Package ‘AnVILGCP’

February 1, 2026

Title The GCP R Client for the AnVIL
Version 1.5.3
Date 2025-11-14

Description The package provides a set of functions to interact with the Google
Cloud Platform (GCP) services on the AnVIL platform. The package is designed
to use the API calls from the AnVIL package. It coordinates AnVIL workspace
functionality with native GCP tools.

biocViews Software, Infrastructure, ThirdPartyClient, Datalmport
Depends R (>=4.5.0)

Imports AnVILBase, BiocBaseUtils, dplyr, GCPtools (>= 0.99.4), httr,
jsonlite, methods, rlang, stats, tibble, tidyr, utils

Suggests AnVIL, BiocStyle, knitr, rmarkdown, testthat, withr
VignetteBuilder knitr

BugReports https://github.com/Bioconductor/AnVILGCP/issues

URL https://github.com/Bioconductor/AnVILGCP
License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Collate 'av.R''avdata.R' 'gcp-class.R' 'avnotebooks-methods.R'
'avtable-methods.R' 'avworkflow-methods.R' 'avworkflow.R'
'avworkflow_configuration.R' 'avworkspace-methods.R' 'drs.R’
'gcloud.R' 'gcloud_sdk.R' 'gcp-methods.R' 'gsutil.R’
'has_avworkspace-methods.R' localize.R' 'utilities.R'

git_url https://git.bioconductor.org/packages/AnVILGCP
git_branch devel

git_last_commit a779c08

git_last_commit_date 2025-11-14

Repository Bioconductor 3.23

https://github.com/Bioconductor/AnVILGCP/issues
https://github.com/Bioconductor/AnVILGCP

Date/Publication 2026-02-01

Author Marcel Ramos [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3242-0582>),
Nitesh Turaga [aut],
Martin Morgan [aut] (ORCID: <https://orcid.org/0000-0002-5874-8148>)

Maintainer Marcel Ramos <marcel . ramos@sph.cuny.edu>

Contents
AV o e e e e e e e e 2
avdata L e e e 7
avnotebooks-methods L e 8
avtable-methods 9
avworkflow-methods 14
avworkflows e 15
avworkflow_configurationso oL L 19
avworkspace-methods Lo Lo 23
drs . . e e e 25
gcloud-defunct L 27
gOP-Class e e 28
gep-methods L L L 29
gsutil-deprecated L 32
has_avworkspace-methods L 35
localize e e e 35

Index 37

av Miscellaneous functions for interacting with AnVIL tables and files
Description

avtable_import_status() queries for the status of an *asynchronous’ table import.

avfiles_1s() returns the paths of files in the workspace bucket. avfiles_backup() copies files
from the compute node file system to the workspace bucket. avfiles_restore() copies files from
the workspace bucket to the compute node file system. avfiles_rm() removes files or directories
from the workspace bucket.

avruntimes() returns a tibble containing information about runtimes (notebooks or RStudio in-
stances, for example) that the current user has access to.

avruntime() returns a tibble with the runtimes associated with a particular google project and
account number; usually there is a single runtime satisfiying these criteria, and it is the runtime
active in AnVIL.

*avdisks()‘ returns a tibble containing information about persistent disks associatd with the current
user.

https://orcid.org/0000-0002-3242-0582
https://orcid.org/0000-0002-5874-8148

av

Usage

avtable_paged(
table,
n = Inf,
page = 1L,
pageSize = 1000L,
sortField = "name”,
sortDirection = c("asc”", "desc"),
filterTerms = character(),
filterOperator = c("and", "or"),
namespace = avworkspace_namespace(),
name = avworkspace_name(),
na = c("", "NA")

avtable_import_status(
job_status,
namespace = avworkspace_namespace(),
name = avworkspace_name()

avfiles_1s(
path = "",
full_names = FALSE,
recursive = FALSE,
namespace = avworkspace_namespace(),

name = avworkspace_name()

avfiles_backup(
source,
destination = "",
recursive = FALSE,
parallel = TRUE,
namespace = avworkspace_namespace(),
name = avworkspace_name()

)

avfiles_restore(
source,
destination = ".",
recursive = FALSE,
parallel = TRUE,
namespace = avworkspace_namespace(),
name = avworkspace_name()

avfiles_rm(

source,
recursive = FALSE,

parallel = TRUE,

namespace = avworkspace_namespace(),
name = avworkspace_name()

)

avruntimes()

avruntime(
project = GCPtools::gcloud_project(),
account = GCPtools: :gcloud_account()

)
avdisks()
Arguments

table character(1) table name as returned by, e.g., avtables().

n numeric(1) maximum number of rows to return

page integer(1) first page of iteration

pageSize integer(1) number of records per page. Generally, larger page sizes are more
efficient.

sortField character(1) field used to sort records when determining page order. Default is
the entity field.

sortDirection character(1) direction to sort entities ("asc"ending or "desc”ending) when pag-
ing.

filterTerms character(1) string literal to select rows with an exact (substring) matches in
column.

filterOperator character(1l) operator to use when multiple terms in filterTerms=, either "and”
(default) or "or".

namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
name character (1) AnVIL workspace name as returned by, eg., avworkspace_name ().
na in avtable() and avtable_paged(), character() of strings to be interpretted as

missing values. In avtable_import () character(1) value to use for representing
NA_character_. See Details.

job_status tibble() of job identifiers, returned by avtable_import() and avtable_import_set().
path For avfiles_1s(), the character(1) file or directory path to list. For av-
files_rm(), the character() (perhaps with length greater than 1) of files or directory pat
full_names logical(1) return names relative to path (FALSE, default) or root of the workspace
bucket?
recursive logical(1) list files recursively?
source character() file paths. for avfiles_backup(), source can include directory

names when recursive = TRUE.

av 5

destination character(1) a google bucket (gs://<bucket-id>/...) to write files. The de-
fault is the workspace bucket.

parallel logical(1) backup files using parallel transfer? See ?avcopy ().

project character (1) project (billing account) name, as returned by, e.g., gcloud_project ()
or avworkspace_namespace().

account character (1) google account (email address associated with billing account),
as returned by gcloud_account().

Details

avfiles_backup() can be used to back-up individual files or entire directories, recursively. When

recursive = FALSE, files are backed up to the bucket with names approximately paste@(destination,

"/", basename(source)). When recursive = TRUE and source is a directory path/to/foo/"', files are backed up to t
"/", dir(basename(source), full.names = TRUE)). Naming conventions are described in detail in gsu-
til_help("cp")*.

avfiles_restore() behaves in a manner analogous to avfiles_backup(), copying files from the
workspace bucket to the compute node file system.

Value
avtable_paged(): a tibble of data corresponding to the AnVIL table table in the specified
workspace.
avfiles_1s() returns a character vector of files in the workspace bucket.

avfiles_backup() returns, invisibly, the status code of the avcopy() command used to back up
the files.

avfiles_rm() on success, returns a list of the return codes of avremove (), invisibly.

avruntimes() returns a tibble with columns

* id: integer() runtime identifier.

» googleProject: character() billing account.

* tool: character() e.g., "Jupyter", "RStudio”.

* status character() e.g., "Stopped", "Running".

* creator character() AnVIL account, typically "user@gmail.com".

¢ createdDate character() creation date.

* destroyedDate character() destruction date, or NA.

e dateAccessed character() date of (first?) access.

¢ runtimeName character().

¢ clusterServiceAccount character() service (’pet’) account for this runtime.

* masterMachineType character() It is unclear which ’tool’ populates which of the machineType
columns).

» workerMachineType character().
* machineType character().

