
Package ‘AllelicImbalance’
February 1, 2026

Type Package

Title Investigates Allele Specific Expression

Version 1.49.0

Date 2021-11-17

Encoding UTF-8

Author Jesper R Gadin, Lasse Folkersen

Maintainer Jesper R Gadin <j.r.gadin@gmail.com>

Description Provides a framework for allelic specific expression
investigation using RNA-seq data.

License GPL-3

URL https://github.com/pappewaio/AllelicImbalance

BugReports https://github.com/pappewaio/AllelicImbalance/issues

Suggests testthat, org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene,
SNPlocs.Hsapiens.dbSNP144.GRCh37, BiocStyle, knitr, rmarkdown

Depends R (>= 4.0.0), grid, GenomicRanges (>= 1.31.8),
SummarizedExperiment (>= 0.2.0), GenomicAlignments (>= 1.15.6)

Imports methods, BiocGenerics, AnnotationDbi, BSgenome (>= 1.47.3),
VariantAnnotation (>= 1.25.11), Biostrings (>= 2.47.6),
S4Vectors (>= 0.17.25), IRanges (>= 2.13.12), Rsamtools (>=
1.99.3), GenomicFeatures (>= 1.31.3), Gviz, lattice,
latticeExtra, gridExtra, seqinr, GenomeInfoDb, nlme

LazyData TRUE

biocViews Genetics, Infrastructure, Sequencing

VignetteBuilder knitr

Collate 'AllelicImbalance-package.R' 'initialize-methods.R'
'ASEset-class.R' 'DetectedAI-class.R' 'GlobalAnalysis-class.R'
'barplot-methods.R' 'locationplot-methods.R'
'GvizTrack-methods.R' 'LinkVariantAlmlof-class.R'
'RegionSummary-class.R' 'RiskVariant-class.R'
'auxillary-functions-annotation.R'

1

https://github.com/pappewaio/AllelicImbalance
https://github.com/pappewaio/AllelicImbalance/issues

2 Contents

'auxillary-functions-visuals.R'
'auxillary-methods-annotation.R'
'auxillary-methods-summaries.R' 'auxillary-methods.R'
'chisq.test-methods.R' 'binom.test-methods.R'
'boxplot-methods.R' 'deprecations.R' 'detect-methods.R'
'filter-methods.R' 'histplot-methods.R' 'inference-methods.R'
'linkage-methods.R' 'list-methods.R' 'mapbias-methods.R'
'plot-methods.R' 'show-methods.R' 'simulation-methods.R'
'summary-methods.R' 'utils.R'

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/AllelicImbalance

git_branch devel

git_last_commit d78bb64

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
AllelicImbalance-package . 4
annotation-wrappers . 5
annotationBarplot . 7
ASEset-barplot . 8
ASEset-class . 11
ASEset-filters . 16
ASEset-gbarplot . 18
ASEset-glocationplot . 19
ASEset-gviztrack . 20
ASEset-locationplot . 22
ASEset-scanForHeterozygotes . 24
ASEset.old . 26
ASEset.sim . 26
ASEsetFromBam . 27
barplot-lattice-support . 28
binom.test . 29
chisq.test . 30
cigar-utilities . 31
countAllelesFromBam . 32
coverageMatrixListFromGAL . 33
decorateWithExons . 34
decorateWithGenes . 35
defaultMapBias . 36
defaultPhase . 37
detectAI . 37
DetectedAI-class . 39
DetectedAI-plot . 40

Contents 3

DetectedAI-summary . 42
fractionPlotDf . 44
gba . 45
genomatrix . 45
genotype2phase . 46
getAlleleCounts . 47
getAlleleQuality . 49
getAreaFromGeneNames . 50
getDefaultMapBiasExpMean . 51
getSnpIdFromLocation . 52
GlobalAnalysis-class . 53
GRvariants . 54
histplot . 55
implodeList.old . 56
import-bam . 56
import-bam-2 . 58
import-bcf . 59
inferAlleles . 60
inferAltAllele . 61
inferGenotypes . 62
initialize-ASEset . 63
initialize-DetectedAI . 65
initialize-GlobalAnalysis . 67
initialize-RiskVariant . 68
legendBarplot . 68
LinkVariantAlmlof-class . 70
LinkVariantAlmlof-plot . 70
lva . 71
lva.internal . 74
makeMaskedFasta . 75
mapBiasRef . 76
minCountFilt . 77
minFreqFilt . 78
multiAllelicFilt . 79
phase2genotype . 80
phaseArray2phaseMatrix . 81
phaseMatrix2Array . 82
randomRef . 83
reads . 84
refAllele . 84
regionSummary . 85
RegionSummary-class . 86
RiskVariant-class . 87
scanForHeterozygotes.old . 88

Index 90

4 AllelicImbalance-package

AllelicImbalance-package

A package meant to provide all basic functions for high-throughput
allele specific expression analysis

Description

Package AllelicImbalance has functions for importing, filtering and plotting high-throughput
data to make an allele specific expression analysis. A major aim of this package is to provide
functions to collect as much information as possible from regions of choice, and to be able to
explore the allelic expression of that region in detail.

Details

Package: AllelicImbalance
Type: Package
Version: 1.2.0
Date: 2014-08-24
License: GPL-3

Overview - standard procedure

Start out creating a GRange object defining the region of interest. This can also be done using
getAreaFromGeneNames providing gene names as arguments. Then use BamImpGAList to import
reads from that reagion and find potential SNPs using scanForHeterozygotes. Then retrieve
the allele counts of heterozygote sites by the function getAlleleCount. With this data create an
ASEset. At this point all pre-requisites for a ’basic’ allele specific expression analysis is available.
Two ways to go on could be to apply chisq.test or barplot on this ASEset object.

Author(s)

Author: Jesper Robert Gadin Author: Lasse Folkersen

Maintainer: Jesper Robert Gadin <j.r.gadin@gmail.com>

References

Reference to published application note (work in progress)

See Also

• code?ASEset

annotation-wrappers 5

annotation-wrappers AnnotationDb wrappers

Description

These functions acts as wrappers to retrieve information from annotation database objects (annotationDb
objects) or (transcriptDb objects)

Usage

getGenesFromAnnotation(
OrgDb,
GR,
leftFlank = 0,
rightFlank = 0,
getUCSC = FALSE,
verbose = FALSE

)

getGenesVector(OrgDb, GR, leftFlank = 0, rightFlank = 0, verbose = FALSE)

getExonsFromAnnotation(
TxDb,
GR,
leftFlank = 0,
rightFlank = 0,
verbose = FALSE

)

getExonsVector(TxDb, GR, leftFlank = 0, rightFlank = 0, verbose = FALSE)

getTranscriptsFromAnnotation(
TxDb,
GR,
leftFlank = 0,
rightFlank = 0,
verbose = FALSE

)

getTranscriptsVector(TxDb, GR, leftFlank = 0, rightFlank = 0, verbose = FALSE)

getCDSFromAnnotation(TxDb, GR, leftFlank = 0, rightFlank = 0, verbose = FALSE)

getCDSVector(TxDb, GR, leftFlank = 0, rightFlank = 0, verbose = FALSE)

getAnnotationDataFrame(
GR,

6 annotation-wrappers

strand = "+",
annotationType = NULL,
OrgDb = NULL,
TxDb = NULL,
verbose = FALSE

)

Arguments

OrgDb An OrgDb object

GR A GenomicRanges object with sample area

leftFlank An integer specifying number of additional nucleotides around the SNPs for
the leftFlank

rightFlank An integer specifying number of additional nucleotides around the SNPs for
the rightFlank

getUCSC A logical indicating if UCSC transcript IDs should also be retrieved

verbose A logical making the functions more talkative

TxDb A transcriptDb object

strand Two options,’+’ or ’-’

annotationType select one or more from ’gene’, ’exon’, ’transcript’, ’cds’.

