicate whether the rows (1, genes) or the columns (2, samples) to
be calculated for pairwise correlation.

shrink A flag specifying whether to shrink the correlation or not.

abs A flag specifying whether to take the absolute value before taking the average
(used for gene-gene correlations, not sample-sample correlations)

target A character choose among (’zero’, ’average’, ’half’), indicating whether to
shrink towards zero (for gene-gene correlations), shrink towards their empiri-
cal common average, one or 0.5 (for sample-sample correlations).

Value

The average pairwise correlation between genes or samples.

Author(s)

Andrew Goldstein <andrewgoldstein@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

4 cod

References

Schafer and Strimmer (2005) "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation
and Implications for Functional Genomics"

Examples

Generating a data X as coming from a multivariate normal distribution
with 10 highly correlated variables, roughly simulating correlated genes.
M = matrix(.9, nrow = 10, ncol = 10)
diag(M) = 1
mu = rnorm(10)
X = MASS::mvrnorm(1000, mu, M)
dim(X) #1000 10

Mean value of standard pairwise correlation between 1000 genes
cor_tX = cor(t(X))
mean(abs(cor_tX[upper.tri(cor_tX, diag = FALSE)])) # 0.9150228

Calculating estimated pairwise correlation between 1000 genes
avg.cor.shrink(X, MARGIN=1,shrink = TRUE, targe='zero') # 0.8287838

M = matrix(.9, nrow = 20, ncol = 10)
diag(M) = 1
Y = rbind(M,X)
dim(Y) #1020 10
avg.cor.shrink(X, Y, MARGIN=1,shrink = TRUE, targe='zero') #0.8197959

cod cod dataset

Description

A subset of gencode_gr extracted as: cod <- subset(gencode_gr, biotype == ’protein_coding’)

Usage

cod

Format

A dataframe with 3 data columns and 1 metadata column.

seqnames chromosome names (chr21)

ranges rangeschromosome ranges on the genome (10906201-11029719)

strand specific strand of the genomic location (+,-,*)

cor.shrink 5

cor.shrink Estimation of correlation matrix

Description

This function takes in one (or two) matrix X (rows are genes, columns are samples) (or Y). It then
calculates the average pairwise correlation between genes or samples. This method uses the method
outlined by Schafer and Strimmer (2005).

Usage

cor.shrink(
X,
Y = NULL,
MARGIN = c(1, 2),
shrink = TRUE,
target = c("zero", "average", "half")

)

Arguments

X A G1 x S matrix of counts. Rows correspond to genes, columns correspond to
samples.

Y A G2 x S matrix of counts. Rows correspond to genes, columns correspond to
samples. By default is NULL.

MARGIN An integer indicate whether the rows (1, genes) or the columns (2, samples) to
be calculated for pairwise correlation.

shrink A flag specifying whether to shrink the correlation or not.

target A character choose among (’zero’, ’average’, ’half’), indicating whether to
shrink towards zero (for gene-gene correlations), shrink towards their empiri-
cal common average, one or 0.5 (for sample-sample correlations).

Value

The pairwise correlation between genes or samples. If Y==NULL, a G1 x G1 matrix is returned;
otherwise, a G1 x G2 matrix is returned.

Author(s)

Andrew Goldstein <andrewgoldstein@uchicago.edu>

References

Schafer and Strimmer (2005) "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation
and Implications for Functional Genomics"

6 gencode

Examples

require(MASS)
Generating a data X as coming from a multivariate normal distribution
with 10 highly correlated variables, roughly simulating correlated genes.
M = matrix(.9, nrow = 10, ncol = 10)
diag(M) = 1
mu = rnorm(10)
X = MASS::mvrnorm(500, mu, M)
dim(X) #500 10

Calculating pairwise correlation among 500 correlated genes
cor_tX = cor(t(X))
mean(abs(cor_tX[upper.tri(cor_tX, diag = FALSE)])) # 0.9468098

Calculating estimated pairwise correlation among 500 correlated genes
cor.matrix <- cor.shrink(X, MARGIN=1, shrink = TRUE, targe='zero') # 0.8287838
dim(cor.matrix) #[1] 500 500
mean(upper.tri(cor.matrix, diag=FALSE)) # 0.499

Calculating stimated pairwise correlation among 500 correlated genes
and additional 100 random genes
Y = rbind(X, matrix(rnorm(300*10), nrow = 300))
dim(Y) #800 10
cor.matrix <- cor.shrink(X, Y, MARGIN=1, shrink = TRUE, targe='zero')
dim(cor.matrix) #[1] 500 800
mean(upper.tri(cor.matrix, diag=FALSE)) # 0.6868

gencode A chr21 data from GENCODE GRCh37

Description

A chr21 data from GENCODE GRCh37

Usage

gencode

Format

A data frame of chr21 with 2619444 rows and 9 variables:

Rows Rows, include chromosome numbers

Columns Columns include seqname, source, feature, start , end, score, strand, frame and attribute

cod_gr cod_gr is a subset of sample data ’gencode_gr’

getBiotypes 7

getBiotypes Assigning Transcript Biotypes

Description

The purpose of the getBiotypes() function is to class both coding and noncoding transcripts into
biotypes using the most recent GENCODE annotations. This tool can also be used to define poten-
tial lncRNAs, given an available genome transcriptome assembly (a gtf file) or any genomic loci of
interest.

Usage

getBiotypes(full_gr, gencode_gr, intron_gr = NULL, minoverlap = 1L)

Arguments

full_gr A GRanges object which contains either coding or noncoding transcripts. Each
GRanges objects’ columns requires a unique identifications. For further details
refer to the GRanges package.

gencode_gr A GRanges object contatining a human Chr21 GENCODE reference annotation.
A metadata column, "biotype", describes the transcript type.

intron_gr A GRanges object containing the coordinates of non-coding transcripts.

minoverlap An IRanges argument which detects minimum overlap between two IRanges
objects. For more information about minoverlap argument refer to the IRanges
package.

Details

For details of findOverlaps, type.partialOverlap, type.50Overlap type.toPlot, queryhits, and sub-
jecthits see GenomicRanges https://www.bioconductor.org/packages/release/bioc/html/
GenomicRanges.html, IRanges https://www.bioconductor.org/packages/release/bioc/html/
IRanges.html, and BiocManager http://bioconductor.org/install/index.html.

Value

A GRanges object that returns classified transcriptome biotypes.

Note

Replace the PATH_FILE when loading your data locally.