* persistentDiskld integer() identifier of persistent disk (see avdisks()), or NA.

avruntime () returns a tibble witht he same structure as the return value of avruntimes().

avdisks() returns a tibble with columns

¢ id character() disk identifier.

 googleProject: character() billing account.

* status, e.g, "Ready"

* size integer() in GB.

¢ diskType character().

* blockSize integer().

* creator character() AnVIL account, typically "user@gmail.com".
« createdDate character() creation date.

* destroyedDate character() destruction date, or NA.
e dateAccessed character() date of (first?) access.

* zone character() e.g.. "us-centrall-a".

e name character().

Examples

library(AnVILBase)
if (has_avworkspace(platform
avfiles_1s()

gep()) &% interactive())

library(AnVILBase)

if (has_avworkspace(platform = gcp()) && interactive()) {
backup all files in the current directory
default buckets are gs://<bucket-id>/<file-names>
avfiles_backup(dir())
backup working directory, recursively
default buckets are gs://<bucket-id>/<basename(getwd())>/...
avfiles_backup(getwd(), recursive = TRUE)

}

if (has_avworkspace(platform = gcp()))
from within AnVIL
avruntimes()

if (has_avworkspace(strict = TRUE, platform = gcp()))
from within AnVIL
avdisks()

avdata 7

avdata Import data into the current workspace

Description

avdata() returns key-value tables representing the information visualized under the DATA tab,
"REFERENCE DATA’ and ’OTHER DATA’ items. avdata_import() updates (modifies or creates
new, but does not delete) rows in ’REFERENCE DATA’ or ’OTHER DATA’ tables.

Usage

avdata(namespace = avworkspace_namespace(), name = avworkspace_name())

avdata_import(
.data,
namespace = avworkspace_namespace(),
name = avworkspace_name()

)
Arguments
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
name character (1) AnVIL workspace name as returned by, eg., avworkspace_name ().
.data A tibble or data.frame for import as an AnVIL table.
Value

avdata() returns a tibble with five columns: "type” represents the origin of the data from the
’REFERENCE’ or ’OTHER’ data menus. "table” is the table name in the REFERENCE menu, or
>workspace’ for the table in the ’'OTHER’ menu, the key used to access the data element, the value
label associated with the data element and the value (e.g., google bucket) of the element.

avdata_import() returns, invisibly, the subset of the input table used to update the AnVIL tables.

Examples

library(AnVILBase)
if (has_avworkspace(strict = TRUE, platform = gcp())) {
from within AnVIL
data <- avdata()
data
if (interactive())
avdata_import(data)

8 avnotebooks-methods

avnotebooks-methods Notebook management

Description

avnotebooks () returns the names of the notebooks associated with the current workspace.

Usage

S4 method for signature 'gcp'
avnotebooks(
local = FALSE,
namespace = avworkspace_namespace(),
name = avworkspace_name(),

platform = cloud_platform()
)

S4 method for signature 'gcp'
avnotebooks_localize(
destination,
namespace = avworkspace_namespace(),
name = avworkspace_name(),
dry = TRUE,

platform = cloud_platform()
)

S4 method for signature 'gcp'
avnotebooks_delocalize(
source,
namespace = avworkspace_namespace(),
name = avworkspace_name(),
dry = TRUE,

platform = cloud_platform()

)
Arguments
local = logical (1) notebooks located on the workspace (local = FALSE, default) or
runtime / local instance (local = TRUE). When local = TRUE, the notebook path
is <avworkspace_name>/notebooks
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
name character (1) AnVIL workspace name as returned by, eg., avworkspace_name ().

Additional arguments passed to lower level functions (not used).

avtable-methods 9

platform gcp () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "gcp” class for
Google Cloud Platform workspaces on AnVIL.

destination missing or character(1) file path to the local file system directory for synchro-
nization. The default location is ~/<avworkspace_name>/notebooks. Out-of-
date local files are replaced with the workspace version.

dry logical(1), when TRUE (default), return the consequences of the operation
without actually performing the operation.

source missing or character(1) file path to the local file system directory for synchro-
nization. The default location is ~/<avworkspace_name>/notebooks. Out-of-
date local files are replaced with the workspace version.

Value
avnotebooks () returns a character vector of buckets / files located in the workspace ’Files/notebooks’
bucket path, or on the local file system.
avnotebooks_localize() returns the exit status of gsutil_rsync().

avnotebooks_delocalize() returns the exit status of gsutil_rsync().

Functions

* avnotebooks(gcp): List notebooks in the workspace

* avnotebooks_localize(gcp): Synchronizes the content of the workspace bucket to the local
file system.

* avnotebooks_delocalize(gcp): Synchronizes the content of the notebook location of the
local file system to the workspace bucket.

Examples

library(AnVILBase)
if (has_avworkspace(strict = TRUE, platform = gcp())) {
avnotebooks ()
avnotebooks_localize() # dry run
try(avnotebooks_delocalize()) # dry run, fails if no local resource

avtable-methods Methods that work with the primary datasets in the DATA tab

Description

Tables can be visualized under the DATA tab, TABLES item. avtable() returns an AnVIL table.
avtable_paged() retrieves an AnVIL table by requesting the table in ’chunks’, and may be appro-

priate for large tables. avtable_import () imports a data.frame to an AnVIL table. avtable_import_set()

imports set membership (i.e., a subset of an existing table) information to an AnVIL table. avtable_delete_values()
removes rows from an AnVIL table.

10

Usage

S4 method for signature 'gcp'
avtables(

)

namespace = avworkspace_namespace(),
name = avworkspace_name(),

platform = cloud_platform()

S4 method for signature 'gcp'
avtable(

)

table,

namespace = avworkspace_namespace(),
name = avworkspace_name(),

na = c("", "NA"),

platform = cloud_platform()

S4 method for signature 'gcp'
avtable_import(

)

.data,

entity = names(.data)[[1L]],
namespace = avworkspace_namespace(),
name = avworkspace_name(),
delete_empty_values = FALSE,

na = "NA",

n = Inf,

page = 1L,

pageSize = NULL,

platform = cloud_platform()

S4 method for signature 'gcp'
avtable_import_set(

.data,

origin,

set = names(.data)[[1]1],
member = names(.data)[[2]],
namespace = avworkspace_namespace(),
name = avworkspace_name(),
delete_empty_values = FALSE,
na = "NA",

n = Inf,

page = 1L,

pageSize = NULL,

L

avtable-methods

avtable-methods 11

platform = cloud_platform()
)

S4 method for signature 'gcp'
avtable_delete(
table,
namespace = avworkspace_namespace(),
name = avworkspace_name(),

platform = cloud_platform()
)

S4 method for signature 'gcp'
avtable_delete_values(
table,
values,
namespace = avworkspace_namespace(),
name = avworkspace_name(),

platform = cloud_platform()

)
Arguments

namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()

name character (1) AnVIL workspace name as returned by, eg., avworkspace_name().
Additional arguments passed to lower level functions (not used).

platform gcp () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "gcp” class for
Google Cloud Platform workspaces on AnVIL.

table character(1) table name as returned by, e.g., avtables().

na in avtable() and avtable_paged(), character() of strings to be interpretted as
missing values. In avtable_import () character(1) value to use for representing
NA_character_. See Details.

