Package ‘AlpsNMR’

February 1, 2026
Type Package
Title Automated spectral. Processing System for NMR
Version 4.13.0
Date 2025-09-24
Encoding UTF-8

Description Reads Bruker NMR data directories both zipped and unzipped.
It provides automated and efficient signal processing for untargeted
NMR metabolomics.
It is able to interpolate the samples, detect outliers, exclude regions,
normalize, detect peaks, align the spectra, integrate peaks, manage metadata and
visualize the spectra.
After spectra proccessing, it can apply multivariate analysis on extracted data.
Efficient plotting with 1-D data is also available.
Basic reading of 1D ACD/Labs exported JDX samples is also available.

License MIT + file LICENSE
URL https://sipss.github.io/AlpsNMR/, https://github.com/sipss/AlpsNMR

BugReports https://github.com/sipss/AlpsNMR/issues
LazyData FALSE
Depends R (>=4.2)

Imports utils, generics, graphics, stats, grDevices, cli, magrittr (>=
1.5), dplyr (>= 1.1.0), signal (>= 0.7-6), rlang (>= 0.3.0.1),
scales (>= 1.2.0), stringr (>= 1.3.1), tibble(>= 1.3.4), tidyr
(>=1.0.0), tidyselect, readxl (>= 1.1.0), purrr (>=0.2.5),
glue (>=1.2.0), reshape2 (>= 1.4.3), mixOmics (>= 6.22.0),
matrixStats (>= 0.54.0), fs (>= 1.2.6), rmarkdown (>=1.10),
speaq (>= 2.4.0), htmltools (>= 0.3.6), pcaPP (>= 1.9-73),
ggplot2 (>=3.1.0), baseline (>= 1.2-1), vctrs (>= 0.3.0),
BiocParallel (>= 1.34.0)

Suggests ASICS, BiocStyle, ChemoSpec, cowplot, curl, DT (>= 0.5),
GGally (>= 1.4.0), ggrepel (>= 0.8.0), gridExtra, knitr,
NMRphasing, plotly (>=4.7.1), progressr, SummarizedExperiment,
S4Vectors, testthat (>= 2.0.0), writex] (>= 1.0), zip (>=
2.0.4)

https://sipss.github.io/AlpsNMR/
https://github.com/sipss/AlpsNMR
https://github.com/sipss/AlpsNMR/issues

biocViews Software, Preprocessing, Visualization, Classification,
Cheminformatics, Metabolomics, Datalmport

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/AlpsNMR
git_branch devel

git_last_commit 4ceOfcd

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Ivan Montoliu Roura [aut],

Sergio Oller Moreno [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8994-1549>),

Francisco Madrid Gambin [aut] (ORCID:
<https://orcid.org/0000-0001-9333-0014>),

Luis Fernandez [aut] (ORCID: <https://orcid.org/0000-0001-9790-6287>),

Laura Lépez Sanchez [ctb],

Héctor Gracia Cabrera [aut],

Santiago Marco Colas [aut] (ORCID:
<https://orcid.org/0000-0003-2663-2965>),

Nestlé Institute of Health Sciences [cph],

Institute for Bioengineering of Catalonia [cph],

Miller Jack [ctb] (ORCID: <https://orcid.org/0000-0002-6258-1299>,
Autophase wrapper, ASICS export)

Maintainer Sergio Oller Moreno <sergioller@gmail.com>

Contents

AlpsNMR-package
bp_kfold_VIP_analysis
bp_VIP_analysis
download MTBLS242 e
files_to_rDolphin
file_lister e e
filter.nmr_dataset_family Lo o
format.nmr_dataset e e e
format.nmr _dataset 1D
format.nmr_dataset_peak_table
get_integration_with_metadata
hmdb e e
HMDB_blood e
HMDB _cell e e
HMDB wurine

Contents

https://orcid.org/0000-0002-8994-1549
https://orcid.org/0000-0001-9333-0014
https://orcid.org/0000-0001-9790-6287
https://orcid.org/0000-0003-2663-2965
https://orcid.org/0000-0002-6258-1299

Contents

3
Is.nmr_dataset L e e e e e e 20
isamr_dataset_1D L 20
is.nmr_dataset_peak_table 21
load_and_save_functions e e 22
models_stability_plot_bootstrap 23
models_stability_plot_plsda L 24
new_nmr_dataset e e e 25
new_nmr_dataset_1D L e 27
new_nmr_dataset_peak_table L L L L 28
nmr_align L 29
nmr_align_find_refo 30
NMr_autophase o i e e e e e e e e e e 30
nmr_baseline_estimation e 31
nmr_baseline_removal e e 32
nmr_baseline_threshold 33
nmr_baseline_threshold_plot 34
nmr_batman e e e e e e 35
nmr_batman_options e e e 37
nmr_build_peak_table 39
nmr_data e e e e e e 39
nmr_dataset e e e e e 40
nmr_dataset_1D L e e 41
nmr_dataset_family Lo 42
nmr_dataset_peak_table 42
nmr_dataset_peak_table_to_SummarizedExperiment 43
nmr_data_1r_to_SummarizedExperiment oL oL 44
nmr_data_analysis 44
nmr_data_analysis_method oL 46
nmr_detect_peaks L. 48
nmr_detect_peaks_plot 49
nmr_detect_peaks_plot_overview 50
nmr_detect_peaks_plot_peaks 51
nmr_detect_peaks_tune_snr e e 52
nmr_exclude_region 53
nmr_export_data_lr. 54
nmr_get_peak_distanceso e e 55
nmr_identify_regions_blood 55
nmr_identify_regions_cell oL 56
nmr_identify_regions_urineo 57
nmr_integrate_peak_positions oL L 58
nmr_integrate_regions oo i e e e e e e e 59
nmr_interpolate_1D L e 61
nmr_meta_add L L e e e 62
NMI_MEta_EXPOTL v v v v e vt e bt e e e e e e e e e e e e e 64
NMI_MEA_ZEL o o ettt e e e e e e e e e 65
nmr_meta_get_column e 66
NMI_MELA_GIOUPS « .« . v v v v v e v e 67

nmr_normalize e e 67

Contents

nmr_pca_build_model 69
nmr_pca_outliers e 70
nmr_pca_outliers_filtero 71
nmr_pca_outliers_plot Lo 72
nmr_pca_outliers_robust L e 73
nMr_pca_plots L e e e e e e e e 74
nmr_peak_clustering 75
nmr_peak_clustering_plot 76
nmr_ppm_resolution L. 77
nmr_read_bruker fid 78
nmr_read_samples e 78
nmr_zip_bruker_samples 80
Parameters blood e 81
Parameters_cell e 81
Parameters_urine e e e e e 82
peaklist accept_peaks. L 82
peaklist_fit_lorentzians 83
Peak_detection e 85
permutation_test_model L. 86
permutation_test_plot L 88
Pipelines 90
plot.nmr_dataset_1D 94
plot_bootstrap_multimodel Lo 95
plot_interactive 97
plot_plsda_multimodel 97
plot_plsda_samples e 99
PIOt_VIP_SCOES o o e e 100
plot_webgl 102
plsda_auroc_vip_compareo e e e e 103
plsda_auroc_vip_method L 104
PPM_resolution e e 105
print.nmr_dataset e e 106
print.nmr_dataset_1D 106
print.nmr_dataset_peak_table 107
random_subsampling oL 108
read_bruker_pdata 109
TEEXPOTLS . v v v v e i e e e e e e e e e e e e e e e e e e e 110
ROL blood e 110
ROL cell e 111
ROI_urine e e 111
save_files_to_rDolphin 112
save_profiling_output L. 113
SummarizedExperiment_to_nmr_dataset_peak_table 114
SummarizedExperiment_to_nmr_data_Ir oL oL 114
tidynmr_dataset_1D 115
to_ASICS e e e e e 116
to_ChemoSpec e 117

validate_nmr_dataset e e 118

AlpsNMR-package 5

validate_nmr_dataset_family 119

validate_nmr_dataset_peak_table Lo oL 119

/7% 120

[.nmr_dataset e e e e 120

[.nmr_dataset_1D e 121

[.nmr_dataset_peak_table 122
Index 123

AlpsNMR-package AlpsNMR: Automated spectraLl Processing System for NMR

Description

AlpsNMR allows you to import NMR spectra into R and provides automated and efficient signal
processing for untargeted NMR metabolomics.

Details

The following functions can be combined with the pipe. They create or modify the nmr_dataset
object.

nmr_read_samples_dir() or nmr_read_samples()
nmr_interpolate_1D()

nmr_exclude_region()

nmr_normalize()

plot()

There are also functions to extract the metadata and submit the samples to irods, see the example
below.

The nmr_dataset object is essentially a list, so it is easy to access its components for further analysis.

Author(s)

Maintainer: Sergio Oller Moreno <sergioller@gmail.com> (ORCID)
Authors:

Ivan Montoliu Roura <Ivan.MontoliuRoura@rd.nestle.com>
Francisco Madrid Gambin <fmadrid@ibecbarcelona.eu> (ORCID)
Luis Fernandez <1fernandez@ibecbarcelona.eu> (ORCID)
Héctor Gracia Cabrera <hgracia@ibecbarcelona.eu>

Santiago Marco Colas <smarco@ibecbarcelona.eu> (ORCID)

Other contributors:

Laura Lépez Sanchez [contributor]

https://orcid.org/0000-0002-8994-1549
https://orcid.org/0000-0001-9333-0014
https://orcid.org/0000-0001-9790-6287
https://orcid.org/0000-0003-2663-2965

6 bp_kfold_VIP_analysis

* Nestlé Institute of Health Sciences [copyright holder]
* Institute for Bioengineering of Catalonia [copyright holder]

* Miller Jack <jack.miller@physics.org> (ORCID) (Autophase wrapper, ASICS export)
[contributor]

See Also
Useful links:

* https://sipss.github.io/AlpsNMR/
e https://github.com/sipss/AlpsNMR
* Report bugs at https://github.com/sipss/AlpsNMR/issues

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
my_nmr_dataset <- dataset %>%
nmr_interpolate_1D(axis = c(@.4, 10)) %>%
nmr_exclude_region(exclude = list(water = c(4.6, 5))) %>%
nmr_normalize(method = "pgn") %>%
plot()

bp_kfold_VIP_analysis K-fold bootstrap and permutation over PLS-VIP

Description
Bootstrap and permutation over PLS-VIP on AlpsNMR can be performed on both nmr_dataset_1D
full spectra as well as nmr_dataset_peak_table peak tables.

Usage

bp_kfold_VIP_analysis(dataset, y_column, k = 4, ncomp = 3, nbootstrap = 300)

Arguments
dataset An nmr_dataset_family object
y_column A string with the name of the y column (present in the metadata of the dataset)
k Number of folds, recomended between 4 to 10
ncomp number of components for the bootstrap models
nbootstrap number of bootstrap dataset
Details

Use of the bootstrap and permutation methods for a more robust variable importance in the projec-
tion metric for partial least squares regression, in a k-fold cross validation

https://orcid.org/0000-0002-6258-1299
https://sipss.github.io/AlpsNMR/
https://github.com/sipss/AlpsNMR
https://github.com/sipss/AlpsNMR/issues

bp_kfold_VIP_analysis

Value
A list with the following elements:

e important_vips: A list with the important vips selected
* relevant_vips: List of vips with some relevance

e wilcoxon_vips: List of vips that pass a wilcoxon test

e vip_means: Means of the vips scores

* vip_score_plot: plot of the vips scores

* kfold_resuls: results of the k bp_VIP_analysis

* kfold_index: list of index of partitions of the folds

Examples

Data analysis for a table of integrated peaks
set.seed(42)
Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 64 # use an even number in this example
num_peaks <- 10
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = sample(rep(c("A”, "B"), times = num_samples / 2), num_samples)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

rownames (peak_matrix) <- paste@("”Sample”, 1:num_samples)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use bootstrap and permutation method for VIPs selection

in a a k-fold cross validation

bp_results <- bp_kfold_VIP_analysis(peak_table, # Data to be analyzed
y_column = "Condition"”, # Label

8 bp_VIP_analysis

k =2,

ncomp = 1,

nbootstrap = 5
)

n

message("Selected VIPs are: ", bp_results$important_vips)

bp_VIP_analysis Bootstrap and permutation over PLS-VIP

Description

Bootstrap and permutation over PLS-VIP on AlpsNMR can be performed on both nmr_dataset_1D
full spectra as well as nmr_dataset_peak_table peak tables.

Usage

bp_VIP_analysis(dataset, train_index, y_column, ncomp, nbootstrap = 300)

Arguments
dataset An nmr_dataset_family object
train_index set of index used to generate the bootstrap datasets
y_column A string with the name of the y column (present in the metadata of the dataset)
ncomp number of components used in the plsda models
nbootstrap number of bootstrap dataset
Details

Use of the bootstrap and permutation methods for a more robust variable importance in the projec-
tion metric for partial least squares regression

Value

A list with the following elements:

e important_vips: A list with the important vips selected

* relevant_vips: List of vips with some relevance

* pls_vip: Pls-VIPs of every bootstrap

* pls_vip_perm: Pls-VIPs of every bootstrap with permuted variables
e pls_vip_means: Pls-VIPs normaliced differences means

e pls_vip_score_diff: Differences of pls_vip and pls_vip_perm
* pls_models: pls models of the diferent bootstraps

* pls_perm_models: pls permuted models of the diferent bootstraps

bp_VIP_analysis

* classif_rate: classification rate of the bootstrap models

* general_model: pls model trained with all train data

* general_CR: classification rate of the general_model

* vips_model: pls model trained with vips selection over all train data
e vips_CR: classification rate of the vips_model

* error: error spected in a t distribution

* lower_bound: lower bound of the confidence interval

* upper_bound: upper bound of the confidence interval

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use a double cross validation, splitting the samples with random
subsampling both in the external and internal validation.

The classification model will be a PLSDA, exploring at maximum 3 latent
variables.

The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 3)

model <- nmr_data_analysis(

10

peak_table,

y_column = "Condition”,

identity_column = NULL,

external_val = list(iterations = 1, test_size
internal_val = list(iterations = 3, test_size
data_analysis_method = methodology

)
Area under ROC for each outer cross-validation
model$outer_cv_results_digested$auroc

download MTBLS242

= 0.25),
= 0.25),

iteration:

The number of components for the bootstrap models is selected

ncomps <- model$outer_cv_results$ 1" $model$ncomp

train_index <- model$train_test_partitions$outer$”

Bootstrap and permutation for VIP selection

1~ $outer_train

bp_VIPS <- bp_VIP_analysis(peak_table, # Data to be analyzed

train_index,

y_column = "Condition",
ncomp = ncomps,
nbootstrap = 10

download_MTBLS242 Download MTBLS242

Description

Downloads the MTBLS242 dataset from Gralka et al., 2015. DOI: doi:10.3945/ajen.115.110536.

Usage

download_MTBLS242(
dest_dir = "MTBLS242",
force = FALSE,
keep_only_CPMG_1r = TRUE,

keep_only_preop_and_3months = TRUE,

keep_only_complete_time_points = TRUE
)
Arguments
dest_dir Directory where the dataset should be saved
force

Logical. If TRUE we do not re-download files if they exist. The function does not

check whether cached versions were downloaded with different keep_only_x*
arguments, so please use force = TRUE if you change the keep_only_x settings.

keep_only_CPMG_1r

If TRUE, remove all other data beyond the CPMG real spectrum, which is enough

for the tutorial

https://www.ebi.ac.uk/metabolights/MTBLS242/protocols
https://doi.org/10.3945/ajcn.115.110536

download_MTBLS242 11

keep_only_preop_and_3months
If TRUE, keep only the preoperatory and the "three months after surgery" time
points, enough for the tutorial

keep_only_complete_time_points
If TRUE, remove samples that do not appear on all timepoints. Useful for the
tutorial.

Details

Besides the destination directory, this function includes three logical parameters to limit the amount
of downloaded/saved data. To run the tutorial workflow:

* only the "preop" and "three months" timepoints are used,

* only subjects measured in both preop and three months time points are used

* only the CPMG samples are used.
If you want to run the tutorial, you can set those filters to TRUE. Then, roughly 800MB will be

downloaded, and 77MB of disk space will be used, since for each downloaded sample we remove
all the data but the CPMG.

If you set those filters to FALSE, roughly 1.8GB of data will be downloaded (since we have more
timepoints to download) and 1.8GB of disk space will be used.

Note that we have experienced some sporadic timeouts from Metabolights, when downloading the
dataset. If you get those timeouts simply re-run the download function and it will restart from where
it stopped.

Note as well, that we observed several files to have incorrect data:

* Obs4_0346s.zip is not present in the FTP server
* Obs0_0110s.zip and Obs1_0256s.zip incorrectly contain sample Obs1_0010s

This function removes all three samples from the samples annotations and doesn’t download their
data.

Value

Invisibly, the annotations. See the example for how to download the annotations and create a dataset
from the downloaded files.

Examples

Not run:
download_MTBLS242("./MTBLS242")
annot <- readr::read_tsv(annotations_destfile)

dataset <- nmr_read_samples(annot$filename)
dataset <- nmr_meta_add(dataset, annot)

dataset

End(Not run)

12 files_to_rDolphin

files_to_rDolphin Files to rDoplhin

Description

The rDolphin family functions are introduced to perform automatic targeted metabolite profiling.
Therefore, ensure that you interpolated from -0.1 ppm in order to consider the TSP/DSS signal at
0.0 ppm. The function generates a list with the files required by to_rDolphin function. Then, it
is required to save them with the save_files_to_rDolphin. to_rDolphin function will read the
generated "parameters.csv" file. function.

Usage

files_to_rDolphin(nmr_dataset, biological_origin)

Arguments

nmr_dataset An nmr_dataset object
biological_origin
String specify the type of sample (blood, urine, cell)

Value
a list containing:

* meta_rDolphin: metadata in rDolphin format,
* NMR_spectra: spectra matrix
e ROI: ROI template

* Parameters: parameters file

See Also

Other import/export functions: Pipelines, load_and_save_functions, nmr_data(), nmr_meta_export(),
nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(), save_files_to_rDolphin(),
save_profiling_output(), to_ChemoSpec()

Examples

Not run:

Set the directory in which rDolphin files will be saved
output_dir_10_rDolphin <- file.path(your_path, "10-rDolphin")
fs::dir_create(output_dir_10_rDolphin)

Generate the files (for plasma/serum)
files_rDolphin <- files_to_rDolphin(nmr_dataset_0_10_ppm, blood)

Save the files
save_files_to_rDolphin(files_rDolphin, output_dir_10_rDolphin)

file_lister 13

Build the rDolphin object. Do not forget to set the directory
setwd(output_dir_10_rDolphin)
rDolphin_object <- to_rDolphin("Parameters.csv")

Visualize your spectra
rDolphin_plot(rDolphin_object)

Run the main profiling function (it takes a while)
targeted_profiling <- Automatic_targeted_profiling(rDolphin_object)

Save results
save_profiling_output(targeted_profiling, output_dir_10_rDolphin)

save_profiling_plots(
output_dir_10_rDolphin, targeted_profiling$final_output,
targeted_profiling$reproducibility_data

)

Additionally, you can run some stats

intensities <- targeted_profiling$final_output$intensity
group <- as.factor(rDolphin_object$Metadata$type)
model_PLS <- rdCV_PLS_RF(X = intensities, Y = group)

End(Not run)

file_lister NMR file lister

Description

The function lists samples from the chosen folder required to import and create a nmr_dataset_1D
object. The function is based on the fs::dir_1s() function.