Details

These functions retrieve regional annotation from OrgDb or TxDb objects, when given GRanges
objects.

Value

GRanges object with ranges over the genes in the region.

The getGenesVector function will return a character vector where each element are gene symbols
separated by comma

GRanges object with ranges over the exons in the region.

The getTranscriptsFromAnnotation function will return a GRanges object with ranges over the
transcripts in the region.

The getCDSFromAnnotation function will return a GRanges object with ranges over the CDSFs
in the region.

The getExonsVector function will return a character vector where each element are exons sepa-
rated by comma

The getTranscriptsVector function will return a character vector where each element are tran-
scripts separated by comma

The getCDSVector function will return a character vector where each element are CDSs separated
by comma

The getAnnotationDataFrame function will return a data.frame with annotations. This function is
used internally by i.e. the barplot-function

annotationBarplot 7

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
require(org.Hs.eg.db)
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
OrgDb <- org.Hs.eg.db
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene

#use for example BcfFiles as the source for SNPs of interest
GR <- rowRanges(ASEset)
#get annotation
g <- getGenesFromAnnotation(OrgDb,GR)
e <- getExonsFromAnnotation(TxDb,GR)
t <- getTranscriptsFromAnnotation(TxDb,GR)
c <- getCDSFromAnnotation(TxDb,GR)

annotationBarplot add annotation to AllelicImbalance barplot

Description

adds a customizable annotation functionality for AllelicImbalance barplots.

Usage

annotationBarplot(
strand,
snp,
lowerLeftCorner,
annDfPlus,
annDfMinus,
cex = 0.7,
ypos = 0,
interspace = 1

)

Arguments

strand strand, "+", "-", "*" or "both"

snp integer for the described snp
lowerLeftCorner

position of the plot to add legend to (default c(0,0))

8 ASEset-barplot

annDfPlus annotation dataframe plus strand

annDfMinus annotation dataframe minus strand

cex size of annotation text

ypos relative y-axis position for the annotation text

interspace space between each annotation block

Details

the function is preferably called from within the AllelicImbalance barplot method.

Author(s)

Jesper R. Gadin

Examples

#code placeholders
#< create a barplot without annotation >
#< add annotation >

ASEset-barplot barplot ASEset objects

Description

Generates barplots for ASEset objects. Two levels of plotting detail are provided: a detailed barplot
of read counts by allele useful for fewer samples and SNPs, and a less detailed barplot of the fraction
of imbalance, useful for more samples and SNPs.

Usage

barplot(height, ...)

S4 method for signature 'ASEset'
barplot(
height,
type = "count",
sampleColour.top = NULL,
sampleColour.bot = NULL,
legend = TRUE,
pValue = TRUE,
strand = "*",
testValue = NULL,
testValue2 = NULL,
OrgDb = NULL,
TxDb = NULL,

ASEset-barplot 9

annotationType = c("gene", "exon", "transcript"),
main = NULL,
ylim = NULL,
yaxis = TRUE,
xaxis = FALSE,
ylab = TRUE,
ylab.text = NULL,
xlab.text = "samples",
xlab = TRUE,
legend.colnames = "",
las.ylab = 1,
las.xlab = 2,
cex.main = 1,
cex.pValue = 0.7,
cex.ylab = 0.7,
cex.xlab = 0.7,
cex.legend = 0.6,
add = FALSE,
lowerLeftCorner = c(0, 0),
size = c(1, 1),
addHorizontalLine = 0.5,
add.frame = TRUE,
filter.pValue.fraction = 0.99,
legend.fill.size = 1,
legend.interspace = 1,
verbose = FALSE,
top.fraction.criteria = "maxcount",
cex.annotation = 0.7,
ypos.annotation = 0,
annotation.interspace = 1,
...

)

Arguments

height An ASEset object

... for simpler generics when extending function

type ’count’ or ’fraction’
sampleColour.top

User specified colours for top fraction
sampleColour.bot

User specified colours for bottom fraction

legend Display legend

pValue Display p-value

strand four options, ’+’, ’-’, ’both’ or ’*’

testValue if set, a matrix or vector with user p-values

10 ASEset-barplot

testValue2 if set, a matrix or vector with user p-values
OrgDb an OrgDb object which provides annotation
TxDb a TxDb object which provides annotation
annotationType select one or more from ’gene’,’exon’,’transcript’,’cds’.
main text to use as main label
ylim set plot y-axis limit
yaxis wheter the y-axis is to be displayed or not
xaxis wheter the x-axis is to be displayed or not
ylab showing labels for the tic marks
ylab.text ylab text
xlab.text xlab text
xlab showing labels for the tic marks
legend.colnames

gives colnames to the legend matrix
las.ylab orientation of ylab text
las.xlab orientation of xlab text
cex.main set main label size (max 2)
cex.pValue set pValue label size
cex.ylab set ylab label size
cex.xlab set xlab label size
cex.legend set legend label size
add boolean indicates if a new device should be started
lowerLeftCorner

integer that is only useful when add=TRUE
size Used internally by locationplot. Rescales each small barplot window
addHorizontalLine

adds a horizontal line that marks the default fraction of 0.5 - 0.5
add.frame boolean to give the new plot a frame or not
filter.pValue.fraction

numeric between 0 and 1 that filter away pValues where the main allele has this
frequency.

legend.fill.size

size of the fill/boxes in the legend (default:NULL)
legend.interspace

set legend space between fills and text
verbose Makes function more talkative
top.fraction.criteria

’maxcount’, ’ref’ or ’phase’
cex.annotation size of annotation text
ypos.annotation

relative ypos for annotation text
annotation.interspace

space between annotation text

ASEset-class 11

Details

filter.pValue.fraction is intended to remove p-value annotation with very large difference in
frequency, which could just be a sequencing mistake. This is to avoid p-values like 1e-235 or
similar.

sampleColourUser specified colours, either given as named colours (’red’, ’blue’, etc) or as hex-
adecimal code. Can be either length 1 for all samples, or else of a length corresponding to the
number of samples for individual colouring.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The ASEset class which the barplot function can be called up on.

Examples

data(ASEset)
barplot(ASEset[1])

ASEset-class ASEset objects

Description

Object that holds allele counts, genomic positions and map-bias for a set of SNPs

Usage

alleleCounts(x, strand = "*", return.class = "list")

S4 method for signature 'ASEset'
alleleCounts(x, strand = "*", return.class = "list")

alleleCounts(x, ...) <- value

S4 replacement method for signature 'ASEset'
alleleCounts(x, strand = "*", return.class = "array", ...) <- value

mapBias(x, ...)

S4 method for signature 'ASEset'
mapBias(x, return.class = "list")

fraction(x, ...)

12 ASEset-class

S4 method for signature 'ASEset'
fraction(
x,
strand = "*",
top.fraction.criteria = "maxcount",
verbose = FALSE,
...

)

arank(x, return.type = "names", return.class = "list", strand = "*", ...)

frequency(x, ...)

genotype(x, ...)

S4 method for signature 'ASEset'
genotype(x, return.class = "matrix")

genotype(x) <- value

S4 replacement method for signature 'ASEset'
genotype(x) <- value

countsPerSnp(x, ...)

S4 method for signature 'ASEset'
countsPerSnp(x, return.class = "matrix", return.type = "mean", strand = "*")

countsPerSample(x, ...)