.data A tibble or data.frame for import as an AnVIL table.

entity character (1) column name of . data to be used as imported table name. When

the table comes from R, this is usually a column name such as sample. The
data will be imported into AnVIL as a table sample, with the sample column
included with suffix _id, e.g., sample_id. A column in .data with suffix _id
can also be used, e.g., entity = "sample_id", creating the table sample with
column sample_id in AnVIL. Finally, a value of entity that is not a column
in .data, e.g., entity = "unknown”, will cause a new table with name entity
and entity values seq_len(nrow(.data)).
delete_empty_values

logical(1) when TRUE, remove entities not include in .data from the DATA ta-
ble. Default: FALSE.

12 avtable-methods

n numeric(1) maximum number of rows to return

page integer(1) first page of iteration

pageSize integer(1) number of records per page. Generally, larger page sizes are more
efficient.

origin character(1) name of the entity (table) used to create the set e.g "sample", "par-

ticipant”, etc.
set character (1) column name of .data identifying the set(s) to be created.

member character () vector of entity from the avtable identified by origin. The values
may repeat if an ID is in more than one set

values vector of values in the entity (key) column of table to be deleted. A table
sample has an associated entity column with suffix _id, e.g., sample_id. Rows
with entity column entries matching values are deleted.

Details

Treatment of missing values in avtable(), avtable_paged() and avtable_import () are handled
by the na parameter.

avtable() may sometimes result in a curl error ’Error in curl::curl_fetch_memory’ or a "Internal
Server Error (HTTP 500)’ This may be due to a server time-out when trying to read a large (more
than 50,000 rows?) table; using avtable_paged() may address this problem.

For avtable() and avtable_paged(), the default na=c("", "NA") treats empty cells or cells
containing "NA" in a Terra data table as NA_character_ in R. Use na = character() to indicate
no missing values, na = "NA" to retain the distinction between "" and NA_character_.

For avtable_import(), the default na = "NA" records NA_character_ in R as the character string
"NA" in an AnVIL data table.

The default setting (na = "NA" in avtable_import(),na = c("", NA_character_") inavtable(),
is appropriate to ‘round-trip’ data from R to AnVIL and back when character vectors contain only
NA_character_. Use na = "NA" in both functions to round-trip data containing both NA_character_
and "NA". Use a distinct string, e.g., na = "__MISSING_VALUE__", for both arguments if the data
contains a string "NA" as well as NA_character_.

avtable_import() tries to work around limitations in .data size in the AnVIL platform, using
pageSize (number of rows) to import so that approximately 1500000 elements (rows x columns)
are uploaded per chunk. For large .data, a progress bar summarizes progress on the import. Indi-
vidual chunks may nonetheless fail to upload, with common reasons being an internal server error
(HTTP error code 500) or transient authorization failure (HTTP 401). In these and other cases
avtable_import() reports the failed page(s) as warnings. The user can attempt to import these
individually using the page argument. If many pages fail to import, a strategy might be to provide
an explicit pageSize less than the automatically determined size.

avtable_import_set() creates new rows in a table <origin>_set. One row will be created for
each distinct value in the column identified by set. Each row entry has a corresponding column
<origin> linking to one or more rows in the <origin> table, as given in the member column. The
operation is somewhat like split(member, set).

avtable-methods 13

Value

avtables(): A tibble with columns identifying the table, the number of records, and the column
names.

avtable(): atibble of data corresponding to the AnVIL table table in the specified workspace.
avtable_import_set() returns a character (1) name of the imported AnVIL tibble.
avtable_delete() returns TRUE if the table is successfully deleted.

avtable_delete_values() returns a tibble representing deleted entities, invisibly.

Functions

e avtables(gcp): avtables() describes tables available in a workspace
* avtable(gcp): avtable() retrieves a table from an AnVIL workspace
* avtable_import(gcp): upload a table to the DATA tab

e avtable_import_set(gcp):

* avtable_delete(gcp): Delete a table from the AnVIL workspace.

* avtable_delete_values(gcp):

Examples

if (interactive()) {
avtables("waldronlab-terra”, "Tumor_Only_CNV")
avtable("participant”, "waldronlab-terra"”, "Tumor_Only_CNV")

library(dplyr)
mtcars dataset
mtcars_tbl <-

mtcars |>
as_tibble(rownames = "model_id") |>
mutate(model_id = gsub("” ", "-", model_id))

avworkspace("waldronlab-terra/mramos-wlab-gcp-0")
avstatus <- avtable_import(mtcars_tbl)
avtable_import_status(avstatus)

set_status <- avtable("model”) |>
avtable_import_set("model”, "cyl”, "model_id")

avtable_import_status(set_status)

won't be able to delete a row that is referenced in another table
avtable_delete_values("model”, "Mazda-RX4")

delete the set
avtable_delete("model_set")

then delete the row

14

avworkflow-methods

avtable_delete_values("model”, "Mazda-RX4")

recreate the set (if needed)
avtable(”model”) [>
avtable_import_set("model”, "cyl”, "model_id")

}

library(AnVILBase)

if (has_avworkspace(platform = gcp()) && interactive()) {

editable copy of '1000G-high-coverage-2019' workspace
avworkspace ("bioconductor-rpci-anvil/1000G-high-coverage-2019")

sample <-
avtable("sample”) %>% # existing table
mutate(set = sample(head(LETTERS), nrow(.), TRUE)) # arbitrary groups

sample %>%

new 'participant_set' table

avtable_import_set("participant”, "set"”, "participant”)

sample %>%

avtable_import_set("sample”,

}

new 'sample_set' table
set”, "name")

n

avworkflow-methods AnVIL workflow methods

Description

Methods for working with AnVIL workflow execution. avworkflow_jobs() returns a tibble sum-
marizing submitted workflow jobs for a namespace and name.

Usage

S4 method for signature 'gcp'
avworkflow_jobs(
namespace = avworkspace_namespace(),
name = avworkspace_name(),

platform =
)
Arguments

namespace

name

platform

cloud_platform()

character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
character (1) AnVIL workspace name as returned by, eg., avworkspace_name().
Additional arguments passed to lower level functions (not used).

gcp () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "gcp” class for
Google Cloud Platform workspaces on AnVIL.

avworkflows 15

Value
avworkflow_jobs() returns a tibble, sorted by submissionDate, with columns

 submissionld character() job identifier from the workflow runner.
* submitter character() AnVIL user id of individual submitting the job.
* submissionDate POSIXct() date (in local time zone) of job submission.

* status character() job status, with values *Accepted’ ’Evaluating’ ’Submitting’ *Submitted’
’Aborting’ *Aborted” *Done’

* succeeded integer() number of workflows succeeding.

* failed integer() number of workflows failing.

Functions

* avworkflow_jobs(gcp): List workflow jobs in the workspace

Examples

library(AnVILBase)

if (has_avworkspace(strict = TRUE, platform = gcp()))
from within AnVIL
avworkflow_jobs()

avworkflows Workflow submissions and file outputs

Description

avworkflows () returns a tibble summarizing available workflows.
avworkflow_files() returns a tibble containing information and file paths to workflow outputs.

avworkflow_localize() creates or synchronizes a local copy of files with files stored in the
workspace bucket and produced by the workflow.

avworkflow_run() runs the workflow of the configuration.
avworkflow_stop() stops the most recently submitted workflow jub from running.

avworkflow_info() returns a tibble containing workflow information, including workflowName,
status, start and end time, inputs and outputs.