Author(s)

Zhezhen Wang and Biniam Feleke

https://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://www.bioconductor.org/packages/release/bioc/html/IRanges.html
https://www.bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/install/index.html

8 getCluster_methods

Source

Reference GRCh37 genome https://www.gencodegenes.org/human/release_25lift37.html
for details on gtf format visit ensemble https://useast.ensembl.org/info/website/upload/
gff.html

References

Wang, Z.Z., J. M. Cunningham and X. H. Yang (2018). ’CisPi: a transcriptomic score for disclosing
cis-acting disease-associated lincRNAs.’ Bioinformatics 34(17): 664-670’, PMID: 30423099’

Examples

Input datasets from our package's data folder
library(GenomicRanges)
data("gencode")
data("intron")
data("ILEF")

Converting datasets to GRanges object
gencode_gr = GRanges(gencode)
ILEF_gr = GRanges(ILEF)
cod_gr = GRanges(cod)
intron_gr= GRanges(intron)

Filtering non-coding transcripts
getBiotypes(ILEF_gr, gencode_gr, intron_gr)

Not run: getBiotypes(intron_gr)

getCluster_methods Clustering Network Nodes

Description

This function runs over all states which are grouped samples. For each state, this function splits the
correlation network generated from the function getNetwork into several sub-networks (which we
called ’module’). The network nodes will be defined by the end-user. For transcriptome analysis,
network nodes can be the expressed transcripts. The outputs of this function include the module
IDs and node IDs per module.

Usage

getCluster_methods(
igraphL,
method = c("rw", "hcm", "km", "pam", "natural"),
cutoff = NULL

)

https://www.gencodegenes.org/human/release_25lift37.html
https://useast.ensembl.org/info/website/upload/gff.html
https://useast.ensembl.org/info/website/upload/gff.html

getCluster_methods 9

Arguments

igraphL A list of numerical matrices or a list of igraph objects. The list of igraph objects
can be the output from the getNetwork function.

method A mathematical clustering model for analyzing network nodes. Default is a
random walk (’rw’). A method could be ’rw’, ’hcm’, ’km’, ’pam’, or ’natural’,
where:

• rw: random walk using cluster_walktrap function in igraph package. ’igraphL’
has to be a list of igraph.

• hcm: hierarchical clustering using function hclust) and dist, using method
’complete’.

• km and pam: k-medoids or PAM algorithm using KMedoids.
• natrual: if nodes are disconnected, they may naturally cluster and form sub-

networks.

cutoff A numeric value, default is NULL. For each method it means:

• rw: the number of steps needed, see cluster_walktrap for more detail. If
"cutoff" is not assigned, default of 4 will be used.

• hcm, km and pam: number of clusters wanted. No default assigned.
• natural: does not use this parameter.

Value

When method=rw: A list of communities objects of R package igraph, whose length is the length
of the input object igraphL. These communities objects can be used for visualization when being
assigned to the ’mark.groups’ parameter of the plot.igraph function of the igraph package. Oth-
erwise this function returns a list of vectors, whose length is the length of the input object igraphL.
The names of each vector are the pre-selected transcript IDs by th function sd_selection. Each
vector, whose length is the number of pre-selected transcript in a state, contains the module IDs.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

Examples

test = list('state1' = matrix(sample(1:10, 6), 3, 3), 'state2' =
matrix(sample(1:10, 6), 3, 3), 'state3' = matrix(sample(1:10, 6), 3, 3))
#assign colnames and rownames to the matrix

for(i in names(test)){
colnames(test[[i]]) = 1:3
row.names(test[[i]]) = 1:3}

#using 'rw' or 'natural' method
igraphL <- getNetwork(test, fdr=1)
#[1] "state1:3 nodes"
#[1] "state2:3 nodes"
#[1] "state3:3 nodes"

10 getCTS

cl <- getCluster_methods(igraphL)

#using 'km', 'pam' or 'hcm'
cl <- getCluster_methods(test, method = 'pam', cutoff=2)

getCTS Obtain the identified BioTiP and its length

Description

getCTS obtains the identified BioTiP and its length based off of MCI scores.

Usage

getCTS(maxMCI, maxMCIms)

Arguments

maxMCI A numeric vector, whose length is the number of states. This parameter is the
maximum MCI score of each state, and it can be obtained from the output of
getMaxStats. Names need to be included in names of maxMCIms.

maxMCIms A list of character vectors per state. The vectors are network nodes (e.g. tran-
script ids). This parameter is the second element of the output of the function
getMaxMCImember.

Value

A character vector, in which the elements are the unique IDs of the network nodes of the BioTiP.

Author(s)

Antonio Feliciano y Pleyto and Zhezhen Wang <zhezhen@uchicago.edu>

Examples

maxMCI <- c(a = 2.56, b = 8.52, c = 2.36, d = 4.81, e = 5.26)
maxMCIms <- list(a = c("A100", "A293", "C403"),

b = c("B853", "D826", "A406"),
c = c("J198", "D103", "B105"),
d = c("K529", "D385", "E358"),
e = c("J019", "U926", "N824"))

identical(names(maxMCI), names(maxMCIms))
TRUE
getCTS(maxMCI, maxMCIms)
"Length: 3"
"B853" "D826" "A406"

getIc 11

getIc Get Index for Critical transition (Ic score)

Description

Retrieve Ic scores (Pearson correlation of genes / Pearson correlation of samples) for the identified
critical transition state

Usage

getIc(
counts,
sampleL,
genes,
output = c("Ic", "PCCg", "PCCs"),
fun = c("cor", "BioTIP"),
shrink = TRUE,
use = c("everything", "all.obs", "complete.obs", "na.or.complete",
"pairwise.complete.obs")

)

Arguments

counts A numeric matrix or data frame. The rows and columns represent unique tran-
script IDs (geneID) and sample names, respectively.

sampleL A list of vectors, whose length is the number of states. Each vector gives the
sample names in a state. Note that the vector s (sample names) has to be among
the column names of the R object ’df’.

genes A character vector consisting of unique CTS gene ids. This can be obtained
from getMaxMCImember

output A string. Please select from ’Ic’, ’PCCg’, or ’PCCs’. Uses ’Ic’ by default.
’PCCg’ is the PCC between genes (numerator) and ’PCCs’ is PCC between
samples (denominator)

fun An optional character string indicating the R functon to calculate correlations for
all possible pairs of columns of a matrix. When using "BioTIP", The method is
modified to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works. Note that the "BioTIP" option only function together with shrink =
TRUE.

shrink A flag specifying whether to shrink the correlation or not. This appraoch uses the
method outlined by Schafer and Strimmer in "A Shrinkage Approach to Large-
Scale Covariance Matrix Estimation and Implications for Functional Genomics"
(2005) Comparing to fun=’cor’, the ’BioTIP’ method without shinkage is modi-
fied to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works.

12 getIc.new

use An optional character string, when fun=="cor", it gives a method for computing
covariances in the presence of missing values. This must be (an abbreviation of)
one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or
"pairwise.complete.obs".