Usage

file_lister(dataset_path_nmr, glob)

Arguments
dataset_path_nmr
A character vector of the path where samples are.

glob A wildcard or globbing pattern common for the samples to be read, for example
ending with *0 (spectra acquired by a NOESY sequence often end by 0: 10, 20,
30...) or *s (for example, samples from the tutorial in this package) passed on to
grep() to filter paths.

Value

lists of samples from the chosen folder

14 filter.nmr_dataset_family

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
lists_of_samples <- file_lister(dir_to_demo_dataset, "*0")

filter.nmr_dataset_family
Keep samples based on metadata column criteria

Description

Keep samples based on metadata column criteria

Usage
S3 method for class 'nmr_dataset_family'
filter(.data, ...)

Arguments
.data An nmr_dataset_family object

conditions, as in dplyr

Value

The same object, with the matching rows

See Also

Other subsetting functions: [.nmr_dataset(), [.nmr_dataset_1D(), [.nmr_dataset_peak_table(),
nmr_pca_outliers_filter()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))

example 1
sample_10 <- filter(dataset_1D, NMRExperiment == "10")

example 2
test_samples <- dataset_1D %>% filter(nmr_peak_table$metadata$external$Group == "placebo”)

format.nmr_dataset 15

format.nmr_dataset Format for nmr_dataset

Description

Format for nmr_dataset

Usage
S3 method for class 'nmr_dataset'
format(x, ...)
Arguments
X an nmr_dataset object
for future use
Value

Format for nmr_dataset

See Also

Other class helper functions: format.nmr_dataset_1D(), format.nmr_dataset_peak_table(),

is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table
validate_nmr_dataset(), validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
format(dataset)

format.nmr_dataset_1D format for nmr_dataset_ID

Description

format for nmr_dataset_1D

Usage

S3 method for class 'nmr_dataset_1D'
format(x, ...)

16 format.nmr._dataset_peak_table

Arguments
X an nmr_dataset_1D object
for future use
Value

format for nmr_dataset_1D

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_peak_table(), is.nmr_dataset_1D(),
is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(), new_nmr_dataset_peak_table(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), get_integration_with_metadata(),
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get (), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
format(dataset_1D)

format.nmr_dataset_peak_table
Format for nmr_dataset_peak_table

Description

Format for nmr_dataset_peak_table

Usage
S3 method for class 'nmr_dataset_peak_table'
format(x, ...)
Arguments
X an nmr_dataset_peak_table object
for future use
Value

Format for nmr_dataset_peak_table

get_integration_with_metadata 17

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), is.nmr_dataset_1D(),
is.nmr_dataset_peak_table(), new_nmr_dataset(), new_nmr_dataset_1D(), new_nmr_dataset_peak_table(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment")
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

new <- new_nmr_dataset_peak_table(peak_table, metadata)

format (new)

get_integration_with_metadata
Get integrals with metadata from integrate peak positions

Description

Get integrals with metadata from integrate peak positions

Usage

get_integration_with_metadata(integration_object)

Arguments

integration_object
A nmr_dataset object

Value

Get integrals with metadata from integrate peak positions

integration dataframe

See Also

Other peak integration functions: Pipelines, nmr_identify_regions_blood(), nmr_identify_regions_cell(),
nmr_identify_regions_urine(), nmr_integrate_peak_positions(), nmr_integrate_regions()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), is.nmr_dataset_1D(),
nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(), nmr_meta_export(),
nmr_meta_get (), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

18 HMDB_blood

Examples

peak_table <- matrix(1:6, nrow = 2, ncol = 3)
rownames(peak_table) <- c("10", "20")
colnames(peak_table) <- c("ppm_1.2", "ppml1.4", "ppml1.6")

dataset <- new_nmr_dataset_peak_table(
peak_table = peak_table,
metadata = list(external = data.frame(NMRExperiment = c("10", "20"), Condition = c("A", "B")))
)

get_integration_with_metadata(dataset)

hmdb The Human Metabolome DataBase multiplet table

Description

The Human Metabolome DataBase multiplet table

References

https://hmdb.ca/

Examples

Get all the 1-Methylhistidine peaks:
data("hmdb")
hmdb[hmdb$Metabolite == "1-Methylhistidine"”,]

HMDB_blood The Human Metabolome DataBase multiplet table: blood metabolites
normally found in NMR-based metabolomics

Description
The Human Metabolome DataBase multiplet table: blood metabolites normally found in NMR-
based metabolomics

References

https://hmdb.ca/

Examples

data("HMDB_blood")
HMDB_blood[HMDB_blood$Metabolite == "1-Methylhistidine”,]

https://hmdb.ca/
https://hmdb.ca/

HMDB_cell 19

HMDB_cell The Human Metabolome DataBase multiplet table: cell metabolites
normally found in NMR-based metabolomics

Description

The Human Metabolome DataBase multiplet table: cell metabolites normally found in NMR-based
metabolomics

References

https://hmdb.ca/

Examples

data("HMDB_cell")
HMDB_cell[HMDB_cell$Metabolite == "Acetone”,]

HMDB_urine The Human Metabolome DataBase multiplet table: urine metabolites
normally found in NMR-based metabolomics

Description

The Human Metabolome DataBase multiplet table: urine metabolites normally found in NMR-
based metabolomics

References

https://hmdb.ca/

Examples

data("HMDB_urine")
HMDB_urine[HMDB_urine$Metabolite == "1-Methyladenosine”,]

https://hmdb.ca/
https://hmdb.ca/

20 is.nmr_dataset_1D

is.nmr_dataset Object is of nmr_dataset class

Description

Object is of nmr_dataset class

Usage

is.nmr_dataset(x)

Arguments

X An object

Value

TRUE if the object is an nmr_dataset, FALSE otherwise

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
is(dataset)

is.nmr_dataset_1D Object is of nmr_dataset_ID class

Description

Object is of nmr_dataset_1D class

Usage

is.nmr_dataset_1D(x)

Arguments

X an nmr_dataset_1D object

Value

TRUE if the object is an nmr_dataset_1D, FALSE otherwise

is.nmr_dataset_peak_table 21

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_peak_table(), new_nmr_dataset(), new_nmr_dataset_1D(), new_nmr_dataset_peak_table(),
print.nmr_dataset(),print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(), nmr_meta_export(),
nmr_meta_get (), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
result <- is(dataset_1D)

is.nmr_dataset_peak_table
Object is of nmr_dataset_peak_table class

Description

Object is of nmr_dataset_peak_table class

Usage

is.nmr_dataset_peak_table(x)

Arguments

X an nmr_dataset_peak_table object

Value

TRUE if the object is an nmr_dataset_peak_table, FALSE otherwise

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), new_nmr_dataset (), new_nmr_dataset_1D(), new_nmr_dataset_peak_table(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

22 load_and_save_functions

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment”)
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

new <- new_nmr_dataset_peak_table(peak_table, metadata)

is(new)

load_and_save_functions
nmr_dataset_load

Description

nmr_dataset_load

nmr_dataset_save

Usage

nmr_dataset_load(file_name)

nmr_dataset_save(nmr_dataset, file_name, ...)
Arguments

file_name The file name to load or save to

nmr_dataset An object from the nmr_dataset_family

Additional arguments passed to saveRDS.

Value

Functions to load and save nmr_dataset objects
load nmr dataset

save nmr dataset

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), nmr_data(), nmr_meta_export(),
nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(), save_files_to_rDolphin(),
save_profiling_output(), to_ChemoSpec()

models_stability_plot_bootstrap 23

Examples

dataset <- nmr_dataset_load("test")
nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR"))

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
nmr_dataset_save(dataset, "test"”)

models_stability_plot_bootstrap
Models stability plot

Description

Plot stability among models of the external cross validation

Usage

models_stability_plot_bootstrap(bp_results)

Arguments

bp_results bp_kfold_VIP_analysis results

Value

A plot of models stability

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 64 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak"”, 1:num_peaks)

24 models_stability_plot_plsda

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A" 6 "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A" "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table
peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use bootstrap and permutation method for VIPs selection
in a a k-fold cross validation
bp_results <- bp_kfold_VIP_analysis(peak_table, # Data to be analized

y_column = "Condition"”, # Label
k =3,
nbootstrap = 10)

n

message("Selected VIPs are: ", bp_results$importarn_vips)

models_stability_plot_bootstrap(bp_results)

models_stability_plot_plsda
Models stability plot

Description

Plot stability among models of the external cross validation

Usage

models_stability_plot_plsda(model)

Arguments

model A nmr_data_analysis_model

Value

A plot of models stability

new_nmr_dataset

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A" "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A" "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

methodology <- plsda_auroc_vip_method(ncomp = 3)

model <- nmr_data_analysis(
peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology

models_stability_plot_plsda(model)

new_nmr_dataset Create an nmr_dataset object

26 new_nmr_dataset

Description

Create an nmr_dataset object

Usage

new_nmr_dataset(metadata, data_fields, axis)

Arguments

metadata A named list of data frames
data_fields A named list. Check the examples

axis A list. Check the examples

Value

Create an nmr_dataset object

Create an nmr_dataset object

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset_1D(), new_nmr_dataset_peak_table(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

#

metadata_1D <- list(external = data.frame(NMRExperiment = c("10", "20")))

Sample 10 and Sample 20 can have different lengths (due to different setups)
data_fields_1D <- list(data_1r = list(runif(16), runif(32)))

Each sample has its own axis list, with one element (because this example is 1D)
axis_1D <- list(list(1:16), list(1:32))

my_1D_data <- new_nmr_dataset(metadata_1D, data_fields_1D, axis_1D)

Example for 2D samples
metadata_2D <- list(external = data.frame(NMRExperiment = c("11", "21")))
data_fields_2D <- list(data_2rr = list(matrix(runif(16 * 3), nrow = 16, ncol = 3),
runif (32 * 3),
nrow = 32, ncol = 3
)
Each sample has its own axis list, with one element (because this example is 1D)
axis_2D <- list(list(1:16, 1:3), list(1:32, 1:3))
my_2D_data <- new_nmr_dataset(metadata_2D, data_fields_2D, axis_2D)

new_nmr_dataset 1D 27

new_nmr_dataset_1D Creates a new 1D nmr_dataset object from scratch

Description

Creates a new 1D nmr_dataset object from scratch

Usage

new_nmr_dataset_1D(ppm_axis, data_1r, metadata)

Arguments
ppm_axis A numeric vector with the ppm values for the columns of data_1r
data_1r A numeric matrix with one NMR spectrum on each row
metadata A list of data frames with at least the NMRExperiment column
Value

Creates a new 1D nmr_dataset object from scratch

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_peak_table(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),

validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

Create a random spectra matrix
nsamp <- 12
npoints <- 20
dummy_ppm_axis <- seq(from = 0.2, to = 10, length.out = npoints)
dummy_spectra_matrix <- matrix(runif(nsamp * npoints), nrow = nsamp, ncol = npoints)
metadata <- list(external = data.frame(
NMRExperiment = paste@(”Sample”, 1:12),
DummyClass = c("a", "b")
))
dummy_nmr_dataset_1D <- new_nmr_dataset_1D(
ppm_axis = dummy_ppm_axis,
data_1r = dummy_spectra_matrix,
metadata = metadata

28 new_nmr._dataset_peak_table

new_nmr_dataset_peak_table
Creates a new nmr_dataset_peak_table object from scratch

Description

Creates a new nmr_dataset_peak_table object from scratch

Usage

new_nmr_dataset_peak_table(peak_table, metadata)

Arguments
peak_table A numeric matrix with one NMR spectrum on each row
metadata A list of data frames with at least the NMRExperiment column
Value

Creates a new nmr_dataset_peak_table object from scratch

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment"”)
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

new <- new_nmr_dataset_peak_table(peak_table, metadata)

nmr_align 29

nmr_align Align NMR spectra

Description

This function is based on speaq::dohCluster.

Usage

nmr_align(
nmr_dataset,
peak_data,
NMRExp_ref = NULL,
maxShift_ppm = 0.0015,
acceptLostPeak = FALSE

)
Arguments
nmr_dataset An nmr_dataset_1D
peak_data The detected peak data given by nmr_detect_peaks.
NMRExp_ref NMRExperiment of the reference to use for alignment

maxShift_ppm The maximum shift allowed, in ppm

acceptLostPeak This is an option for users, TRUE is the default value. If the users believe that
all the peaks in the peak list are true positive, change it to FALSE.

Value

An nmr_dataset_1D, with the spectra aligned

See Also

Other alignment functions: Pipelines, nmr_align_find_ref ()

Other peak alignment functions: nmr_align_find_ref ()

30 nmr._autophase

nmr_align_find_ref Find alignment reference

Description

Find alignment reference

Usage

nmr_align_find_ref(nmr_dataset, peak_data)

Arguments

nmr_dataset An nmr_dataset_1D

peak_data The detected peak data given by nmr_detect_peaks.
Value

The NMRExperiment of the reference sample

See Also

Other alignment functions: Pipelines, nmr_align()

Other peak alignment functions: nmr_align()

nmr_autophase Rephase 1D NMR data

Description

Use phasing algorithms to rephase data in the spectral domain.

This function may improve autophasing processing from instrument vendors. It wraps the NMRphasing: :NMRphasing()
function, to automatically rephase spectra, allowing you to choose from a number of algorithms of
which NLS, MPC_DANM and SPC_DANM are the most recent.

Rephasing should happen before any spectra interpolation.

Please use the all_components = TRUE when calling nmr_read_samples() in order to load the
complex spectra and fix NMR phasing correctly.

Usage

nmr_autophase(
dataset,
method = c(”NLS", "MPC_DANM", "MPC_EMP", "SPC_DANM", "SPC_EMP", "SPC_AAM", "SPC_DSM"),
withBC = FALSE,

nmr_baseline_estimation 31

Arguments

dataset
method
withBC

Value

An nmr_dataset object
The autophasing method. See NMRphasing: :NMRphasing() for details.

NMRphasing: :NMRphasing may perform a baseline correction using modified
polynomial fitting. By default AlpsNMR offers other baseline estimation meth-
ods and better visualization of its effect, so AlpsNMR by default disables the
baseline correction offered by NMRphasing.

Other parameters passed on to NMRphasing: :NMRphasing().

A (hopefully better phased) nmr_dataset object, with updated real and imaginary parts.

Examples

if (requireNamespace(”NMRphasing”, quietly=TRUE)) {
Helpers to create a dataset:
lorentzian <- function(x, x@, gamma, A) {
Ax (1 / (pi * gamma)) * ((gamma’*2) / ((x - x@)*2 + gamma’2))

}

x <- seq(from=1, to=2, length.out = 300)
y <- lorentzian(x, 1.3, 0.01, 1) + lorentzian(x, 1.6, 0.01, 1)
dataset <- new_nmr_dataset(

metadata =

list(external = data.frame(NMRExperiment = "10")),

data_fields = list(data_1r = list(y)),
axis = list(list(x))

)

Autophase, interpolate and plot:
dataset <- nmr_autophase(dataset, method = "NLS")
dataset <- nmr_interpolate_1D(dataset, axis = c(min = 1, max = 2, by = 0.01))

plot(dataset)

nmr_baseline_estimation

Estimate the baseline on an nmr_dataset_ID object, using base-
line::baseline.als.

Description

Estimate the baseline on an nmr_dataset_1D object, using baseline::baseline.als.

Usage

nmr_baseline_estimation(nmr_dataset, lambda = 9, p = 0.05, maxit = 20)

32 nmr_baseline_removal

Arguments
nmr_dataset An nmr_dataset_1D.
lambda 2nd derivative constraint
p Weighting of positive residuals
maxit Maximum number of iterations
Value

The same nmr_dataset_1D object with the data_1r_baseline element.

See Also

baseline::baseline.als

Other baseline removal functions: nmr_baseline_removal ()

Examples

dataset_1D <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR"))
dataset_1D <- nmr_baseline_estimation(dataset_1D, lambda = 9, p = 0.01)

nmr_baseline_removal Baseline Removal NMR

Description

Removes the baseline on an nmr_dataset_1D object, using baseline::baseline.als.

Usage

nmr_baseline_removal (nmr_dataset, lambda = 6, p = 0.05, maxit = 20)

Arguments
nmr_dataset An nmr_dataset_1D.
lambda 2nd derivative constraint
p Weighting of positive residuals
maxit Maximum number of iterations
Value

The same nmr_dataset_1D object after baseline removal.

See Also

baseline::baseline.als

Other baseline removal functions: nmr_baseline_estimation()

nmr_baseline_threshold 33

Examples

dataset_1D <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR"))
dataset_no_base_line <- nmr_baseline_removal(dataset_1D, lambda = 6, p = 0.01)

nmr_baseline_threshold
Threshold estimation for peak detection

Description

Estimates the threshold value for peak detection on an nmr_dataset_1D object by examining a range
without peaks, by default the 9.5 - 10 ppm range.

Usage

nmr_baseline_threshold(
nmr_dataset,
range_without_peaks = c(9.5, 10),

method = c("mean3sd”, "median3mad")
)
Arguments
nmr_dataset An nmr_dataset_1D.

range_without_peaks
A vector with two doubles describing a range without peaks suitable for baseline
detection

method Either "mean3sd" or the more robust "median3mad". See the details.

Details
Two methods can be used:

* "mean3sd": The mean3sd method computes the mean and the standard deviation of each
spectrum in the 9.5 - 10 ppm range. The mean spectrum and the mean standard deviation are
both vectors of length equal to the number of points in the given range. The mean of the mean
spectrum the noise. The threshold is defined as center + 3 dispersion, and it is one single
threshold for the whole dataset. This is the default for backwards compatibility.

* "median3mad": First we take the data matrix. If we have estimated a baseline already, sub-
tract it. In the defined region without peaks, estimate the median of each sample and its
median absolute deviation. Return a vector of length equal to the number of samples with the
median+3mad for each sample. This is a new more robust method.

Value

Numerical. A threshold value in intensity below that no peak is detected.

34 nmr_baseline_threshold_plot

See Also

Other peak detection functions: Pipelines, nmr_detect_peaks(), nmr_detect_peaks_plot(),
nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(), nmr_identify_regions_urine(), nmr_integrate_regions()

Examples

ppm_axis <- seq(from = @, to = 10, length.out = 1000)
data_1r <- matrix(runif(1000, @, 10), nrow = 1) + 100
dataset_1D <- new_nmr_dataset_1D(

ppm_axis = ppm_axis,

data_1r = data_1r,

metadata = list(external=data.frame(NMRExperiment = "10"))

)
bl_threshold <- nmr_baseline_threshold(dataset_1D, range_without_peaks = ¢(9.5,10))

nmr_baseline_threshold_plot
Plot the baseline thresholds

Description

If you have a lot of samples you can make the plot window bigger (oruse " ~~~{r fig.height=10, fig.width=103}"
in notebooks), or choose some NMRExperiments.

Usage

nmr_baseline_threshold_plot(
nmr_dataset,
thresholds,
NMRExperiment = "all"”,
chemshift_range = c(9.5, 10),

)
Arguments
nmr_dataset An nmr_dataset_1D object
thresholds A named vector. The values are baseline thresholds. The names are NMREXx-

periments.
NMRExperiment The NMRExperiments to plot (Use "all” to plot all of them)

chemshift_range
The range to plot, as a first check use the range_without_peaks from nmr_baseline_threshold

arguments passed to ggplot2::aes (or to ggplot2::aes_string, being deprecated).

nmr_batman

Value

A plot.

