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BatchQC Run BatchQC shiny app

Description

Run BatchQC shiny app

Usage

BatchQC(dev = FALSE)

Arguments

dev

Value

Run the application in developer mode

The shiny app will open

Examples

if(interactive()){
BatchQC()

}



batchqc_explained_variation

batchqgc_explained_variation
Returns a list of explained variation by batch and condition combina-
tions

Description

Returns a list of explained variation by batch and condition combinations

Usage

batchqc_explained_variation(se, batch, condition = NULL, assay_name)

Arguments
se Summarized experiment object
batch Batch covariate
condition Condition covariate(s) of interest if desired, default is NULL
assay_name Assay of choice
Value

List of explained variation by batch and condition

Examples

library(scran)

se <- mockSCE()

batchgc_explained_variation <- BatchQC::batchqc_explained_variation(se,
batch = "Mutation_Status”,

condition = "Treatment”,
assay_name = "counts")
batchgc_explained_variation
batch_correct Batch Correct This function allows you to Add batch corrected count

matrix to the SE object

Description

Batch Correct This function allows you to Add batch corrected count matrix to the SE object

Usage

batch_correct(se, method, assay_to_normalize, batch, group = NULL,
covar, output_assay_name, ...)
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Arguments
se SummarizedExperiment object
method Normalization Method ("ComBat-Seq", "ComBat", "limma", "sva", svaseq)

assay_to_normalize
Which assay use to do normalization

batch The batch
group The group variable
covar list of covariates

output_assay_name
name of results assay

Arguments to be passed to specific methods, such as num_sv for svaseq_correction
and psva for sva_correction.

Value

a summarized experiment object with normalized assay appended

Examples

library(scran)
se <- mockSCE()
se <- BatchQC::batch_correct(se, method = "ComBat-Seq",

assay_to_normalize = "counts”,
batch = "Mutation_Status”,
covar = "Treatment”,

output_assay_name =
"ComBat_Seq_Corrected")
se <- BatchQC: :batch_correct(se, method = "ComBat",

assay_to_normalize = "counts”,
batch = "Mutation_Status”,
covar = "Treatment”,

output_assay_name =
"ComBat_Corrected”)
se

batch_design This function allows you to make a batch design matrix

Description

This function allows you to make a batch design matrix

Usage

batch_design(se, batch, covariate)
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Arguments
se summarized experiment object
batch string, batch variable
covariate string, biological covariate
Value

design table

Examples

library(scran)

se <- mockSCE()

batch_design_tibble <- batch_design(se, batch = "Mutation_Status”,
covariate = "Treatment"”)

batch_design_tibble

batch_indicator Batch and Condition indicator for signature data

Description

This dataset is from signature data captured when activating different growth pathway genes in
human mammary epithelial cells (GEO accession: GSE73628). This data consists of three batches
and ten different conditions corresponding to control and nine different pathways.

Usage

data(batch_indicator)

Format

A data frame with 89 rows and 2 variables:

batch batch

condition condition
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bisect bisect - a generic bisection function

Description

adapted from kBET package (https://github.com/theislab/kBET). Provides recursive bisection algo-
rithm for an arbitrary function. It evaluates the function foo at the bounds and replaces one of the
boundaries until a maximum is found or the interval becomes too small

Usage
bisect(foo, bounds, known = NULL, ..., tolx =5, toly = 0.01)
Arguments
foo a function mapping a one-dim argument to one-dim value
bounds a vector of length 2 with real valued numbers (i.e. two arguments of foo)
known tells for which of the arguments a value is known (defaults to NULL)
additional parameters for foo
tolx break condition for argument (defaults to 10)
toly break condition for value (defaults to 0.01)
Value

A range of bounds where foo is maximal.

Examples

get_maximum <- bisect(function(x) {
-(x - 2)*2
}, c(-5, 50))

bladder_data_upload Bladder data upload This function uploads the Bladder data set from
the bladderbatch package. This dataset is from bladder cancer data
with 22,283 different microarray gene expression data. It has 57 blad-
der samples with 3 metadata variables (batch, outcome and cancer).
It contains 5 batches, 3 cancer types (cancer, biopsy, control), and 5
outcomes (Biopsy, mTCC, sTCC-CIS, sTCC+CIS, and Normal). Batch
1 contains only cancer, 2 has cancer and controls, 3 has only controls,
4 contains only biopsy, and 5 contains cancer and biopsy
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Description

Bladder data upload This function uploads the Bladder data set from the bladderbatch package. This
dataset is from bladder cancer data with 22,283 different microarray gene expression data. It has
57 bladder samples with 3 metadata variables (batch, outcome and cancer). It contains 5 batches, 3
cancer types (cancer, biopsy, control), and 5 outcomes (Biopsy, mTCC, sTCC-CIS, sTCC+CIS, and
Normal). Batch 1 contains only cancer, 2 has cancer and controls, 3 has only controls, 4 contains
only biopsy, and 5 contains cancer and biopsy

Usage
bladder_data_upload()

Value

a SE object with counts data and metadata

Examples

library(bladderbatch)
se_object <- bladder_data_upload()

BMI_data This function returns BMI data that comes form the data in "Compar-
ing tuberculosis gene signatures in malnourished individuals using the
TBSignatureProfiler” paper. Subject IDs were matched as shown on
"github.com/jessmcc22/BatchQCv2_Manuscript/blob/devel/R/subjectID_match.R"

Description

This function returns BMI data that comes form the data in "Comparing tuberculosis gene signatures

in malnourished individuals using the TBSignatureProfiler" paper. Subject IDs were matched as

shown on "github.com/jessmcc22/BatchQCv2_Manuscript/blob/devel/R/subjectID_match.R"
Usage

BMI_data(meta)

Arguments

meta dataframe; metadata that needs to be matched to BMI

Value

dataframe provided as input with BMI info added



10 color_palette

check_valid_input Helper function to save variables as factors if not already factors

Description

Helper function to save variables as factors if not already factors

Usage

check_valid_input(se, batch, condition)