Usage

avworkflows(namespace = avworkspace_namespace(), name = avworkspace_name())

avworkflow_files(
submissionId = NULL,
workflowId = NULL,
bucket,

16 avworkflows

namespace = avworkspace_namespace(),
name = avworkspace_name()

)

avworkflow_localize(
submissionId = NULL,
workflowId = NULL,
destination = NULL,
type = c("control”, "output”, "all"),
bucket = avstorage(),
dry = TRUE
)

avworkflow_run(
config,
entityName,
entityType = config$rootEntityType,
deleteIntermediateOutputFiles = FALSE,
useCallCache = TRUE,
useReferenceDisks = FALSE,
namespace = avworkspace_namespace(),
name = avworkspace_name(),
dry = TRUE

)

avworkflow_stop(
submissionId = NULL,
namespace = avworkspace_namespace(),
name = avworkspace_name(),
dry = TRUE
)

avworkflow_info(
submissionId = NULL,
namespace = avworkspace_namespace(),
name = avworkspace_name()

)

Arguments
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace()
name character (1) AnVIL workspace name as returned by, e.g., avworkspace_name ().

submissionId a character() of workflow submission ids, or a tibble with column submissionId,
or NULL / missing. See ’Details’.

workflowId a character(1) of internal identifier associated with one workflow in the submis-
sion, or NULL / missing.
bucket character(1) DEFUNCT - name of the google bucket in which the workflow

products are available, as gs://. . .. Usually the bucket of the active workspace,

avworkflows 17

returned by avstorage().

destination character(1) file path to the location where files will be synchronized. For di-
rectories in the current working directory, be sure to prepend with "./". When
NULL, the submissionId is used as the destination. destination may also
be a google bucket, in which case th workflow files are synchronized from the
workspace to a second bucket.

type character(1) copy "control” (default), "output”, or "all” files produced by a
workflow.
dry logical(1) when TRUE (default), report the consequences but do not perform the

action requested. When FALSE, perform the action.

config a avworkflow_configuration object of the workflow that will be run. Only
entityType and method configuration name and namespace are used from config;
other configuration values must be communicated to AnVIL using avworkflow_configuration_set().

entityName character(1) or NULL name of the set of samples to be used when running the
workflow. NULL indicates that no sample set will be used.

entityType character(1) or NULL type of root entity used for the workflow. NULL means
that no root entity will be used.

deleteIntermediateOutputFiles
logical(1) whether or not to delete intermediate output files when the workflow
completes.

useCallCache logical(1) whether or not to read from cache for this submission.
useReferenceDisks

logical(1) whether or not to use pre-built disks for common genome references.
Default: FALSE.

Details

For avworkflow_files(), the submissionId is the identifier associated with the submission of
one (or more) workflows, and is present in the return value of avworkflow_jobs(); the example
illustrates how the first row of avworkflow_jobs() (i.e., the most recently completed workflow)
can be used as input to avworkflow_files(). When submissionId is not provided, the return
value is for the most recently submitted workflow of the namespace and name of avworkspace().

avworkflow_localize(). type = "control” files summarize workflow progress; they can be nu-
merous but are frequently small and quickly syncronized. type = "output” files are the output
products of the workflow stored in the workspace bucket. Depending on the workflow, outputs may
be large, e.g., aligned reads in bam files. See avcopy() to copy individual files from the bucket to
the local drive.

avworkflow_localize() treats submissionId= in the same way as avworkflow_files(): when
missing, files from the most recent workflow job are candidates for localization.
Value

avworkflows () returns a tibble. Each workflow is in a 'namespace’ and has a *name’, as illustrated
in the example. Columns are

e name: workflow name.

18 avworkflows

* namespace: workflow namespace (often the same as the workspace namespace).
* rootEntityType: name of the avtable() used to retrieve inputs.

* methodRepoMethod.methodUri: source of the method, e.g., a dockstore URIL.

* methodRepoMethod.sourceRepo: source repository, e.g., dockstore.

* methodRepoMethod.methodPath: path to method, e.g., a dockerstore method might reference
a github repository.

* methodRepoMethod.methodVersion: the version of the method, e.g., 'main’ branch of a
github repository.

avworkflow_files() returns a tibble with columns

e file: character() "base name’ of the file in the bucket.

¢ workflow: character() name of the workflow the file is associated with.

* task: character() name of the task in the workflow that generated the file.

e path: charcter() full path to the file in the google bucket.

* submissionld: character() internal identifier associated with the submission the files belong to.

» workflowld: character() internal identifer associated with each workflow (e.g., row of an
avtable() used as input) in the submission.

 submissionRoot: character() path in the workspace bucket to the root of files created by this
submission.

» namespace: character() AnVIL workspace namespace (billing account) associated with the
submissionld.

* name: character(1) AnVIL workspace name associated with the submissionld.

avworkflow_localize() prints a message indicating the number of files that are (if dry = FALSE)
or would be localized. If no files require localization (i.e., local files are not older than the bucket
files), then no files are localized. avworkflow_localize() returns a tibble of file name and bucket
path of files to be synchronized.

avworkflow_run() returns config, invisibly.

avworkflow_stop() returns (invisibly) TRUE on successfully requesting that the workflow stop,
FALSE if the workflow is already aborting, aborted, or done.

avworkflow_info() returns a tibble with columns: submissionld, workflowld, workflowName,status,
start, end, inputs and outputs.

Examples

library(AnVILBase)

if (has_avworkspace(strict = TRUE, platform = gcp()))
from within AnVIL
avworkflows() %>% select(namespace, name)

if (has_avworkspace(strict = TRUE, platform = gcp())) {
e.g., from within AnVIL
jobs <- avworkflow_jobs()
if (nrow(jobs)) {
jobs |>

avworkflow_configurations 19

select most recent workflow

head(1) |>

find paths to output and log files on the bucket
avworkflow_files()

}

if (has_avworkspace(strict = TRUE, platform = gcp()))
avworkflow_localize(dry = TRUE)

if (has_avworkspace(strict = TRUE, platform = gcp()) && interactive()) {
entityName <- avtable("participant_set”) |>
pull (participant_set_id) [|>
head(1)
avworkflow_run(new_config, entityName)

}

if (has_avworkspace(strict = TRUE, platform = gcp()) && interactive()) {
avworkflow_stop()

3

if (has_avworkspace(strict = TRUE, platform = gcp()))
avworkflow_info()

avworkflow_configurations
Workflow configuration

Description

Funtions on this help page facilitate getting, updating, and setting workflow configuration parame-
ters. See ?avworkflow for additional relevant functionality.

avworkflow_namespace() and avworkflow_name() are utility functions to record the workflow
namespace and name required when working with workflow configurations. avworkflow() pro-
vides a convenient way to provide workflow namespace and name in a single command, namespace/name.

avworkflow_configuration_get() returns a list structure describing an existing workflow con-
figuration.

avworkflow_configuration_inputs() returns a data.frame template for the inputs defined in a
workflow configuration. This template can be used to provide custom inputs for a configuration.

avworkflow_configuration_outputs() returns a data.frame template for the outputs defined in
a workflow configuration. This template can be used to provide custom outputs for a configuration.

avworkflow_configuration_update() returns a list structure describing a workflow configura-
tion with updated inputs and / or outputs.

avworkflow_configuration_set() updates an existing configuration in Terra/ AnVIL, e.g., chang-
ing inputs to the workflow.

avworkflow_configuration_template() returns a template for defining workflow configura-
tions. This template can be used as a starting point for providing a custom configuration.

20 avworkflow_configurations

Usage

avworkflow_namespace (workflow_namespace = NULL)
avworkflow_name(workflow_name = NULL)
avworkflow(workflow = NULL)

avworkflow_configuration_get(
workflow_namespace = avworkflow_namespace(),
workflow_name = avworkflow_name(),
namespace = avworkspace_namespace(),
name = avworkspace_name()

)
avworkflow_configuration_inputs(config)
avworkflow_configuration_outputs(config)

avworkflow_configuration_update(
config,
inputs = avworkflow_configuration_inputs(config),
outputs = avworkflow_configuration_outputs(config)

)

avworkflow_configuration_set(
config,
namespace = avworkspace_namespace(),
name = avworkspace_name(),
dry = TRUE
)

avworkflow_configuration_template()

S3 method for class 'avworkflow_configuration'
print(x, ...)