Examples

ppm_axis <- seq(from = @, to = 10, length.out = 1000)
data_1r <- matrix(runif(1000, @, 10), nrow = 1) + 100
dataset_1D <- new_nmr_dataset_1D(
ppm_axis = ppm_axis,
data_1r = data_1r,
metadata = list(external=data.frame(NMRExperiment = "10"))
)
bl_threshold <- nmr_baseline_threshold(dataset_1D, range_without_peaks = ¢(9.5,10))
baselineThresh <- nmr_baseline_threshold(dataset_1D)
nmr_baseline_threshold_plot(dataset_1D, bl_threshold)

nmr_batman Batman helpers

Description

Batman helpers

Usage
nmr_batman_write_options(
bopts,
batman_dir = "BatmanInput”,
filename = "batmanOptions.txt”

)

nmr_batman_export_dataset(
nmr_dataset,

batman_dir = "BatmanInput”,
filename = "NMRdata.txt”

)

nmr_batman_multi_data_user_hmdb(
batman_dir = "BatmanInput”,
filename = "multi_data_user.csv”

nmr_batman_multi_data_user(
multiplet_table,
batman_dir = "BatmanInput”,
filename = "multi_data_user.csv”

36 nmr_batman

nmr_batman_metabolites_list(
metabolite_names,

batman_dir = "BatmanInput”,
filename = "metaboliteslList.csv”
)
Arguments
bopts Batman options
batman_dir Batman input directorye
filename Filename to use, inside batman_dir
nmr_dataset An nmr_dataset_1D object

multiplet_table
A data frame, like the hmdb dataset

metabolite_names
A character vector of the metabolite names to consider

Value

These are helper functions to make Batman tests easier

See Also

Other batman functions: nmr_batman_options()

Examples

bopts <- nmr_batman_options()
nmr_batman_write_options(bopts)

dataset_1D <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR"))
nmr_batman_export_dataset(dataset_1D)

message("Use of multi_data_user_hmdb")

multi_data_user_hmdb <- nmr_batman_multi_data_user_hmdb()

hmdb <- NULL

utils::data("hmdb"”, package = "AlpsNMR", envir = environment())
hmdb <- nmr_batman_multi_data_user (hmbd)

metabolite_names <- c("alanine”, "glucose")
metabolite_names <- nmr_batman_metabolites_list(metabolite_names)

nmr_batman_options 37

nmr_batman_options Batman Options helper

Description

Batman Options helper

Usage

nmr_batman_options(

ppmRange = matrix(c(3, 3.1, 3.6, 3.7, 3.9, 4, 4, 4.1, 6.95, 7.05, 7.6, 7.7, 7.8, 7.9),
ncol = 2, byrow = TRUE),

specNo = "1",
paraProc = 4L,
negThresh = -0.5,
scaleFac = 1e+06,
downSamp = 1,
hiresFlag = 1,
randSeed = 100025L,
nItBurnin = 200L,
nItPostBurnin = 5000L,
multFile = 2L,
thinning = 50L,
cfeFlag = 0,
nItRerun = 5000L,
startTemp = 1000,
specFreq = 600,
a = le-05,
b = 1e-09,
muMean = 1.1,
muVar = 0.2,
muVar_prop = 0.002,
nuMVar = 0.0025,
nuMVarProp = 0.1,
tauMean = -0.05,
tauPrec = 2,
rdelta = 0.02,

csFlag = @
)
Arguments
ppmRange Range of ppm to process
specNo Index of spectra to process
paraProc Number of cores to use

negThresh Truncation threshold for negative intensities

38

scaleFac
downSamp
hiresFlag
randSeed
nItBurnin
nItPostBurnin
multFile
thinning
cfeFlag
nItRerun
startTemp
specFreq
a

b

muMean
muVar
muVar_prop
nuMvar
nuMVarProp
tauMean
tauPrec
rdelta

csFlag

Value

nmr_batman_options

Divide each spectrum by this number
Decimate each spectrum by this factor

Keep High Resolution deconvolved spectra

A random seed

Number of burn-in iterations

Number of iterations after burn-in

Multiplet file (integer)

Save MCMC state every thinning iterations
Same concentration for all spectra (fixed effect)
Number of iterations for a batman rerun

Start temperature

NMR Spectrometer frequency

Shape parameter for the gamma distribution (used for lambda, the precision)

Rate distribution parameter for the gamma distribution (used for lambda, the
precision)

Peak width mean in In(Hz)

Peak width variance in In(Hz)

Peak width proposed variance in In(Hz)

Peak width metabolite variance in In(Hz)

Peak width metabolite proposed variance in In(Hz)
mean of the prior on tau

inverse of variance of prior on tau

Truncation of the prior on peak shift (ppm)

Specify chemical shift for each multiplet in each spectrum? (chemShiftperSpec-
tra.csv file)

A batman_options object with the Batman Options

See Also

Other batman functions: nmr_batman

Examples

bopts <- nmr_batman_options()

nmr_build_peak_table 39

nmr_build_peak_table Build a peak table from the clustered peak list

Description

Build a peak table from the clustered peak list

Usage

nmr_build_peak_table(peak_data, dataset = NULL)

Arguments

peak_data A peak list, with the cluster column

dataset A nmr_dataset_1D object, to get the metadata
Value

An nmr_dataset_peak_table, containing the peak table and the annotations

Examples

peak_data <- data.frame(

NMRExperiment = c("”10", "10", "20", "20"),

peak_id = paste@("Peak”, 1:4),

ppm = c(1, 2, 1.1, 2.1),

area = c(10, 20, 12, 22)
)
clustering_result <- nmr_peak_clustering(peak_data, num_clusters = 2)
peak_data <- clustering_result$peak_data
peak_table <- nmr_build_peak_table(peak_data)
stopifnot(ncol(peak_table) == 2)

nmr_data Set/Return the full spectra matrix

Description

Set/Return the full spectra matrix

40 nmr_dataset
Usage
nmr_data(nmr_dataset, ...)

S3 method for class 'nmr_dataset_1D'
nmr_data(nmr_dataset, what = "data_1r", ...)

nmr_data(nmr_dataset, ...) <- value

S3 replacement method for class 'nmr_dataset_1D'

nmr_data(nmr_dataset, what = "data_1r", ...) <- value
Arguments
nmr_dataset An object from the nmr_dataset_family to get the raw data from

Passed on to methods for compatibility

what What data do we want to get (default: data_1r)
value A matrix

Value
a matrix

The given nmr_dataset

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(),
save_files_to_rDolphin(), save_profiling_output(), to_ChemoSpec()

Examples

dataset_rds <- system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR")
dataset_1D <- nmr_dataset_load(dataset_rds)

dataset_data <- nmr_data(dataset_1D)

dataset_rds <- system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR")
dataset_1D <- nmr_dataset_load(dataset_rds)

dataset_1D_data <- nmr_data(dataset_1D)

nmr_dataset nmr_dataset (S3 class)

Description

An nmr_dataset represents a set of NMR samples. It is defined as an S3 class, and it can be treated
as a regular list.

nmr_dataset_1D 41

Details

It currently has the following elements:

* metadata: A list of data frames. Each data frame contains metadata of a given area (acquisi-
tion parameters, preprocessing parameters, general sample information...)

* axis: A list with length equal to the dimensionality of the data. For 1D spectra it is a list with
a numeric vector

* data_#: Data arrays with the actual spectra. The first index represents the sample, the rest of
the indices match the length of each axis. Typically data_1r is a matrix with one sample on
each row and the chemical shifts in the columns.

* num_samples: The number of samples in the dataset

See Also

Functions to save and load these objects

Other AlpsNMR dataset objects: nmr_dataset_family

Examples

metadata_1D <- list(external = data.frame(NMRExperiment = c("10", "20")))

Sample 10 and Sample 20 can have different lengths (due to different setups)
data_fields_1D <- list(data_1r = list(runif(16), runif(32)))

Each sample has its own axis list, with one element (because this example is 1D)
axis_1D <- list(list(1:16), list(1:32))

my_1D_data <- new_nmr_dataset(metadata_1D, data_fields_1D, axis_1D)

nmr_dataset_1D nmr_dataset_I1D (S3 class)

Description

An nmr_dataset_1D represents a set of 1D interpolated NMR samples. It is defined as an S3 class,
and it can be treated as a regular list.

Details

It currently has the following elements:
» metadata: A list of data frames. Each data frame contains metadata of a given area (acquisi-
tion parameters, preprocessing parameters, general sample information...)
* axis: A numeric vector with the chemical shift axis in ppm.

* data_1r: A matrix with one sample on each row and the chemical shifts in the columns.

42 nmr_dataset_peak_table

Examples

Create a random spectra matrix
nsamp <- 12
npoints <- 20
dummy_ppm_axis <- seq(from = 0.2, to = 10, length.out = npoints)
dummy_spectra_matrix <- matrix(runif(nsamp * npoints), nrow = nsamp, ncol = npoints)
metadata <- list(external = data.frame(
NMRExperiment = paste@(”Sample", 1:12),
DummyClass = c("a"”, "b")
))
dummy_nmr_dataset_1D <- new_nmr_dataset_1D(
ppm_axis = dummy_ppm_axis,
data_1r = dummy_spectra_matrix,
metadata = metadata

nmr_dataset_family nmr_dataset like objects (S3 classes)

Description

The AlpsNMR package defines and uses several objects to manage NMR Data.

Details

These objects share some structure and functions, so it makes sense to have an abstract class to
ensure that the shared structures are compatible

See Also

Functions to save and load these objects

Other AlpsNMR dataset objects: nmr_dataset

nmr_dataset_peak_table
nmr_dataset_peak_table (S3 class)

Description
An nmr_dataset_peak_table represents a peak table with metadata. It is defined as an S3 class,
and it can be treated as a regular list.

Usage

S3 method for class 'nmr_dataset_peak_table'
as.data.frame(x, ...)

nmr_dataset_peak_table_to_SummarizedExperiment 43

Arguments
X An nmr_dataset_peak_table object,
ignored
Details

» metadata: A list of data frames. Each data frame contains metadata. Usually the list only has
one data frame named "external".

* peak_table: A matrix with one sample on each row and the peaks in the columns

Value

A data frame with the sample metadata and the peak table

Methods (by generic)

e as.data.frame(nmr_dataset_peak_table): Convert to a data frame

nmr_dataset_peak_table_to_SummarizedExperiment
Export nmr_dataset_peak_table to SummarizedExperiment

Description

Export nmr_dataset_peak_table to SummarizedExperiment

Usage

nmr_dataset_peak_table_to_SummarizedExperiment(nmr_peak_table)

Arguments

nmr_peak_table An nmr_dataset_peak_table object

Value

SummarizedExperiment object (unmodified)

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment”)
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

44 nmr_data_analysis

nmr_peak_table <- new_nmr_dataset_peak_table(peak_table, metadata)
se <- nmr_dataset_peak_table_to_SummarizedExperiment(nmr_peak_table)

nmr_data_1r_to_SummarizedExperiment
Export 1D NMR data to SummarizedExperiment

Description

Export 1D NMR data to SummarizedExperiment

Usage

nmr_data_1r_to_SummarizedExperiment(nmr_dataset)

Arguments

nmr_dataset An nmr_dataset_1D object

Value

SummarizedExperiment An SummarizedExperiment object (unmodified)

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
se <- nmr_data_1r_to_SummarizedExperiment(dataset_1D)

nmr_data_analysis Data analysis

Description

Data analysis on AlpsNMR can be performed on both nmr_dataset_1D full spectra as well as
nmr_dataset_peak_table peak tables.

Usage

nmr_data_analysis(
dataset,
y_column,
identity_column,
external_val,
internal_val,
data_analysis_method,
.enable_parallel = TRUE

nmr_data_analysis 45

Arguments
dataset An nmr_dataset_family object
y_column A string with the name of the y column (present in the metadata of the dataset)

identity_column

NULL or a string with the name of the identity column (present in the metadata
of the dataset).

external_val, internal_val

A list with two elements: iterations and test_size. See random_subsampling
for further details

data_analysis_method

An nmr_data_analysis_method object

.enable_parallel

Details

Set to FALSE to disable parallellization.

The workflow consists of a double cross validation strategy using random subsampling for split-
ting into train and test sets. The classification model and the metric to choose the best model can
be customized (see new_nmr_data_analysis_method()), but for now only a PLSDA classifica-
tion model with a best area under ROC curve metric is implemented (see the examples here and
plsda_auroc_vip_method)

Value

A list with the following elements:
e train_test_partitions: A list with the indices used in train and test on each of the cross-
validation iterations

e inner_cv_results: The output returned by train_evaluate_model on each inner cross-
validation

e inner_cv_results_digested: The output returned by choose_best_inner.

e outer_cv_results: The output returned by train_evaluate_model on each outer cross-
validation

* outer_cv_results_digested: The outputreturned by train_evaluate_model_digest_outer.

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

46 nmr_data_analysis_method

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A"] "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A" "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use a double cross validation, splitting the samples with random
subsampling both in the external and internal validation.
The classification model will be a PLSDA, exploring at maximum 3 latent
variables.
The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 3)
model <- nmr_data_analysis(
peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology

)

Area under ROC for each outer cross-validation iteration:
model$outer_cv_results_digested$auroc

Rank Product of the Variable Importance in the Projection
(Lower means more important)
sort(model$outer_cv_results_digested$vip_rankproducts)

nmr_data_analysis_method
Create method for NMR data analysis

Description

Create method for NMR data analysis

nmr_data_analysis_method 47

Usage

new_nmr_data_analysis_method(
train_evaluate_model,
train_evaluate_model_params_inner,
choose_best_inner,
train_evaluate_model_params_outer,
train_evaluate_model_digest_outer

Arguments

train_evaluate_model
A function. The train_evaluate_model must have the following signature:

function(x_train, y_train, identity_train, x_test, y_test, identity_test, ...

The x_train and y_train (and their test counterparts) are self-explanatory.

The identity_ arguments are expected to be factors. They can be used for
instance with a callback that uses mixOmics::plsda in a multilevel approach

for longitudinal studies. In those studies the identity would be an identifier of
the subject.

The . .. arguments are free to be defined for each train_evaluate_model.
train_evaluate_model_params_inner, train_evaluate_model_params_outer

A list with additional arguments to pass to train_evaluate_model either in the
inner cv loop or in the outer cv loop.
choose_best_inner

A function with a single argument:
function(inner_cv_results)

The argument is a list of train_evaluate_model outputs. The return value of
must be a list with at least an element named train_evaluate_model_args.
train_evaluate_model_args must be a named list.

* Each element must be named as one of the train_evaluate_model argu-
ments.
* Each element must be a vector as long as the number of outer cross-validations.

* The values of each vector must be the values that the train_evaluate_model
argument must take on each outer cross-validation iteration Additional list
elements can be returned and will be given back to the user

train_evaluate_model_digest_outer

A function with a single argument:
function(outer_cv_results)

The argument is a list of train_evaluate_model outputs in outer cross-validation.
The return value is returned by nmr_data_analysis

Value

An object encapsulating the method dependent functions that can be used with nmr_data_analysis

48 nmr._detect_peaks

nmr_detect_peaks Peak detection for NMR

Description

The function detects peaks on an nmr_dataset_1D object, using speaq::detectSpecPeaks. detectSpecPeaks
divides the whole spectra into smaller segments and uses MassSpecWavelet::peakDetectionCWT
for peak detection.

Usage

nmr_detect_peaks(
nmr_dataset,
nDivRange_ppm = 0.1,
scales = seq(1, 16, 2),
baselineThresh = NULL,
SNR.Th = 3,
range_without_peaks = c(9.5, 10),
fit_lorentzians = FALSE,
verbose = FALSE

Arguments

nmr_dataset An nmr_dataset_1D.
nDivRange_ppm Segment size, in ppms, to divide the spectra and search for peaks.

scales The parameter of peakDetectionCWT function of MassSpecWavelet package,
look it up in the original function.

baselineThresh All peaks with intensities below the thresholds are excluded. Either:

* A numeric vector of length the number of samples. Each number is a thresh-
old for that sample

* A single number. All samples use this number as baseline threshold.

¢ NULL. If that’s the case, a default function is used (nmr_baseline_threshold()),
which assumes that there is no signal in the region 9.5-10 ppm.

SNR.Th The parameter of peakDetectionCWT function of MassSpecWavelet package,
look it up in the original function. If you set -1, the function will itself re-
compute this value.

range_without_peaks
A numeric vector of length two with a region without peaks, only used when
baselineThresh = NULL

fit_lorentzians
If TRUE, fit a lorentzian to each detected peak, to infer its inflection points. For
now disabled for backwards compatibility.

verbose Logical (TRUE or FALSE). Show informational messages, such as the estimated
baseline

nmr_detect_peaks_plot 49

Details

Optionally afterwards, the peak apex and the peak inflection points are used to efficiently adjust a
lorentzian to each peak, and compute the peak area and width, as well as the error of the fit. These
peak features can be used afterwards to reject false detections.

Value

A data frame with the NMRExperiment, the sample index, the position in ppm and index and the
peak intensity

See Also

nmr_align for peak alignment with the detected peak table
Peak_detection

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks_plot(),
nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

nmr_detect_peaks_plot Plot peak detection results

Description

Plot peak detection results

Usage

nmr_detect_peaks_plot(
nmr_dataset,
peak_data,
NMRExperiment = NULL,
peak_id = NULL,
accepted_only = NULL,

Arguments
nmr_dataset An nmr_dataset_1D.
peak_data The peak table returned by nmr_detect_peaks

NMRExperiment a single NMR experiment to plot
peak_id A character vector. If given, plot only that peak id.

accepted_only If peak_data contains alogical column named accepted, only those with accepted=TRUE
will be counted. By default, accepted_only = TRUE, unless a peak_id is given

Arguments passed to plot.nmr_dataset_1D (chemshift_range, ...)

50 nmr_detect_peaks_plot_overview

Value

Plot peak detection results

See Also

Peak_detection nmr_detect_peaks

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(), nmr_identify_regions_urine(), nmr_integrate_regions()

nmr_detect_peaks_plot_overview

Overview of the peak detection results

Description

This plot allows to explore the performance of the peak detection across all the samples, by sum-
marizing how many peaks are detected on each sample at each chemical shift range.

Usage

nmr_detect_peaks_plot_overview(
peak_data,

ppm_breaks = pretty(range(peak_data$ppm), n = 20),
accepted_only = TRUE

)
Arguments
peak_data The output of nmr_detect_peaks()
ppm_breaks A numeric vector with the breaks that will be used to count the number of the

detected peaks.
accepted_only If peak_data contains a logical column named accepted, only those with accepted=TRUE
will be counted.

Details

You can use this plot to find differences in the number of detected peaks across your dataset, and
then use nmr_detect_peaks_plot() to have a finer look at specific samples and chemical shifts,
and assess graphically that the peak detection results that you have are correct.

nmr._detect_peaks_plot_peaks 51

Value

A scatter plot, with samples on one axis and chemical shift bins in the other axis. The size of each
dot represents the number of peaks found on a sample within a chemical shift range.