Arguments
se se object
batch batch
condition condition
Value

se se object

color_palette Color palette

Description

This function creates the base color palette used in BatchQC

Usage

color_palette(n, first_hue = 25, last_hue = 360)

Arguments
n numeric object representing number of colors to be created
first_hue numeric object to set the first hue value
last_hue numeric object to set the final hue value

Value

color_list list of colors generated
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Examples

library(scran)

n <- 100

color_list <- color_palette(n)
color_list

ComBat_correction ComBat Correction This function applies ComBat correction to your
summarized experiment object

Description

ComBat Correction This function applies ComBat correction to your summarized experiment object

Usage

ComBat_correction(se, assay_to_normalize, batch, covar, output_assay_name)

Arguments

se SummarizedExperiment object
assay_to_normalize
Assay that should be corrected

batch The variable that represents batch

covar list of covariates
output_assay_name

name of results assay

Value

SE object with an added ComBat corrected array

ComBat_seq_correction ComBat-Seq Correction This function applies ComBat-seq correction
to your summarized experiment object

Description

ComBat-Seq Correction This function applies ComBat-seq correction to your summarized experi-
ment object

Usage

ComBat_seq_correction(se, assay_to_normalize, batch, group, covar,
output_assay_name)
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Arguments

se SummarizedExperiment object
assay_to_normalize
Assay that should be corrected

batch The variable that represents batch
group The group variable
covar list of covariates

output_assay_name
name of results assay

Value

SE object with an added ComBat-seq corrected array

commentary This function creates the commentary recommendation when there are
more than 20 samples.

Description

This function creates the commentary recommendation when there are more than 20 samples.

Usage

commentary(
nb_fit,
nb_fit_pval,
count_below_value,
count_below_value_pval,

low_pval
)
Arguments
nb_fit Boolean representing if the count is below the threshold
nb_fit_pval Boolean representing if the p-val count is below threshold

count_below_value

number of features below threshold
count_below_value_pval

number of features below p-val threshold

low_pval pval threshold

Value

a commentary string statement
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compute_aic Compute the AIC for lognormal (ComBat) model, negative binomial
(ComBat-seq) model and the Voom model

Description

nb_result A vector contains the AIC based on negative binomial model for individual genes.
lognormal_result A vector contains the AIC based on lognormal model for individual genes.
voom_result A vector contains the AIC based on voom transformation for individual genes.
total_AIC The sum of AICs across all genes for the three models in comparison.

min_AIC The number of minimum AIC across the three models in comparison for individual
genes.

Usage

compute_aic(
se,
assay_of_interest,
batchind,
groupind,
maxit = 25,
zero_filt_percent = 100

Arguments

se SummarizedExperiment object

assay_of_interest
The assay name from se that you are interested in analyzing. This assay need to
be a counts assay containing only non-negative integers.

batchind Factor or numeric vector of length = ncol(dat); batch indicator for each sample.

groupind Factor or numeric vector of length = ncol(dat); biological group label/indicator
for each sample.

maxit Integer giving the maximal number of IWLS iterations. Default is 25.

zero_filt_percent
Numeric value between 0 and 100, the percentage of zeros allowed for each gene
to be included in the AIC calculation. Genes with more than this percentage of
zeros will be filtered out. Default is 100.

Details

This function calculates the AIC based on lognormal distribution, negative-binomial distribution as
well as the Voom transformation. It then compares the AICs of the three models across different
genes.



14 compute_lambda

Value
A list with the following two elements:

total_AIC The sum of AICs across all genes for the three models in comparison.

min_AIC The number of minimum AIC across the three models in comparison for individual
genes.

Examples

library(scran)
se <- mockSCE()
compare_aic <- compute_aic(se, assay_of_interest = "counts”,
batchind = "Cell_Cycle”,
groupind = c("Treatment”, "Mutation_Status"”))
print(compare_aic["total_AIC"])
print(compare_aic["min_AIC"])

compute_lambda Compute the lambda index for determining a need for batch correction

Description
This function calculates the proportions of variation explained by batch, group, and residual for each
gene using two-way ANOVA and computes the lambda index based on these three proportions.
Usage

compute_lambda(dat, batchind, groupind)

Arguments
dat Numeric matrix of dimension (genes x samples) where each row represents one
gene’s expression across samples.
batchind Factor or numeric vector of length = ncol(dat); batch indicator for each sample
groupind Factor or numeric vector of length = ncol(dat); biological group label/indicator
for each sample.
Value

dataframe with columns:

BatchV Proportion of total variance explained by batch effects.
GroupV Proportion of total variance explained by group effects.
ResidV Proportion of total variance that is residual noise.
lambda_raw Raw lambda index = total SS_batch / total SS_group.
lambda_adj Adjusted lambda = lambda_raw * ResidV/(1-ResidV).
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Examples

library(scran)

se <- mockSCE()

res <- BatchQC: :compute_lambda(assays(se)[["counts"]],
colData(se)$Mutation_Status,
colData(se)$Treatment)

print(res)
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confound_metrics Combine std. Pearson correlation coefficient and Cramer’s V

Description

Combine std. Pearson correlation coefficient and Cramer’s V

Usage

confound_metrics(se, batch)

Arguments
se summarized experiment
batch batch variable

Value

metrics of confounding

Examples

library(scran)
se <- mockSCE()
confound_table <- BatchQC::confound_metrics(se, batch = "Mutation_Status"”)
confound_table
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cor_props This function allows you to calculate correlation properties

Description

This function allows you to calculate correlation properties

Usage

cor_props(bd)

Arguments

bd batch design

Value

correlation properties

Examples

library(scran)

se <- mockSCE()

batch_design_tibble <- batch_design(se, batch = "Mutation_Status”,
covariate = "Treatment"”)

correlation_property <- BatchQC::cor_props(batch_design_tibble)

correlation_property

counts2pvalue This function calculates p-values for each gene given counts, esti-
mated NB size, and estimated NB mean