Value

A list of numeric values, whose length and names are inherited from sampleL

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

References

Schafer and Strimmer (2005) "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation
and Implications for Functional Genomics"

M. Mojtahedi et al., Cell Fate Decision as High-Dimensional Critical State Transition. PLoS Biol
14, e2000640 (2016).

Examples

counts = matrix(sample(1:100, 27), 3, 9)
colnames(counts) = 1:9
row.names(counts) = c('loci1', 'loci2', 'loci3')
cli = cbind(1:9, rep(c('state1', 'state2', 'state3'), each = 3))
colnames(cli) = c('samples', 'group')
samplesL <- split(cli[, 1], f = cli[, 'group'])
CTS = c('loci1', 'loci2')

Comparing the results with an estiamted correlation matrix with that without estimation.
Ic = getIc(counts, samplesL, CTS, fun='cor')
Ic.2 = getIc(counts, samplesL, CTS, fun='BioTIP', shrink=FALSE)
BioTIP = getIc(counts, samplesL, CTS, fun='BioTIP')

getIc.new Index of criticality Scoring System with estimated correlation, an up-
dated Ic-score

Description

This function calculates the BioTIP score on a given data matrix X (or two matrixes X and Y). It
can also calculate the Ic score, if desired.

This appraoch uses the method outlined by Schafer and Strimmer in "A Shrinkage Approach to
Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics" (2005)

This approach is modified to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works.

getIc.new 13

The gene-gene correlations are shrunk towards 0, whereas the sample-sample correlations are
shrunk towards their empirical average.

Usage

getIc.new(
X,
method = c("BioTIP", "Ic"),
PCC_sample.target = c("average", "zero", "half"),
output = c("IndexScore", "PCCg", "PCCs")

)

Arguments

X A G x S matrix of counts. Rows correspond to genes, columns correspond to
samples.

method A flag specifying whether to calculate the BioTIP score or the Ic score
PCC_sample.target

A character choose among (’average’, ’zero’, ’half’), indicating whether to
shrink PCC towards towards their empirical common average, zero or 0.5 (for
sample-sample correlations).

output A string. Please select from ’IndexScore’, ’PCCg’, or ’PCCs’. Uses ’IndexS-
core’ by default. ’PCCg’ is the PCC between genes (numerator) and ’PCCs’ is
PCC between samples (denominator).

Value

A value containing the shrunk BioTIP or non-shrunk Ic score

Author(s)

Andrew Goldstein <andrewgoldstein@uchicago.edu>

Examples

Generating a data X as coming from a multivariate normal distribution
with 10 highly correlated variables, roughly simulating correlated genes.
M = matrix(.9, nrow = 10, ncol = 10)
diag(M) = 1
mu = rnorm(10)
X = MASS::mvrnorm(1000, mu, M)
dim(X) #1000 10

Calculating pairwise correlation between 1000 genes; then the mean value
in two ways, respectively
cor_tX = cor(t(X))
mean(abs(cor_tX[upper.tri(cor_tX, diag = FALSE)])) # 0.9150228

getIc.new(X, method = "Ic", output ='PCCg') # 0.9150228
getIc.new(X, method = "BioTIP", output ='PCCg') # 0.8287838

14 getMaxMCImember

Uisng the Index of critical scoreing system, in two ways, respectively
(newscore = getIc.new(X, method = "BioTIP"))
(oldscore = getIc.new(X, method = "Ic"))

getMaxMCImember Identifying the ’Biomodule’

Description

This function reports the ’biomodule’, which is the module with the maximum Module Critical
Index (MCI) scores for each state. Each state can have multiple modules (groups of subnetworks
derived from the function getCluster_methods). This function runs over all states.

Usage

getMaxMCImember(membersL, MCIl, minsize = 1)

Arguments

membersL A list of integer vectors with unique ids as names. Each vector represents the
cluster number assign to that unique id. The length of this list is equal to the
number of states in the study. This can be the first element of the output from
function getMCI or the output from getCluster_methods, see Examples for
more detail.

MCIl A list of numeric vectors with unique cluster numbers as names. Each vector
represents the MCI scores of that module. This can be the second element of the
output from function getMCI.

minsize A numerical value of the minimum module size (the number of transcripts in a
cluster) to output for downstream analysis.

Value

A nested list whose length is the length of the input object membersL. Each internal list contains
two objects: one object is the vector of biomodule IDs across states, and the other object is a list of
transcript IDs (each defines the biomodule per state) across states.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

getMaxStats 15

Examples

#1st option: get the input directly from getMCI function
test = list('state1' = matrix(sample(1:10, 6), 4, 3),

'state2' = matrix(sample(1:10, 6), 4, 3),
'state3' = matrix(sample(1:10, 6), 4, 3))

assign colnames and rownames to the matrix
for(i in names(test)){

colnames(test[[i]]) = 1:3
row.names(test[[i]]) = c('g1', 'g2', 'g3', 'g4')}

cluster = list(c(1, 2, 2, 1), c(1, 2, 3, 1), c(2, 2, 1, 1))
names(cluster) = names(test)
for(i in names(cluster)){

names(cluster[[i]]) = c('g1', 'g2', 'g3', 'g4')}

membersL_noweight <- getMCI(cluster, test)
maxMCIms <- getMaxMCImember(membersL_noweight[[1]], membersL_noweight[[2]], min =3)
#The same as
maxMCIms <- getMaxMCImember(cluster, membersL_noweight[[2]], min =2)

case1: using 'rw' method by default
igraphL <- getNetwork(test, fdr=1)
cl <- getCluster_methods(igraphL)
make sure every element in list cl is a \code{communities} object
sapply(cl, class)
state1 state2 state3
##"communities" "communities" "communities"

If there is(are) state(s) that is(are) empty which will not be a communities object(s),
please manually remove that state(s).

cl = cl[which(sapply(cl, class) == 'communities')]

and then run
library(igraph)
cluster = lapply(cl, membership)
maxCIms <- getMaxMCImember(cluster, membersL_noweight[[2]], min =2)

or run function 'getMCI' and use the 1st option
membersL_noweight <- getMCI(cl, test)

case2: using methods other than the default
cl <- getCluster_methods(test, method = "pam", cutoff = 2)
check to make sure membersL_noweight[[2]] has values and run
maxCIms <- getMaxMCImember(cl, membersL_noweight[[2]], min =2)

getMaxStats Get the cluster index and network nodes of biomodule

16 getMaxStats

Description

This function retrieves the cluster index and network-node ids for the identified biomodule (that
shows the maximum MCI score) at each state in the study.

Usage

getMaxStats(membersL, idx)

Arguments

membersL A two-layer nested list of character or numeric values, any one out of the five
elements output by the function getMCI.

idx A vector of integers that are cluster ids of the biomodule (the module with
the highest MCI score) per state. This is the first element of the result from
getMaxMCImember.