S4 method for signature 'ASEset'
countsPerSample(x, return.class = "matrix", return.type = "mean", strand = "*")

phase(x, ...)

S4 method for signature 'ASEset'
phase(x, return.class = "matrix")

phase(x) <- value

S4 replacement method for signature 'ASEset'
phase(x) <- value

mapBias(x) <- value

S4 replacement method for signature 'ASEset'
mapBias(x) <- value

ASEset-class 13

refExist(x)

S4 method for signature 'ASEset'
refExist(x)

ref(x)

S4 method for signature 'ASEset'
ref(x)

ref(x) <- value

S4 replacement method for signature 'ASEset,ANY'
ref(x) <- value

altExist(x)

S4 method for signature 'ASEset'
altExist(x)

alt(x)

S4 method for signature 'ASEset'
alt(x)

alt(x) <- value

S4 replacement method for signature 'ASEset,ANY'
alt(x) <- value

aquals(x, ...)

S4 method for signature 'ASEset'
aquals(x)

aquals(x) <- value

S4 replacement method for signature 'ASEset'
aquals(x) <- value

maternalAllele(x, ...)

S4 method for signature 'ASEset'
maternalAllele(x)

paternalAllele(x, ...)

14 ASEset-class

S4 method for signature 'ASEset'
paternalAllele(x)

Arguments

x ASEset object

strand which strand of ’+’, ’-’ or ’*’

return.class return ’list’ or ’array’

... additional arguments

value replacement variable
top.fraction.criteria

’maxcount’, ’ref’ or ’phase’

verbose makes function more talkative

return.type return ’names’, rank or ’counts’

Details

An ASEset object differs from a regular RangedSummarizedExperiment object in that the assays
contains an array instead of matrix. This array has ranges on the rows, sampleNames on the columns
and variants in the third dimension.

It is possible to use the commands barplot and locationplot on an ASEset object see more details in
barplot and locationplot.

Three different alleleCount options are available. The simples one is the * option, and is for ex-
periments where the strand information is not known e.g. non-stranded data. The unknown strand
could also be for strand specific data when the aligner could not find any strand associated with the
read, but this should normally not happen, and if it does probably having an extremely low map-
ping quality. Then there are an option too add plus and minus stranded data. When using this, it
is essential to make sure that the RNA-seq experiment under analysis has in fact been created so
that correct strand information was obtained. The most functions will by default have their strand
argument set to ’*’.

The phase information is stored by the convention of ’maternal chromosome|paternal chromosome’,
with 0 as reference allele and 1 as alternative allele. ’|’ when the phase is known and ’/’ when the
phase is unknown. Internally the information will be stored as an three dimensional array, dim 1
for SNPs, dim 2 for Samples and dim 3 which is fixed and stores maternal chromosome, paternal
chromosome and phased (1 equals TRUE).

Value

An object of class ASEset containing location information and allele counts for a number of SNPs
measured in a number of samples on various strand, as well as mapBias information. All data is
stored in a manner similar to the SummarizedExperiment class.

Table

table(...)
Arguments:

ASEset-class 15

... An ASEset object that contains the variants of interest
The generics for table does not easily allow more than one argument so in respect to the
different strand options, table will return a SimpleList with length 3, one element for each
strand.

Frequency

frequency(x, return.class = "list", strand = "*", threshold.count.sample = 15)
Arguments:

x An ASEset object that contains the variants of interest

x threshold.count.samplesif sample has fewer counts the function return NA.

Constructor

ASEsetFromCountList(rowRanges, countListNonStranded = NULL, countListPlus = NULL, countList-
Minus = NULL, countListUnknown = NULL, colData = NULL, mapBiasExpMean = array(), ver-
bose=FALSE, ...)

Arguments:

rowRanges A GenomicRanges object that contains the variants of interest

countListNonStranded A list where each entry is a matrix with allele counts as columns and
sample counts as rows

countListPlus A list where each entry is a matrix with allele counts as columns and sample
counts as rows

countListMinus A list where each entry is a matrix with allele counts as columns and sample
counts as rows

countListUnknown A list where each entry is a matrix with allele counts as columns and sample
counts as rows

colData A DataFrame object containing sample specific data

mapBiasExpMean A 3D array describing mapping bias. The SNPs are in the 1st dimension,
samples in the 2nd dimension and variants in the 3rd dimension.

verbose Makes function more talkative

... arguments passed on to SummarizedExperiment constructor

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#make example countList
set.seed(42)
countListPlus <- list()
snps <- c('snp1','snp2','snp3','snp4','snp5')
for(snp in snps){

count<-matrix(rep(0,16),ncol=4,dimnames=list(

16 ASEset-filters

c('sample1','sample2','sample3','sample4'),
c('A','T','G','C')))

#insert random counts in two of the alleles
for(allele in sample(c('A','T','G','C'),2)){

count[,allele]<-as.integer(rnorm(4,mean=50,sd=10))
}
countListPlus[[snp]] <- count

}

#make example rowRanges
rowRanges <- GRanges(

seqnames = Rle(c('chr1', 'chr2', 'chr1', 'chr3', 'chr1')),
ranges = IRanges(1:5, width = 1, names = head(letters,5)),
snp = paste('snp',1:5,sep='')

)

#make example colData
colData <- DataFrame(Treatment=c('ChIP', 'Input','Input','ChIP'),
row.names=c('ind1','ind2','ind3','ind4'))

#make ASEset
a <- ASEsetFromCountList(rowRanges, countListPlus=countListPlus,
colData=colData)

#example phase matrix (simple form)
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

phase(a) <- p

#generate ASEset from array
snps <- 999
samples <-5
ar <-array(rep(unlist(lapply(1:snps,

function(x){(sample(c(TRUE,FALSE,TRUE,FALSE), size = 4))})), samples),
dim=c(4,snps,samples))

ar2 <- array(sample(50:300, 4*snps*samples,replace=TRUE), dim=c(4,snps,samples))
ar2[ar] <- 0
ar2 <- aperm(ar2, c(2, 3, 1))
dimnames(ar2) <- list(paste("snp",1:snps,sep=""),paste("sample",1:samples,sep=""),

c("A","C","G","T"))
gr <- GRanges(seqnames=c("chr2"), ranges=IRanges(start=1:dim(ar2)[1], width=1), strand="*")
a <- ASEsetFromArrays(gr, countsUnknown=ar2)

ASEset-filters 17

ASEset-filters genotype filter methods

Description

useful genotype filters

Usage

hetFilt(x, ...)

S4 method for signature 'ASEset'
hetFilt(x, source = "genotype", ...)

Arguments

x ASEset object

... internal param

source ’genotype’ or ’alleleCounts’

Details

hetFilt returns TRUE if the samples is heterozygote, based on stored genotype information present
in the phase data.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
a <- ASEset

genotype(a) <- inferGenotypes(a)
hets <- hetFilt(a)

18 ASEset-gbarplot

ASEset-gbarplot gbarplot ASEset objects

Description

Generates gbarplots for ASEset objects. Two levels of plotting detail are provided: a detailed
gbarplot of read counts by allele useful for fewer samples and SNPs, and a less detailed gbarplot of
the fraction of imbalance, useful for more samples and SNPs.

Usage

gbarplot(x, type = "count", strand = "*", verbose = FALSE, ...)

Arguments

x An ASEset object

type ’count’ or ’fraction’

strand four options, ’+’, ’-’, ’both’ or ’*’

verbose Makes function more talkative

... for simpler generics when extending function

Details

This function serves the same purpose as the normal barplot, but with trellis graphics using lattice,
to be able to integrate well with Gviz track functionality.

Author(s)

Jesper R. Gadin

See Also

• The ASEset class which the gbarplot function can be called up on.