See Also

Peak_detection

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_tune_snr(),nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

nmr_detect_peaks_plot_peaks
Plot multiple peaks from a peak list

Description

Plot multiple peaks from a peak list

Usage

nmr_detect_peaks_plot_peaks(
nmr_dataset,

peak_data,
peak_ids,
caption = paste("{peak_id}", "(NMRExp.\u@@AQ{NMRExperiment},",
"\u@3B3(ppb)\u@ad=\u00ad{gamma_ppb},"”, "\narea\u@0ad=\udQad{area},",
"nrmse\u@0ad=\u@@ad{norm_rmse})")
)
Arguments
nmr_dataset The nmr_dataset_1D object with the spectra
peak_data A data frame, the peak list
peak_ids The peak ids to plot
caption The caption for each subplot
Value

A plot object

52

nmr_detect_peaks_tune_snr

nmr_detect_peaks_tune_snr

Diagnose SNR threshold in peak detection

Description

Diagnose SNR threshold in peak detection

Usage

nmr_detect_peaks_tune_snr(

ds,

NMRExperiment

= NULL,

SNR_thresholds = seq(from = 2, to = 6, by = 0.1),

Arguments

ds
NMRExperiment

SNR_thresholds

An nmr_dataset_1D dataset

A string with the single NMRExperiment used explore the SNR thresholds. If
not given, use the first one.

A numeric vector with the SNR thresholds to explore
Arguments passed on to nmr_detect_peaks
nmr_dataset An nmr_dataset_1D.
nDivRange_ppm Segment size, in ppms, to divide the spectra and search for
peaks.
baselineThresh All peaks with intensities below the thresholds are excluded.
Either:
* A numeric vector of length the number of samples. Each number is a
threshold for that sample
* A single number. All samples use this number as baseline threshold.
e NULL. If that’s the case, a default function is used (nmr_baseline_threshold()),
which assumes that there is no signal in the region 9.5-10 ppm.
range_without_peaks A numeric vector of length two with a region without
peaks, only used when baselineThresh = NULL
fit_lorentzians If TRUE, fit a lorentzian to each detected peak, to infer its
inflection points. For now disabled for backwards compatibility.
verbose Logical (TRUE or FALSE). Show informational messages, such as the
estimated baseline
scales The parameter of peakDetectionCWT function of MassSpecWavelet
package, look it up in the original function.
SNR.Th The parameter of peakDetectionCWT function of MassSpecWavelet
package, look it up in the original function. If you set -1, the function
will itself re-compute this value.

nmr_exclude_region 53

Value
A list with the following elements:
* peaks_detected: A data frame with the columns from the nmr_detect_peaks output and an
additional column SNR_threshold with the threshold used on each row.

* num_peaks_per_region: A summary of the peaks_detected table, with the number of
peaks detected on each chemical shift region

* plot_num_peaks_per_region: A visual representation of num_peaks_per_region

* plot_spectrum_and_detections: A visual representation of the spectrum and the peaks
detected with each SNR threshold. Use plotly::ggplotly or plot_interactive on this to zoom
and explore the results.

See Also

nmr_detect_peaks

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_plot_overview(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

nmr_exclude_region Exclude region from samples

Description

Excludes a given region (for instance to remove the water peak)

Usage
nmr_exclude_region(samples, exclude = list(water = c(4.7, 5)))
S3 method for class 'nmr_dataset_1D'
nmr_exclude_region(samples, exclude = list(water = c(4.7, 5)))
Arguments
samples An object
exclude A list with regions to be removed Typically: exclude = list(water =c(4.7,
5.9))
Value

The same object, with the regions excluded

See Also

Other basic functions: nmr_normalize()

54 nmr_export_data_Ir

Examples

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
exclude_regions <- list(water = c(5.1, 4.5))
nmr_dataset <- nmr_exclude_region(nmr_dataset, exclude = exclude_regions)

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
exclude_regions <- list(water = c(5.1, 4.5))
nmr_dataset <- nmr_exclude_region(nmr_dataset, exclude = exclude_regions)

nmr_export_data_1r Export 1D NMR data to a CSV file

Description

Export 1D NMR data to a CSV file

Usage

nmr_export_data_1r(nmr_dataset, filename)

Arguments
nmr_dataset An nmr_dataset_1D object
filename The csv filename

Value

The nmr_dataset object (unmodified)

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
nmr_export_data_lr(dataset_1D, "exported_nmr_dataset”)

nmr_get_peak_distances 55

nmr_get_peak_distances
Compute peak to peak distances

Description

Compute peak to peak distances

Usage

nmr_get_peak_distances(peak_data, same_sample_dist_factor = 3)

Arguments

peak_data A peak list

same_sample_dist_factor
The distance between two peaks from the same sample are set to this factor
multiplied by the maximum of all the peak distances

Value

A dist object with the peak2peak distances

Examples

peak_data <- data.frame(
NMRExperiment = c(”10”, "10", "20", "20"),
peak_id = paste@("Peak”, 1:4),
ppm = c(1, 2, 1.1, 3)
)
peak2peak_dist <- nmr_get_peak_distances(peak_data)
stopifnot(abs(as.numeric(peak2peak_dist) - c(6, 0.1, 2, 0.9, 1, 6)) < 1E-8)

nmr_identify_regions_blood
NMR peak identification (plasma/serum samples)

Description

Identify given regions and return a data frame with plausible assignations in human plasma/serum
samples.

56 nmr_identify_regions_cell

Usage

nmr_identify_regions_blood(
ppm_to_assign,
num_proposed_compounds = 3,
verbose = FALSE

Arguments

ppm_to_assign A vector with the ppm regions to assign

num_proposed_compounds
set the number of proposed metabolites sorted by the number times reported in
the HMDB: HMDB_blood.

verbose Logical value. Set it to TRUE to print additional information

Value

a data frame with plausible assignations.

See Also

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

Other peak integration functions: Pipelines, get_integration_with_metadata(), nmr_identify_regions_cell(),
nmr_identify_regions_urine(), nmr_integrate_peak_positions(), nmr_integrate_regions()

Examples

We identify regions from from the corresponding ppm storaged in a vector.
ppm_to_assign <- c(

4.060960203, 3.048970634, 2.405935596,

3.24146865, 0.990616851, 1.002075066, 0.955325548
)

identification <- nmr_identify_regions_blood(ppm_to_assign)

nmr_identify_regions_cell
NMR peak identification (cell samples)

Description

Identify given regions and return a data frame with plausible assignations in cell samples.

nmr_identify_regions_urine 57

Usage

nmr_identify_regions_cell(
ppm_to_assign,
num_proposed_compounds = 3,
verbose = FALSE

Arguments

ppm_to_assign A vector with the ppm regions to assign
num_proposed_compounds
set the number of proposed metabolites in HMDB_cell.

verbose Logical value. Set it to TRUE to print additional information

Value

a data frame with plausible assignations.

See Also

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(),
nmr_identify_regions_blood(), nmr_identify_regions_urine(), nmr_integrate_regions()

Other peak integration functions: Pipelines, get_integration_with_metadata(), nmr_identify_regions_blood(),
nmr_identify_regions_urine(), nmr_integrate_peak_positions(), nmr_integrate_regions()

Examples

We identify regions from from the corresponding ppm storaged in a vector.
ppm_to_assign <- c(

4.060960203, 3.048970634, 2.405935596,

3.24146865, 0.990616851, 1.002075066, 0.955325548
)

identification <- nmr_identify_regions_cell(ppm_to_assign, num_proposed_compounds = 3)

nmr_identify_regions_urine
NMR peak identification (urine samples)

Description

Identify given regions and return a data frame with plausible assignations in human urine sam-
ples. The data frame contains the column "Bouatra_2013" showing if the proposed metabolite was
reported in this publication as regular urinary metabolite.

58 nmr._integrate_peak_positions

Usage

nmr_identify_regions_urine(
ppm_to_assign,
num_proposed_compounds = 5,
verbose = FALSE

Arguments

ppm_to_assign A vector with the ppm regions to assign

num_proposed_compounds
set the number of proposed metabolites sorted by the number times reported in
the HMDB: HMDB_urine.

verbose Logical value. Set it to TRUE to print additional information

Value

a data frame with plausible assignations.

See Also

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(),
nmr_identify_regions_blood(), nmr_identify_regions_cell(),nmr_integrate_regions()

Other peak integration functions: Pipelines, get_integration_with_metadata(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(), nmr_integrate_peak_positions(), nmr_integrate_regions()

Examples

We identify regions from from the corresponding ppm storaged in a vector.
ppm_to_assign <- c(

4.060960203, 3.048970634, 2.405935596,

3.24146865, 0.990616851, 1.002075066, 0.955325548
)

identification <- nmr_identify_regions_urine(ppm_to_assign, num_proposed_compounds = 5)

nmr_integrate_peak_positions

Integrate peak positions

Description

The function allows the integration of a given ppm vector with a specific width.

nmr_integrate_regions 59

Usage

nmr_integrate_peak_positions(
samples,
peak_pos_ppm,
peak_width_ppm = 0.006,

Arguments

samples A nmr_dataset object

peak_pos_ppm The peak positions, in ppm

peak_width_ppm The peak widths (or a single peak width for all peaks)
Arguments passed on to nmr_integrate_regions

regions A named list. Each element of the list is a region, given as a named
numeric vector of length two with the range to integrate. The name of the
region will be the name of the column

Value

Integrate peak positions

See Also

Other peak integration functions: Pipelines, get_integration_with_metadata(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_regions(), nmr_meta_add(), nmr_meta_export(), nmr_meta_get(),
nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

nmr_integrate_regions [Integrate regions

Description

Integrate given regions and return a data frame with them

Usage

nmr_integrate_regions(samples, regions, ...)

S3 method for class 'nmr_dataset_1D'
nmr_integrate_regions(

samples,

regions,

60 nmr_integrate_regions

fix_baseline = FALSE,
excluded_regions_as_zero = FALSE,
set_negative_areas_to_zero = FALSE,

)
Arguments
samples A nmr_dataset object
regions A named list. Each element of the list is a region, given as a named numeric

vector of length two with the range to integrate. The name of the region will be
the name of the column

Keep for compatibility

fix_baseline A logical. If TRUE it removes the baseline. See details below
excluded_regions_as_zero
A logical. It determines the behaviour of the integration when integrating re-
gions that have been excluded. If TRUE, it will treat those regions as zero. If
FALSE (the default) it will return NA values.
If fix_baseline is TRUE, then the region boundaries are used to estimate a base-
line. The baseline is estimated "connecting the boundaries with a straight line".
Only when the spectrum is above the baseline the area is integrated (negative
contributions due to the baseline estimation are ignored).
set_negative_areas_to_zero

A logical. Ignored if fix_baseline is FALSE. When set to TRUE negative areas
are set to zero.

Value

An nmr_dataset_peak_table object

See Also

Other peak detection functions: Pipelines, nmr_baseline_threshold(), nmr_detect_peaks(),
nmr_detect_peaks_plot(), nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(),
nmr_identify_regions_blood(), nmr_identify_regions_cell(), nmr_identify_regions_urine()

Other peak integration functions: Pipelines, get_integration_with_metadata(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_peak_positions()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_meta_add(), nmr_meta_export(),
nmr_meta_get(), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Examples

Creating a dataset

dataset <- new_nmr_dataset_1D(
ppm_axis = 1:10,
data_1r = matrix(sample(@:99, replace = TRUE), nrow = 10),
metadata = list(external = data.frame(NMRExperiment = c(

nmr_interpolate_1D 61

IIA]@II’
"20", 30", "40", "50", "60", "70", "80", "90", "100"
)
)

Integrating selected regions
peak_table_integration <- nmr_integrate_regions(
samples = dataset,
regions = list(ppm = c(2, 5))

Creating a dataset
dataset <- new_nmr_dataset_1D(
ppm_axis = 1:10,
data_1r = matrix(sample(@:99, replace = TRUE), nrow = 10),
metadata = list(external = data.frame(NMRExperiment = c(
"1o",
"20", "30", "40", "50", "60", "70", "80", "90", "100"
)))

)

Integrating selected regions
peak_table_integration <- nmr_integrate_regions(
samples = dataset,
regions = list(ppm = c(2, 5)),
fix_baseline = FALSE

nmr_interpolate_1D Interpolate a set of ID NMR Spectra

Description

Interpolate a set of 1D NMR Spectra

Usage
nmr_interpolate_1D(samples, axis = c(min = 0.2, max = 10, by = 8e-04))
S3 method for class 'nmr_dataset'
nmr_interpolate_1D(samples, axis = c(min = 0.2, max = 10, by = 8e-04))

Arguments

samples An NMR dataset
axis The ppm axis range and optionally the ppm step. Set it to NULL for autodetection

62

Value

nmr_meta_add

Interpolate a set of 1D NMR Spectra

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))

nmr_meta_add

Add metadata to an nmr_dataset object

Description

This is useful to add metadata to datasets that can be later used for plotting spectra or further analysis

(PCA...).

Usage

nmr_meta_add(nmr_data, metadata, by = "NMRExperiment")

nmr_meta_add_tidy_excel(nmr_data, excel_file)

Arguments

nmr_data

metadata

by

excel_file

an nmr_dataset_family object
A data frame with metadata to add

A column name of both the nmr_data$metadata$external and the metadata
data.frame. If you want to merge two columns with different headers you can
use a named character vector c ("NMRExperiment” = "ExperimentNMR") where
the left side is the column name of the nmr_data$metadata$external and the
right side is the column name of the metadata data frame.

Path to a tidy Excel file name. The Excel can consist of multiple sheets, that are
added sequentially. The first column of the first sheet MUST be named as one of
the metadata already present in the dataset, typically will be "NMRExperiment".
The rest of the columns of the first sheet can be named at will. Similary, the
first column of the second sheet must be named as one of the metadata already
present in the dataset, typically "NMRExperiment" or any of the columns of the
first sheet. The rest of the columns of the second sheet can be named at will.
See the package vignette for an example.

nmr_meta_add 63

Value

The nmr_dataset_family object with the added metadata

See Also

Other metadata functions: Pipelines, nmr_meta_export(), nmr_meta_get(), nmr_meta_get_column(),
nmr_meta_groups()

Other nmr_dataset functions: nmr_meta_export(), nmr_meta_get(), nmr_meta_get_column()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_export(),
nmr_meta_get(), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Other nmr_dataset_peak_table functions: nmr_meta_export(), nmr_meta_get(), nmr_meta_get_column()

Examples

Load a demo dataset with four samples:
dataset <- system.file("dataset-demo”, package = "AlpsNMR")
nmr_dataset <- nmr_read_samples_dir(dataset)

At first we just have the NMRExperiment column

nmr_meta_get(nmr_dataset, groups = "external”)

Get a table with NMRExperiment -> SubjectID

dummy_metadata <- system.file("dataset-demo”, "dummy_metadata.xlsx”, package = "AlpsNMR")
NMRExp_SubjID <- readxl::read_excel(dummy_metadata, sheet = 1)

NMRExp_SubjID

We can link the SubjectID column of the first excel into the dataset
nmr_dataset <- nmr_meta_add(nmr_dataset, NMRExp_SubjID, by = "NMRExperiment")
nmr_meta_get(nmr_dataset, groups = "external”)

The second excel can use the SubjectID:

SubjID_Age <- readxl::read_excel(dummy_metadata, sheet = 2)

SubjID_Age

Add the metadata by its SubjectID:

nmr_dataset <- nmr_meta_add(nmr_dataset, SubjID_Age, by = "SubjectID")
The final loaded metadata:

nmr_meta_get(nmr_dataset, groups = "external")

Read a tidy excel file:

dataset <- system.file("dataset-demo”, package = "AlpsNMR")
nmr_dataset <- nmr_read_samples_dir(dataset)

At first we just have the NMRExperiment column

nmr_meta_get(nmr_dataset, groups = "external”)

Get a table with NMRExperiment -> SubjectID

dummy_metadata <- system.file("dataset-demo”, "dummy_metadata.xlsx”, package = "AlpsNMR")

nmr_dataset <- nmr_meta_add_tidy_excel(nmr_dataset, dummy_metadata)
Updated Metadata:
nmr_meta_get(nmr_dataset, groups = "external”)

64 nmr_meta_export

nmr_meta_export Export Metadata to an Excel file

Description

Export Metadata to an Excel file

Usage

nmr_meta_export(
nmr_dataset,

xlsx_file,
groups = c("info"”, "orig"”, "title", "external”)
)
Arguments
nmr_dataset An nmr_dataset_family object
x1sx_file "The .xIsx excel file"
groups A character vector. Use "external” for the external metadata or the default for
a more generic solution
Value

The Excel file name

See Also
Other metadata functions: Pipelines, nmr_meta_add(), nmr_meta_get (), nmr_meta_get_column(),
nmr_meta_groups()
Other nmr_dataset functions: nmr_meta_add(), nmr_meta_get(), nmr_meta_get_column()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_get (), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Other nmr_dataset_peak_table functions: nmr_meta_add (), nmr_meta_get(), nmr_meta_get_column()

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(), save_files_to_rDolphin
save_profiling_output(), to_ChemoSpec()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
nmr_meta_export(dataset, "metadata.xlsx")

nmr_meta_get 65

nmr_meta_get Get metadata

Description

Get metadata

Usage

nmr_meta_get(samples, columns = NULL, groups = NULL)

Arguments
samples a nmr_dataset_family object
columns Columns to get. By default gets all the columns.
groups Groups to get. Groups are predefined of columns. Typically "external” for
metadata added with nmr_meta_add.
Both groups and columns can’t be given simultaneously.
Value

a data frame with the injection metadata

See Also

Other metadata functions: Pipelines, nmr_meta_add(), nmr_meta_export(), nmr_meta_get_column(),
nmr_meta_groups()

Other nmr_dataset functions: nmr_meta_add(), nmr_meta_export(), nmr_meta_get_column()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Other nmr_dataset_peak_table functions: nmr_meta_add (), nmr_meta_export (), nmr_meta_get_column()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
metadata <- nmr_meta_get(dataset)

66 nmr_meta_get_column

nmr_meta_get_column Get a single metadata column

Description

Get a single metadata column

Usage

nmr_meta_get_column(samples, column = "NMRExperiment")
Arguments

samples a nmr_dataset_family object

column A column to get
Value

A vector with the column

See Also

Other metadata functions: Pipelines, nmr_meta_add(), nmr_meta_export(), nmr_meta_get(),
nmr_meta_groups()

Other nmr_dataset functions: nmr_meta_add(), nmr_meta_export(), nmr_meta_get()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get(), nmr_ppm_resolution(), print.nmr_dataset_1D()

Other nmr_dataset_peak_table functions: nmr_meta_add(), nmr_meta_export(), nmr_meta_get()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
metadata_column <- nmr_meta_get_column(dataset)

nmr_meta_groups 67

nmr_meta_groups Get the names of metadata groups

Description

Get the names of metadata groups

Usage

nmr_meta_groups(samples)

Arguments

samples a nmr_dataset_family object

Value

A character vector with group names

See Also

Other metadata functions: Pipelines, nmr_meta_add (), nmr_meta_export(), nmr_meta_get(),
nmr_meta_get_column()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
metadata_column <- nmr_meta_get_column(dataset)

nmr_normalize Normalize nmr_dataset_1D samples

Description

The nmr_normalize function is used to normalize all the samples according to a given criteria.