Value

A list describing the biomodule of each state, corresponding to one of the five elements (members,
MCI, Sd, PCC, and PCCo) outputted by the function getMCI. The calss of the vector depends on
the class of the input parameter membersL.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

See Also

getMCI

Examples

test = list('state1' = matrix(sample(1:10, 6), 4, 3),
'state2' = matrix(sample(1:10, 6), 4, 3),
'state3' = matrix(sample(1:10, 6), 4, 3))

assign colnames and rownames to the matrix
for(i in names(test)){
colnames(test[[i]]) = 1:3
row.names(test[[i]]) = c('g1', 'g2', 'g3', 'g4')

}

cluster = list(c(1, 2, 2, 1), c(1, 2, 3, 1), c(2, 2, 1, 1))
names(cluster) = names(test)
for(i in names(cluster)){
names(cluster[[i]]) = c('g1', 'g2', 'g3', 'g4')

}

membersL_noweight <- getMCI(cluster, test)
idx = c(1, 2, 1)

getMCI 17

names(idx) = names(membersL_noweight[['sd']])
selectedSD = getMaxStats(membersL_noweight[['sd']], idx)

getMCI Calculating MCI Scores

Description

This function calculates a module critical index (MCI) score for each module per state within a
dataset. Each module is a cluster of transcripts generated from the function getCluster_methods.
Note that a dataset should contains three or more states (samples in groups).

Usage

getMCI(
groups,
countsL,
adjust.size = FALSE,
fun = c("cor", "BioTIP"),
df = NULL

)

Arguments

groups A list of elements whose length is the member of states. The elements could be
either be vectors or communities object of the R package igraph. If a vector,
it is the output of the function getCluster_methods. The names of each vec-
tor are the pre-selected transcript IDs generated by the function sd_selection.
Each vector, whose length is the number of pre-selected transcripts in a state,
contains the module IDs. If a communities object, it can be obtained by getCluster_methods
using the "rw" method. It is also an output of the function sd_selection.

countsL A list of x numeric count matrices or x data frame, where x is the number of
states.

adjust.size A Boolean value indicating if MCI score should be adjusted by module size (the
number of transcripts in the module) or not. Default FALSE. This parameter is
not recommended for fun=BioTIP.

fun A character chosen between ("cor", "BioTIP"), indicating where an adjusted
correlation matrix will be used to calculate the MCI score.

df NULL or a numeric matrix or data frame, where rows and columns represent
unique transcript IDs (geneID) and sample names, respectively. Used only when
fun='BioTIP'. By default is NULL, estinating the correlation among selected
genes. Otherwise, estinating the correlation among all genes in the df, ensuring
cross state comparision.

18 getMCI_inner

Value

A list of five elements (members, MCI, Sd, PCC, and PCCo). Each of element is a two-layer nested
list whose length is the length of the input object groups. Each internal nested list is structured
according to the number of modules identified in that state.

• members: vectors of unique ids

• MCI: the MCI score

• sd: standard deviation

• PCC: Mean of pairwise Pearson Correlation Coefficient calculated among the loci in a module.

• PCCo: Mean of pairwise Pearson Correlation Coefficient calculated between the loci in a
module and the loci outside that module but inside the same state.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

Examples

test = list('state1' = matrix(sample(1:10, 6), 4, 3), 'state2' =
matrix(sample(1:10, 6), 4, 3), 'state3' = matrix(sample(1:10, 6), 4, 3))

Assign colnames and rownames to the matrix
for(i in names(test)){

colnames(test[[i]]) = 1:3
row.names(test[[i]]) = c('g1', 'g2', 'g3', 'g4')}

cluster = list(c(1, 2, 2, 1), c(1, 2, 3, 1), c(2, 2, 1, 1))
names(cluster) = names(test)
for(i in names(cluster)){

names(cluster[[i]]) = c('g1', 'g2', 'g3', 'g4')}

membersL_noweight <- getMCI(cluster, test, fun='cor')
names(membersL_noweight)
[1] "members" "MCI" "sd" "PCC" "PCCo"

getMCI_inner Calculating MCI Score for randomly selected

Description

This function calculates random MCI score, allowing an estimation of correlation matrix using the
Schafer-Strimmer Method for the PCC_in component in the MCI score.

getNetwork 19

Usage

getMCI_inner(
members,
countsL,
adjust.size,
fun = c("cor", "BioTIP"),
PCC_gene.target = "zero",
M = NULL

)

Arguments

members An integer that is the length of genes in the CTS (critical transition signal).

countsL A list of subset of dat matrix. The list length is the number of states. Each subset
of matrix gives the genes in rows and samples in column.

adjust.size A boolean value indicating if MCI score should be adjust by module size (the
number of transcripts in the module) or not. Default FALSE.

fun A character chosen between ("cor", "BioTIP"), indicating where an adjusted
correlation matrix will be used to calculated the MCI score.

PCC_gene.target

A character ’zero’ indicating that gene-gene correlation matrix will be shrunk.
towards zero, used only for fun=’BioTIP’.

M is the overall shrunk correlation matrix, used only for fun=’BioTIP’.

Value

A vector recording one MCI score per state.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

getNetwork Building Networks of Nodes

Description

This function builds one correlation network for each state (sample group) and runs across all states.
The network nodes are defined by the context of the input dataset. For transcriptomic network
analysis, network nodes can be the expressed transcript IDs and network links can be the correlation
coefficients. Using the Pearson Correlation Coefficient (PCC) analysis, this function assembles a
correlation network of nodes (e.g., co-expressed transcripts) for each state using the R package
igraph.

Usage

getNetwork(optimal, fdr = 0.05)

20 getReadthrough

Arguments

optimal A list of x numeric data frames, where x is the number of states studied. Each
data frame consists of loci with high standard deviations. This object can be
obtained through sd_selection function.

fdr A numeric cutoff value for a Pearson Correlation Coefficient (PCC) analysis.
Default is 0.05. Transcripts are linked into a network if their correlations meet
this PCC-significance criterion.

Value

A list of igraph objects whose length is the length of the input object optimal. Each object is a
network of correlated nodes whose PCCs meet the significant criteria based on the false discovery
rate (FDR) control. The length of the list is the number of states with PCC networks. If no PCC
meets the significant criteria in a state, the state will be deleted from the output.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

Examples

test = list('state1' = matrix(sample(1:10, 6), 2, 3),
'state2'=matrix(sample(1:10, 6), 2, 3),
'state3' = matrix(sample(1:10, 6), 2, 3))

for(i in names(test)){
colnames(test[[i]]) = 1:3
row.names(test[[i]]) = 1:2}

igraphL <- getNetwork(test, fdr=1)
#[1] "state1:2 nodes"
#[1] "state2:2 nodes"
#[1] "state3:2 nodes

getReadthrough Overlapping Coding Regions

Description

The getReadthrough() function is used to find long transcripts that cover more than two coding
regions for gene regions of interst.