• The barplot non trellis barplot.

Examples

data(ASEset)
gbarplot(ASEset[1])

ASEset-glocationplot 19

ASEset-glocationplot glocationplot ASEset objects

Description

plotting ASE effects over a specific genomic region using Gviz functionality

Usage

glocationplot(
x,
type = "fraction",
strand = "*",
BamGAL = NULL,
GenomeAxisTrack = FALSE,
trackNameDeAn = paste("deTrack", type),
TxDb = NULL,
sizes = NULL,
add = FALSE,
verbose = FALSE,
...

)

Arguments

x an ASEset object.
type ’fraction’ or ’count’
strand ’+’,’-’,’*’ or ’both’. This argument determines which strand is plotted. See

getAlleleCounts for more information of choice of strand.
BamGAL GAlignmentsList covering the same genomic region as the ASEset
GenomeAxisTrack

include an genomic axis track
trackNameDeAn trackname for deAnnotation track
TxDb a TxDb object which provides annotation
sizes vector with the sum 1. Describes the size of the tracks
add add to existing plot
verbose if set to TRUE it makes function more talkative
... arguments passed on to barplot function

Details

The glocationplot methods visualises the distribution of ASE over a larger region on one chromo-
some. It takes and ASEset object as well as additional information on plot type (see gbarplot),
strand type (see getAlleleCounts), Annotation tracks are created from the Gviz packageh. It is
obviously important to make sure that the genome build used is set correctly, e.g. ’hg19’.

sizes has to be of the same length as the number of tracks used.

20 ASEset-gviztrack

Author(s)

Jesper R. Gadin

See Also

• The ASEset class which the glocationplot function can be called up on.

Examples

data(ASEset)
genome(ASEset) <- 'hg19'

glocationplot(ASEset,strand='+')

#for ASEsets with fewer SNPs the 'count' type plot is useful
glocationplot(ASEset,type='count',strand='+')

ASEset-gviztrack ASEset-gviztrack ASEset objects

Description

plotting ASE effects over a specific genomic region

Usage

ASEDAnnotationTrack(
x,
GR = rowRanges(x),
type = "fraction",
strand = "*",
trackName = paste("deTrack", type),
verbose = TRUE,
...

)

S4 method for signature 'ASEset'
ASEDAnnotationTrack(
x,
GR = rowRanges(x),
type = "fraction",
strand = "*",
trackName = paste("deTrack", type),
verbose = TRUE,
...

)

ASEset-gviztrack 21

CoverageDataTrack(
x,
GR = rowRanges(x),
BamList = NULL,
strand = NULL,
start = NULL,
end = NULL,
trackNameVec = NULL,
meanCoverage = FALSE,
verbose = TRUE,
...

)

Arguments

x an ASEset object.

GR genomic range of plotting

type ’fraction’ or ’count’

strand ’+’,’-’. This argument determines which strand is plotted.

trackName name of track (ASEDAnnotationTrack)

verbose Setting verbose=TRUE gives details of procedure during function run

... arguments passed on to barplot function

BamList GAlignmnentsList object of reads from the same genomic region as the ASEset

start start position of reads to be plotted

end end position of reads to be plotted

trackNameVec names of tracks (CoverageDataTrack)

meanCoverage mean of coverage over samples (CoverageGataTrack)

Details

For information of how to use these tracks in more ways, visit the Gviz package manual.

Author(s)

Jesper R. Gadin

See Also

• The ASEset class which the functions can be called up on.

22 ASEset-locationplot

Examples

data(ASEset)
x <- ASEset[,1:2]
r <- reads[1:2]
genome(x) <- 'hg19'
seqlevels(r) <- seqlevels(x)

GR <- GRanges(seqnames=seqlevels(x),
ranges=IRanges(start=min(start(x)),end=max(end(x))),
strand='+', genome=genome(x))

deTrack <- ASEDAnnotationTrack(x, GR=GR, type='fraction',strand='+')
covTracks <- CoverageDataTrack(x,BamList=r,strand='+')

lst <- c(deTrack,covTracks)

sizes <- c(0.5,rep(0.5/length(covTracks),length(covTracks)))
#temporarily do not run this function
#plotTracks(lst, from=min(start(x)), to=max(end(x)),
#sizes=sizes, col.line = NULL, showId = FALSE, main='mainText',
#cex.main=1, title.width=1, type='histogram')

ASEset-locationplot locationplot ASEset objects

Description

plotting ASE effects over a specific genomic region

Usage

locationplot(x, ...)

S4 method for signature 'ASEset'
locationplot(
x,
type = "fraction",
strand = "*",
yaxis = TRUE,
xaxis = FALSE,
xlab = FALSE,
ylab = TRUE,
xlab.text = "",
ylab.text = "",
legend.colnames = "",
size = c(0.8, 1),

ASEset-locationplot 23

main = NULL,
pValue = FALSE,
cex.main = 0.7,
cex.ylab = 0.6,
cex.legend = 0.5,
OrgDb = NULL,
TxDb = NULL,
verbose = TRUE,
top.fraction.criteria = "maxcount",
allow.whole.chromosome = FALSE,
...

)

Arguments

x an ASEset object.

... arguments passed on to barplot function

type ’fraction’ or ’count’

strand ’+’,’-’,’*’ or ’both’. This argument determines which strand is plotted. See
getAlleleCounts for more information on strand.

yaxis wheter the y-axis is to be displayed or not

xaxis wheter the x-axis is to be displayed or not

xlab showing labels for the tic marks

ylab showing labels for the tic marks

xlab.text xlab text

ylab.text ylab text
legend.colnames

gives colnames to the legend matrix

size will give extra space in the margins of the inner plots

main text to use as main label

pValue Display p-value

cex.main set main label size

cex.ylab set ylab label size

cex.legend set legend label size

OrgDb an OrgDb object from which to plot a gene map. If given together with argument
TxDb this will only be used to extract genesymbols.

TxDb a TxDb object from which to plot an exon map.

verbose Setting verbose=TRUE gives details of procedure during function run
top.fraction.criteria

’maxcount’, ’ref’ or ’phase’
allow.whole.chromosome

logical, overrides 200kb region limit, defaults to FALSE

24 ASEset-scanForHeterozygotes

Details

The locationplot methods visualises how fractions are distributed over a larger region of genes on
one chromosome. It takes and ASEset object as well as additional information on plot type (see
barplot), strand type (see getAlleleCounts), colouring, as well as annotation. The annotation is
taken either from the bioconductor OrgDb-sets, the TxDb sets or both. It is obviously important to
make sure that the genome build used is the same as used in aligning the RNA-seq data.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The ASEset class which the locationplot function can be called up on.

Examples

data(ASEset)
locationplot(ASEset)

#SNPs are plotted in the order in which they are found.
#This can be sorted according to location as follows:
locationplot(ASEset[order(start(rowRanges(ASEset))),])

#for ASEsets with fewer SNPs the 'count' type plot is
useful for detailed visualization.
locationplot(ASEset,type='count',strand='*')

ASEset-scanForHeterozygotes

scanForHeterozygotes

Description

Identifies the positions of SNPs found in BamGR reads.

Usage

scanForHeterozygotes(BamList, ...)

S4 method for signature 'GAlignmentsList'
scanForHeterozygotes(
BamList,
minimumReadsAtPos = 20,
maximumMajorAlleleFrequency = 0.9,
minimumMinorAlleleFrequency = 0.1,

ASEset-scanForHeterozygotes 25

minimumBiAllelicFrequency = 0.9,
verbose = TRUE,
...