Usage
nmr_normalize(
samples,
method = c("area”, "max", "value", "region", "pgn”, "none"),

nmr_normalize_extra_info(samples)

68 nmr_normalize

Arguments

samples A nmr_dataset_1D object

method The criteria to be used for normalization - area: Normalize to the total area -
max: Normalize to the maximum intensity - value: Normalize each sample to
a user defined value - region: Integrate a region and normalize each sample to
that region - pqn: Use Probabalistic Quotient Normalization for normalization -
none: Do not normalize at all

Method dependent arguments: - method == "value”: - value: A numeric vec-
tor with the normalization values to use - method == "region”: - ppm_range: A
chemical shift region to integrate - . . .: Other arguments passed on to nmr_integrate_regions

Details

The aim is to correct from changes between samples, so no matter the criteria used to normalize,
once we get the factors (e.g. the areas), we divide them by the median normalization factor to avoid
introducing global scaling factors.

The nmr_normalize_extra_info function is used to extract additional information after the nor-
malization. Typically, we want to know what was the actual normalization factor applied to each
sample. The extra information includes a plot, representing the dispersion of the normalization
factor for each sample.

Value

The nmr_dataset_1D object, with the samples normalized. Further information for diagnostic of the
normalization process is also saved and can be extracted by calling nmr_normalize_extra_info()
afterwards.

See Also

Other basic functions: nmr_exclude_region()

Examples

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "ALpsNMR"))
nmr_dataset <- nmr_normalize(nmr_dataset, method = "area")

norm_dataset <- nmr_normalize(nmr_dataset)

norm_dataset$plot

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
nmr_dataset <- nmr_normalize(nmr_dataset, method = "area")

norm_extra_info <- nmr_normalize_extra_info(nmr_dataset)

norm_extra_info$plot

nmr_pca_build_model

69

nmr_pca_build_model Build a PCA on for an nmr_dataset

Description

This function builds a PCA model with all the NMR spectra. Regions with zero values (excluded
regions) or near-zero variance regions are automatically excluded from the analysis.

Usage

nmr_pca_build_model(

nmr_dataset,
ncomp = NULL,

center = TRUE,
scale = FALSE,

)

S3 method for class 'nmr_dataset_1D'
nmr_pca_build_model(

nmr_dataset,
ncomp = NULL,

center = TRUE,
scale = FALSE,

Arguments

nmr_dataset

ncomp

center

scale

a nmr_dataset_1D object

Integer, if data is complete ncomp decides the number of components and as-
sociated eigenvalues to display from the pcasvd algorithm and if the data has
missing values, ncomp gives the number of components to keep to perform the
reconstitution of the data using the NIPALS algorithm. If NULL, function sets
ncomp = min(nrow(X),ncol (X))

(Default=TRUE) Logical, whether the variables should be shifted to be zero
centered. Only set to FALSE if data have already been centered. Alternatively, a
vector of length equal the number of columns of X can be supplied. The value is
passed to scale. If the data contain missing values, columns should be centered
for reliable results.

(Default=FALSE) Logical indicating whether the variables should be scaled to
have unit variance before the analysis takes place. The default is FALSE for con-
sistency with prcomp function, but in general scaling is advisable. Alternatively,
a vector of length equal the number of columns of X can be supplied. The value
is passed to scale.

Additional arguments passed on to mixOmics::pca

70 nmr_pca_outliers

Value
A PCA model as given by mixOmics::pca with two additional attributes:

* nmr_data_axis containing the full ppm axis

* nmr_included with the data points included in the model These attributes are used internally
by AlpsNMR to create loading plots

See Also

Other PCA related functions: nmr_pca_outliers(), nmr_pca_outliers_filter(), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust(), nmr_pca_plots

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by
model <- nmr_pca_build_model(dataset_1D)

2.3E-4))

nmr_pca_outliers Compute PCA residuals and score distance for each sample

Description

Compute PCA residuals and score distance for each sample

Usage

nmr_pca_outliers(
nmr_dataset,

pca_model,
ncomp = NULL,
quantile_critical = 0.975
)
Arguments
nmr_dataset An nmr_dataset_1D object
pca_model A pca model returned by nmr_pca_build_model
ncomp Number of components to use. Use NULL for 90% of the variance

quantile_critical
critical quantile

nmr_pca_outliers_filter 71

Value

A list with:

* outlier_info: A data frame with the NMRExperiment, the Q residuals and T scores
* ncomp: Number of components used to compute Q and T

* Tscore_critical, QResidual_critical: Critical values, given a quantile, for both Q and T.

See Also

Other PCA related functions: nmr_pca_build_model (), nmr_pca_outliers_filter (), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust(), nmr_pca_plots

Other outlier detection functions: Pipelines, nmr_pca_outliers_filter (), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)

outliers_info <- nmr_pca_outliers(dataset_1D, model)

nmr_pca_outliers_filter
Exclude outliers

Description

Exclude outliers

Usage

nmr_pca_outliers_filter(nmr_dataset, pca_outliers)

Arguments

nmr_dataset An nmr_dataset_1D object

pca_outliers The output from nmr_pca_outliers()

Value

An nmr_dataset_1D without the detected outliers

72 nmr_pca_outliers_plot

See Also

Other PCA related functions: nmr_pca_build_model (), nmr_pca_outliers(), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust(), nmr_pca_plots

Other outlier detection functions: Pipelines, nmr_pca_outliers(), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust()

Other subsetting functions: [.nmr_dataset(), [.nmr_dataset_1D(), [.nmr_dataset_peak_table(),
filter.nmr_dataset_family()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)

outliers_info <- nmr_pca_outliers(dataset_1D, model)

dataset_whitout_outliers <- nmr_pca_outliers_filter(dataset_1D, outliers_info)

nmr_pca_outliers_plot Plot for outlier detection diagnostic

Description

Plot for outlier detection diagnostic

Usage

nmr_pca_outliers_plot(nmr_dataset, pca_outliers, ...)
Arguments

nmr_dataset An nmr_dataset_1D object

pca_outliers The output from nmr_pca_outliers()

Additional parameters passed on to ggplot2::aes() (or now deprecated to
ggplot2::aes_string())
Value

A plot for the outlier detection

See Also
Other PCA related functions: nmr_pca_build_model (), nmr_pca_outliers(), nmr_pca_outliers_filter(),
nmr_pca_outliers_robust(), nmr_pca_plots

Other outlier detection functions: Pipelines, nmr_pca_outliers(), nmr_pca_outliers_filter(),
nmr_pca_outliers_robust()

nmr_pca_outliers_robust

73

Examples
dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)
outliers_info <- nmr_pca_outliers(dataset_1D, model)
nmr_pca_outliers_plot(dataset_1D, outliers_info)

nmr_pca_outliers_robust

Outlier detection through robust PCA

Description

Outlier detection through robust PCA

Usage

nmr_pca_outliers_robust(nmr_dataset, ncomp = 5)

Arguments

nmr_dataset An nmr_dataset_1D object

ncomp Number of rPCA components to use

Value

We have observed that the statistical test used as a threshold for outlier detection
usually flags as outliers too many samples, due possibly to a lack of gaussianity

As a workaround, a heuristic method has been implemented: We know that
in the Q residuals vs T scores plot from nmr_pca_outliers_plot() outliers
are on the right or on the top of the plot, and quite separated from non-outlier

samples.

To determine the critical value, both for Q and T, we find the biggest gap between

samples in the plot and use as critical value the center of the gap.

This approach seems to work well when there are outliers, but it fails when there
isn’t any outlier. For that case, the gap would be placed anywhere and that is not
desirable as many samples would be incorrectly flagged. The second assumption
that we use is that no more than 10\ the samples may pass our critical value. If
more than 10\ pass the critical value, then we assume that our heuristics are not

reasonable and we don’t set any critical limit.

A list similar to nmr_pca_outliers

74 nmr_pca_plots

See Also

Other PCA related functions: nmr_pca_build_model (), nmr_pca_outliers(), nmr_pca_outliers_filter(),
nmr_pca_outliers_plot(), nmr_pca_plots

Other outlier detection functions: Pipelines, nmr_pca_outliers(), nmr_pca_outliers_filter(),
nmr_pca_outliers_plot()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
outliers_info <- nmr_pca_outliers_robust(dataset_1D)

nmr_pca_plots Plotting functions for PCA

Description

Plotting functions for PCA
Usage
nmr_pca_plot_variance(pca_model)
nmr_pca_scoreplot(nmr_dataset, pca_model, comp = seq_len(2), ...)

nmr_pca_loadingplot(pca_model, comp)

Arguments

pca_model A PCA model trained with nmr_pca_build_model

nmr_dataset an nmr_dataset_1D object

comp Components to represent

Additional aesthetics passed on to ggplot2::aes (use bare unquoted names)

Value

Plot of PCA
See Also

Other PCA related functions: nmr_pca_build_model (), nmr_pca_outliers(), nmr_pca_outliers_filter(),
nmr_pca_outliers_plot(), nmr_pca_outliers_robust()

nmr_peak_clustering 75

Examples

dataset_1D <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds”, package = "AlpsNMR"))
model <- nmr_pca_build_model(dataset_1D)

nmr_pca_plot_variance(model)

nmr_pca_scoreplot(dataset_1D, model)

nmr_pca_loadingplot(model, 1)

nmr_peak_clustering Peak clustering

Description

Peak clustering

Usage

nmr_peak_clustering(
peak_data,
peak2peak_dist = NULL,
num_clusters = NULL,
max_dist_thresh_ppb = NULL,
verbose = FALSE

Arguments

peak_data The peak list

peak2peak_dist The distances obtained with nmr_get_peak_distances. If NULL it is computed
from peak_data

num_clusters If you want to fix the number of clusters. Leave NULL if you want to estimate it
max_dist_thresh_ppb
To estimate the number of clusters, we enforce a limit on how far two peaks of
the same cluster may be. By default this threshold will be computed as 3 times
the median peak width (gamma), as given in the peak list.

verbose A logical vector to print additional information

Value
A list including:
* The peak_data with an additional "cluster" column
* cluster: the hierarchical cluster

e num_clusters: an estimation of the number of clusters

» num_cluster_estimation: A list with tables and plots to justify the number of cluster estimation

76 nmr_peak_clustering_plot

Examples

peak_data <- data.frame(
NMRExperiment = c("10", "10", "20", "20"),
peak_id = paste@("Peak”, 1:4),
ppm = c(1, 2, 1.1, 2.2),
gamma_ppb = 100
)
clustering_result <- nmr_peak_clustering(peak_data)
peak_data <- clustering_result$peak_data
stopifnot(”cluster” %in% colnames(peak_data))

nmr_peak_clustering_plot
Plot clustering results

Description

Plot clustering results

Usage

nmr_peak_clustering_plot(
dataset,
peak_list_clustered,
NMRExperiments,
chemshift_range,
baselineThresh = NULL

Arguments

dataset The nmr_dataset_1D object
peak_list_clustered
A peak list table with a clustered column
NMRExperiments Two and only two experiments to compare in the plot
chemshift_range
A region, make it so it does not cover a huge range (maybe 1ppm or less)
baselineThresh If given (as returned from the nmr_baseline_threshold()) the baseline thresh-

old will be plotted. This can be useful to diagnose whether a peak is missing due
to this threshold or due to other parameters (e.g2. SNR.Th). See nmr_detect_peaks().

Value

A plot of the two experiments in the given chemshift range, with lines connecting peaks identified
as the same and dots showing peaks without pairs

nmr_ppm_resolution 77

nmr_ppm_resolution PPM resolution of the spectra

Description

The function gets the ppm resolution of the dataset using the median of the difference of data points.

Usage

nmr_ppm_resolution(nmr_dataset)

S3 method for class 'nmr_dataset'
nmr_ppm_resolution(nmr_dataset)

S3 method for class 'nmr_dataset_1D'
nmr_ppm_resolution(nmr_dataset)

Arguments

nmr_dataset An object containing NMR samples

Value

Numeric (the ppm resolution, measured in ppms)

See Also

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get(), nmr_meta_get_column(), print.nmr_dataset_1D()

Examples

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
nmr_ppm_resolution(nmr_dataset)
message("the ppm resolution of this dataset is

n

, nmr_ppm_resolution(nmr_dataset), " ppm")

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
nmr_ppm_resolution(nmr_dataset)
message("the ppm resolution of this dataset is

"

, nmr_ppm_resolution(nmr_dataset), " ppm")

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "ALpsNMR"))
nmr_ppm_resolution(nmr_dataset)
message("the ppm resolution of this dataset is

n

, nmr_ppm_resolution(nmr_dataset), " ppm")

78 nmr_read_samples

nmr_read_bruker_fid Read Free Induction Decay file

Description

Reads an FID file. This is a very simple function.

Usage
nmr_read_bruker_fid(sample_name, endian = "little")
Arguments
sample_name A single sample name
endian Endianness of the fid file ("little" by default, use "big" if acqus$BYTORDA ==
Y
Value

A numeric vector with the free induction decay values

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_meta_export(), nmr_read_samples(), nmr_zip_bruker_samples(), save_files_to_rDolphin(),
save_profiling_output(), to_ChemoSpec()

Examples

fid <- nmr_read_bruker_fid("sample.fid")

nmr_read_samples Read NMR samples

Description

These functions load samples from files and return a nmr_dataset.

nmr_read_samples 79

Usage

nmr_read_samples_dir(
samples_dir,
format = "bruker”,
pulse_sequence = NULL,
metadata_only = FALSE,

)

nmr_read_samples(
sample_names,
format = "bruker”,
pulse_sequence = NULL,
metadata_only = FALSE,

Arguments
samples_dir A directory or directories that contain multiple samples
format Either "bruker" or "jdx"

pulse_sequence Ifitis set to a pulse sequence ("NOESY", "JRES", "CPMG"...) it will only load
the samples that match that pulse sequence.

metadata_only A logical, to load only metadata (default: FALSE)
Arguments passed on to read_bruker_pdata

pdata_file File name of the binary NMR data to load. Usually "1r". If NULL,
it is autodetected based on the dimension

sample_path A character path of the sample directory

pdata_path Path from sample_path to the preprocessed data

all_components If FALSE load only the real component. Otherwise load the
real and imaginary components

read_pdata_title If TRUE also reads metadata from pdata title file.

sample_names A character vector with file or directory names.

Value

a nmr_dataset object

See Also

read_bruker_pdata()

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_meta_export(), nmr_read_bruker_fid(), nmr_zip_bruker_samples(), save_files_to_rDolphin(
save_profiling_output(), to_ChemoSpec()

80 nmr_zip_bruker_samples

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
zip_files <- fs::dir_ls(dir_to_demo_dataset, glob = "*.zip")
dataset <- nmr_read_samples(sample_names = zip_files)

nmr_zip_bruker_samples
Create one Zip file for each brucker sample path

Description

Create one zip file for each brucker sample path

Usage

nmr_zip_bruker_samples(path, workdir, overwrite = FALSE, ...)
Arguments

path Character vector with sample directories

workdir Directory to store zip files

overwrite Should existing zip files be overwritten?

Passed to utils::zip

Value

A character vector of the same length as path, with the zip file names

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), save_files_to_rDolphin(),
save_profiling_output(), to_ChemoSpec()

Examples
save_zip_files_to <- tempfile(pattern = "zip_file_storage_")
where_your_samples_are <- tempfile(pattern = "where_your_samples_are")

prepare sample:

zip::unzip(
system.file("dataset-demo”, "10.zip", package = "AlpsNMR"),
exdir = where_your_samples_are

Parameters_blood 81

outpaths <- nmr_zip_bruker_samples(
list.files(where_your_samples_are, full.names = TRUE),
workdir = save_zip_files_to

Parameters_blood to rDolphin

Description

Parameters for blood (plasma/serum) samples profiling

Details

The template Parameters_blood contains the chosen normalization approach (by default, PQN),
the Spectometer Frequency (by default, 600.04MHz), alignment (by default, TSP 0.00 ppm), bucket
resolution (by default, 0.00023)

References

github.com/danielcanueto/rDolphin

Examples

data("Parameters_blood")
Parameters_blood

Parameters_cell Parameters for cell samples profiling

Description

The template Parameters_cell contains the chosen normalization approach (by default, PQN), the
Spectometer Frequency (by default, 600.04MHz), alignment (by default, TSP 0.00 ppm), bucket
resolution (by default, 0.00023)

References

github.com/danielcanueto/rDolphin

Examples

data("Parameters_cell”)
Parameters_cell

github.com/danielcanueto/rDolphin
github.com/danielcanueto/rDolphin

82 peaklist_accept_peaks

Parameters_urine Parameters for urine samples profiling

Description

The template Parameters_urine contains the chosen normalization approach (by default, PQN),
the Spectometer Frequency (by default, 600.04MHz), alignment (by default, TSP 0.00 ppm), bucket
resolution (by default, 0.00023)

References

github.com/danielcanueto/rDolphin

Examples

data("Parameters_urine")
Parameters_urine

peaklist_accept_peaks Peak list: Create an accepted column based on some criteria

Description

Peak list: Create an accepted column based on some criteria

Usage

peaklist_accept_peaks(
peak_data,
nmr_dataset,
nrmse_max = Inf,
area_min = 0,
area_max = Inf,
ppm_min = -Inf,
ppm_max = Inf,
keep_rejected = TRUE,
verbose = FALSE

)
Arguments
peak_data The peak list (a data frame)
nmr_dataset The nmr_dataset where the peak_data was computed from
nrmse_max The normalized root mean squared error of the lorentzian peak fitting must be

less than or equal to this value

github.com/danielcanueto/rDolphin

peaklist_fit_lorentzians 83

area_min Peak areas must be larger or equal to this value
area_max Peak areas must be smaller or equal to this value
ppm_min The peak apex must be above this value
ppm_max The peak apex must be below this value

keep_rejected If FALSE, removes those peaks that do not satisfy the criteria and remove the
accepted column (since all would be accepted)

verbose Print informational message

Value

The peak_data, with a new accepted column (or maybe some filtered rows)

Examples

Fake data:
nmr_dataset <- new_nmr_dataset_1D(
1:10,
matrix(c(1:5, 4:2, 3, @), nrow = 1),
list(external = data.frame(NMRExperiment = "10"))
)
peak_data <- data.frame(
peak_id = c("Peakl"”, "Peak2"),
NMRExperiment = c("10", "10"),
ppm = c(5, 9),
pos = c(5, 9),
intensity = c(5, 3),
ppm_infl_min = c(3, 8),
ppm_infl_max = c(7, 10),
gamma_ppb = c(1, 1),
area = c(25, 3),
norm_rmse = c(0.01, 0.8)
)
Create the accepted column:
peak_data <- peaklist_accept_peaks(peak_data, nmr_dataset, area_min = 10, keep_rejected = FALSE)
stopifnot(identical (peak_data$peak_id, "Peak1"))

peaklist_fit_lorentzians
Fit lorentzians to each peak to estimate areas

Description

The different methods are available for benchmarking while developing, we should pick one.