Arguments

workflow_namespace
character(1) AnVIL workflow namespace, as returned by, e.g., the namespace
column of avworkflows().

workflow_name character(1) AnVIL workflow name, as returned by, e.g., the name column of

avworkflows().
workflow character(1) representing the combined workflow namespace and name, as namespace/name.
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()

name character (1) AnVIL workspace name as returned by, e.g., avworkspace_name ().

avworkflow_configurations 21

config a named list describing the full configuration, e.g., created from editing the re-

turn value of avworkflow_configuration_set () or avworkflow_configuration_template().
inputs the new inputs to be updated in the workflow configuration. If none are specified,

the inputs from the original configuration will be used and no changes will be

made.
outputs the new outputs to be updated in the workflow configuration. If none are spec-

ified, the outputs from the original configuration will be used and no changes
will be made.

dry logical(1) when TRUE (default), report the consequences but do not perform the
action requested. When FALSE, perform the action.

X Object of class avworkflow_configuration.

additional arguments to print(); unused.

Details

The exact format of the configuration is important.

One common problem is that a scalar character vector "bar” is interpretted as a json ’array’
["bar"] rather than a json string "bar"”. Enclose the string with jsonlite: :unbox("bar") in
the configuration list if the length 1 character vector in R is to be interpretted as a json string.

A second problem is that an unquoted unboxed character string unbox("foo") is required by
AnVIL to be quoted. This is reported as a warning() about invalid inputs or outputs, and the solution
is to provide a quoted string unbox (' "foo"").

Value

avworkflow_namespace(), and avworkflow_name() return character (1) identifiers. avworkflow()
returns the character(1) concatenated namespace and name. The value returned by avworkflow_name ()
will be percent-encoded (e.g., spaces " " replaced by "%20").

avworkflow_configuration_get() returns alist structure describing the configuration. See avworkflow_configuration_
for the structure of a typical workflow.

avworkflow_configuration_inputs() returns a data.frame providing a template for the config-
uration inputs, with the following columns:

* inputType

* name

* optional

* attribute
The only column of interest to the user is the attribute column, this is the column that should be
changed for customization.
avworkflow_configuration_outputs() returns a data.frame providing a template for the config-
uration outputs, with the following columns:

* name

* outputType

22

The

avworkflow_configurations

attribute

only column of interest to the user is the attribute column, this is the column that should be

changed for customization.

avworkflow_configuration_update() returns a list structure describing the updated configura-

tion.

avworkflow_configuration_set() returns an object describing the updated configuration. The
return value includes invalid or unused elements of the config input. Invalid or unused elements of
config are also reported as a warning.

avworkflow_configuration_template() returns a list providing a template for configuration
lists, with the following structure:

See Also

The

namespace character(1) configuration namespace.
name character(1) configuration name.

rootEntityType character(1) or missing. the name of the table (from avtables()) containing
the entitites referenced in inputs, etc., by the keyword ’this.’

prerequisites named list (possibly empty) of prerequisites.

inputs named list (possibly empty) of inputs. Form of input depends on method, and might
include, e.g., a reference to a field in a table referenced by avtables() or a character string
defining an input constant.

outputs named list (possibly empty) of outputs.
methodConfigVersion integer(1) identifier for the method configuration.

methodRepoMethod named list describing the method, with character(1) elements described
in the return value for avworkflows().

methodUri

sourceRepo

methodPath

methodVersion. The REST specification indicates that this has type integer, but the
documentation indicates either integer or string.

deleted logical(1) of uncertain purpose.

help page ?avworkflow for discovering, running, stopping, and retrieving outputs from work-

flows.

Examples

if (has_avworkspace(platform = gcp()) && interactive()) {

set the namespace and name as appropriate
avworkspace("bioconductor-rpci-anvil/Bioconductor-Workflow-DESeq2")

discover available workflows in the workspace
avworkflows()

record the workflow of interest

avworkspace-methods 23

avworkflow("bioconductor-rpci-anvil/AnVILBulkRNASeq")

what workflows are available?
available_workflows <- avworkflows()

retrieve the current configuration
config <- avworkflow_configuration_get()
config

what are the inputs and outputs?
inputs <- avworkflow_configuration_inputs(config)

inputs

outputs <- avworkflow_configuration_outputs(config)
outputs

update inputs or outputs, e.g., this input can be anything...

inputs <-
inputs |>
dplyr::mutate(attribute = ifelse(
name == "salmon.transcriptome_index_name”,
'"new_index_name"',
attribute
D)
new_config <- avworkflow_configuration_update(config, inputs)
new_config

set the new configuration in AnVIL; use dry = FALSE to actually
update the configuration
avworkflow_configuration_set(config)

avworkflow_configuration_template() is a utility function that may
help understanding what the inputs and outputs should be
avworkflow_configuration_template() |>

str()

avworkflow_configuration_template()

avworkspace-methods AnVIL Workspace GCP methods

Description

avworkspace_namespace() and avworkspace_name () are utiliity functions to retrieve workspace
namespace and name from environment variables or interfaces usually available in AnVIL note-
books or RStudio sessions. avworkspace() provides a convenient way to specify workspace
namespace and name in a single command. avworkspace_clone() clones (copies) an existing
workspace, possibly into a new namespace (billing account).

avworkspace-methods

Usage

S4 method for signature 'gcp'
avworkspaces(..., platform = cloud_platform())

S4 method for signature 'gcp'
avworkspace_namespace(
namespace = NULL,
warn = TRUE,

platform = cloud_platform()
)

S4 method for signature 'gcp'
avworkspace_name(name = NULL, warn = TRUE, ..., platform = cloud_platform())

S4 method for signature 'gcp'
avworkspace(workspace = NULL, ..., platform = cloud_platform())

S4 method for signature 'gcp'
avworkspace_clone(
namespace = avworkspace_namespace(),
name = avworkspace_name(),
to_namespace = namespace,
to_name,
storage_region = "US",
bucket_location,

platform = cloud_platform()

)
Arguments

additional arguments passed as-is to the gsutil subcommand.

platform gcp () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "gcp” class for
Google Cloud Platform workspaces on AnVIL.

namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace()

warn logical(1) when TRUE (default), generate a warning when the workspace names-
pace or name cannot be determined.

name character (1) AnVIL workspace name as returned by, e.g., avworkspace_name ().

workspace when present, a character (1) providing the concatenated namespace and name,

e.g., "bioconductor-rpci-anvil/Bioconductor-Package-AnVIL"
to_namespace character(1) workspace (billing account) in which to make the clone.
to_name character(1) name of the cloned workspace.

storage_region character(1) region (NO multi-region, except the default) in which bucket at-
tached to the workspace should be created.

drs 25

bucket_location
character(1) DEFUNCT; use storage_region instead. Region (NO multi-region,
except the default) in which bucket attached to the workspace should be created.

Details

avworkspace_namespace() is the billing account. If the namespace= argument is not provided,
try gcloud_project(), and if that fails try Sys. getenv("WORKSPACE_NAMESPACE").

avworkspace_name() is the name of the workspace as it appears in https://app.terra.bio/
#workspaces. If not provided, avworkspace_name () tries to use Sys.getenv ("WORKSPACE_NAME").

Namespace and name values are cached across sessions, so explicitly providing avworkspace_name* ()
is required at most once per session. Revert to system settings with arguments NA.