Description

This function calculates p-values for each gene given counts, estimated NB size, and estimated NB
mean

Usage

counts2pvalue(counts, size, mu)

Arguments
counts a vector of gene expression values (in counts)
size an estimated size parameter of the NB distributions for the gene
mu a vector of estimated mu parameter of the NB distributions for different samples

of the gene
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Value

a p-value based on estimated NB size and mean

covariates_not_confounded
Returns list of covariates not confounded by batch; helper function for
explained variation and for populating shiny app condition options

Description
Returns list of covariates not confounded by batch; helper function for explained variation and for
populating shiny app condition options

Usage

covariates_not_confounded(se, batch)

Arguments
se Summarized experiment object
batch Batch variable

Value

List of explained variation by batch and condition

Examples

library(scran)

se <- mockSCE()

covariates_not_confounded <- BatchQC::covariates_not_confounded(se,
batch = "Mutation_Status")

covariates_not_confounded

cramers_v This function allows you to calculate Cramer’s V

Description

This function allows you to calculate Cramer’s V

Usage

cramers_v (bd)
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Arguments

bd batch design

Value

Cramer’s V

Examples

library(scran)

se <- mockSCE()

batch_design_tibble <- batch_design(se, batch = "Mutation_Status”,
covariate = "Treatment"”)

cramers_v_result <- BatchQC::cramers_v(batch_design_tibble)

cramers_v_result

dendrogram_alpha_numeric_check
Dendrogram alpha or numeric checker

Description

This function checks if there is any numeric or strings for plotting legend

Usage

dendrogram_alpha_numeric_check(dendro_var)

Arguments

dendro_var column from dendrogram object representing category

Value

geom_label label for the legend of category variable

Examples

library(scran)

se <- mockSCE()

dendro_alpha_numeric_check <- dendrogram_alpha_numeric_check(
dendro_var = "Treatment")

dendro_alpha_numeric_check
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dendrogram_color_palette
Dendrogram color palette

Description

This function creates the color palette used in the dendrogram plotter

Usage

dendrogram_color_palette(col, dendrogram_info)

Arguments

col string object representing color of the label

dendrogram_info
dendrogram_ends object

Value

annotation_color vector of colors corresponding to col variable

Examples

library(scran)

se <- mockSCE()

process_dendro <- BatchQC: :process_dendrogram(se, "counts”)

dendrogram_ends <- process_dendro$dendrogram_ends

col <- process_dendro$condition_var

dendro_colors <- dendrogram_color_palette(col = "Treatment”,
dendrogram_info = dendrogram_ends)

dendro_colors

dendrogram_plotter Dendrogram Plot

Description

This function creates a dendrogram plot

Usage

dendrogram_plotter(se, assay, batch_var, category_var)
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Arguments
se SummarizedExperiment object
assay assay to plot
batch_var sample metadata column representing batch

category_var sample metadata column representing category of interest

Value

named list of dendrogram plots
dendrogram is a dendrogram ggplot

circular_dendrogram is a circular dendrogram ggplot

Examples

library(scran)
se <- mockSCE()
dendrogram_plot <- BatchQC::dendrogram_plotter(se,
"counts”,
"Mutation_Status”,
"Treatment")
dendrogram_plot$dendrogram
dendrogram_plot$circular_dendrogram

DESeq2_small_size

DESeg2_small_size This function calculated the goodness of fit of DESeq?2 for small sam-

ple sizes (intended for less than 20 samples).

Description

This function calculated the goodness of fit of DESeq2 for small sample sizes (intended for less

than 20 samples).

Usage

DESeq2_small_size(
count_matrix,
condition,
other_variables,
conditions_df,
formula_for_DESeq,
num_samples
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Arguments

count_matrix  matrix containing the data to be analyzed

condition a vector containing a factor of the condition of interest (typically batch)
other_variables
a vector of strings of other variables of interest
conditions_df data frame containing information for the other variables of interest (columns in
order of the other_variables vector)
formula_for_DESeq
the stat formula to be used in the DESeq analysis

num_samples total number of samples to analyze

Value

a list containing the string recommendation, the histogram and a reference for the original source
of the test

DESeq_large_analysis  This function calculated the goodness of fit of DESeq?2 for larger sam-
ple sizes (intended for more than 20 samples).

Description

This function calculated the goodness of fit of DESeq2 for larger sample sizes (intended for more
than 20 samples).

Usage

DESeq_large_analysis(
count_matrix,
condition,
other_variables,
conditions_df,
formula_for_DESeq,
num_samples,
sampled

Arguments

count_matrix  matrix containing the data to be analyzed

condition a vector containing a factor of the condition of interest (typically batch)
other_variables
a vector of strings of other variables of interest

conditions_df data frame containing information for the other variables of interest (columns in
order of the other_variables vector)
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formula_for_DESeq
the stat formula to be used in the DESeq analysis

num_samples total number of samples to analyze
sampled the down sampled matrix
Value

a list containing the string recommendation

DE_analyze Differential Expression Analysis

Description

This function runs DE analysis on a count matrix (DESeq), a normalized log or log-CPM matrix

(limma), an edgeR TMM-normalized matrix (edgeR) or perform ANOVA or Kruskal-Wallis test on
the data contained in the se object.