84 peaklist_fit_lorentzians

Usage

peaklist_fit_lorentzians(
peak_data,
nmr_dataset,
amplitude_method = c("intensity”, "2nd_derivative"”, "intensity_without_baseline"),

refine_peak_model = c("none”, "peak"”, "2nd_derivative")
)
Arguments
peak_data The peak data
nmr_dataset The nmr_dataset object with the data. This function for now assumes nmr_dataset

is NOT be baseline corrected
amplitude_method

The method to estimate the amplitude. It may be:

e "intensity". The amplitude of the peak is proportional to the raw inten-
sity at the apex. This is a bad estimation if the intensity includes a baseline,
because the amplitude of the peak will be overestimated

e "2nd_derivative": The amplitude of the peak is proportional to the sec-
ond derivative of the raw intensity signal at the apex. This method aims
to correct the "intensity" method, since it is expected that the baseline will
be mostly removed when considering the 2nd derivative of the spectrum.
The 2nd derivative is calculated with a 2nd order Savitzky-Golay filter of
21 points.

e "intensity_without_baseline”: A baseline is estimated on the whole
spectra and subtracted from it. Then the peak amplitude is proportional to
the corrected intensity at the apex (as in the "intensity" method).

refine_peak_model
Whether a non linear least squares fitting should be used to refine the estimated
parameters. It can be:

* "none”: Do not refine using nls.
* "peak”: Use a lorentzian peak model and the baseline corrected spectra.
e "2nd_derivative”:

Details

* gamma is estimated using the inflection points of the signal and fitting them to the lorentzian
inflection points

* AS is estimated using the amplitude_method below

* The peak position (x_0) is given in peak_data
Those estimations may be refined with non-linear least squares using refine_peak_model. If the
nls does not converge, the initial estimations are kept. Convergence -and other nls errors- are saved
for further reference and diagnostic. Use attr(peak_data_fitted, "errors”) to retreive the
error messages, where peak_data_fitted is assumed to be the output of this function. The refining
improves gamma, A and x_08.
The baseline estimation (when calculated, see the arguments) is set to Asymmetric Least Squares
with lambda = 6, p=0.05, maxit=20 and it is probably not optimal... yet.

Peak_detection 85

Value

The given data frame peak_data, with added columns:

* inflection points,
e gamma
e area

* anorm_rmse fitting error
As well as some attributes

e "errors": A data frame with any error in the peak fitting

» "fit_baseline": Whether the method used has any consideration for the baseline of the signal
(maybe not very useful attribute)

* "method_description": A textual description of what we did, to include it in plots

Peak_detection Peak detection for NMR

Description

Peak detection for NMR

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

nmr_dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

Low resolution:

dataset_1D <- nmr_interpolate_1D(nmr_dataset, axis = c(min = -0.5, max = 10, by = 0.001))
dataset_1D <- nmr_exclude_region(dataset_1D, exclude = list(water = c(4.7, 5)))

1. Optimize peak detection parameters:
range_without_peaks <- c(9.5, 10)
Choose a region without peaks:
plot(dataset_1D, chemshift_range = range_without_peaks)
baselineThresh <- nmr_baseline_threshold(dataset_1D, range_without_peaks = range_without_peaks)
Plot to check the baseline estimations
nmr_baseline_threshold_plot(

dataset_1D,

baselineThresh,

NMRExperiment = "all",

chemshift_range = range_without_peaks

)

1.Peak detection in the dataset.

peak_data <- nmr_detect_peaks(
dataset_1D,
nDivRange_ppm = 0.1, # Size of detection segments
scales = seq(1, 16, 2),

86 permutation_test_model

baselineThresh = NULL, # Minimum peak intensity
SNR.Th = 4, # Signal to noise ratio
range_without_peaks = range_without_peaks, # To estimate

)

sample_10 <- filter(dataset_1D, NMRExperiment == "10")
nmr_detect_peaks_plot(sample_10, peak_data, "NMRExp_ref")

peaks_detected <- nmr_detect_peaks_tune_snr(
sample_10,
SNR_thresholds = seq(from = 2, to = 3, by = 0.5),
nDivRange_ppm = 0.03,
scales = seq(1, 16, 2),
baselineThresh = @

2.Find the reference spectrum to align with.
NMRExp_ref <- nmr_align_find_ref(dataset_1D, peak_data)

3.Spectra alignment using the ref spectrum and a maximum alignment shift
nmr_dataset <- nmr_align(dataset_1D, # the dataset

peak_data, # detected peaks

NMRExp_ref = NMRExp_ref, # ref spectrum

maxShift_ppm = 0.0015, # max alignment shift

acceptLostPeak = FALSE
) # lost peaks

4.PEAK INTEGRATION (please, consider previous normalization step).
First we take the peak table from the reference spectrum
peak_data_ref <- filter(peak_data, NMRExperiment == NMRExp_ref’)

Then we integrate spectra considering the peaks from the ref spectrum
nmr_peak_table <- nmr_integrate_peak_positions(

samples = nmr_dataset,

peak_pos_ppm = peak_data_ref$ppm,

peak_width_ppm = NULL
)

validate_nmr_dataset_peak_table(nmr_peak_table)

If you wanted the final peak table before machine learning you can run
nmr_peak_table_completed <- get_integration_with_metadata(nmr_peak_table)

permutation_test_model
Permutation test

Description

Make permutations with data and default settings from an nmr_data_analysis_method

permutation_test_model 87

Usage

permutation_test_model(
dataset,
y_column,
identity_column,
external_val,
internal_val,
data_analysis_method,

nPerm = 50
)
Arguments
dataset An nmr_dataset_family object
y_column A string with the name of the y column (present in the metadata of the dataset)

identity_column
NULL or a string with the name of the identity column (present in the metadata
of the dataset).

external_val, internal_val
A list with two elements: iterations and test_size. See random_subsampling
for further details

data_analysis_method
An nmr_data_analysis_method object

nPerm number of permutations

Value

A permutation matrix with permuted values

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

88 permutation_test_plot

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A" 6 "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A" "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

methodology <- plsda_auroc_vip_method(ncomp = 3)

model <- nmr_data_analysis(
peak_table,
y_column = "Condition",
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology

)

p <- permutation_test_model(peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology,
nPerm = 10

permutation_test_plot Permutation test plot

Description

Plot permutation test using actual model and permutated models

Usage

permutation_test_plot(
nmr_data_analysis_model,

permMatrix,
xlab = "AUCs",
xlim,

ylim = NULL,

breaks = "Sturges",

permutation_test_plot

main = "Permutation test”

Arguments

nmr_data_analysis_model
A nmr_data_analysis_model

permMatrix A permutation fitness outcome from permutation_test_model
xlab optional xlabel
x1lim optional x-range
ylim otional y-range
breaks optional custom histogram breaks (defaults to ’sturges’)
main optional plot title (or TRUE for autoname)
Value

A plot with the comparison between the actual model versus the permuted models

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

90

Pipelines

)

methodology <- plsda_auroc_vip_method(ncomp = 3)

model <- nmr_data_analysis(
peak_table,
y_column = "Condition",
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology

)

p <- permutation_test_model(peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 3, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology,
nPerm = 10

)

permutation_test_plot(model, p)

Pipelines Pipelines

Description

Uses nmr_pca_outliers_robust to perform the detection of outliers

Normalize the full spectra to the internal calibrant region, then exclude that region and finally per-
form PQN normalization.

Usage

pipe_load_samples(samples_dir, glob = "x@", output_dir = NULL)
pipe_add_metadata(nmr_dataset_rds, excel_file, output_dir)
pipe_interpolate_1D(nmr_dataset_rds, axis, output_dir)
pipe_exclude_regions(nmr_dataset_rds, exclude, output_dir)
pipe_outlier_detection(nmr_dataset_rds, output_dir)
pipe_filter_samples(nmr_dataset_rds, conditions, output_dir)

pipe_peakdet_align(

Pipelines

91

nmr_dataset_rds,
nDivRange_ppm = 0.1,

scales = seq(

1, 16, 2),

baselineThresh = 0.01,

SNR.Th = -1,
maxShift_ppm
acceptlLostPea
output_dir =

)

= 0.0015,
k = FALSE,
NULL

pipe_peak_integration(

nmr_dataset_r

ds,

peak_det_align_dir,
peak_width_ppm,

output_dir
)

pipe_normalizat
nmr_dataset_r
internal_cali
output_dir =
)

Arguments

samples_dir
glob

output_dir
nmr_dataset_rds

excel_file

axis

exclude

ion(

ds,

brant = NULL,
NULL

The directory where the samples are
A wildcard aka globbing pattern (e.g. *.csv) passed on to grep() to filter paths.

The output directory for this pipe element

The nmr_dataset.rds file name coming from previous nodes

An excel file name. See details for the requirements

The excel file can have one or more sheets. The excel sheets need to be as simple
as possible: One header column on the first row and values below.

Each of the sheets contain metadata that has to be integrated. The merge (tech-
nically a left join) is done using the first column of each sheet as key.

In practical terms this means that the first sheet of the excel file MUST start
with an "NMRExperiment" column, and as many additional columns to add
(e.g. FluidXBarcode, SampleCollectionDate, TimePoint and SubjectID).

The second sheet can have as the first column any of the already added columns,
for instance the "SubjectID", and any additional columns (e.g. Gender, Age).
The first column on each sheet, named the key column, MUST have unique val-
ues. For instance, a sheet starting with "SubjectID" MUST specify each subject
ID only once (without repetitions).

The ppm axis range and optionally the ppm step. Set it to NULL for autodetection

A list with regions to be removed Typically: exclude = list(water =c(4.7,
5.0))

92 Pipelines

conditions A character vector with conditions to filter metadata. The conditions parame-
ter should be a character vector of valid R logical conditions. Some examples:

"

 conditions <- ’Gender == "Female
¢ conditions <- *’Cohort == "Chuv"’
 conditions <- *TimePoint %in% c("TO", "T31"Y
¢ conditions <- ¢(Cohort == "Chuv", TimePoint %in% c("TO", "T31")’)
Only samples fullfilling all the given conditions are kept in further analysis.
nDivRange_ppm Segment size, in ppms, to divide the spectra and search for peaks.

scales The parameter of peakDetectionCWT function of MassSpecWavelet package,
look it up in the original function.

baselineThresh All peaks with intensities below the thresholds are excluded. Either:

* A numeric vector of length the number of samples. Each number is a thresh-
old for that sample

* A single number. All samples use this number as baseline threshold.

¢ NULL. If that’s the case, a default function is used (nmr_baseline_threshold()),
which assumes that there is no signal in the region 9.5-10 ppm.

SNR.Th The parameter of peakDetectionCWT function of MassSpecWavelet package,
look it up in the original function. If you set -1, the function will itself re-
compute this value.

maxShift_ppm The maximum shift allowed, in ppm

acceptLostPeak This is an option for users, TRUE is the default value. If the users believe that
all the peaks in the peak list are true positive, change it to FALSE.
peak_det_align_dir
Output directory from pipe_peakdet_align

peak_width_ppm A peak width in ppm
internal_calibrant
A ppm range where the internal calibrant is, or NULL.

Details

If there is no internal calibrant, only the PQN normalization is done.

Value

This function saves the result to the output directory

This function saves the result to the output directory

This function saves the result to the output directory

This function saves the result to the output directory

This function saves the result to the output directory
Pipeline: Filter samples according to metadata conditions
Pipeline: Peak detection and Alignment

Pipeline: Peak integration

Pipe: Full spectra normalization

Pipelines 93

See Also

Other import/export functions: files_to_rDolphin(), load_and_save_functions, nmr_data(),
nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(),
save_files_to_rDolphin(), save_profiling_output(), to_ChemoSpec()

Other metadata functions: nmr_meta_add(), nmr_meta_export(), nmr_meta_get (), nmr_meta_get_column(),
nmr_meta_groups()

Other outlier detection functions: nmr_pca_outliers(), nmr_pca_outliers_filter(), nmr_pca_outliers_plot(),
nmr_pca_outliers_robust()

Other peak detection functions: nmr_baseline_threshold(), nmr_detect_peaks(), nmr_detect_peaks_plot(),
nmr_detect_peaks_plot_overview(), nmr_detect_peaks_tune_snr(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_regions()

Other alignment functions: nmr_align(), nmr_align_find_ref ()

Other peak integration functions: get_integration_with_metadata(), nmr_identify_regions_blood(),
nmr_identify_regions_cell(),nmr_identify_regions_urine(), nmr_integrate_peak_positions(),
nmr_integrate_regions()

Examples

Example of pipeline usage

There are differet ways of load the dataset

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
excel_file <- system.file("dataset-demo”,

"dummy_metadata.xlsx",

package = "AlpsNMR")

output_dir <- tempdir()

Load samples with pipes

pipe_load_samples(dir_to_demo_dataset,

glob = "*.zip",

output_dir = "../pipe_output"”)

Another way to load it
nmr_dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

Saving the dataset in a .rds file
nmr_dataset_rds <- tempfile(fileext = ".rds")
nmr_dataset_save(nmr_dataset, nmr_dataset_rds)

Interpolation

pipe_interpolate_1D(nmr_dataset_rds,

axis = c(min = -0.5, max = 10, by = 2.3E-4),
output_dir)

Get the new path, based in output_dir
nmr_dataset_rds <- paste(output_dir, "\", "nmr_dataset.rds”, sep = "", collapse = NULL)

Adding metadata to samples
pipe_add_metadata(nmr_dataset_rds = nmr_dataset_rds, output_dir = output_dir,
excel_file = excel_file)

94

Filtering samples
conditions <- 'SubjectID == "Ana"'
pipe_filter_samples(nmr_dataset_rds, conditions, output_dir)

Outlier detection
pipe_outlier_detection(nmr_dataset_rds, output_dir)

Exclude regions
exclude_regions <- list(water = c(5.1, 4.5))
pipe_exclude_regions(nmr_dataset_rds, exclude_regions, output_dir)

peak aling
pipe_peakdet_align(nmr_dataset_rds, output_dir = output_dir)

peak integration

pipe_peak_integration(nmr_dataset_rds,

peak_det_align_dir = output_dir,

peak_width_ppm = 0.006, output_dir)

Normalization
pipe_normalization(nmr_dataset_rds, output_dir = output_dir)

plot.nmr_dataset_1D

plot.nmr_dataset_1D Plot an nmr_dataset_ID

Description

Plot an nmr_dataset_1D

Usage

S3 method for class 'nmr_dataset_1D'
plot(

X,

NMRExperiment = NULL,

chemshift_range = NULL,

interactive = FALSE,

quantile_plot = NULL,

quantile_colors = NULL,

Arguments

X a nmr_dataset_1D object

NMRExperiment A character vector with the NMRExperiments to include. Use "all" to include

all experiments.

plot_bootstrap_multimodel 95

chemshift_range

range of the chemical shifts to be included. Can be of length 3 to include the
resolution in the third element (e.g. c(0.2, 0.8, 0.005))

interactive if TRUE return an interactive plotly plot, otherwise return a ggplot one.

quantile_plot If TRUE plot the 10\ If two numbers between 0 and 1 are given then a custom
percentile can be plotted

quantile_colors
A vector with the colors for each of the quantiles

arguments passed to ggplot2::aes (or to ggplot2::aes_string, being deprecated).

Value

The plot

See Also

Other plotting functions: plot_interactive()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
plot(dataset_1D)

plot_bootstrap_multimodel
Bootstrap plot predictions

Description

Bootstrap plot predictions

Usage

plot_bootstrap_multimodel (bp_results, dataset, y_column, plot = TRUE)

Arguments
bp_results bp_kfold_VIP_analysis results
dataset An nmr_dataset_family object
y_column A string with the name of the y column (present in the metadata of the dataset)

plot A boolean that indicate if results are plotted or not

96 plot_bootstrap_multimodel

Value

A plot of the results or a ggplot object

Examples
Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 64 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A" "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use bootstrap and permutation method for VIPs selection
in a a k-fold cross validation
bp_results <- bp_kfold_VIP_analysis(peak_table, # Data to be analized

y_column = "Condition", # Label
k =3,
nbootstrap = 10)

n

message("Selected VIPs are: ", bp_results$importarn_vips)

plot_bootstrap_multimodel (bp_results, peak_table, "Condition")

plot_interactive 97

plot_interactive Plots in WebGL

Description

Plots in WebGL

Usage

plot_interactive(plt, html_filename, overwrite = NULL)

Arguments

plt A plot created with plotly or ggplot2

html_filename The file name where the plot will be saved

overwrite Overwrite the lib/ directory (use NULL to prompt the user)
Value

The html_filename

See Also

Other plotting functions: plot.nmr_dataset_1D()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
plot <- plot(dataset_1D)

html_plot_interactive <- plot_interactive(plot, "html_plot_interactive.html")

plot_plsda_multimodel Multi PLDSA model plot predictions

Description

Multi PLDSA model plot predictions

Usage

plot_plsda_multimodel (model, plot = TRUE)

98 plot_plsda_multimodel

Arguments

model A nmr_data_analysis_model

plot A boolean that indicate if results are plotted or not
Value

A plot of the results or a ggplot object

Examples

#' # Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use a double cross validation, splitting the samples with random
subsampling both in the external and internal validation.
The classification model will be a PLSDA, exploring at maximum 3 latent
variables.
The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 1)
model <- nmr_data_analysis(

peak_table,

y_column = "Condition”,

identity_column = NULL,

plot_plsda_samples

external_val = list(iterations = 2, test_size = 0.25),
internal_val = list(iterations = 2, test_size = 0.25),
data_analysis_method = methodology

)

plot_plsda_multimodel(model)

99

plot_plsda_samples Plot PLSDA predictions

Description

Plot PLSDA predictions

Usage

plot_plsda_samples(model, newdata = NULL, plot = TRUE)

Arguments
model A plsda model
newdata newdata to predict, if not included model$X_test will be used
plot A boolean that indicate if results are plotted or not

Value

A plot of the samples or a ggplot object

Examples

#' # Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak"”, 1:num_peaks)

100 plot_vip_scores

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A" 6 "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A" "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

We will use a double cross validation, splitting the samples with random
subsampling both in the external and internal validation.
The classification model will be a PLSDA, exploring at maximum 3 latent
variables.
The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 1)
model <- nmr_data_analysis(
peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 1, test_size = 0.25),
internal_val = list(iterations = 1, test_size = 0.25),
data_analysis_method = methodology

)

plot_plsda_samples(model$outer_cv_results[[1]]$model)

plot_vip_scores Plot vip scores of bootstrap

Description

Plot vip scores of bootstrap

Usage

plot_vip_scores(vip_means, error, nbootstrap, plot = TRUE)

Arguments
vip_means vips means values of bootstraps
error error tolerated, calculated in the bootstrap
nbootstrap number of bootstraps realiced

plot A boolean that indicate if results are plotted or not

plot_vip_scores 101

Value

A plot of the results or a ggplot object

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 64 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table

peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use bootstrap and permutation method for VIPs selection
in a a k-fold cross validation
bp_results <- bp_kfold_VIP_analysis(peak_table, # Data to be analized

y_column = "Condition", # Label
k = 3,

ncomp = 1,

nbootstrap = 10)

n

message("Selected VIPs are: ", bp_results$importarn_vips)
plot_vip_scores(bp_results$kfold_results[[1]]$vip_means,
bp_results$kfold_results[[1]]$error[1],

nbootstrap = 10)

102 plot_webgl

plot_webgl Plot a dataset into a HTML file

Description

Uses WebGL for performance

Usage

plot_webgl(nmr_dataset, html_filename, overwrite = NULL, ...)
Arguments

nmr_dataset An nmr_dataset_1D

html_filename The output HTML filename to be created
overwrite Overwrite the lib/ directory (use NULL to prompt the user)
Arguments passed on to plot.nmr_dataset_1D

x anmr_dataset_1D object

chemshift_range range of the chemical shifts to be included. Can be of length
3 to include the resolution in the third element (e.g. c(0.2, 0.8, 0.005))

NMRExperiment A character vector with the NMRExperiments to include. Use
"all" to include all experiments.

quantile_plot If TRUE plot the 10\ If two numbers between O and 1 are given
then a custom percentile can be plotted

quantile_colors A vector with the colors for each of the quantiles

interactive if TRUE return an interactive plotly plot, otherwise return a ggplot
one.