Value

avworkspace_namespace(), and avworkspace_name () return character (1) identifiers. avworkspace()
returns the character(1) concatenated namespace and name. The value returned by avworkspace_name ()
will be percent-encoded (e.g., spaces " " replaced by "%20").

avworkspace_clone() returns the namespace and name, in the format namespace/name, of the
cloned workspace.

Functions

* avworkspaces(gcp): list workspaces in the current project as a tibble

* avworkspace_namespace(gcp): Get or set the namespace of the current workspace
» avworkspace_name(gcp): Get or set the name of the current workspace

* avworkspace(gcp): Get the current workspace namespace and name combination

* avworkspace_clone(gcp): Clone the current workspace

Examples

if (has_avworkspace(platform = gcp())) {
avworkspaces()
avworkspace_namespace()
avworkspace_name()

avworkspace()
3
drs DRS (Data Repository Service) URL management
Description

drs_hub() resolves zero or more DRS URLSs to their Google bucket location using the DRS Hub
API endpoint.

https://app.terra.bio/#workspaces
https://app.terra.bio/#workspaces

26 drs

Usage

drs_hub(source = character())

drs_nci_crdc(source = character())

Arguments
source character () DRS URLs (beginning with ’drs://”) to resources managed by the
DRS Hub server (drs_hub()).
Value

drs_hub() returns a tbl with the following columns:

e drs: character () DRS URIs

* bucket: character () Google cloud bucket

* name: character () object name in bucket

* size: numeric() object size in bytes

e timeCreated: character () object creation time
* timeUpdated: character() object update time
e fileName: character() local file name

* accessUrl: character() signed URL for object access

drs_hub

drs_hub() uses the DRS Hub API endpoint to resolve a single or multiple DRS URLs to their
Google bucket location. The DRS Hub API endpoint requires a gcloud_access_token(). The
DRS Hub API service is hosted at https://drshub.dsde-prod.broadinstitute.org.

drs_nci_crdc

drs_nci_crdc() resolves one or more DRS URLs to their <gdc.cancer.gov> location. The imple-
mentation allows the extraction of access_url values to download the DRS objects. The DRS NCI
CRDC service is hosted at https://nci-crdc.datacommons.io.

Examples

if (GCPtools::gcloud_exists() && interactive()) {
drs_urls <- c(
"drs://drs.anv@:v2_b3b815c7-b012-37b8-9866-1cb44b597924" ,
"drs://drs.anv@:v2_2823eac3-77ae-35e4-b674-13dfab629dc5",
"drs://drs.anv@:v2_c6077800-4562-30e3-a0ff-aa@3a7e0e24f"

)
drs_hub(drs_urls)

drs_nci <- c(
"drs://nci-crdc.datacommons.io/56e35487-b20f-45ba-8d84-9f16b26c85ea”,
"drs://nci-crdc.datacommons.io/f814f1ec-6850-4ab6-ac0f-df9f77ee185b",

https://drshub.dsde-prod.broadinstitute.org
https://nci-crdc.datacommons.io

gcloud-defunct 27

"drs://nci-crdc.datacommons.io/d9b591d5-7fe8-43fe-b0b3-4fc@f9736866"

)
drs_nci_crdc(drs_nci)
3
gcloud-defunct gcloud command line utility interface (DEFUNCT)
Description

These functions invoke the gcloud command line utility. See GCPtools::gsutil for details on how
gcloud is located. NOTE. These functions have been moved to the GCPtools package.

gcloud_access_token() generates a token for the given service account. The token is cached for
the duration of its validity. The token is refreshed when it expires. The token is obtained using
the gcloud command line utility for the given gcloud_account(). The function is mainly used
internally by API service functions, e.g., AnVIL: :Terra()

gcloud_exists() tests whether the gcloud() command can be found on this system. After finding
the binary location, it runs gcloud version to identify potentially misconfigured installations. See
’Details’ section of gsutil for where the application is searched.

gcloud_account(): report the current gcloud account via gcloud config get-value account.
gcloud_project(): report the current gcloud project via gcloud config get-value project.
gcloud_help(): queries gcloud for help for a command or sub-comand via gcloud help

gcloud_cmd() allows arbitrary gcloud command execution via gcloud Use pre-defined
functions in preference to this.

gcloud_storage() allows arbitrary gcloud storage command execution via gcloud storage
Typically used for bucket management commands such as rm and cp.

gcloud_storage_buckets() provides an interface to the gcloud storage buckets command.
This command can be used to create a new bucket via gcloud storage buckets create

Usage

gcloud_access_token(service)

gcloud_exists()

gcloud_account (account = NULL)
gcloud_project(project = NULL)
gcloud_help(...)
gcloud_cmd(emd, ...)

gcloud_storage(cmd, ...)

gcloud_storage_buckets(bucket_cmd = "create”, bucket, ...)

28 gcp-class

Arguments
service character(1) The name of the service, e.g. "terra" for which to obtain an access
token for.
account character(1) Google account (e.g., user@mail. com) to use for authentication.
project character(1) billing project name.
Additional arguments appended to gcloud commands.
cmd character (1) representing a command used to evaluate gcloud cmd
bucket_cmd character (1) representing a buckets command typically used to create a new
bucket. It can also be used to add-iam-policy-binding or remove-iam-policy-binding
to a bucket.
bucket character (1) representing a unique bucket name to be created or modified.
Value

gcloud_access_token() returns a simple token string to be used with the given service.
gcloud_exists() returns TRUE when the gcloud application can be found, FALSE otherwise.

gcloud_account () returns a character (1) vector containing the active gcloud account, typically
a gmail email address.

gcloud_project() returns a character (1) vector containing the active gcloud project.

gcloud_help() returns an unquoted character () vector representing the text of the help manual
page returned by gcloud help

gcloud_cmd() returns a character () vector representing the text of the output of gcloud cmd . . .

gcp-class GCP platform class

Description

This class is used to represent the GCP platform.

Usage

gep()

gcp-methods 29

gcp-methods Methods compatible with the GCP platform class

Description

avcopy(): copy contents of source to destination. At least one of source or destination
must be Google cloud bucket; source can be a character vector with length greater than 1. Use
gsutil_help("cp"”) for gsutil help.

avlist(): List contents of a google cloud bucket or, if source is missing, all Cloud Storage buckets
under your default project ID

avremove (): remove contents of a Google Cloud Bucket.

avbackup(),avrestore(): synchronize a source and a destination. If the destination is on the local
file system, it must be a directory or not yet exist (in which case a directory will be created).

avstorage() returns the workspace bucket, i.e., the google bucket associated with a workspace.
Bucket content can be visualized under the "’DATA’ tab, ’Files’ item.

avworkspaces(): returns a tibble with columns including the name, last modification time, names-
pace, and owner status.

avtable_import(): returns a tibble() containing the page number, 'from’ and ’to’ rows included
in the page, job identifier, initial status of the uploaded ’chunks’, and any (error) messages generated
during status check. Use avtable_import_status() to query current status.