Usage

DE_analyze(se, method, batch, conditions, assay_to_analyze, padj_method)

Arguments
se SummarizedExperiment object
method DE analysis method option DESeq2’, ’limma’, edgeR’, ’ANOVA’, or ’Kruskal-
Wallis®)
batch metadata column in the se object representing batch
conditions metadata columns in the se object representing additional analysis covariates

assay_to_analyze

Assay in the se object (either counts for DESeq2 or normalized data for limma
or edgeR) for DE analysis

padj_method correction method for adjusted p-value from p.adjust.methods

Value

A named list containing the log2FoldChange, fvalue (ANOVA only), pvalue and adjusted pvalue
(padj) for each analysis returned by DESeq2, limma, edgeR, ANOVA, or Kruskal-Wallis.
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Examples

library(scran)

se <- mockSCE()

differential_expression <- BatchQC::DE_analyze(se = se,
method = "DESeq2"”,
batch = "Treatment”,
conditions = c(
"Mutation_Status"),
assay_to_analyze = "counts”,
padj_method = "BH")

pval_summary(differential_expression)

pval_plotter(differential_expression)

EV_plotter This function allows you to plot explained variation

Description

This function allows you to plot explained variation

Usage

EV_plotter(batchqgc_ev)

Arguments

batchqgc_ev table of explained variation from batchqc_explained_variation

Value

boxplot of explained variation

Examples

library(scran)

se <- mockSCE()

se$Mutation_Status <- as.factor(se$Mutation_Status)

se$Treatment <- as.factor(se$Treatment)

expl_var_result <- batchqc_explained_variation(se, batch = "Mutation_Status”,
condition = "Treatment”, assay_name = "counts")

EV_boxplot <- BatchQC::EV_plotter(expl_var_result[[1]1])

EV_boxplot
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EV_table EV Table Returns table with percent variation explained for specified
number of genes

Description

EV Table Returns table with percent variation explained for specified number of genes

Usage

EV_table(batchqc_ev)

Arguments

batchqgc_ev explained variation results from batchqc_explained_variation

Value

List of explained variation by batch and condition

Examples

library(scran)

se <- mockSCE()

se$Mutation_Status <- as.factor(se$Mutation_Status)

se$Treatment <- as.factor(se$Treatment)

exp_var_result <- BatchQC: :batchgc_explained_variation(se,
batch = "Mutation_Status”,
condition = "Treatment”,
assay_name = "counts")

EV_table <- BatchQC::EV_table(exp_var_result[[1]1])

EV_table

get.res Helper function to get residuals

Description

Helper function to get residuals

Usage
get.res(y, X)
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Arguments
y assay
model matrix design
Value
residuals

goodness_of_fit_DESeq2
This function calculates goodness-of-fit pvalues for all genes by look-
ing at how the NB model by DESeq? fit the data

Description

This function calculates goodness-of-fit pvalues for all genes by looking at how the NB model by
DESeq? fit the data

Usage

goodness_of_fit_DESeq2(
se,
count_matrix,
condition,
other_variables = NULL,
num_genes = 500

Arguments

se the se object where all the data is contained
count_matrix  name of the assay with gene expression matrix (in counts)

condition name of the se colData with the condition status

other_variables
name of the se colData containing other variables of interest that should be con-
sidered in the DESeq2 model

num_genes downsample value, default is 500 (or all genes if less)

Value

a matrix of pvalues where each row is a gene and each column is a level within the condition of
interest
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Examples

# example code

library(scran)

se <- mockSCE(ncells = 20)

se$Treatment <- as.factor(se$Treatment)

se$Mutation_Status <- as.factor(se$Mutation_Status)

nb_results <- goodness_of_fit_DESeq2(se = se, count_matrix = "counts”,
condition = "Treatment”, other_variables = "Mutation_Status”)

nb_results[1]

nb_results[2]

nb_results[3]

heatmap_num_to_char_converter
Heatmap numeric to character converter

Description

This function converts any found numerics to characters

Usage

heatmap_num_to_char_converter(ann_col)

Arguments

ann_col column data of heatmap

Value

ann_col modified column data of heatmap

Examples

library(scran)

se <- mockSCE()

col_info <- colData(se)

ann_col <- heatmap_num_to_char_converter(ann_col = col_info)
ann_col
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heatmap_plotter Heatmap Plotter

Description

This function allows you to plot a heatmap

Usage

heatmap_plotter(se, assay, nfeature, annotation_column, log_option)

Arguments
se SummarizedExperiment
assay normalized or corrected assay
nfeature number of features to display

annotation_column
choose column

log_option TRUE if data should be logged before plotting (recommended for sequenc-
ing counts), FALSE if data should not be logged (for instance, data is already

logged)

Value

heatmap plot

Examples

library(scran)
se <- mockSCE()
heatmaps <- BatchQC::heatmap_plotter(se,
assay = "counts”,
nfeature = 15,
annotation_column = c("Mutation_Status”,
"Treatment”), log_option = FALSE)
correlation_heatmap <- heatmaps$correlation_heatmap
correlation_heatmap

heatmap <- heatmaps$topn_heatmap
heatmap
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is_design_balanced Check if the experimental design is balanced or unbalanced

Description

Used in conjunction with the lambda

Usage

is_design_balanced(se, batch, covariate)

Arguments
se summarized experiment object
batch string, batch variable
covariate string, biological covariate
Value

Boolean Value, TRUE if the experimental design is balanced, FALSE if the experimental design is
not balanced

Examples
library(scran)
se <- mockSCE()
balanced_design_check <- is_design_balanced(se, batch = "Mutation_Status”,
covariate = "Treatment"”)
balanced_design_check
kBET kBET - k-nearest neighbour batch effect test

Description

adapted from kBET package (https://github.com/theislab/kBET). kBET runs a chi square test to
evaluate the probability of a batch effect.
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kBET (
df,
batch,
ko = NULL,
knn = NULL,

testSize = NULL,
do.pca = TRUE,
dim.pca = 50,
heuristic = TRUE,
n_repeat = 100,
alpha = 0.05,
addTest = FALSE,
verbose = FALSE,

plot = TRUE,
adapt = TRUE
Arguments

df dataset (rows: cells, columns: features)

batch batch id for each cell or a data frame with both condition and replicates

ko number of nearest neighbours to test on (neighbourhood size)

knn an n x k matrix of nearest neighbours for each cell (optional)

testSize number of data points to test, (10 percent sample size default, but at least 25)

do.pca perform a pca prior to knn search? (defaults to TRUE)

dim.pca if do.pca=TRUE, choose the number of dimensions to consider (defaults to 50)

heuristic compute an optimal neighbourhood size k (defaults to TRUE)

n_repeat to create a statistics on batch estimates, evaluate *n_repeat’ subsets

alpha significance level

addTest perform an LRT-approximation to the multinomial test AND a multinomial ex-
act test (if appropriate)

verbose displays stages of current computation (defaults to FALSE)

plot if stats > 10, then a boxplot of the resulting rejection rates is created

adapt In some cases, a number of cells do not contribute to any neighbourhood and
this may cause an imbalance in observed and expected batch label frequencies.
Frequencies will be adapted if adapt=TRUE (default).