Usage

getReadthrough(gr, cod_gr)

getReadthrough 21

Arguments

gr A GRanges object that shows the start and end loci on genome.
cod_gr A GRanges object contaning coding regions.

Details

For details of findOverlaps, type.partialOverlap, type.50Overlap type.toPlot, queryhits, readthrough
and subjecthits see, GenomicRanges https://www.bioconductor.org/packages/release/bioc/
html/GenomicRanges.html, IRanges https://www.bioconductor.org/packages/release/bioc/
html/IRanges.html, and BiocManager http://bioconductor.org/install/index.html.

Value

A GRanges object that returns overlapping regions of the classified transcript biotypes.

Note

Replace the path_file when loading data locally to the data directory.

Author(s)

Zhezhen Wang and Biniam Feleke

Source

Reference GRCh37 genome https://www.gencodegenes.org/human/release_25lift37.html.
For details on gtf format visit ensemble https://useast.ensembl.org/info/website/upload/
gff.html.

References

Wang, Z. Z., J. M. Cunningham and X. H. Yang (2018).’CisPi: a transcriptomic score for disclosing
cis-acting disease-associated lincRNAs.’ Bioinformatics34(17): 664-670’

Examples

#First Load datasets and libraries
library(GenomicRanges)
data("gencode")
data("ILEF")
data("cod")

Assigning datasets a GRanges object
gencode_gr = GRanges(gencode)
ILEF_gr = GRanges(ILEF)
cod_gr = GRanges(cod)

getReadthrough(ILEF_gr, cod_gr)

Not run: getReadthrough(cod_gr)

https://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
https://www.bioconductor.org/packages/release/bioc/html/IRanges.html
https://www.bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/install/index.html
https://www.gencodegenes.org/human/release_25lift37.html
https://useast.ensembl.org/info/website/upload/gff.html
https://useast.ensembl.org/info/website/upload/gff.html

22 GSE6136_matrix

GSE6136_cli GSE6136 cli dataset

Description

A gene annotation samples with their corresponding geneId extracted from GENCODE database. A
python script was then run to extcat GSE6136_cli dataset. The script is included in the R/data_raw
folder.

Usage

GSE6136_cli

Format

A dataframe with 22690 columns and 27 rows column.

GSM142398-GSM142423 Names of gene interest

Rows Summary of GSM genes

Source

https://www.gencodegenes.org/human/

GSE6136_matrix GSE6136 matrix dataset

Description

A gene annotation samples with their corresponding geneId extracted from GENCODE database. A
python script was then run to extcat GSE6136_cli dataset. The script is included in the R/data_raw
folder.

Usage

GSE6136_matrix

Format

A dataframe with 22690 columns and 27 rows column.

GSM142398-GSM142423 Names of gene interest

ID_REF Reference ID of the target genes

Source

https://www.gencodegenes.org/human/

https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/

ILEF 23

ILEF Chromosome ranges of chr21 dataset

Description

A dataset containing chromosomes in the genome regions of interest for 137 chromosome. The
variables are as follows:

Usage

ILEF

Format

A data frame of chr21 with 137 rows and 4 variables:

seqnames chromosome names (chr1,chr6,chr21)

start gene read start position (167684657,167729508)

end end of gene read position (15710335,43717938)

width width of gene

strand specific strand of the genomic location (+,-,*

Row.names name of the data rows(A1BG,vawser)

intron Coding transcriptome in chr21 dataset

Description

A dataset containing chromosomes in the genome regions of interest. The variables are as follows:

Usage

intron

Format

A data frame with 659327 rows and 5 variables:

seqnames chromosome names (chr1,chrM,chr21)

ranges chromosome ranges on the genome(167684657–167729508)

strand specific strand of the genomic location (+,-,*)

name internal assigned names(uc001aaa.3_intron_0_0_chr1_12228_f)

score score not used in this data set(0)

24 optimize.sd_selection

optimize.sd_selection Optimization of sd selection

Description

The optimize.sd_selection filters a multi-state dataset based on a cutoff value for standard de-
viation per state and optimizes. By default, a cutoff value of 0.01 is used. Suggested if each state
contains more than 10 samples.

Usage

optimize.sd_selection(
df,
samplesL,
B = 100,
percent = 0.8,
times = 0.8,
cutoff = 0.01,
method = c("other", "reference", "previous", "itself", "longitudinal reference"),
control_df = NULL,
control_samplesL = NULL

)

Arguments

df A dataframe of numerics. The rows and columns represent unique transcript IDs
(geneID) and sample names, respectively.

samplesL A list of n vectors, where n equals to the number of states. Each vector gives the
sample names in a state. Note that the vectors (sample names) has to be among
the column names of the R object ’df’.

B An integer indicating number of times to run this optimization, default 1000.

percent A numeric value indicating the percentage of samples will be selected in each
round of simulation.

times A numeric value indicating the percentage of B times a transcript need to be
selected in order to be considered a stable signature.

cutoff A positive numeric value. Default is 0.01. If < 1, automatically goes to se-
lect top x percentage transcripts using the a selecting method (which is either
the reference, other or previous stage), e.g. by default it will select top 1
percentage of the transcripts.

method Selection of methods from reference, other, previous, default uses other.
Partial match enabled.

• itself, or longitudinal reference. Some specific requirements for
each option:

• reference, the reference has to be the first.
• previous, make sure sampleL is in the right order from benign to malign.

plotBar_MCI 25

• itself, make sure the cutoff is smaller than 1.

• longitudinal reference make sure control_df and control_samplesL are
not NULL. The row numbers of control_df is the same as df and all tran-
script in df are also in control_df.

control_df A count matrix with unique loci as row names and samples names of control
samples as column names, only used for method longitudinal reference.

control_samplesL

A list of characters with stages as names of control samples, required for method
’longitudinal reference’.

Value

A list of dataframe of filtered transcripts with the highest standard deviation are selected from df
based on a cutoff value assigned. The resulting dataframe represents a subset of the raw input df.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

See Also

sd_selection

plotBar_MCI plot MCI barplots

Description

A barplot of MCI for all clusters in all states.

Usage

plotBar_MCI(
MCIl,
ylim = NULL,
nr = 1,
nc = NULL,
order = NULL,
minsize = 3,
states = NULL

)

26 plotBar_MCI

Arguments

MCIl A list can be obtained through getMCI.

ylim A vector needed if the output barplots need to be on the same y scale.

nr The number of rows to plot.

nc The number of columns to plot, default length(groups).

order A character vector of the order of the barplot. Default is NULL which uses the
input list order.

minsize A non-negative numeric value of minimum size allowed for a cluster.

states A character of the state names to be shown on the plot. Default is NULL, assign
this if you want to show all states including states without nodes.