Usage

S4 method for signature 'gcp
avcopy (

source,

destination,

recursive = FALSE,

parallel = TRUE,

platform = cloud_platform()
)

S4 method for signature 'gcp
avlist(
source = character(),
recursive = FALSE,

platform = cloud_platform()
)

S4 method for signature 'gcp
avremove (

source,

recursive = FALSE,

30

)

force = FALSE,
parallel = TRUE,

platform = cloud_platform()

S4 method for signature 'gcp'
avbackup(

)

source,
destination,
recursive = FALSE,
exclude = NULL,
dry = TRUE,

delete = FALSE,
parallel = TRUE,

platform = cloud_platform()

S4 method for signature 'gcp'
avrestore(

)

source,
destination,
recursive = FALSE,
exclude = NULL,
dry = TRUE,

delete = FALSE,
parallel = TRUE,

platform = cloud_platform()

S4 method for signature 'gcp'
avstorage(

)

namespace = avworkspace_namespace(),

name = avworkspace_name(),

platform = cloud_platform()

Arguments

source

destination

recursive

parallel

gcp-methods

character (1), (character() for avlist(), avcopy()) paths to a google stor-

age bucket, possibly with wild-cards for file-level pattern matching.

additional arguments passed as-is to the gsutil subcommand.

character (1), google cloud bucket or local file system destination path.

logical(1); perform operation recursively from source?. Default: FALSE.

logical (1), perform parallel multi-threaded / multi-processing (default is TRUE).

gcp-methods 31

platform gcp () The cloud platform class to dispatch on as given by AnVILBase::cloud_platform.
Typically not set manually as cloud_platform() returns the "gcp” class for
Google Cloud Platform workspaces on AnVIL.

force logical(1): continue silently despite errors when removing multiple objects.
Default: FALSE.

exclude character (1) a python regular expression of bucket paths to exclude from syn-
chronization. E.g., ' .*(\\.png|\\. txt)$" excludes ".png’ and .txt’ files.

dry logical(1), when TRUE (default), return the consequences of the operation
without actually performing the operation.

delete logical (1), when TRUE, remove files in destination that are not in source.
Exercise caution when you use this option: it’s possible to delete large amounts
of data accidentally if, for example, you erroneously reverse source and destina-

tion.
namespace character (1) AnVIL workspace namespace as returned by, e.g., avworkspace_namespace ()
name character (1) AnVIL workspace name as returned by, e.g., avworkspace_name ().

Details

avbackup()': To make "gs://mybucket/data"match the contents of the local directory"data"
you could do:

avbackup("data”, "gs://mybucket/data”, delete = TRUE)
To make the local directory "data" the same as the contents of gs://mybucket/data:
avrestore("gs://mybucket/data"”, "data", delete = TRUE)

If destination is a local path and does not exist, it will be created.

Value

avcopy (): exit status of avcopy (), invisibly. avlist(): character() listing of source content.
avremove(): exit status of gsutil rm, invisibly. avbackup(): exit status of gsutil rsync, invis-
bly. avrestore(): exit status of gsutil rsync, invisbly. avstorage() returns a character(1)
bucket identifier prefixed with gs://

Functions

* avcopy(gcp): copy contents of source to destination with gsutil
e avlist(gcp): list contents of source with gsutil

e avremove(gcp): remove contents of source with gsutil

* avbackup(gcp): backup contents of source with gsutil

e avrestore(gcp): restore contents of source with gsutil

* avstorage(gcp): get the storage bucket location

32 gsutil-deprecated

Examples

src <-
"gs://genomics-public-data/1000-genomes/other/sample_info/sample_info.csv"
if (has_avworkspace(platform = gcp())) {
avcopy(src, tempdir())
internal gsutil_x() commands work with spaces in source or destination
destination <- file.path(tempdir(), "foo bar")
avcopy(src, destination)
file.exists(destination)
}
if (has_avworkspace(strict = TRUE, platform = gcp()))
From within AnVIL...
bucket <- avstorage() # discover bucket

if (has_avworkspace(strict = TRUE, platform = gcp()) && interactive()) {
path <- file.path(bucket, "mtcars.tab")

avlist(dirname(path)) # no 'mtcars.tab’'...
write.table(mtcars, gsutil_pipe(path, "w")) # write to bucket
gsutil_stat(path) # yep, there!
read. table(gsutil_pipe(path, "r")) # read from bucket
3
gsutil-deprecated gsutil command line utility interface (DEPRECATED)
Description

These functions invoke the gsutil command line utility. See the "Details:" section if you have
gsutil installed but the package cannot find it. These functions have been moved to the GCPtools
package.

gsutil_requesterpays(): does the google bucket require that the requester pay for access?
gsutil_exists(): check if the bucket or object exists.
gsutil_stat(): print, as a side effect, the status of a bucket, directory, or file.

gsutil_rsync(): synchronize a source and a destination. If the destination is on the local file
system, it must be a directory or not yet exist (in which case a directory will be created).

gsutil_cat(): concatenate bucket objects to standard output

gsutil_help(): print 'man’ page for the gsutil command or subcommand. Note that only com-
mandes documented on this R help page are supported.

gsutil_pipe(): create a pipe to read from or write to a gooogle bucket object.

Usage

gsutil_requesterpays(source)

gsutil_exists(source)

gsutil-deprecated 33

gsutil_stat(source)

gsutil_rsync(
source,
destination,

exclude = NULL,
dry = TRUE,
delete = FALSE,
recursive = FALSE,
parallel = TRUE

)

gsutil_cat(source, ..., header = FALSE, range = integer())

gsutil_help(cmd = character(@))

gsutil_pipe(source, open = "r", ...)
Arguments
source character() for gsutil_requesterpays() and gsutil_exists(): pathstoa

Google Storage Bucket, possibly with wild-cards for file-level pattern matching.
destination character (1), google cloud bucket or local file system destination path.
additional arguments passed as-is to the gsutil subcommand.

exclude character (1) a python regular expression of bucket paths to exclude from syn-
chronization. E.g., ' .*(\\.png|\\.txt)$" excludes *.png’ and .txt’ files.

dry logical(1), when TRUE (default), return the consequences of the operation
without actually performing the operation.

delete logical (1), when TRUE, remove files in destination that are not in source.
Exercise caution when you use this option: it’s possible to delete large amounts
of data accidentally if, for example, you erroneously reverse source and destina-

tion.
recursive logical(1); perform operation recursively from source?. Default: FALSE.
parallel logical (1), perform parallel multi-threaded / multi-processing (default is TRUE).
header logical (1) when TRUE annotate each
range (optional) integer(2) vector used to form a range from-to of bytes to concate-

nate. NA values signify concatenation from the start (first position) or to the end
(second position) of the file.

cmd character() (optional) command name, e.g., "1s" for help.
open character (1) either "r" (read) or "w" (write) from the bucket.
Details

The gsutil system command is required. The search for gsutil starts with environment variable
GCLOUD_SDK_PATH providing a path to a directory containing a bin directory containingin gsutil,

34 gsutil-deprecated

gcloud, etc. The path variable is searched for first as an option() and then system variable. If no

option or global variable is found, Sys.which() is tried. If that fails, gsutil is searched for on de-

fined paths. On Windows, the search tries to find Google\\Cloud SDK\\google-cloud-sdk\\bin\\gsutil.cmd
in the LOCAL APP DATA, Program Files, and Program Files (x86) directories. On linux / macOS,

the search continues with ~/google-cloud-sdk.

gsutil_rsync()': To make "gs://mybucket/data"match the contents of the local directory"data"*

you could do:

gsutil_rsync(”"data”, "gs://mybucket/data”, delete = TRUE)
To make the local directory "data" the same as the contents of gs://mybucket/data:
gsutil_rsync(”gs://mybucket/data"”, "data”, delete = TRUE)

If destination is a local path and does not exist, it will be created.