Value
list object

1. summary - a rejection rate for the data, an expected rejection rate for random labeling and the
significance for the observed result
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2. results - detailed list for each tested cells; p-values for expected and observed label distribu-
tion
3. average.pval - significance level over the averaged batch label distribution in all neighbour-
hoods
4. stats - extended test summary for every sample
5. params - list of input parameters and adapted parameters, respectively
6. outsider - only shown if adapt=TRUE. List of samples without mutual nearest neighbour:
* index - index of each outsider sample)
e categories - tabularised labels of outsiders

* p.val - Significance level of outsider batch label distribution vs expected frequencies. If
the significance level is lower than alpha, expected frequencies will be adapted

If the optimal neighbourhood size (kO) is smaller than 10, NA is returned.

Examples

library(scran)

se <- mockSCE()

df <- as.matrix(assays(se)[["counts"]])

batch <- data.frame(colData(se))[, "Treatment”]

batch.estimate <- kBET(df, batch)

limma_correction Limma Correction This function applies limma batch correction to
your provided assay

Description

Limma Correction This function applies limma batch correction to your provided assay

Usage

limma_correction(se, assay_to_normalize, batch, covar, output_assay_name)

Arguments

se SummarizedExperiment object
assay_to_normalize

Log assay that should be corrected
batch Factor containing batch information

covar list of covariates
output_assay_name
name of results assay
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Value

SE object with an added limma corrected array

merged_IDs BMI and matched sample names for TB data

Description
This is support data for the TB data set that contains the BMI data and ID numbers from both the
curatedTBData database and the original study the data was used in

Usage

data(merged_IDs)

Format
A data frame with 91 rows and 3 columns

subjectID_curatedTBData Subject ID found in curatedTBData
subjectID_TB_Paper Subject ID in the original paper
BMI subject’s BMI from the original study

nb_histogram This function creates a histogram from the negative binomial
goodness-of-fit adjusted pvalues.

Description

This function creates a histogram from the negative binomial goodness-of-fit adjusted pvalues.

Usage

nb_histogram(adj_p_val_table)

Arguments

adj_p_val_table
table of adjusted p-values from the nb test

Value

a histogram of the number of genes within a p-value range
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nb_proportion This function determines the proportion of p-values below a specific
value and compares to the previously determined threshold of 0.42 for
extreme low values.

Description

This function determines the proportion of p-values below a specific value and compares to the
previously determined threshold of 0.42 for extreme low values.

Usage

nb_proportion(
adj_p_val_table,
p_val_table,
low_pval = 0.01,
threshold = 0.42,
num_samples

Arguments

adj_p_val_table
table of adjusted p-values from the nb test

p_val_table table of p-values from the nb test

low_pval value of the p-value cut off to use in proportion
threshold the value to compare the proportion of p-values to for data sets less than 20,
default is 0.42
num_samples the number of samples in the analysis
Value

a statement about whether DESeq?2 is appropriate to use for analysis

normalize_SE This function allows you to add normalized count matrix to the SE
object

Description

This function allows you to add normalized count matrix to the SE object
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Usage

normalize_SE(
se,
method,
log_bool,
assay_to_normalize,
output_assay_name,
condition = NULL,

batch = NULL
)
Arguments
se SummarizedExperiment Object
method string; Normalization Method, either 'CPM’, 'DESeq’, ’edgeR’, 'voom’, or
‘none’ for log(x+1) only
log_bool True or False; True to log normalize the data set after normalization method

assay_to_normalize

string; SE assay to do normalization on
output_assay_name

string; name for the resulting normalized assay

condition string; the biological variable of interest, required for voom, default "NULL’
batch string; the batch variable, required for voom, default "NULL’
Value

the original SE object with normalized assay appended

Examples

library(scran)
se <- mockSCE()
se_CPM_normalized <- BatchQC::normalize_SE(se, method = "CPM",
log_bool = FALSE,
assay_to_normalize = "counts”,
output_assay_name =
"CPM_normalized_counts")
se_DESeqg_normalized <- BatchQC::normalize_SE(se, method = "DESeq”,
log_bool = FALSE,
assay_to_normalize = "counts”,
output_assay_name =
"DESeg_normalized_counts")
se_CPM_normalized
se_DESeq_normalized
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PCA_plotter This function allows you to plot PCA

Description

This function allows you to plot PCA

Usage

PCA_plotter(se, nfeature, color, shape, batch, assays, xaxisPC,
yaxisPC, log_option = FALSE)

Arguments
se SummarizedExperiment object
nfeature number of features
color choose a color
shape choose a shape
batch variable representing batch (for ellipses)
assays array of assay names from se
xaxisPC the PC to plot as the x axis
yaxisPC the PC to plot as the y axis
log_option TRUE if data should be logged before plotting (recommended for sequenc-
ing counts), FALSE if data should not be logged (for instance, data is already
logged); FALSE by default
Value

List containing PCA info, PCA variance and PCA plot

Examples

library(scran)
se <- mockSCE()
se_object_ComBat_Seq <- BatchQC::batch_correct(se, method = "ComBat-Seq",

assay_to_normalize = "counts”,
batch = "Mutation_Status”,
covar = "Treatment”,

output_assay_name =
"ComBat_Seq_Corrected")
pca_plot <- BatchQC::PCA_plotter(se = se_object_ComBat_Seq,

nfeature = 2, color = "Mutation_Status”,
shape = "Treatment”, batch = "batch”,
assays = c("counts”, "ComBat_Seq_Corrected"),

xaxisPC = 1, yaxisPC = 2, log_option = FALSE)
pca_plot$plot
pca_plot$var_explained
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permuted_DESeq This function performs DESeq on the permuted dataset adjusted pval-
ues.