)

Arguments

BamList A GAlignmentsList object

... argument to pass on

minimumReadsAtPos

minimum number of reads required to call a SNP at a given position

maximumMajorAlleleFrequency

maximum frequency allowed for the most common allele. Setting this parameter
lower will minimise the SNP calls resulting from technical read errors, at the
cost of missing loci with potential strong ASE

minimumMinorAlleleFrequency

minimum frequency allowed for the second most common allele. Setting this
parameter higher will minimise the SNP calls resulting from technical read er-
rors, at the cost of missing loci with potential strong ASE

minimumBiAllelicFrequency

minimum frequency allowed for the first and second most common allele. Set-
ting a Lower value for this parameter will minimise the identification of loci
with three or more alleles in one sample. This is useful if sequencing errors are
suspected to be common.

verbose logical indicating if process information should be displayed

Details

This function scans all reads stored in a GAlignmentsList for possible heterozygote positions. The
user can balance the sensitivity of the search by modifying the minimumReadsAtPos, maximum-
MajorAlleleFrequency and minimumBiAllelicFrequency arguments.

Value

scanForHeterozygotes returns a GRanges object with the SNPs for the BamList object that was
used as input.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The getAlleleCounts which is a function that count the number of reads overlapping a site.

26 ASEset.sim

Examples

data(reads)
s <- scanForHeterozygotes(reads,verbose=FALSE)

ASEset.old ASEset.old object

Description

old version of an ASEset which needs to be updated

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

##load eample data (Not Run)
#data(ASEset.old)

ASEset.sim ASEset.sim object

Description

ASEset with simulated data with SNPs within the first 200bp of chromosome 17, which is required
to have example data for the refAllele function.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

##load eample data (Not Run)
#data(ASEset.sim)

ASEsetFromBam 27

ASEsetFromBam ASEset from bam file

Description

count alleles and create an ASEset direct from bam file instead of reading into R first.

Usage

ASEsetFromBam(gr, ...)

S4 method for signature 'GRanges'
ASEsetFromBam(
gr,
pathToDir,
PE = TRUE,
flagsMinusStrand = c(83, 163),
flagsPlusStrand = c(99, 147),
strandUnknown = FALSE,
...

)

Arguments

gr GenomicRanges of SNPs to create ASEset for

... passed on to ASEsetFromBam function

pathToDir Directory of bam files with index in same directory

PE if paired end or not (default: TRUE)

flagsMinusStrand

flags that mark reads coming from minus strand

flagsPlusStrand

flags that mark reads coming from plus strand

strandUnknown default: FALSE

Details

counts the alleles in a bam file based on GRanges positions.

Author(s)

Jesper R. Gadin

28 barplot-lattice-support

Examples

data(GRvariants)
gr <- GRvariants

##no execution at the moment
#pathToDir <- system.file('inst/extdata/ERP000101_subset', package='AllelicImbalance')
#a <- ASEsetFromBam(gr, pathToDir)

barplot-lattice-support

lattice barplot inner functions for ASEset objects

Description

Generates lattice barplots for ASEset objects. Two levels of plotting detail are provided: a detailed
barplot of read counts by allele useful for fewer samples and SNPs, and a less detailed barplot of
the fraction of imbalance, useful for more samples and SNPs.

Usage

barplotLatticeFraction(identifier, ...)

barplotLatticeCounts(identifier, ...)

Arguments

identifier the single snp name to plot

... used to pass on variables

Details

filter.pValue.fraction is intended to remove p-value annotation with very large difference in
frequency, which could just be a sequencing mistake. This is to avoid p-values like 1e-235 or
similar.

sampleColourUser specified colours, either given as named colours (’red’, ’blue’, etc) or as hex-
adecimal code. Can be either length 1 for all samples, or else of a length corresponding to the
number of samples for individual colouring.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The ASEset class which the barplot function can be called up on.

binom.test 29

Examples

a <- ASEset
name <- rownames(a)[1]

barplotLatticeFraction(identifier=name, x=a, astrand="+")
barplotLatticeCounts(identifier=name, x=a, astrand="+")

binom.test binomial test

Description

Performs a binomial test on an ASEset object.

Usage

S4 method for signature 'ASEset'
binom.test(x, n = "*")

Arguments

x ASEset object
n strand option

Details

the test can only be applied to one strand at the time.

Value

binom.test returns a matrix

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The chisq.test which is another test that can be applied on an ASEset object.

Examples

#load example data
data(ASEset)

#make a binomial test
binom.test(ASEset,'*')

30 chisq.test

chisq.test chi-square test

Description

Performs a chisq.test on an ASEset object.

Usage

S4 method for signature 'ASEset'
chisq.test(x, y = "*")

Arguments

x ASEset object

y strand option

Details

The test is performed on one strand in an ASEset object.

Value

chisq.test returns a matrix with the chisq.test P-value for each SNP and sample

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The binom.test which is another test that can be applied on an ASEset object.

Examples

#load example data
data(ASEset)

#make a chi-square test on default non-stranded strand
chisq.test(ASEset)

cigar-utilities 31

cigar-utilities realCigarPosition

Description

From a GAlignments calculate the real corresponding position for each read based on its cigar.

Usage

realCigarPosition.old(RleCigar, BpPos)

realCigarPositions.old(RleCigar)

realCigarPositionsList.old(RleCigarList)

Arguments

RleCigar An Rle containing cigar information

BpPos the absolute position on the chromosome of interest

RleCigarList An RleList containing cigar information

Details

The main intention for these functions are to be the internal functions for scanForHeterozygotes
and getAlleleCount.

Value

realCigarPosition returns the new position realCigarPositions returns a vector with the corrected
positions to be subsetted from a read. realCigarPositionsList returns a list where each element
i a vector with the corrected positions to be subsetted from a read.

Author(s)

Jesper R. Gadin

Examples

RleCigarList <- cigarToRleList('3M4I93M')
BpPos <- 5

newPos <- realCigarPosition.old(RleCigar=RleCigarList[[1]], BpPos)
newPositions <- realCigarPositions.old(RleCigar=RleCigarList[[1]])
newPositionsList <- realCigarPositionsList.old(RleCigarList=RleCigarList)

32 countAllelesFromBam

countAllelesFromBam alleleCounts from bam file

Description

count alleles before creating ASEse.

Usage

countAllelesFromBam(gr, ...)

S4 method for signature 'GRanges'
countAllelesFromBam(
gr,
pathToDir,
flag = NULL,
scanBamFlag = NULL,
return.class = "array",
verbose = TRUE,
...

)

Arguments

gr GRanges that contains SNPs of interest

... arguments to pass on

pathToDir path to directory of bam files

flag specify one flag to use as filter, default is no filtering. allowed flags are 99, 147,
83 and 163

scanBamFlag set a custom flag to use as filter

return.class type of class for the returned object

verbose makes funciton more talkative

Details

counts the alleles in a bam file based on GRanges positions.

Important excerpt from the details section of the internal applyPileups function: Regardless of
’param’ values, the algorithm follows samtools by excluding reads flagged as unmapped, secondary,
duplicate, or failing quality control.

Author(s)

Jesper R. Gadin

coverageMatrixListFromGAL 33

Examples

data(GRvariants)
gr <- GRvariants

##not run at the moment
#pathToDir <- system.file('inst/extdata/ERP000101_subset', package='AllelicImbalance')
#ar <- countAllelesFromBam(gr, pathToDir)

coverageMatrixListFromGAL

coverage matrix of GAlignmentsList

Description

Get coverage per nucleotide for reads covering a region

Usage

coverageMatrixListFromGAL(BamList, ...)