Value

Return a barplot of MCI scores across states.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

References

Chen L, Liu R, Liu Z, Li M & Aihara K (2012) Detecting early-warning signals for sudden deteri-
oration of complex diseases by dynamical network biomarkers Scientific Reports 2:342

Examples

test = list('state1' = matrix(sample(1:10, 6), 4, 3),
'state2' = matrix(sample(1:10, 6), 4, 3),
'state3' = matrix(sample(1:10, 6), 4, 3))

assign colnames and rownames to the matrix
for(i in names(test)){
colnames(test[[i]]) = 1:3
row.names(test[[i]]) = c('g1', 'g2', 'g3', 'g4')

}

cluster = list(c(1, 2, 2, 1), c(1, 2, 3, 1), c(2, 2, 1, 1))
names(cluster) = names(test)
for(i in names(cluster)){
names(cluster[[i]]) = c('g1', 'g2', 'g3', 'g4')

}
membersL_noweight <- getMCI(cluster, test)
plotBar_MCI(membersL_noweight)

plotIc 27

plotIc plot a line plot of Ic scores for each state.

Description

plot a line plot with Ic score for each state

Usage

plotIc(
Ic,
las = 0,
order = NULL,
ylab = "Ic",
col = "black",
main = NULL,
add = FALSE,
ylim = NULL,
lty = 1:5,
lwd = 1

)

Arguments

Ic A vector with names of states. If order is not assigned, then plot by the order of
this vector.

las Numeric in 0, 1, 2, 3; the style of axis labels. Default is 0, meaning labels are
parallel. (link to http://127.0.0.1:21580/library/graphics/html/par.html).

order A vector of state names in the customized order to be plotted, setting to NULL
by default.

ylab titles y axes, as in plot.

col vector of colors. Colors are used cyclically.

main A character vector. The title of the plot. Default is NULL.

add logical. If TRUE, plots are added to current one. This is inherited from matplot.

ylim An integer vector of length 2. Default is NULL.

lty An vector of line types. This is also inherited from matplot.

lwd Anineger of line widths. This is also inherited from matplot.

Value

Return a line plot of Ic score across states.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

28 plotMaxMCI

Examples

Ic = c('state3' = 3.4, 'state1' = 5.6, 'state2' = 2)
plotIc(Ic, order = c('state1', 'state2', 'state3'))

plotMaxMCI Plot the Maximized MCI per State

Description

This function generates a line plot over multiple states with the maximum MCI score per state. The
module size (i.e., number of network nodes) is specified at each state in parentheses.

Usage

plotMaxMCI(maxMCIms, MCIl, las = 0, order = NULL, states = NULL)

Arguments

maxMCIms A list of 2 elements. The 1st element is an integer vector of module ids whose
names are the state names. The 2nd element is a list of character vectors per
state. The vectors are network nodes (e.g. transcript ids). This parameter can be
obtained by running function getMaxMCImember.

MCIl A list of numeric vectors whose names are unique cluster ids. Each vector rep-
resents the MCI scores of modules in a state. This can be the second element of
the output from the function getMCI.

las Numeric in 0, 1, 2, 3; the style of axis labels. Default is 0, meaning labels are
parallel. See getMCI for more detail.

order A vector of state names in the customized order to be plotted, setting to NULL
by default.

states A character vector of state names that will be shown on the plot, setting to NULL
by default. Assign this if you want to show all states, including states with no
resulted modules. This parameter will overwrite the parameter ’order’.

Value

Returns a line plot of maximum MCI scores across the states

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

plot_Ic_Simulation 29

Examples

maxMCIms = list(c(state1 = 1, state2 = 2, state3 = 1),
c(list(state1 = c('g1', 'g2', 'g3'),
state2 = c('g3', 'g5'),
state3 = c('g2', 'g6'))))

MCIl = list(state1=c('1' = 8.84, '2' = 6.4),
state2 = c('1' =NA, '2' = 9.5, '3' = NA),
state3 = c('1' = 2.3, '2' = 1.4))

plotMaxMCI(maxMCIms, MCIl)

plot_Ic_Simulation Line or boxplot of an observed and its simulated scores

Description

Generate a line (or box) plot of Ic score and simulated Ic scores, with three horizontal lines: the
min, max and 2*(max-min) value of the state of interests, or all values.

Usage

plot_Ic_Simulation(
Ic,
simulation,
las = 0,
ylim = NULL,
order = NULL,
main = NULL,
ylab = "Ic",
fun = c("matplot", "boxplot"),
which2point = NULL

)

Arguments

Ic A vector with names of states. If order is not assigned, then plot by the order of
this vector.

simulation A numeric matrix of Ic scores in which rows are states and columns are numbers
of simulated times. It can be obtained from simulation_Ic

las Numeric in 0, 1, 2, 3; the style of axis labels. Default is 0, meaning labels are
parallel. (link to http://127.0.0.1:21580/library/graphics/html/par.html).

ylim An integer vector of length 2. Default is NULL.

order Characters of names of Ic to be plotted in a desired order. Default is NULL.

main A character vector. The title of the plot. Default is NULL.

30 plot_MCI_Simulation

ylab titles y axes, as in plot.

fun A character choose between (’matplot’, ’boxplot’), indicating plot type.

which2point A character (or integer) which state’s values were used to set up the three hori-
zontal lines. by default is NULL, indicating the values of all states will be used.

Value

Return a plot of the observed Ic (red) and simulated Ic (grey) scores per states.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

Examples

sim = matrix(sample(1:10, 9), 3, 3)
row.names(sim) = paste0('state', 1:3)
Ic = c('state1' = 3.4, 'state2' = 5.6, 'state3' = 2)
plot_Ic_Simulation(Ic, sim)

plot_MCI_Simulation Plot observed and simulated MCI Scores

Description

Box plots of observed (red) and simulated MCI scores by boostraping genes B times, with three
horizontal lines: the min, max and 2*(max-min) value of the state of interests, or all all values.

Usage

plot_MCI_Simulation(
MCI,
simulation,
las = 0,
order = NULL,
ylim = NULL,
main = NULL,
which2point = NULL,
...

)

Arguments

MCI A named vector of max CI scores per state, can be obtained from function
getMaxStats.

simulation A matrix state * number of simulated times, can be obtained from function
simulationMCI.

plot_SS_Simulation 31

las Numeric in 0, 1, 2, 3; the style of axis labels. Default is 0, meaning labels are
parallel. (link to http://127.0.0.1:21580/library/graphics/html/par.html)

order A vector of state names in the customized order to be plotted, set to NULL by
default.

ylim An integer vector of length 2. Default is NULL.

main A character vector. The title of the plot. Default is NULL.

which2point A character (or integer) which state’s values were used to set up the three hori-
zontal lines. by default is NULL, indicating the values of all states will be used.

... Other parameters passed to this function

Value

Return a box plot of MCI(red) and simulated MCI(grey) scores per state.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

Examples

MCI = c(1:3); names(MCI) = c('a', 'b', 'c')
simMCI = matrix(sample(1:100, 9), 3, 3)
row.names(simMCI) = names(MCI)
plot_MCI_Simulation(MCI, simMCI)

plot_SS_Simulation Density plot the leading two distance between any two states from ran-
dom scores of all states in a system.