Value

the html filename created

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
html_plot <- plot_webgl(dataset_1D, "html_plot.html")

plsda_auroc_vip_compare 103

plsda_auroc_vip_compare
Compare PLSDA auroc VIP results

Description

Compare PLSDA auroc VIP results

Usage

plsda_auroc_vip_compare(...)

Arguments

Results of nmr_data_analysis to be combined. Give each result a name.

Value

A plot of the AUC for each method

Examples

Data analysis for a table of integrated peaks

Generate an artificial nmr_dataset_peak_table:
Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples / 2)

)

The matrix with peaks

peak_means <- runif(n = num_peaks, min = 300, max = 600)

peak_sd <- runif(n = num_peaks, min = 30, max = 60)

peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd

)

colnames(peak_matrix) <- paste@("Peak”, 1:num_peaks)

Artificial differences depending on the condition:

peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A" , "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60

The nmr_dataset_peak_table
peak_table <- new_nmr_dataset_peak_table(

104 plsda_auroc_vip_method

peak_table = peak_matrix,
metadata = list(external = metadata)

)

We will use a double cross validation, splitting the samples with random
subsampling both in the external and internal validation.
The classification model will be a PLSDA, exploring at maximum 3 latent
variables.
The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 1)
modell <- nmr_data_analysis(
peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 1, test_size = 0.25),
internal_val = list(iterations = 1, test_size = 0.25),
data_analysis_method = methodology

)

methodology2 <- plsda_auroc_vip_method(ncomp = 2)

model2 <- nmr_data_analysis(
peak_table,
y_column = "Condition”,
identity_column = NULL,
external_val = list(iterations = 1, test_size = 0.25),
internal_val = list(iterations = 1, test_size = 0.25),
data_analysis_method = methodology?2

)

plsda_auroc_vip_compare(modell = modell, model2 = model2)

plsda_auroc_vip_method

Method for nmr_data_analysis (PLSDA model with AUROC and VIP
outputs)

Description

Method for nmr_data_analysis (PLSDA model with AUROC and VIP outputs)

Usage

plsda_auroc_vip_method(ncomp, auc_increment_threshold = 0.05)

Arguments

ncomp Max. number of latent variables to explore in the PLSDA analysis
auc_increment_threshold

Choose the number of latent variables when the AUC does not increment more
than this threshold.

ppm_resolution 105

Value

Returns an object to be used with nmr_data_analysis to perform a (optionally multilevel) PLS-DA
model, using the area under the ROC curve as figure of merit to determine the optimum number of
latent variables.

Examples

method <- plsda_auroc_vip_method(3)

ppm_resolution Unlisted PPM resolution

Description

A wrapper to unlist the output from the function nmr_ppm_resolution(nmr_dataset) when no
interpolation has been applied.

Usage

ppm_resolution(nmr_dataset)

Arguments

nmr_dataset An object containing NMR samples

Value

A number (the ppm resolution, measured in ppms)

Numeric (the ppm resolution, measured in ppms)

Examples

nmr_dataset <- nmr_dataset_load(system.file("extdata”, "nmr_dataset.rds"”, package = "AlpsNMR"))
nmr_ppm_resolution(nmr_dataset)

106 print.nmr_dataset_1D

print.nmr_dataset Print for nmr_dataset

Description

Print for nmr_dataset

Usage
S3 method for class 'nmr_dataset'
print(x, ...)
Arguments
X an nmr_dataset object
for future use
Value

Print for nmr_dataset

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table(),
validate_nmr_dataset(), validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
print(dataset)

print.nmr_dataset_1D print for nmr_dataset_ID

Description

print for nmr_dataset_1D

Usage

S3 method for class 'nmr_dataset_1D'
print(x, ...)

print.nmr_dataset_peak_table 107

Arguments
X an nmr_dataset_1D object
for future use
Value

print for nmr_dataset_1D

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset(), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_peak_table(),
validate_nmr_dataset(), validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Other nmr_dataset_1D functions: [.nmr_dataset_1D(), format.nmr_dataset_1D(), get_integration_with_metadata
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get(), nmr_meta_get_column(), nmr_ppm_resolution()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
print(dataset_1D)

print.nmr_dataset_peak_table
print for nmr_dataset_peak_table

Description

print for nmr_dataset_peak_table

Usage
S3 method for class 'nmr_dataset_peak_table'
print(x, ...)
Arguments
X an nmr_dataset_peak_table object
for future use
Value

print for nmr_dataset_peak_table

108 random_subsampling

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), validate_nmr_dataset(),
validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment")
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

new <- new_nmr_dataset_peak_table(peak_table, metadata)

new

random_subsampling Random subsampling

Description

Random subsampling

Usage

random_subsampling(
sample_idx,
iterations = 10L,
test_size = 0.25,
keep_together = NULL,
balance_in_train = NULL

)
Arguments
sample_idx Typically a numeric vector with sample index to be separated. A character vector
with sample IDs could also be used
iterations An integer, the number of iterations in the random subsampling
test_size A number between 0 and 1. The samples to be included in the test set on each

interation.

keep_together Either NULL or a factor with the same length as sample_idx. keep_together
can be used to ensure that groups of samples are kept in together in all iterations
(either on training or on test, but never split). A typical use case for this is
when you have sample replicates and you want to keep all replicates together

read_bruker_pdata 109

to prevent overoptimistic results (having one sample on the train subset and its
replicate on the test subset would make the prediction easier to guess). Another
use case for this is when you have a longitudinal study and you want to keep
some subjects in the same train or test group, because you want to use some
information in a longitudinal way (e.g. a multilevel plsda model).

balance_in_train

Either NULL or a factor with the same length as sample_idx. balance_in_train
can be used to force that on each iteration, the train partition contains the same
number of samples of the given factor levels. For instance, if we have a dataset
with 40 samples of class "A" and 20 samples of class "B", using a test_size
=0.25, we can force to always have 16 samples of class "A" and 16 samples
of class "B" in the training subset. This is beneficial to those algorithms that
require that the training groups are balanced.

Value

A list of length equal to iterations. Each element of the list is a list with two entries (training
and test) containing the sample_idx values that will belong to each subset.

Examples

random_subsampling(1:100, iterations = 4, test_size = 0.25)

subject_id <- c("Alice", "Bob", "Charlie"”, "Eve")
random_subsampling(1:4, iterations = 2, test_size = 0.25, keep_together = subject_id)

read_bruker_pdata Read processed Bruker NMR data

Description

Read processed Bruker NMR data

Usage

read_bruker_pdata(
sample_path,
pdata_file = NULL,
pdata_path = "pdata/1"”,
all_components = FALSE,
read_pdata_title = TRUE

110 ROI_blood

Arguments

sample_path A character path of the sample directory

pdata_file File name of the binary NMR data to load. Usually "1r". If NULL, it is autode-
tected based on the dimension

pdata_path Path from sample_path to the preprocessed data

all_components If FALSE load only the real component. Otherwise load the real and imaginary
components

read_pdata_title
If TRUE also reads metadata from pdata title file.

Value

A list with Bruker NMR processed data

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

dplyr filter, rename
generics tidy
magrittr %>%

utils .DollarNames

ROI_blood ROIs for blood (plasma/serum) samples

Description

The template ROI_blood contains the targeted list of metabolites to be quantified (blood samples)

References

github.com/danielcanueto/rDolphin

Examples

data("ROI_blood")
ROI_blood[ROI_blood$Metabolite == "Valine”,]

github.com/danielcanueto/rDolphin

ROI cell 111

ROI_cell ROIs for cell samples

Description

The template ROI_cell contains the targeted list of metabolites to be quantified (cell samples)

References

github.com/danielcanueto/rDolphin

Examples

data(”"ROI_cell”)

ROI_cell[ROI_cell$Metabolite == "Valine”,]
ROI_urine ROIs for urine samples
Description

The template ROI_urine contains the targeted list of metabolites to be quantified (urine samples)

References

github.com/danielcanueto/rDolphin

Examples

data("ROI_urine")
ROI_urine[ROI_urine$Metabolite == "Valine”,]

github.com/danielcanueto/rDolphin
github.com/danielcanueto/rDolphin

112 save_files_to_rDolphin

save_files_to_rDolphin
Save files to rDoplhin

Description

The function saves the CSV files required by to_rDolphin and Automatic_targeted_profiling func-
tions for metabolite profiling.

Usage

save_files_to_rDolphin(files_rDolphin, output_directory)

Arguments

files_rDolphin alist containing 4 elements from files_to_rDolphin

* meta_rDolphin: metadata in rDolphin format,
* NMR_spectra: spectra matrix
* ROI: ROI template
* Parameters_blood: parameters file
output_directory
a directory in which the CSV files are saved

Value

CSV files containing:

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,

nmr_data(), nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(),
save_profiling_output(), to_ChemoSpec()

Examples

Not run:

dataset <- system.file("dataset-demo”, package = "AlpsNMR")

excel_file <- system.file("dataset-demo”, "dummy_metadata.xlsx”, package = "AlpsNMR")
nmr_dataset <- nmr_read_samples_dir(dataset)

files_rDolphin <- files_to_rDolphin_blood(nmr_dataset)
save_files_to_rDolphin(files_rDolphin, output_directory = ".")

End(Not run)

save_profiling_output 113

save_profiling_output Save rDoplhin output

Description

The function saves the output from Automatic_targeted_profiling function in CSV format.

Usage

save_profiling_output(targeted_profiling, output_directory)

Arguments

targeted_profiling

A list from Automatic_targeted_profiling function
output_directory

a directory in which the CSV files are saved

Value
rDolphin output from Automatic_targeted_profiling function:

* metabolites_intensity

* metabolites_quantification
* ROI_profiles_used

¢ chemical_shift

* fitting_error

¢ half bandwidth

* signal_area_ratio

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(),
save_files_to_rDolphin(), to_ChemoSpec()

Examples

Not run:

rDolphin_object <- to_rDolphin(parameters)
targeted_profiling <- Automatic_targeted_profiling(rDolphin)
save_profiling_output(targeted_profiling, output_directory)

End(Not run)

114 SummarizedExperiment_to_nmr_data_Ir

SummarizedExperiment_to_nmr_dataset_peak_table
Import SummarizedExperiment as mr_dataset_peak_table

Description

Import SummarizedExperiment as mr_dataset_peak_table

Usage

SummarizedExperiment_to_nmr_dataset_peak_table(se)

Arguments

se An SummarizedExperiment object

Value

nmr_dataset_peak_table An nmr_dataset_peak_table object (unmodified)

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment")
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

nmr_peak_table <- new_nmr_dataset_peak_table(peak_table, metadata)

se <- nmr_dataset_peak_table_to_SummarizedExperiment(nmr_peak_table)
nmr_peak_table <- SummarizedExperiment_to_nmr_dataset_peak_table(se)

SummarizedExperiment_to_nmr_data_1r
Import SummarizedExperiment as 1D NMR data

Description

Import SummarizedExperiment as 1D NMR data

Usage

SummarizedExperiment_to_nmr_data_1r(se)

tidy.nmr_dataset_1D 115

Arguments

se An SummarizedExperiment object

Value

nmr_dataset An nmr_dataset_1D object (unmodified)

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
se <- nmr_data_1r_to_SummarizedExperiment(dataset_1D)

dataset_1D <- SummarizedExperiment_to_nmr_data_1r(se)

tidy.nmr_dataset_1D Get a tidy data frame from nmr_data object

Description

This dataframe is useful for plotting with ggplot, although it may be very long and therefore use a
lot of RAM.

Usage

S3 method for class 'nmr_dataset_1D'
tidy(

X,

NMRExperiment = NULL,

chemshift_range = NULL,

columns = character(oL),

matrix_name = "data_1r",
axis_name = "axis",
)
Arguments
X an nmr_dataset_1D object

NMRExperiment A character vector with the NMRExperiments to include. NULL means all.
chemshift_range
range of the chemical shifts to be included. Can be of length 3 to include the
resolution in the third element (e.g. c(@.2, 0.8, 0.005))

columns A character vector with the metadata columns to get, use NULL to get all of them.
matrix_name A string with the matrix name, typically "data_1r"
axis_name A string with the axis name, for now "axis" is the only valid option

Ignored

116 to_ASICS

Value

A data frame with NMRExperiment, chemshift, intensity and any additional column requested

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -1.0, max = 1.6, by = 2.3E-4))
dummy_metadata <- system.file("dataset-demo”, "dummy_metadata.xlsx”, package = "AlpsNMR")
NMRExp_SubjID <- readxl::read_excel(dummy_metadata, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, NMRExp_SubjID)

df_for_ggplot <- tidy(dataset_1D, chemshift_range = c(1.2, 1.4), columns = "SubjectID")
head(df_for_ggplot)

to_ASICS Export data for the ASICS spectral quantification library

Description

Exports the spectra matrix, sample names and chemical shift axis into an ASICS Spectra object.

Usage
to_ASICS(dataset, ...)
Arguments
dataset An nmr_dataset_1D object
Arguments passed on to ASICS: :createSpectra
norm.method Character specifying the normalisation method to use on spectra
ONLY if the importSpectra function was not used.
norm.params List containing normalisation parameteres (see normaliseSpectra
for details) ONLY if the importSpectra function was not used.
Value

An ASICS::Spectra object

Examples

if (requireNamespace("ASICS", quietly=TRUE)) {
nsamp <- 3
npoints <- 300
metadata <- list(external = data.frame(
NMRExperiment = paste@(”Sample”, seqg_len(nsamp))
D)
dataset <- new_nmr_dataset_1D(
ppm_axis = seq(from = 0.2, to = 10, length.out = npoints),

to_ChemoSpec 117

data_1r = matrix(runif(nsamp * npoints), nrow = nsamp, ncol = npoints),
metadata = metadata
)
forAsics <- to_ASICS(dataset)
#ASICS: : ASICS(forAsics)
3

to_ChemoSpec Convert to ChemoSpec Spectra class

Description

Convert to ChemoSpec Spectra class

Usage

to_ChemoSpec(nmr_dataset, desc = "A nmr_dataset”, group = NULL)

Arguments

nmr_dataset An nmr_dataset_1D object

desc a description for the dataset

group A string with the column name from the metadata that has grouping information
Value

A Spectra object from the ChemoSpec package

See Also

Other import/export functions: Pipelines, files_to_rDolphin(), load_and_save_functions,
nmr_data(), nmr_meta_export(), nmr_read_bruker_fid(), nmr_read_samples(), nmr_zip_bruker_samples(),
save_files_to_rDolphin(), save_profiling_output()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
chemo_spectra <- to_ChemoSpec(dataset_1D)

118 validate_nmr_dataset

validate_nmr_dataset Validate nmr_dataset objects

Description

Validate nmr_dataset objects
Validate 1D nmr datasets

Usage

validate_nmr_dataset(samples)

validate_nmr_dataset_1D(nmr_dataset_1D)

Arguments

samples An nmr_dataset object

nmr_dataset_1D An nmr_dataset_1D object

Value

Validate nmr_dataset objects
The nmr_dataset_1D unchanged

This function is useful for its side-effects. Stopping in case of error

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()

is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),

new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table

validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()

is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),

new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table

validate_nmr_dataset_family(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
validate_nmr_dataset(dataset)

"AlpsNMR™)

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
dataset_1D_validated <- validate_nmr_dataset_1D(dataset_1D)

validate_nmr_dataset_family 119

validate_nmr_dataset_family
Validate nmr_dataset_family objects

Description

Validate nmr_dataset_family objects

Usage

validate_nmr_dataset_family(nmr_dataset_family)

Arguments

nmr_dataset_family
An nmr_dataset_family object

Value

The nmr_dataset_family unchanged

This function is useful for its side-effects: Stopping in case of error

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table
validate_nmr_dataset(), validate_nmr_dataset_peak_table()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
validate_nmr_dataset_family(dataset_1D)

validate_nmr_dataset_peak_table
Validate nmr_dataset_peak_table objects

Description

Validate nmr_dataset_peak_table objects

Usage

validate_nmr_dataset_peak_table(nmr_dataset_peak_table)

120 [.nmr_dataset

Arguments

nmr_dataset_peak_table
An nmr_dataset_peak_table object

Value

The nmr_dataset_peak_table unchanged

See Also

Other class helper functions: format.nmr_dataset(), format.nmr_dataset_1D(), format.nmr_dataset_peak_table()
is.nmr_dataset_1D(), is.nmr_dataset_peak_table(), new_nmr_dataset (), new_nmr_dataset_1D(),
new_nmr_dataset_peak_table(), print.nmr_dataset(), print.nmr_dataset_1D(), print.nmr_dataset_peak_table
validate_nmr_dataset(), validate_nmr_dataset_family()

Examples

pt <- new_nmr_dataset_peak_table(
peak_table = matrix(c(1, 2), nrow = 1, dimnames = 1list("10", c("ppm_1.4", "ppm_1.6"))),
metadata = list(external = data.frame(NMRExperiment = "10"))

)
pt_validated <- validate_nmr_dataset_peak_table(pt)

zz2z 2

Description

777

Examples

Workaround a bug in R CMD check
Sys.sleep(2)

[.nmr_dataset Extract parts of an nmr_dataset

Description

Extract parts of an nmr_dataset

Usage

S3 method for class 'nmr_dataset'
x[i]

[.nmr_dataset_1D 121

Arguments

X an nmr_dataset object

i indices of the samples to keep
Value

an nmr_dataset with the extracted samples

See Also

Other subsetting functions: [.nmr_dataset_1D(), [.nmr_dataset_peak_table(), filter.nmr_dataset_family(),
nmr_pca_outliers_filter()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
dataset2 <- dataset[1:3] # get the first 3 samples

[.nmr_dataset_1D Extract parts of an nmr_dataset_I1D

Description

Extract parts of an nmr_dataset_1D

Usage
S3 method for class 'nmr_dataset_1D'
x[i]

Arguments

X an nmr_dataset_1D object

i indices of the samples to keep

Value

an nmr_dataset_1D with the extracted samples

See Also

Other subsetting functions: [.nmr_dataset(), [.nmr_dataset_peak_table(), filter.nmr_dataset_family(),
nmr_pca_outliers_filter()

Other nmr_dataset_1D functions: format.nmr_dataset_1D(), get_integration_with_metadata(),
is.nmr_dataset_1D(), nmr_integrate_peak_positions(), nmr_integrate_regions(), nmr_meta_add(),
nmr_meta_export(), nmr_meta_get (), nmr_meta_get_column(), nmr_ppm_resolution(), print.nmr_dataset_1D()

122 [.nmr_dataset_peak_table

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
dataset_1D[0]

[.nmr_dataset_peak_table
Extract parts of an nmr_dataset_peak_table

Description

Extract parts of an nmr_dataset_peak_table

Usage

S3 method for class 'nmr_dataset_peak_table'
x[i]

Arguments

X an nmr_dataset_peak_table object

i indices of the samples to keep

Value

an nmr_dataset_peak_table with the extracted samples

See Also

Other subsetting functions: [.nmr_dataset(), [.nmr_dataset_1D(), filter.nmr_dataset_family(),
nmr_pca_outliers_filter()