S4 method for signature 'GAlignmentsList'
coverageMatrixListFromGAL(BamList, strand = "*", ignore.empty.bam.row = TRUE)

Arguments

BamList GAlignmentsList containing reads over the region to calculate coverage

... arguments to pass on

strand strand has to be ’+’ or ’-’
ignore.empty.bam.row

argument not in use atm

Details

a convenience function to get the coverage from a list of reads stored in GAlignmnetsList, and
returns by default a list with one matrix, and information about the genomic start and stop positions.

Author(s)

Jesper R. Gadin

Examples

r <- reads
seqlevels(r) <- '17'
covMatList <- coverageMatrixListFromGAL(BamList=r, strand='+')

34 decorateWithExons

decorateWithExons decorateWithExons

Description

Internal function that can draw gene regions on pre-specified surfaces. Necessary for the genomic-
location plots.

Usage

decorateWithExons(x, exonsInRegion, xlim, ylim, chromosome)

Arguments

x ASEset object

exonsInRegion GRanges object with generegions. Can be obtained using getExonsFromAnnotation.
Must contain a column ’tx_name’

xlim xlim values for the pre-specified surface

ylim ylim values for the pre-specified surface

chromosome character

Details

The main intention of this function is to be used when plotting several bar plots in the same window.
This function add gene regions under the bars.

Value

decorateWithExons returns nothing, but draws genes

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The locationplot which is uses this function internally.

• The decorateWithGenes which is another similar function that locationplot uses inter-
nally.

Examples

data(ASEset)

decorateWithGenes 35

decorateWithGenes decorateWithGenes

Description

Internal function that can draw gene regions on pre-specified surfaces. Necessary for the genomic-
location plots.

Usage

decorateWithGenes(x, genesInRegion, xlim, ylim, chromosome)

Arguments

x ASEset object

genesInRegion GRanges object with gene regions. Can be obtained using getGenesFromAnnotation

xlim xlim values for the pre-specified surface

ylim ylim values for the pre-specified surface

chromosome character

Details

The main intention of this function is to be used when plotting several bar plots in the same window.
This function add gene regions under the bars.

Value

decorateWithGenes returns nothing, but draws genes

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The locationplot which is uses this function internally.

• The decorateWithExons which is another similar function that locationplot uses inter-
nally.

Examples

data(ASEset)

36 defaultMapBias

defaultMapBias Generate default mapbias from genotype

Description

Create mapbias array from genotype matrix requires genotype information

Usage

defaultMapBias(x, ...)

S4 method for signature 'ASEset'
defaultMapBias(x, return.class = "array")

Arguments

x ASEset object

... internal arguments

return.class "array" or "ASEset"

Details

Default mapbias will be 0.5 for bi-allelic snps and 1 for homozygots. For genotypes with NA, 0.5
will be placed on all four alleles. Therefore tri-allelic can not be used atm. Genotype information
has to be placed in the genotype(x) assay.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset.sim)

fasta <- system.file('extdata/hg19.chr17.subset.fa', package='AllelicImbalance')
refAllele(ASEset.sim,fasta=fasta)
a <- refAllele(ASEset.sim,fasta=fasta)

defaultPhase 37

defaultPhase defaultPhase

Description

used to populate the phase slot in an ASEset object

Usage

defaultPhase(i, ...)

S4 method for signature 'numeric'
defaultPhase(i, j, ...)

Arguments

i number of rows

... arguments to forward to internal functions

j number of columns

Details

will set everything to 0

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

i <- 5
j <- 10
defaultPhase(i,j)

detectAI detectAI

Description

detection of AllelicImbalance

38 detectAI

Usage

detectAI(x, ...)

S4 method for signature 'ASEset'
detectAI(
x,
return.class = "DetectedAI",
strand = "*",
threshold.frequency = 0,
threshold.count.sample = 1,
threshold.delta.frequency = 0,
threshold.pvalue = 0.05,
inferGenotype = FALSE,
random.ref = FALSE,
function.test = "binom.test",
verbose = TRUE,
gc = FALSE,
biasMatrix = FALSE

)

Arguments

x ASEset

... internal arguments

return.class class to return (atm only class ’logical’)

strand strand to infer from
threshold.frequency

least fraction to classify (see details)
threshold.count.sample

least amount of counts to try to infer allele
threshold.delta.frequency

minimum of frequency difference from 0.5 (or mapbias adjusted value)
threshold.pvalue

pvalue over this number will be filtered out

inferGenotype infer genotypes based on count data in ASEset object

random.ref set the reference as random if you dont know. Affects interpretation of results.

function.test At the moment the only available option is ’binomial.test’

verbose makes function more talkative

gc use garbage collection when possible to save space

biasMatrix use biasMatrix in ASEset, or use default expected frequency of 0.5 for all sites

Details

threshold.frequency is the least fraction needed to classify as bi tri or quad allelic SNPs. If ’all’
then all of bi tri and quad allelic SNPs will use the same threshold. Everything under the treshold

DetectedAI-class 39

will be regarded as noise. ’all’ will return a matrix with snps as rows and uni bi tri and quad will be
columns. For this function Anything that will return TRUE for tri-allelicwill also return TRUE for
uni and bi-allelic for the same SNP an Sample.

return.type ’ref’ return only AI when reference allele is more expressed. ’alt’ return only AI when
alternative allele is more expressed or ’all’ for both ’ref’ and ’alt’ alleles. Reference allele is the
one present in the reference genome on the forward strand.

threshold.delta.frequency and function.test will use the value in mapBias(x) as expected value.

function.test will use the two most expressed alleles for testing. Make therefore sure there are no
tri-allelic SNPs or somatic mutations among the SNPs in the ASEset.

inferGenotype(), set TRUE it should be used with as much samples as possible. If you split up
the samples and run detectAI() on each sample separately, please make sure you have inferred the
genotypes in before hand, alternatively used the genotypes detected by another variantCaller or
chip-genotypes. Use ONLY biallelic genotypes.

Author(s)

Jesper R. Gadin

Examples

#load example data
data(ASEset)
a <- ASEset

dai <- detectAI(a)

DetectedAI-class DetectedAI class

Description

Object that holds results from AI detection.

Usage

referenceFrequency(x, ...)

S4 method for signature 'DetectedAI'
referenceFrequency(x, return.class = "array")

thresholdFrequency(x, ...)

S4 method for signature 'DetectedAI'
thresholdFrequency(x, return.class = "array")

40 DetectedAI-plot

thresholdCountSample(x, ...)

S4 method for signature 'DetectedAI'
thresholdCountSample(x, return.class = "array")

thresholdDeltaFrequency(x, ...)

S4 method for signature 'DetectedAI'
thresholdDeltaFrequency(x, return.class = "array")

thresholdPvalue(x, ...)

S4 method for signature 'DetectedAI'
thresholdPvalue(x, return.class = "array")

Arguments

x ASEset object or list of ASEsets

... pass arguments to internal functions

return.class type of class returned eg. "list or ""array".

Details

The DetectedAI-class contains

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
dai <- detectAI(a)

#summary(gba)
#write.tables(dai)

DetectedAI-plot DetectedAI plot

Description

plot functions for the DetectedAI-class

DetectedAI-plot 41

Usage

frequency_vs_threshold_variable_plot(x, ...)

S4 method for signature 'DetectedAI'
frequency_vs_threshold_variable_plot(
x,
var = "threshold.count.sample",
hetOverlay = TRUE,
smoothscatter = FALSE

)

detectedAI_vs_threshold_variable_plot(x, ...)

S4 method for signature 'DetectedAI'
detectedAI_vs_threshold_variable_plot(
x,
var = "threshold.count.sample",
summaryOverSamples = "sum",
hetOverlay = TRUE,
smoothscatter = FALSE

)

reference_frequency_density_vs_threshold_variable_plot(x, ...)