Description

Generate a density plot of Ic score (orBioTIP score) from a simulation, which is the distance be-
tween the first-larget and the second-largest random scores. This is an alternative method to esti-
mate the significance of an observed BioTIP (or Ic) score in a system. This measurement makes
more sense to evaluate random scores of sample-label shuffling, in which the nature sample-sample
correlation within a phenotypic state (or cell subpopulation) was removed.

Usage

plot_SS_Simulation(
Ic,
simulation,
las = 0,
xlim = NULL,
ylim = NULL,

32 sd_selection

order = NULL,
main = "1st max - 2nd max",
ylab = "1st max - 2nd max"

)

Arguments

Ic A vector with names of states. If order is not assigned, then plot by the order of
this vector.

simulation A numeric matrix of Ic scores in which rows are states and columns are numbers
of simulated times. It can be obtained from simulation_Ic

las Numeric in 0, 1, 2, 3; the style of axis labels. Default is 0, meaning labels are
parallel. (link to http://127.0.0.1:21580/library/graphics/html/par.html).

xlim An integer vector of length 2. Default is NULL.

ylim An integer vector of length 2. Default is NULL.

order Characters of names of Ic to be plotted in a desired order. Default is NULL.

main A character vector. The title of the plot. Default is NULL.

ylab titles y axes, as in plot.

Value

Return a plot of the observed Ic (red) and simulated Ic (grey) scores per state.

Author(s)

Xinan H Yang <xyang2@uchicago.edu>

Examples

sim = matrix(sample(1:10, 9), 3, 3)
row.names(sim) = paste0('state', 1:3)
Ic = c('state1' = 3.4, 'state2' = 15.6, 'state3' = 2)
plot_SS_Simulation(Ic, sim)

sd_selection Selecting Highly Oscillating Transcripts

Description

sd_selection pre-selects highly oscillating transcripts from the input dataset df. The dataset must
contain multiple sample groups (or ’states’). For each state, the function filters the dataset using
a cutoff value for standard deviation. The default cutoff value is 0.01 (i.e., higher than the top 1
percentage standard deviation).

sd_selection 33

Usage

sd_selection(
df,
samplesL,
cutoff = 0.01,
method = c("other", "reference", "previous", "itself", "longitudinal reference"),
control_df = NULL,
control_samplesL = NULL

)

Arguments

df A numeric matrix or data frame. The rows and columns represent unique tran-
script IDs (geneID) and sample names, respectively.

samplesL A list of vectors, whose length is the number of states. Each vector gives the
sample names in a state. Note that the vectors (sample names) has to be among
the column names of the R object ’df’.

cutoff A positive numeric value. Default is 0.01. If < 1, automatically selects top x
transcripts using the a selecting method (which is either the reference, other
stages or previous stage), e.g. by default it will select top 1 percentage of the
transcripts.

method Selection of methods from reference,other, previous, default uses other.
Partial match enabled.

• itself, or longitudinal reference. Some specific requirements for
each option:

• reference, the reference has to be the first.
• previous, make sure sampleL is in the right order from benign to malign.
• itself, make sure the cutoff is smaller than 1.
• longitudinal reference make sure control_df and control_samplesL

are not NULL. The row numbers of control_df is the same as df and all tran-
scripts in df are also in control_df.

control_df A count matrix with unique loci as row names and samples names of control
samples as column names, only used for method longitudinal reference

control_samplesL

A list of characters with stages as names of control samples, required for method
’longitudinal reference’

Value

sd_selection() A list of data frames, whose length is the number of states. The rows in each data
frame are the filtered transcripts with highest standard deviation selected from df and based on an
assigned cutoff value. Each resulting data frame represents a subset of the raw input df, with the
sample ID of the same state in the column.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

34 simulationMCI

See Also

optimize.sd_selection

Examples

counts = matrix(sample(1:100, 18), 2, 9)
colnames(counts) = 1:9
row.names(counts) = c('loci1', 'loci2')
cli = cbind(1:9, rep(c('state1', 'state2', 'state3'), each = 3))
colnames(cli) = c('samples', 'group')
samplesL <- split(cli[, 1], f = cli[, 'group'])
test_sd_selection <- sd_selection(counts, samplesL, 0.01)

simulationMCI Get MCI Scores for randomly selected genes

Description

This function gets the MCI scores for randomly selected features (e.g. transcript ids),

Usage

simulationMCI(
len,
samplesL,
df,
adjust.size = FALSE,
B = 1000,
fun = c("cor", "BioTIP")

)

Arguments

len An integer that is the length of genes in the CTS (critical transition signal).

samplesL A list of vectors, whose length is the number of states. Each vector gives the
sample names in a state. Note that the vector s (sample names) has to be among
the column names of the R object ’df’.

df A numeric matrix or dataframe of numerics, factor or character. The rows and
columns represent unique transcript IDs (geneID) and sample names, respec-
tively

adjust.size A boolean value indicating if MCI score should be adjust by module size (the
number of transcripts in the module) or not. Default FALSE.

B An integer, setting the permutation with B runs. Default is 1000.

fun A character chosen between ("cor", "BioTIP"), indicating where an adjusted
correlation matrix will be used to calculated the MCI score.

simulation_Ic 35

Value

A numeric matrix indicating the MCI scores of permutation. The dimension (row X column) of this
matrix is the length of samplesL * B.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

Examples

counts = matrix(sample(1:100, 18), 3, 9)
colnames(counts) = 1:9
row.names(counts) = c('loci1', 'loci2', 'loci3')
cli = cbind(1:9, rep(c('state1', 'state2', 'state3'), each = 3))
colnames(cli) = c('samples', 'group')
samplesL <- split(cli[, 1], f = cli[, 'group'])
simMCI = simulationMCI(2, samplesL, counts, B=2)
simMCI
[,1] [,2]
#state1 2.924194 2.924194
#state2 20.877138 20.877138
#state3 2.924194 2.924194

simulation_Ic Calculating random Index of Critical transition (Ic scores) for
randomly-selectd genes

Description

Simulating Ic scores for x randomly selected samples, where x should be the same as the length
of identified critical-transition signal (CTS) (e.g., number of genes) and B is self-defined running
times.

Usage

simulation_Ic(
obs.x,
sampleL,
counts,
B = 1000,
fun = c("cor", "BioTIP"),
shrink = TRUE,
use = c("everything", "all.obs", "complete.obs", "na.or.complete",
"pairwise.complete.obs"),

output = c("Ic", "PCCg", "PCCs")
)

36 simulation_Ic

Arguments

obs.x An integer, length of identified CTS.

sampleL A list of vectors, whose length is the number of states. Each vector gives the
sample names in a state. Note that the vector s (sample names) has to be among
the column names of the R object ’df’.

counts A numeric matrix or dataframe in which columns are samples and rows are
transcripts. Each row needs to have a unique row name (i.e. transcript ID).