Description

This function performs DESeq on the permuted dataset adjusted pvalues.

Usage

permuted_DESeq(
count_matrix,
condition,
other_variables,
conditions_df,
formula_for_DESeq

Arguments

count_matrix  matrix containing the data to be analyzed

condition a vector containing a factor of the condition of interest (typically batch)
other_variables
a vector of strings of other variables of interest
conditions_df data frame containing information for the other variables of interest (columns in
order of the other_variables vector)
formula_for_DESeq
the stat formula to be used in the DESeq analysis

Value

a DESeq2 object

plot_data This function formats the PCA plot using ggplot

Description

This function formats the PCA plot using ggplot

Usage

plot_data(pca_plot_data, color, shape, batch, xaxisPC, yaxisPC)
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Arguments

pca_plot_data

Data for all assays to plot

plot_ kBET

color variable that will be plotted as color
shape variable that will be plotted as shape
batch variable representing batch for the ellipses
xaxisPC the PC to plot as the x axis
yaxisPC the PC to plot as the y axis
Value
PCA plot
plot_kBET kBET Rejection Plotter
Description

This function generates a boxplot of observed and expected rejection rates for the provided kBET

output list object

Usage

plot_kBET(kBET_res)

Arguments

kBET_res

Value

list object output from kBET function

ggplot object containing kBET rejection boxplot

Examples

library(scran)
se <- mockSCE()

df <- as.matrix(assays(se)[["counts"]])
batch <- data.frame(colData(se))[, "Treatment"]

batch.estimate <- kBET(df, batch)
plot_kBET(batch.estimate)
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possible_distances Create potential min_distance values for exploratory analysis based
on the value of spread

Description

Create potential min_distance values for exploratory analysis based on the value of spread

Usage

possible_distances(spread)

Arguments

spread numeric; the value of spread used in the exploratory analysis

Value

vector of min_distance values to use in exploratory analysis

possible_k_neighbors  Create a vector of possible nearest neighbor values from 5, 15, 25, 50,
and 100

Description

Create a vector of possible nearest neighbor values from 5, 15, 25, 50, and 100

Usage

possible_k_neighbors(data_size)

Arguments

data_size size of the data set used to create umaps

Value

k nearest neighbor list
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process_dendrogram

preprocess Preprocess assay data

Description

Preprocess assay data

Usage

preprocess(se, assay, nfeature, log_option)

Arguments
se Summarized Experiment object
assay Assay from SummarizedExperiment object
nfeature Number of variable features to use
log_option "True" if data should be logged, "False" otherwise
Value

Returns processed data

process_dendrogram Process Dendrogram

Description

This function processes count data for dendrogram plotting

Usage

process_dendrogram(se, assay)

Arguments
se SummarizedExperiment object
assay assay to plot

Value

named list of dendrogram data
dendrogram_segments is data representing segments of the dendrogram

dendrogram_ends is data representing ends of the dendrogram
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Examples

library(scran)
se <- mockSCE()
process_dendro <- BatchQC: :process_dendrogram(se, "counts”)
process_dendro

protein_data Protein data with 39 protein expression levels

Description

This data consists of two batches and two conditions corresponding to case and control. The
columns are case/control samples, and the rows represent 39 different proteins.

Usage

data(protein_data)

Format

A data frame with 39 rows and 24 variables

protein_sample_info Batch and Condition indicator for protein expression data

Description

This data consists of two batches and two conditions corresponding to case and control for the
protein expression data

Usage

data(protein_sample_info)

Format

A data frame with 24 rows and 2 variables:

batch Batch Indicator

category Condition (Case vs Control) Indicator
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pval_plotter P-value Plotter This function allows you to plot p-values of explained
variation

Description

P-value Plotter This function allows you to plot p-values of explained variation

Usage

pval_plotter(DE_results)

Arguments
DE_results Differential Expression analysis result (a named list of dataframes correspond-
ing to each analysis completed with a "pvalue" column)
Value

boxplots of pvalues for each condition

Examples

library(scran)

se <- mockSCE()

differential_expression <- BatchQC::DE_analyze(se = se,
method = "DESeq2"”,
batch = "Treatment”,
conditions = c(
"Mutation_Status"),
assay_to_analyze = "counts”,
padj_method = "BH")

pval_summary(differential_expression)

pval_plotter(differential_expression)

pval_summary Returns summary table for p-values of explained variation

Description

Returns summary table for p-values of explained variation

Usage

pval_summary(res_list)
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Arguments
res_list Differential Expression analysis result (a named list of dataframes correspond-
ing to each analysis completed with a "pvalue" column)
Value

summary table for p-values of explained variation for each analysis

Examples

library(scran)

se <- mockSCE()

differential_expression <- BatchQC::DE_analyze(se = se,
method = "DESeq2”,
batch = "Treatment”,
conditions = c(
"Mutation_Status"),
assay_to_analyze = "counts”,
padj_method = "BH")

pval_summary(differential_expression)

ratio_plotter This function allows you to plot ratios of explained variation

Description

This function allows you to plot ratios of explained variation

Usage

ratio_plotter(ev_ratio)

Arguments

ev_ratio table of ratios from variation_ratios()

Value

boxplot of ratios

Examples

library(scran)

se <- mockSCE()

se$Mutation_Status <- as.factor(se$Mutation_Status)

se$Treatment <- as.factor(se$Treatment)

expl_var_result <- batchqc_explained_variation(se, batch = "Mutation_Status”,
condition = "Treatment”, assay_name = "counts")
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ratios_results <- variation_ratios(expl_var_result[[1]],

ratio_boxplot <- BatchQC::ratio_plotter(ratios_results)

batch = "Mutation_Status")

ratio_boxplot

run_kBET

run_kBET

kBET rejection rate

Description

This function runs the k-nearest neighbor batch effect test (kBET) to evaluate whether the data has
detectable batch effect.