S4 method for signature 'DetectedAI'
reference_frequency_density_vs_threshold_variable_plot(
x,
var = "threshold.count.sample"

)

detectedAI_vs_threshold_variable_multigraph_plot(x, ...)

S4 method for signature 'DetectedAI'
detectedAI_vs_threshold_variable_multigraph_plot(x, ncol = 2, ...)

frequency_vs_threshold_variable_multigraph_plot(x, ...)

S4 method for signature 'DetectedAI'
frequency_vs_threshold_variable_multigraph_plot(x, ncol = 2, ...)

reference_frequency_density_vs_threshold_variable_multigraph_plot(x, ...)

S4 method for signature 'DetectedAI'
reference_frequency_density_vs_threshold_variable_multigraph_plot(
x,
ncol = 2,
...

)

42 DetectedAI-summary

Arguments

x detectedAI object

... pass on variables internally

var string, see details for available options

hetOverlay logical, if TRUE show nr of het SNPs used to calculate the reference allele
frequency mean

smoothscatter boolean, smoothscatter over the means
summaryOverSamples

’mean’ or ’sum’

ncol nr of columns for multiplots

Details

plot helper functions. The documentation will be improved before next release.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#some example code here
#generate example
data(ASEset)
a <- ASEset
dai <- detectAI(a,

threshold.count.sample=1:50,
threshold.frequency=seq(0,0.5,by=0.01),
threshold.delta.frequency=seq(0,0.5,by=0.01),
threshold.pvalue=rev(seq(0.001,0.05, by=0.005))

)

frequency_vs_threshold_variable_plot(dai)
detectedAI_vs_threshold_variable_plot(dai)
detectedAI_vs_threshold_variable_multigraph_plot(dai)
frequency_vs_threshold_variable_multigraph_plot(dai)

DetectedAI-summary DetectedAI summary

Description

Summary helper functions for the DetectedAI-class

DetectedAI-summary 43

Usage

frequency_vs_threshold_variable_summary(x, ...)

S4 method for signature 'DetectedAI'
frequency_vs_threshold_variable_summary(
x,
var = "threshold.count.sample",
return.class = "matrix",
...

)

detectedAI_vs_threshold_variable_summary(x, ...)

S4 method for signature 'DetectedAI'
detectedAI_vs_threshold_variable_summary(x, var = "threshold.count.sample")

usedSNPs_vs_threshold_variable_summary(x, ...)

S4 method for signature 'DetectedAI'
usedSNPs_vs_threshold_variable_summary(x, var = "threshold.count.sample")

Arguments

x detectedAI object

... pass on variables internally

var string, see details for available options

return.class ’matrix’ or ’array’

Details

Summary helper functions. The documentation will be improved before next release.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#some example code here
#generate example
data(ASEset)
a <- ASEset
dai <- detectAI(a,

threshold.count.sample=1:50,
threshold.frequency=seq(0,0.5,by=0.01),
threshold.delta.frequency=seq(0,0.5,by=0.01),
threshold.pvalue=rev(seq(0.001,0.05, by=0.005))

)

44 fractionPlotDf

frequency_vs_threshold_variable_summary(dai)

fractionPlotDf Plot Dataframe

Description

Summarizes information to ease creating plots

Usage

fractionPlotDf(x, snp, strand = "*", top.fraction.criteria = "maxcount", ...)

S4 method for signature 'ASEset'
fractionPlotDf(x, snp, strand = "*", top.fraction.criteria = "maxcount", ...)

Arguments

x ASEset

snp rownames identifier for ASEset or row number

strand ’+’, ’-’ or ’*’
top.fraction.criteria

’maxcount’, ’ref’ or ’phase’

... arguments to forward to internal functions

Details

Main purpose is to reduce the amount of overall code and ease maintenance.

top.fraction.criteria can take three options, maxcount, ref and phase. The top allele will be every
second row in the data frame, with start from row 2. The maxcount argument will put the allele with
most reads on top of the bivariate fraction. Similarly the ref argument will put always the reference
allele on top. The phase arguments puts the maternal phase always on top. The top.fraction.criteria
for the ref or phase arguments requires that both ref and alt is set in mcols(ASEset).

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#test on example ASEset
data(ASEset)
a <- ASEset
df <- fractionPlotDf(a, 1, strand="+")

gba 45

gba global analysis wrapper

Description

A wrapper to make a global analysis based on paths for BAM, VCF and GFF files

Usage

gba(pathBam, ...)

S4 method for signature 'character'
gba(pathBam, pathVcf, pathGFF = NULL, verbose)

Arguments

pathBam path to bam file
... arguments to pass on
pathVcf path to vcf file
pathGFF path to gff file
verbose makes function more talkative

Author(s)

Jesper R. Gadin

Examples

#empty as function doesn't exist

genomatrix genomatrix object

Description

genomatrix is an example of a matrix with genotypes

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

##load eample data (Not Run)
#data(genomatrix)

46 genotype2phase

genotype2phase genotype2phase

Description

used to convert the genomatrix from the visually friendly matrix to phase array.

Usage

genotype2phase(x, ...)

S4 method for signature 'matrix'
genotype2phase(
x,
ref = NULL,
return.class = "array",
levels = c("A", "C", "G", "T"),
...

)

Arguments

x matrix see examples

... pass on additional param

ref reference alleles

return.class ’array’ or ’list’

levels vector of expected alleles

Details

To not introduce redundant information in the ASEset object, the genotype matrix is translated to a
phase matrix, containing the same information. Does not allow tri-allelic or multi-allelic SNPs, and
if present the multi-allelic SNPs will lose the least occuring genotype.

This function can handle indels, but if the reference allele is not provided, the rank matrix which
is temporary created might use lots of memory, depending on the amount of indels among the
genotypes. As conclusion, it is preferable to send in reference genome when converting to phase.

levels information is only important if the reference allele has to be guessed, and so if reference
information is provided, the levels argument can be ignored.

Author(s)

Jesper R. Gadin, Lasse Folkersen

getAlleleCounts 47

Examples

#load example data
data(genomatrix)
data(ASEset)
p <- genotype2phase(genomatrix, ref(ASEset))

getAlleleCounts snp count data

Description

Given the positions of known SNPs, this function returns allele counts from a BamGRL object

Usage

getAlleleCounts(BamList, ...)

S4 method for signature 'GAlignmentsList'
getAlleleCounts(
BamList,
GRvariants,
strand = "*",
return.class = "list",
verbose = TRUE,
...

)

Arguments

BamList A GAlignmentsList object or GRangesList object containing data imported
from a bam file

... parameters to pass on

GRvariants A GRanges object that contains positions of SNPs to retrieve

strand A length 1 character with value ’+’, ’-’, or ’*’. This argument determines if
getAlleleCounts will retrieve counts from all reads, or only from reads marked
as ’+’, ’-’ or ’*’ (unknown), respectively.

return.class ’list’ or ’array’

verbose Setting verbose=TRUE makes function more talkative

48 getAlleleCounts

Details

This function is used to retrieve the allele counts from specified positions in a set of RNA-seq
reads. The BamList argument will typically have been created using the impBamGAL function on
bam-files. The GRvariants is either a GRanges with user-specified locations or else it is gener-
ated through scanning the same bam-files as in BamList for heterozygote locations (e.g. using
scanForHeterozygotes). The GRvariants will currently only accept locations having width=1,
corresponding to bi-allelic SNPs. In the strand argument, specifying ’*’ is the same as retrieving
the sum count of ’+’ and ’-’ reads (and unknown strand reads in case these are found in the bam file).
’*’ is the default behaviour and can be used when the RNA-seq experiments strand information is
not available.