Examples

dir_to_demo_dataset <- system.file("dataset-demo”, package = "AlpsNMR")

dataset <- nmr_read_samples_dir(dir_to_demo_dataset)

dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
meta <- file.path(dir_to_demo_dataset, "dummy_metadata.xlsx")

metadata <- readxl::read_excel(meta, sheet = 1)

dataset_1D <- nmr_meta_add(dataset_1D, metadata = metadata, by = "NMRExperiment”)
metadata <- list(external = dataset_1D[["metadata”]][["external”]])

peak_table <- nmr_data(dataset_1D)

new <- new_nmr_dataset_peak_table(peak_table, metadata)

new[@]

Index

* AlpsNMR dataset objects
nmr_dataset, 40
nmr_dataset_family, 42

x PCA related functions
nmr_pca_build_model, 69
nmr_pca_outliers, 70
nmr_pca_outliers_filter, 71
nmr_pca_outliers_plot, 72
nmr_pca_outliers_robust, 73
nmr_pca_plots, 74

+ alignment functions
nmr_align, 29
nmr_align_find_ref, 30
Pipelines, 90

+ baseline removal functions
nmr_baseline_estimation, 31
nmr_baseline_removal, 32

* basic functions
nmr_exclude_region, 53
nmr_normalize, 67

+ batman functions
nmr_batman, 35
nmr_batman_options, 37

* class helper functions
format.nmr_dataset, 15
format.nmr_dataset_1D, 15

format.nmr_dataset_peak_table, 16

is.nmr_dataset_1D, 20
is.nmr_dataset_peak_table, 21
new_nmr_dataset, 25
new_nmr_dataset_1D, 27
new_nmr_dataset_peak_table, 28
print.nmr_dataset, 106
print.nmr_dataset_1D, 106

print.nmr_dataset_peak_table, 107

validate_nmr_dataset, 118

validate_nmr_dataset_family, 119
validate_nmr_dataset_peak_table,

119

123

+ data
hmdb, 18
HMDB_blood, 18
HMDB_cell, 19
HMDB_urine, 19
Parameters_blood, 81
Parameters_cell, 81
Parameters_urine, 82
ROI_blood, 110
ROI_cell, 111
ROI_urine, 111

+ import/export functions
files_to_rDolphin, 12
load_and_save_functions, 22
nmr_data, 39
nmr_meta_export, 64
nmr_read_bruker_fid, 78
nmr_read_samples, 78
nmr_zip_bruker_samples, 80
Pipelines, 90
save_files_to_rDolphin, 112
save_profiling_output, 113
to_ChemoSpec, 117

* internal
read_bruker_pdata, 109
reexports, 110
zzz, 120

+ metadata functions
nmr_meta_add, 62
nmr_meta_export, 64
nmr_meta_get, 65
nmr_meta_get_column, 66
nmr_meta_groups, 67
Pipelines, 90

* nmr_dataset functions
nmr_meta_add, 62
nmr_meta_export, 64
nmr_meta_get, 65
nmr_meta_get_column, 66

124

+ nmr_dataset_1D functions
[.nmr_dataset_1D, 121
format.nmr_dataset_1D, 15
get_integration_with_metadata, 17
is.nmr_dataset_1D, 20
nmr_integrate_peak_positions, 58
nmr_integrate_regions, 59
nmr_meta_add, 62
nmr_meta_export, 64
nmr_meta_get, 65
nmr_meta_get_column, 66
nmr_ppm_resolution, 77
print.nmr_dataset_1D, 106

+x nmr_dataset_peak_table functions
nmr_meta_add, 62
nmr_meta_export, 64
nmr_meta_get, 65
nmr_meta_get_column, 66

x outlier detection functions
nmr_pca_outliers, 70
nmr_pca_outliers_filter, 71
nmr_pca_outliers_plot, 72
nmr_pca_outliers_robust, 73
Pipelines, 90

* peak alignment functions
nmr_align, 29
nmr_align_find_ref, 30

x peak detection functions
nmr_baseline_threshold, 33
nmr_detect_peaks, 48
nmr_detect_peaks_plot, 49
nmr_detect_peaks_plot_overview, 50
nmr_detect_peaks_tune_snr, 52
nmr_identify_regions_blood, 55
nmr_identify_regions_cell, 56
nmr_identify_regions_urine, 57
nmr_integrate_regions, 59
Pipelines, 90

* peak integration functions
get_integration_with_metadata, 17
nmr_identify_regions_blood, 55
nmr_identify_regions_cell, 56
nmr_identify_regions_urine, 57
nmr_integrate_peak_positions, 58
nmr_integrate_regions, 59
Pipelines, 90

* pipeline functions
Pipelines, 90

INDEX

* plotting functions
plot.nmr_dataset_1D, 94
plot_interactive, 97

* plotting nmr datasets
plot_webgl, 102

* subsetting functions
[.nmr_dataset, 120
[.nmr_dataset_1D, 121
[.nmr_dataset_peak_table, 122
filter.nmr_dataset_family, 14
nmr_pca_outliers_filter, 71

.DollarNames, 110

.DollarNames (reexports), 110

[.nmr_dataset, 14, 72, 120, 121, 122

[.nmr_dataset_1D, 14, 16, 17,21, 59, 60,

63-66,72,77,107, 121,121, 122

[.nmr_dataset_peak_table, 14, 72, 121,

122
%>% (reexports), 110
%>%, 110

AlpsNMR (AlpsNMR-package), 5
AlpsNMR-package, 5
as.data.frame.nmr_dataset_peak_table
(nmr_dataset_peak_table), 42
ASICS::createSpectra, 116
ASICS::Spectra, 116

baseline: :baseline.als, 31, 32
bp_kfold_VIP_analysis, 6
bp_VIP_analysis, 7, 8

download_MTBLS242, 10
dplyr, 14

file_lister, 13

files_to_rDolphin, 12, 22, 40, 64, 78-80,
93,112, 113,117

filter, 110

filter (reexports), 110

filter.nmr_dataset_family, 14, 72, 121,
122

format.nmr_dataset, 15, 16, 17, 21, 26-28,
106-108, 118120

format.nmr_dataset_1D, /5,15, 17, 21,
26-28, 59, 60, 63-66, 77, 106—108,
118-121

format.nmr_dataset_peak_table, 15, 16,
16, 21, 26-28, 106108, 118-120

INDEX

fs::dir_1s(), 13
Functions to save and load these
objects, 41, 42

get_integration_with_metadata, 16, 17,
21, 56-60, 63-66, 77, 93, 107, 121

ggplot2::aes, 34, 74, 95

ggplot2::aes(), 72

ggplot2::aes_string, 34, 95

ggplot2::aes_string(), 72

grep(), 91

hmdb, 18, 36

HMDB_blood, 18
HMDB_cell, 19
HMDB_urine, 19

importSpectra, 116

is.nmr_dataset, 20

is.nmr_dataset_1D, 15-17, 20, 21, 26-28,
59, 60, 63-66, 77, 106—108,
118-121

is.nmr_dataset_peak_table, 15-17, 21, 21,
26-28, 106108, 118-120

load_and_save_functions, 12, 22, 40, 64,
78-80,93, 112, 113, 117

MassSpecWavelet: :peakDetectionCWT, 48
mixOmics: :pca, 69, 70

mixOmics: :plsda, 47
models_stability_plot_bootstrap, 23
models_stability_plot_plsda, 24

new_nmr_data_analysis_method
(nmr_data_analysis_method), 46
new_nmr_data_analysis_method(), 45
new_nmr_dataset, /15-17, 21, 25, 27, 28,
106-108, 118-120
new_nmr_dataset_1D, 15-17, 21, 26, 27, 28,
106-108, 118-120
new_nmr_dataset_peak_table, 15-17, 21,
26, 27,28, 106-108, 118-120
nmr_align, 29, 30, 49, 93
nmr_align_find_ref, 29, 30, 93
nmr_autophase, 30
nmr_baseline_estimation, 31, 32
nmr_baseline_removal, 32, 32
nmr_baseline_threshold, 33, 34, 49-51, 53,
56-58, 60, 93

125

nmr_baseline_threshold(), 48, 52, 92
nmr_baseline_threshold_plot, 34
nmr_batman, 35, 38
nmr_batman_export_dataset (nmr_batman),
35
nmr_batman_metabolites_list
(nmr_batman), 35
nmr_batman_multi_data_user
(nmr_batman), 35
nmr_batman_multi_data_user_hmdb
(nmr_batman), 35
nmr_batman_options, 36, 37
nmr_batman_write_options (nmr_batman),
35
nmr_build_peak_table, 39
nmr_data, 12, 22, 39, 64, 78-80, 93, 112, 113,
117
nmr_data<- (nmr_data), 39
nmr_data_1r_to_SummarizedExperiment,
44
nmr_data_analysis, 44, 47, 103, 105
nmr_data_analysis_method, 45, 46, 87
nmr_dataset, 5, 12, 15, 17, 20, 31, 40, 42, 59,
60,78, 79,106,121
nmr_dataset_1D, 6, 8, 13, 16, 20, 29-34, 36,
39,41, 44,48, 49, 52, 54, 68-72, 74,
76,94, 102, 107, 115-118, 121
nmr_dataset_family, 6, 8, 14, 22, 40, 41, 42,
45, 62, 64-67, 87,95, 119
nmr_dataset_load
(load_and_save_functions), 22
nmr_dataset_peak_table, 6, 8, 16, 21, 39,
42,43, 44, 60, 107, 114, 120, 122

nmr_dataset_peak_table_to_SummarizedExperiment

43
nmr_dataset_save
(load_and_save_functions), 22
nmr_detect_peaks, 29, 30, 34, 48, 49-53,
56-58, 60, 93
nmr_detect_peaks(), 50
nmr_detect_peaks_plot, 34, 49, 49, 51, 53,
56-58, 60, 93
nmr_detect_peaks_plot(), 50
nmr_detect_peaks_plot_overview, 34, 49,
50, 50, 53, 56-58, 60, 93
nmr_detect_peaks_plot_peaks, 51
nmr_detect_peaks_tune_snr, 34, 49-51, 52,
56-58, 60, 93

126

nmr_exclude_region, 53, 68
nmr_exclude_region(), 5
nmr_export_data_1r, 54
nmr_get_peak_distances, 55,75
nmr_identify_regions_blood, 17, 34,
49-51, 53,55, 57-60, 93
nmr_identify_regions_cell, 17, 34,49-51,
53, 56, 56, 58-60, 93
nmr_identify_regions_urine, 17, 34,
49-51, 53, 56, 57,57, 59, 60, 93
nmr_integrate_peak_positions, 16, 17,21,
56-58, 58, 60, 63-66, 77, 93, 107,
121
nmr_integrate_regions, 16, 17, 21, 34,
49-51, 53, 56-59, 59, 63-66, 68, 77,
93,107,121
nmr_interpolate_1D, 61
nmr_interpolate_1D(), 5
nmr_meta_add, 16, 17, 21, 59, 60, 62, 64—67,
77,93,107, 121
nmr_meta_add_tidy_excel (nmr_meta_add),
62
nmr_meta_export, 12, 16, 17, 21, 22, 40, 59,
60, 63, 64, 65-67, 77-80, 93, 107,
112, 113,117,121
nmr_meta_get, 16, 17,21, 59, 60, 63, 64, 65,
66, 67,77,93,107, 121
nmr_meta_get_column, 16, 17, 21, 59, 60,
63-65, 66, 67,77,93,107, 121
nmr_meta_groups, 63-66, 67, 93
nmr_normalize, 53, 67
nmr_normalize(), 5
nmr_normalize_extra_info
(nmr_normalize), 67
nmr_pca_build_model, 69, 70-72, 74
nmr_pca_loadingplot (nmr_pca_plots), 74
nmr_pca_outliers, 70, 70, 72-74, 93
nmr_pca_outliers(), 71, 72
nmr_pca_outliers_filter, 14,70, 71,71,
72,74,93,121, 122
nmr_pca_outliers_plot, 70-72,72, 74, 93
nmr_pca_outliers_plot(), 73
nmr_pca_outliers_robust, 70-72, 73, 74,
90, 93
nmr_pca_plot_variance (nmr_pca_plots),
74
nmr_pca_plots, 70-72, 74, 74
nmr_pca_scoreplot (nmr_pca_plots), 74

INDEX

nmr_peak_clustering, 75
nmr_peak_clustering_plot, 76
nmr_ppm_resolution, 16, 17,21, 59, 60,
63-66,77, 107, 121
nmr_read_bruker_fid, 12, 22, 40, 64, 78, 79,
80,93,112, 113,117
nmr_read_samples, 12, 22, 40, 64, 78, 78, 80,
93,112, 113,117
nmr_read_samples(), 5, 30
nmr_read_samples_dir
(nmr_read_samples), 78
nmr_read_samples_dir(), 5
nmr_zip_bruker_samples, 12, 22, 40, 64, 78,
79,80,93,112, 113,117
NMRphasing: :NMRphasing(), 30, 31
normaliseSpectra, 116

Parameters_blood, 81
Parameters_cell, 81
Parameters_urine, 82
Peak_detection, 85
peaklist_accept_peaks, 82
peaklist_fit_lorentzians, 83
permutation_test_model, 86
permutation_test_plot, 88
pipe_add_metadata (Pipelines), 90
pipe_exclude_regions (Pipelines), 90
pipe_filter_samples (Pipelines), 90
pipe_interpolate_1D (Pipelines), 90
pipe_load_samples (Pipelines), 90
Pipe_normalization (Pipelines), 90
pipe_normalization (Pipelines), 90
pipe_outlier_detection (Pipelines), 90
pipe_pakdet_align (Pipelines), 90
pipe_peak_integration (Pipelines), 90
pipe_peakdet_align, 92
pipe_peakdet_align (Pipelines), 90
Pipelines, 12, 17,22, 29, 30, 34, 40, 49-51,
53,56-60, 63-67,71, 72, 74, 78-80,
90,112, 113,117
plot(), 5
plot.nmr_dataset_1D, 49, 94, 97, 102
plot_bootstrap_multimodel, 95
plot_interactive, 53, 95,97
plot_plsda_multimodel, 97
plot_plsda_samples, 99
plot_vip_scores, 100
plot_webgl, 102
plotly::ggplotly, 53

INDEX 127

plsda_auroc_vip_compare, 103 validate_nmr_dataset_peak_table, 15-17,
plsda_auroc_vip_method, 45, 104 21,2628, 106-108, 118, 119, 119
ppm_resolution, 105

print.nmr_dataset, 15-17, 21, 26-28, 106, zzz, 120

107, 108, 118120
print.nmr_dataset_1D, 15-17, 21, 26-28,
59, 60, 63-66, 77, 106, 106, 108,
118-121
print.nmr_dataset_peak_table, 15-17, 21,
26-28, 106, 107,107, 118—120

random_subsampling, 45, 87, 108
read_bruker_pdata, 79, 109
read_bruker_pdata(), 79
reexports, 110

rename, 110

rename (reexports), 110
ROI_blood, 110

ROI_cell, 111

ROI_urine, 111

save_files_to_rDolphin, 12, 22, 40, 64,
78-80, 93,112, 113,117

save_profiling_output, 12, 22, 40, 64,
78-80,93, 112,113,117

saveRDS, 22

scale, 69

speaq: :detectSpecPeaks, 48

speaq: :dohCluster, 29

SummarizedExperiment_to_nmr_data_1r,
114

SummarizedExperiment_to_nmr_dataset_peak_table,
114

tidy, 7110

tidy (reexports), 110

tidy.nmr_dataset_1D, 115

to_ASICS, 116

to_ChemoSpec, 12, 22, 40, 64, 78-80, 93, 112,
113,117

utils::zip, 80

validate_nmr_dataset, 15-17, 21, 26-28,
106-108, 118, 119, 120

validate_nmr_dataset_1D
(validate_nmr_dataset), 118

validate_nmr_dataset_family, 15-17, 21,
26-28, 106-108, 118, 119, 120

	AlpsNMR-package
	bp_kfold_VIP_analysis
	bp_VIP_analysis
	download_MTBLS242
	files_to_rDolphin
	file_lister
	filter.nmr_dataset_family
	format.nmr_dataset
	format.nmr_dataset_1D
	format.nmr_dataset_peak_table
	get_integration_with_metadata
	hmdb
	HMDB_blood
	HMDB_cell
	HMDB_urine
	is.nmr_dataset
	is.nmr_dataset_1D
	is.nmr_dataset_peak_table
	load_and_save_functions
	models_stability_plot_bootstrap
	models_stability_plot_plsda
	new_nmr_dataset
	new_nmr_dataset_1D
	new_nmr_dataset_peak_table
	nmr_align
	nmr_align_find_ref
	nmr_autophase
	nmr_baseline_estimation
	nmr_baseline_removal
	nmr_baseline_threshold
	nmr_baseline_threshold_plot
	nmr_batman
	nmr_batman_options
	nmr_build_peak_table
	nmr_data
	nmr_dataset
	nmr_dataset_1D
	nmr_dataset_family
	nmr_dataset_peak_table
	nmr_dataset_peak_table_to_SummarizedExperiment
	nmr_data_1r_to_SummarizedExperiment
	nmr_data_analysis
	nmr_data_analysis_method
	nmr_detect_peaks
	nmr_detect_peaks_plot
	nmr_detect_peaks_plot_overview
	nmr_detect_peaks_plot_peaks
	nmr_detect_peaks_tune_snr
	nmr_exclude_region
	nmr_export_data_1r
	nmr_get_peak_distances
	nmr_identify_regions_blood
	nmr_identify_regions_cell
	nmr_identify_regions_urine
	nmr_integrate_peak_positions
	nmr_integrate_regions
	nmr_interpolate_1D
	nmr_meta_add
	nmr_meta_export
	nmr_meta_get
	nmr_meta_get_column
	nmr_meta_groups
	nmr_normalize
	nmr_pca_build_model
	nmr_pca_outliers
	nmr_pca_outliers_filter
	nmr_pca_outliers_plot
	nmr_pca_outliers_robust
	nmr_pca_plots
	nmr_peak_clustering
	nmr_peak_clustering_plot
	nmr_ppm_resolution
	nmr_read_bruker_fid
	nmr_read_samples
	nmr_zip_bruker_samples
	Parameters_blood
	Parameters_cell
	Parameters_urine
	peaklist_accept_peaks
	peaklist_fit_lorentzians
	Peak_detection
	permutation_test_model
	permutation_test_plot
	Pipelines
	plot.nmr_dataset_1D
	plot_bootstrap_multimodel
	plot_interactive
	plot_plsda_multimodel
	plot_plsda_samples
	plot_vip_scores
	plot_webgl
	plsda_auroc_vip_compare
	plsda_auroc_vip_method
	ppm_resolution
	print.nmr_dataset
	print.nmr_dataset_1D
	print.nmr_dataset_peak_table
	random_subsampling
	read_bruker_pdata
	reexports
	ROI_blood
	ROI_cell
	ROI_urine
	save_files_to_rDolphin
	save_profiling_output
	SummarizedExperiment_to_nmr_dataset_peak_table
	SummarizedExperiment_to_nmr_data_1r
	tidy.nmr_dataset_1D
	to_ASICS
	to_ChemoSpec
	validate_nmr_dataset
	validate_nmr_dataset_family
	validate_nmr_dataset_peak_table
	zzz
	[.nmr_dataset
	[.nmr_dataset_1D
	[.nmr_dataset_peak_table
	Index