Usage

ru

n_KBET(
se,

assay_to_normalize,

batch,

k@ = NULL,

knn = NULL,
testSize = NULL,
do.pca = TRUE,
dim.pca = 50,
heuristic = TRUE,
n_repeat = 100,
alpha = 0.05,
addTest = FALSE,
verbose = FALSE,
adapt = TRUE

Arguments

se
as

SummarizedExperiment object

say_to_normalize

string; assay from se object to do normalization

batch character string of column name that represents batch

ko integer representing number of nearest neighbors to test on (neighborhood size)
knn n x k matrix of nearest neighbors for each cell (optional)

testSize integer representing number of data points to test

do.pca Boolean, if TRUE, perform a pca prior to knn search (defaults to TRUE)
dim.pca Boolean, if do.pca=TRUE, choose the number of dimensions to consider (de-

faults to 50)
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heuristic

n_repeat

alpha
addTest

verbose

adapt

Value
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Boolean, if true, compute an optimal neighborhood size k (defaults to TRUE)

numeric representing 'n_repeat’ subsets to evaluate in order to create a statistics
on batch estimates

numeric for significance level

Boolean, if TRUE, perform an LRT-approximation to the multinomial test AND
a multinomial exact test (if appropriate)

Boolean, if TRUE, display stages of current computation (defaults to FALSE)
Boolean, if TRUE, frequencies will be adapted (defaults to TRUE)

list object from kBET() function

1. summary - a rejection rate for the data, an expected rejection rate for random labeling and the
significance for the observed result

2. results - detailed list for each tested cells; p-values for expected and observed label distribu-

tion

3. average.pval - significance level over the averaged batch label distribution in all neighbour-

hoods

4. stats - extended test summary for every sample

5. params - list of input parameters and adapted parameters, respectively

6. outsider - only shown if adapt=TRUE. List of samples without mutual nearest neighbour:

* index - index of each outsider sample)

e categories - tabularised labels of outsiders

* p.val - Significance level of outsider batch label distribution vs expected frequencies. If
the significance level is lower than alpha, expected frequencies will be adapted

Examples

library(scran)
se <- mockSCE()

kBET_result <- BatchQC: :run_kBET(

se=se,

assay_to_normalize="counts",
batch="Treatment"”

)

BatchQC: :plot_kBET(kBET_result)
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run_lambda Provide a recommendation on batch correction based on lambda cal-
culation

Description

This functions determines if an experimental design is balanced, then calculates the lambda statistic
for balanced designs and provides a recommendation on if batch correction should be utilized. In
general, unbalanced designs always benefit from batch correction, while balanced designs with a
lambda greater than -2 benefit from batch correction.

Usage

run_lambda(se, assay, batch, condition)

Arguments
se summarized experiment object
assay string, the assay to analyze
batch string, batch variable
condition string, condition variable
Value

a named list with:

lambda_stat provides the output of compute_lambda function
correction_recommendation string, rec for batch correction
a list with 2 parameters, ’lambda_stat’ which contains the adj lambda value from lambda_compute

(In(Jambda)) or "NULL’ if the design is balanced, and ’correction_recommendation’ which contains
a string with a recommendation on if batch correction should be completed

Examples

library(scran)
se <- mockSCE()
lambda_calculation <- run_lambda(se,

assay = "counts”,
batch = "Mutation_Status”,
condition = "Treatment")

print(lambda_calculation$correction_recommendation)
print(lambda_calculation$lambda_stat)
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signature_data Signature data with 1600 gene expression levels

Description
This data consists of three batches and ten conditions. The columns are samples, and the rows
represent 1600 different genes.

Usage

data(signature_data)

Format

A data frame with 1600 rows and 89 variables

std_pearson_corr_coef Calculate a standardized Pearson correlation coefficient

Description

Calculate a standardized Pearson correlation coefficient

Usage

std_pearson_corr_coef (bd)

Arguments

bd batch design

Value

standardized Pearson correlation coefficient

Examples

library(scran)

se <- mockSCE()

batch_design_tibble <- batch_design(se, batch = "Mutation_Status”,
covariate = "Treatment"”)

pearson_cor_result <- BatchQC::std_pearson_corr_coef(batch_design_tibble)

pearson_cor_result
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summarized_experiment This function creates a summarized experiment object from count and
metadata files uploaded by the user

Description
This function creates a summarized experiment object from count and metadata files uploaded by
the user

Usage

summarized_experiment(counts, columndata)

Arguments
counts counts matrix
columndata metadata dataframe
Value

a summarized experiment object

Examples

data(protein_data)
data(protein_sample_info)
se_object <- summarized_experiment(protein_data, protein_sample_info)

svaseg_correction svaseq Correction This function applies sva correction to a summa-
rized experiment object with count based RNA-seq data

Description

svaseq Correction This function applies sva correction to a summarized experiment object with
count based RNA-seq data

Usage

svaseqg_correction(
se,
assay_to_normalize,
var_of_interest,
covar,
output_assay_name,
num_sv = FALSE
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Arguments

se SummarizedExperiment object
assay_to_normalize
string; name of assay that should be corrected
var_of_interest
string; name of experimental variable of interest
covar list; sting list of covariates to include in sva analysis
output_assay_name
string; name of results assay
num_sv boolean; Default is FALSE: the number of estimated latent factor is set to 1 for

a small number of samples. If set to TRUE, svaseq function will estimate the
number of latent factors for you.

Value

SE object with an added sva corrected array

sva_correction sva Correction This function applies sva correction to a summarized
experiment object (implementation adapted from sva::psva)

Description

sva Correction This function applies sva correction to a summarized experiment object (implemen-
tation adapted from sva::psva)

Usage

sva_correction(
se,
assay_to_normalize,
var_of_interest,

covar,
output_assay_name,
psva = FALSE
)
Arguments
se SummarizedExperiment object

assay_to_normalize

string; name of assay that should be corrected
var_of_interest

string; name of experimental variable of interest

covar list; sting list of covariates to include in sva analysis
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output_assay_name
string; name of results assay

psva boolean; default: FALSE. If set to TRUE and no covariate input, psva function
from the sva package will be used to remove batch effect.