Value

gsutil_requesterpays(): named logical () vector TRUE when requester-pays is enabled.
gsutil_exists(): logical(1) TRUE if bucket or object exists.

gsutil_stat(): tibble() summarizing status of each bucket member.

gsutil_rsync(): exit status of gsutil_rsync(), invisbly.

gsutil_cat() returns the content as a character vector.

gsutil_help(): character() help text for subcommand cmd.

gsutil_pipe() an unopened R pipe(); the mode is not specified, and the pipe must be used in the
appropriate context (e.g., a pipe created with open = "r" for input as read.csv())

Examples

src <-
"gs://genomics-public-data/1000-genomes/other/sample_info/sample_info.csv"
if (has_avworkspace(platform = gcp()))
GCPtools::gsutil_requesterpays(src) # FALSE -- no cost download

if (has_avworkspace(platform = gcp())) {
GCPtools::gsutil_exists(src)
GCPtools: :gsutil_stat(src)
avlist(dirname(src))

3

if (has_avworkspace(platform = gcp()))
GCPtools::gsutil_help("”1s")

if (has_avworkspace(platform = gcp())) {
df <- read.csv(gsutil_pipe(src), 5L)
class(df)
dim(df)
head(df)

has_avworkspace-methods 35

has_avworkspace-methods
Helper to check AnVIL environment is set up to work with GCP

Description

has_avworkspace () checks that the AnVIL environment is set up to work with GCP. If strict =
TRUE, it also checks that the workspace name is set.

Usage
S4 method for signature 'gcp'
has_avworkspace(strict = FALSE, ..., platform = cloud_platform())
Arguments
strict logical(1) Whether to include a check for an existing avworkspace_name ()

setting. Default FALSE.
Arguments passed to the methods.

platform A Platform derived class indicating the AnVIL environment, currently, azure
and gcp classes are compatible.
Value
logical (1) TRUE if the AnVIL environment is set up properly to interact with GCP, otherwise
FALSE.
Functions

* has_avworkspace(gcp): Check if the AnVIL environment is set up

Examples

has_avworkspace(platform = gcp())

localize Copy packages, folders, or files to or from google buckets.

Description

localize(): recursively synchronizes files from a Google storage bucket (source) to the local
file system (destination). This command acts recursively on the source directory, and does not
delete files in destination that are not in ‘source.

delocalize(): synchronize files from a local file system (source) to a Google storage bucket
(destination). This command acts recursively on the source directory, and does not delete files
in destination that are not in source.

36 localize

Usage

localize(source, destination, dry = TRUE)

delocalize(source, destination, unlink = FALSE, dry = TRUE)

Arguments
source character (1), a google storage bucket or local file system directory location.
destination character (1), a google storage bucket or local file system directory location.
dry logical(1), when TRUE (default), return the consequences of the operation
without actually performing the operation.
unlink logical (1) remove (unlink) the file or directory in source. Default: FALSE.
Value

localize(): exit status of function gsutil_rsync().

delocalize(): exit status of function gsutil_rsync()

Index

.gcp (gep-class), 28

AnVILBase: :cloud_platform, 9, 11, 14, 24,
31

av, 2

avbackup (gcp-methods), 29

avbackup, gcp-method (gcp-methods), 29

avcopy (gcp-methods), 29

avcopy, gcp-method (gcp-methods), 29

avdata, 7

avdata_import (avdata), 7

avdisks (av), 2

avfiles_backup (av), 2

avfiles_ls (av), 2

avfiles_restore (av), 2

avfiles_rm(av), 2

avlist (gcp-methods), 29

avlist,gcp-method (gcp-methods), 29

avnotebooks (avnotebooks-methods), 8

avnotebooks, gcp-method
(avnotebooks-methods), 8

avnotebooks-methods, 8

avnotebooks_delocalize
(avnotebooks-methods), 8

avnotebooks_delocalize, gcp-method
(avnotebooks-methods), 8

avnotebooks_localize
(avnotebooks-methods), 8

avnotebooks_localize,gcp-method
(avnotebooks-methods), 8

avremove (gcp-methods), 29

avremove, gcp-method (gcp-methods), 29

avrestore (gcp-methods), 29

avrestore, gcp-method (gcp-methods), 29

avruntime (av), 2

avruntimes (av), 2

avstorage (gcp-methods), 29

avstorage, gcp-method (gcp-methods), 29

avtable (avtable-methods), 9

avtable, gcp-method (avtable-methods), 9

37

avtable-methods, 9
avtable_delete, gcp-method
(avtable-methods), 9
avtable_delete_values
(avtable-methods), 9
avtable_delete_values, gcp-method
(avtable-methods), 9
avtable_import (avtable-methods), 9
avtable_import,gcp-method
(avtable-methods), 9
avtable_import_set (avtable-methods), 9
avtable_import_set, gcp-method
(avtable-methods), 9
avtable_import_status (av), 2
avtable_paged (av), 2
avtables (avtable-methods), 9
avtables,gcp-method (avtable-methods), 9
avworkflow (avworkflow_configurations),
19
avworkflow-methods, 14
avworkflow_configuration_get
(avworkflow_configurations), 19
avworkflow_configuration_inputs
(avworkflow_configurations), 19
avworkflow_configuration_outputs
(avworkflow_configurations), 19
avworkflow_configuration_set
(avworkflow_configurations), 19
avworkflow_configuration_template
(avworkflow_configurations), 19
avworkflow_configuration_update
(avworkflow_configurations), 19
avworkflow_configurations, 19
avworkflow_files (avworkflows), 15
avworkflow_info (avworkflows), 15
avworkflow_jobs, gcp-method
(avworkflow-methods), 14
avworkflow_localize (avworkflows), 15
avworkflow_name

38

(avworkflow_configurations), 19
avworkflow_namespace
(avworkflow_configurations), 19
avworkflow_run (avworkflows), 15
avworkflow_stop (avworkflows), 15
avworkflows, 15
avworkspace, gcp-method
(avworkspace-methods), 23
avworkspace-methods, 23
avworkspace_clone, gcp-method
(avworkspace-methods), 23
avworkspace_name, gcp-method
(avworkspace-methods), 23
avworkspace_namespace, gcp-method
(avworkspace-methods), 23
avworkspaces, gcp-method
(avworkspace-methods), 23

delocalize (localize), 35
drs, 25

drs_hub (drs), 25
drs_nci_crdc (drs), 25

gcloud-defunct, 27
gcloud_access_token (gcloud-defunct), 27
gcloud_account (gcloud-defunct), 27
gcloud_cmd (gcloud-defunct), 27
gcloud_exists (gcloud-defunct), 27
gcloud_help (gcloud-defunct), 27
gcloud_project (gcloud-defunct), 27
gcloud_storage (gcloud-defunct), 27
gcloud_storage_buckets
(gcloud-defunct), 27
gcp (gep-class), 28
gcp-class, 28
gcp-methods, 29
GCPtools::gsutil, 27
gsutil-deprecated, 32
gsutil_cat (gsutil-deprecated), 32
gsutil_exists (gsutil-deprecated), 32
gsutil_help (gsutil-deprecated), 32
gsutil_pipe (gsutil-deprecated), 32
gsutil_requesterpays
(gsutil-deprecated), 32
gsutil_rsync (gsutil-deprecated), 32
gsutil_stat (gsutil-deprecated), 32

has_avworkspace, gcp-method
(has_avworkspace-methods), 35

INDEX

has_avworkspace-methods, 35
localize, 35

print.avworkflow_configuration
(avworkflow_configurations), 19

	av
	avdata
	avnotebooks-methods
	avtable-methods
	avworkflow-methods
	avworkflows
	avworkflow_configurations
	avworkspace-methods
	drs
	gcloud-defunct
	gcp-class
	gcp-methods
	gsutil-deprecated
	has_avworkspace-methods
	localize
	Index