B An integer, setting the permutation with B runs. Default is 1000.

fun An optional character string indicating the R functon to calculate correlations for
all possible pairs of columns of a matrix. When using "BioTIP", The method is
modified to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works. Note that the "BioTIP" option only function together with shrink =
TRUE.

shrink A flag specifying whether to shrink the correlation or not. This appraoch uses the
method outlined by Schafer and Strimmer in "A Shrinkage Approach to Large-
Scale Covariance Matrix Estimation and Implications for Functional Genomics"
(2005) Comparing to fun=’cor’, the ’BioTIP’ method without shinkage is modi-
fied to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works.

use An optional character string, when fun=="cor", it gives a method for computing
covariances in the presence of missing values. This must be (an abbreviation of)
one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or
"pairwise.complete.obs".

output A string. Please select from ’Ic’, ’PCCg’, or ’PCCs’. Uses ’Ic’ by default.
’PCCg’ is the PCC between genes (numerator) and ’PCCs’ is PCC between
samples (denominator)

Value

A matrix of y rows and B columns where y is the length of sampleL and B is self-defined. Each
column is a set of Ic scores calculated for each state

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>

Examples

counts = matrix(sample(1:100, 27), 3, 9)
colnames(counts) = 1:9
row.names(counts) = c('loci1', 'loci2', 'loci3')
cli = cbind(1:9, rep(c('state1', 'state2', 'state3'), each = 3))
colnames(cli) = c('samples', 'group')
samplesL <- split(cli[, 1], f = cli[, 'group'])
simulation_Ic(2, samplesL, counts, B =3, fun="BioTIP", shrink=TRUE)

simulation_Ic_sample 37

simulation_Ic_sample Calculating (and plot) random Ic scores (Mojtahedi et al. 2016) based
on shuffling sample labelling.

Description

Run B times of sample-label shuffling to calculate the Ic score, where x should be the same as the
length of identified BioTiP and B is self-defined.

Usage

simulation_Ic_sample(
counts,
sampleNo,
Ic = NULL,
genes,
B = 1000,
ylim = NULL,
main = "simulation of samples",
fun = c("cor", "BioTIP"),
shrink = TRUE,
use = c("everything", "all.obs", "complete.obs", "na.or.complete",
"pairwise.complete.obs"),

output = c("Ic", "PCCg", "PCCs"),
plot = FALSE

)

Arguments

counts A numeric matrix or data frame. The rows and columns represent unique tran-
script IDs (geneID) and sample names, respectively.

sampleNo An integer of sample size at the tipping-point state.

Ic A numeric value. Ic score of identified CTS (gene-set), useful when plot is
TRUE. Default is NULL.

genes A character vector of identified CTS gene unique ids.

B An integer indicating number of times to run this simulation, default 1000.

ylim An integer vector of length 2. Default is NULL.

main A character vector. The title of the plot. Default is NULL.

fun An optional character string indicating the R functon to calculate correlations for
all possible pairs of columns of a matrix. When using "BioTIP", The method is
modified to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works. Note that the "BioTIP" option only function together with shrink =
TRUE.

38 simulation_Ic_sample

shrink A flag specifying whether to shrink the correlation or not. This appraoch uses the
method outlined by Schafer and Strimmer in "A Shrinkage Approach to Large-
Scale Covariance Matrix Estimation and Implications for Functional Genomics"
(2005) Comparing to fun=’cor’, the ’BioTIP’ method without shinkage is modi-
fied to ignore missing values, analogous to how cor(X, use = "pairwise.complete.obs")
works.

use An optional character string, when fun=="cor", it gives a method for computing
covariances in the presence of missing values. This must be (an abbreviation of)
one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or
"pairwise.complete.obs".

output A string. Please select from ’Ic’, ’PCCg’, or ’PCCs’. Uses ’Ic’ by default.
’PCCg’ is the PCC between genes (numerator) and ’PCCs’ is PCC between
samples (denominator)

plot A Bollen value indicating whether a density plot will be plotted.

Value

A vector of B values of BioTIP (or Ic) scores calculated for the state of interest.

Author(s)

Zhezhen Wang <zhezhen@uchicago.edu>; Xinan H Yang <xyang2@uchicago.edu>

Examples

counts = matrix(sample(1:100, 27), 3, 9)
colnames(counts) = 1:9
row.names(counts) = c('loci1', 'loci2', 'loci3')
CTS = c('loci1', 'loci2')
randomS <- simulation_Ic_sample(counts, sampleNo=3, Ic=3.4, genes=CTS, B=3,

fun='BioTIP', plot=TRUE)
dim(randomS)

Index

∗ datasets
cod, 4
gencode, 6
GSE6136_cli, 22
GSE6136_matrix, 22
ILEF, 23
intron, 23

∗ internal
BioTIP-package, 2

avg.cor.shrink, 3

BioTIP (BioTIP-package), 2
BioTIP-package, 2

cluster_walktrap, 9
cod, 4
communities, 9
cor.shrink, 5

dist, 9

gencode, 6
getBiotypes, 7
getCluster_methods, 8, 14, 17
getCTS, 10
getIc, 11
getIc.new, 12
getMaxMCImember, 10, 11, 14, 16, 28
getMaxStats, 10, 15, 30
getMCI, 16, 17, 28
getMCI_inner, 18
getNetwork, 8, 19
getReadthrough, 20
GSE6136_cli, 22
GSE6136_matrix, 22

hclust, 9

igraph, 17
ILEF, 23

intron, 23

KMedoids, 9

matplot, 27

optimize.sd_selection, 24, 34

plot.igraph, 9
plot_Ic_Simulation, 29
plot_MCI_Simulation, 30
plot_SS_Simulation, 31
plotBar_MCI, 25
plotIc, 27
plotMaxMCI, 28

sd_selection, 9, 17, 25, 32
simulation_Ic, 29, 32, 35
simulation_Ic_sample, 37
simulationMCI, 30, 34

39

	BioTIP-package
	avg.cor.shrink
	cod
	cor.shrink
	gencode
	getBiotypes
	getCluster_methods
	getCTS
	getIc
	getIc.new
	getMaxMCImember
	getMaxStats
	getMCI
	getMCI_inner
	getNetwork
	getReadthrough
	GSE6136_cli
	GSE6136_matrix
	ILEF
	intron
	optimize.sd_selection
	plotBar_MCI
	plotIc
	plotMaxMCI
	plot_Ic_Simulation
	plot_MCI_Simulation
	plot_SS_Simulation
	sd_selection
	simulationMCI
	simulation_Ic
	simulation_Ic_sample
	Index