Value

SE object with an added sva corrected array

tb_data_upload TB data upload This function uploads the TB data set from the curat-
edTBData package.

Description

TB data upload This function uploads the TB data set from the curatedTBData package.

Usage

tb_data_upload()

Value

a SE object with raw counts data and metadata

Examples

library(curatedTBData)
se_object <- tb_data_upload()

umap Create a umap plot; wrapper function for umap package plus custom
plotting

Description

Create a umap plot; wrapper function for umap package plus custom plotting
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Usage

umap (
se_object,
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assay_of_interest,

batch,
covar,
neighbors =

min_distance

spread = 1,

exploratory =

Arguments

se_object

15,
= 0.1,

FALSE

se_object; containing data of interest

assay_of_interest

batch
covar

neighbors

min_distance

spread

exploratory

Value

umap plot

Examples

library(scran)
se <- mockSCE()

string; the assay in the se_object to plot
string; representing batch
string; representing biological variable

integer; number of nearest neighbors, default 15 per umap; lower values pri-
oritize local structure, higher values will represent bigger picture but lose finer
details

numeric; how close points appear in final layout; higher values puts less empha-
sis on global structure; must be less than spread

numeric; dispersion of points in umap

Boolean; default is FALSE, if True, a 5x5 grid with k = 15, 25, 50, 100 and
min_distance = 0.1, .2, .5, .75, .99 will be plotted

se$Treatment <- as.factor(se$Treatment)

se$Mutation_Status <- as.factor(se$Mutation_Status)

umap_plot <- BatchQC::umap(se_object = se, assay_of_interest = "counts”,
batch = "Treatment”, covar = "Mutation_Status”)

umap_plot
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variation_ratios Creates Ratios of batch to variable variation statistic

Description

Creates Ratios of batch to variable variation statistic

Usage

variation_ratios(ex_variation_table, batch)

Arguments

ex_variation_table
table of explained variation results from batchqc_explained_variation

batch batch

Value

dataframe with condition/batch ratios

Examples

library(scran)
se <- mockSCE()
se$Mutation_Status <- as.factor(se$Mutation_Status)
se$Treatment <- as.factor(se$Treatment)
expl_var_result <- batchqc_explained_variation(se, batch = "Mutation_Status”,
condition = "Treatment”, assay_name = "counts")
ratios_results <- variation_ratios(expl_var_result[[1]],
batch = "Mutation_Status")
ratios_results

volcano_plot Volcano plot

Description

This function allows you to plot DE analysis results as a volcano plot

Usage

volcano_plot(DE_results, pslider = 0.05, fcslider)
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Arguments

DE_results

pslider

fcslider

Value
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a dataframe with the results of one of the DE Analysis; must include "log2FoldChange"
and "pvalue" columns

Magnitude of significance value threshold, default is 0.05

Magnitude of expression change value threshold

A volcano plot of expression change and significance value data

Examples

library(scran)
se <- mockSCE()

differential_expression <- BatchQC::DE_analyze(se = se,

method = "DESeq2”,

batch = "Treatment”,
conditions = c(
"Mutation_Status”,
"Cell_Cycle"),
assay_to_analyze = "counts”,
padj_method = "BH")

value <- round((max(abs(
differential_expression[[length(differential_expression)J1[, 11))

+ min(abs(

differential_expression[[length(differential_expression)J1[, 11))) / 2)

volcano_plot(differential_expression[[1]], pslider = 0.05, fcslider = value)
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get.res, 24
goodness_of_fit_DESeq2, 25

heatmap_num_to_char_converter, 26
heatmap_plotter, 27

is_design_balanced, 28
kBET, 28
limma_correction, 30
merged_IDs, 31

nb_histogram, 31
nb_proportion, 32
normalize_SE, 32

PCA_plotter, 34
permuted_DESeq, 35
plot_data, 35
plot_kBET, 36
possible_distances, 37
possible_k_neighbors, 37
preprocess, 38
process_dendrogram, 38
protein_data, 39
protein_sample_info, 39
pval_plotter, 40
pval_summary, 40

ratio_plotter, 41
run_kBET, 42
run_lambda, 44

signature_data, 45
std_pearson_corr_coef, 45
summarized_experiment, 46
sva_correction, 47



INDEX

svaseg_correction, 46
tb_data_upload, 48
umap, 48

variation_ratios, 50
volcano_plot, 50

53



	BatchQC
	batchqc_explained_variation
	batch_correct
	batch_design
	batch_indicator
	bisect
	bladder_data_upload
	BMI_data
	check_valid_input
	color_palette
	ComBat_correction
	ComBat_seq_correction
	commentary
	compute_aic
	compute_lambda
	confound_metrics
	cor_props
	counts2pvalue
	covariates_not_confounded
	cramers_v
	dendrogram_alpha_numeric_check
	dendrogram_color_palette
	dendrogram_plotter
	DESeq2_small_size
	DESeq_large_analysis
	DE_analyze
	EV_plotter
	EV_table
	get.res
	goodness_of_fit_DESeq2
	heatmap_num_to_char_converter
	heatmap_plotter
	is_design_balanced
	kBET
	limma_correction
	merged_IDs
	nb_histogram
	nb_proportion
	normalize_SE
	PCA_plotter
	permuted_DESeq
	plot_data
	plot_kBET
	possible_distances
	possible_k_neighbors
	preprocess
	process_dendrogram
	protein_data
	protein_sample_info
	pval_plotter
	pval_summary
	ratio_plotter
	run_kBET
	run_lambda
	signature_data
	std_pearson_corr_coef
	summarized_experiment
	svaseq_correction
	sva_correction
	tb_data_upload
	umap
	variation_ratios
	volcano_plot
	Index