Value

getAlleleCounts returns a list of several data.frame objects, each storing the count data for one
SNP.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The scanForHeterozygotes which is a function to find possible heterozygote sites in a Ge-
nomicAlignments object

Examples

#load example data
data(reads)
data(GRvariants)

#get counts at the three positions specified in GRvariants
alleleCount <- getAlleleCounts(BamList=reads,GRvariants,
strand='*')

#if the reads had contained stranded data, these two calls would
#have given the correct input objects for getAlleleCounts
alleleCountPlus <- getAlleleCounts(BamList=reads,GRvariants,
strand='+')
alleleCountMinus <- getAlleleCounts(BamList=reads,GRvariants,
strand='-')

getAlleleQuality 49

getAlleleQuality snp quality data

Description

Given the positions of known SNPs, this function returns allele quality from a BamGRL object

Usage

getAlleleQuality(BamList, ...)

S4 method for signature 'GAlignmentsList'
getAlleleQuality(
BamList,
GRvariants,
fastq.format = "illumina.1.8",
return.class = "array",
verbose = TRUE,
...

)

Arguments

BamList A GAlignmentsList object or GRangesList object containing data imported
from a bam file

... parameters to pass on
GRvariants A GRanges object that contains positions of SNPs to retrieve.
fastq.format default ’illumina.1.8’
return.class ’list’ or ’array’
verbose Setting verbose=TRUE makes function more talkative

Details

This function is used to retrieve the allele quality strings from specified positions in a set of RNA-
seq reads. The BamList argument will typically have been created using the impBamGAL function
on bam-files. The GRvariants is either a GRanges with user-specified locations or else it is gen-
erated through scanning the same bam-files as in BamList for heterozygote locations (e.g. using
scanForHeterozygotes). The GRvariants will currently only accept locations having width=1,
corresponding to bi-allelic SNPs. The strand type information will be kept in the returned object. If
the strand is marked as unknown "*", it will be forced to the "+" strand.

quaity information is extracted from the BamList object, and requires the presence of mcols(BamList)[["qual"]]
to contain quality sequences.

Value

getAlleleQuality returns a list of several data.frame objects, each storing the count data for one
SNP.

50 getAreaFromGeneNames

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(reads)
data(GRvariants)

#get counts at the three positions specified in GRvariants
alleleQualityArray <- getAlleleQuality(BamList=reads,GRvariants)

#place in ASEset object
alleleCountsArray <- getAlleleCounts(BamList=reads,GRvariants,

strand='*', return.class="array")

a <- ASEsetFromArrays(GRvariants, countsUnknown = alleleCountsArray)
aquals(a) <- alleleQualityArray

getAreaFromGeneNames Get Gene Area

Description

Given a character vector with genesymbols and an OrgDb object, this function returns a GRanges
giving the coordinates of the genes.

Usage

getAreaFromGeneNames(genesymbols, ...)

S4 method for signature 'character'
getAreaFromGeneNames(
genesymbols,
OrgDb,
leftFlank = 0,
rightFlank = 0,
na.rm = FALSE,
verbose = TRUE

)

Arguments

genesymbols A character vector that contains genesymbols of genes from which we wish to
retrieve the coordinates

... arguments to pass on

OrgDb An OrgDb object containing gene annotation

getDefaultMapBiasExpMean 51

leftFlank A integer specifying number of additional nucleotides before the genes

rightFlank A integer specifying number of additional nucleotides after the genes

na.rm A boolean removing genes that returned NA from the annotation

verbose Setting verbose=TRUE makes function more talkative

Details

This function is a convenience function that can be used to determine which genomic coordinates
to specify to e.g. impBamGAL when retrieving reads.

The function cannot handle genes that do not exist in the annotation. To remove these please set the
na.rm=TRUE.

Value

getAreaFromGeneNames returns a GRanges object with genomic coordinates around the specified
genes

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)

#get counts at the three positions specified in GRvariants
library(org.Hs.eg.db)
searchArea<-getAreaFromGeneNames(c('PAX8','TLR7'), org.Hs.eg.db)

getDefaultMapBiasExpMean

Map Bias

Description

an allele frequency array

Usage

getDefaultMapBiasExpMean(alleleCountList, ...)

getDefaultMapBiasExpMean3D(alleleCountList, ...)

S4 method for signature 'list'
getDefaultMapBiasExpMean(alleleCountList)

52 getSnpIdFromLocation

S4 method for signature 'ANY'
getDefaultMapBiasExpMean3D(alleleCountList)

Arguments

alleleCountList

A GRangesList object containing read information

... parameters to pass on

Details

This function will assume there is no bias that comes from the mapping of reads, and therefore
create a matrix with expected frequency of 0.5 for each allele.

Value

getDefaultMapBiasExpMean returns a matrix with a default expected mean of 0.5 for every ele-
ment.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
#access SnpAfList
alleleCountList <- alleleCounts(ASEset)
#get default map bias exp mean
matExpMean <- getDefaultMapBiasExpMean(alleleCountList)

getSnpIdFromLocation Get rsIDs from locations of SNP

Description

Given a GRanges object of SNPs and a SNPlocs annotation, this function attempts to replace the
names of the GRanges object entries with rs-IDs.

Usage

getSnpIdFromLocation(GR, ...)

S4 method for signature 'GRanges'
getSnpIdFromLocation(GR, SNPloc, return.vector = FALSE, verbose = TRUE)

GlobalAnalysis-class 53

Arguments

GR A GRanges that contains positions of SNPs to look up
... arguments to pass on
SNPloc A SNPlocs object containing information on SNP locations (e.g. SNPlocs.Hsapiens.dbSNP.xxxxxxxx)
return.vector Setting return.vector=TRUE returns vector with rsIds
verbose Setting verbose=TRUE makes function more talkative

Details

This function is used to try to identify the rs-IDs of SNPs in a GRanges object.

Value

getSnpIdFromLocation returns the same GRanges object it was given with, but with updated with
rs.id information.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

is_32bit_windows <- .Platform$OS.type == "windows" &&
.Platform$r_arch == "i386"

if (!is_32bit_windows && require(SNPlocs.Hsapiens.dbSNP144.GRCh37)) {
#load example data
data(ASEset)

#get counts at the three positions specified in GRvariants
updatedGRanges <- getSnpIdFromLocation(rowRanges(ASEset),
SNPlocs.Hsapiens.dbSNP144.GRCh37)

}

GlobalAnalysis-class GlobalAnalysis class

Description

Object that holds results from a global AI analysis including reference bias estimations and AI
detection.

Arguments

x ASEset object or list of ASEsets
TxDb A transcriptDb object
... pass arguments to internal functions

54 GRvariants

Details

The GlobalAnalysis-class contains summaries and "pre-configured and pre-calculated lattice plots"
needed to create an AI-report

Value

An object of class GlobalAnalysis containing all data to make report.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
#a <- ASEset
#gba <- gba(a)

#report(gba)
#write.tables(gba)
#graphs(gba)
#as.list(gba)

GRvariants GRvariants object

Description

this data is a GRanges object that contains the ranges for three example SNPs.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The reads which is another example object

Examples

#load example data
data(GRvariants)

histplot 55

histplot histogram plots

Description

uses base graphics hist plot

Usage

S4 method for signature 'ASEset'
hist(x, strand = "*", type = "mean", log = 1, ...)

Arguments

x ReferenceBias object or ASEset object

strand ’+’,’-’ or ’*’

type ’mean’ (only one option atm)

log an integer to log each value (integer 10 for log10)

... arguments to forward to interal boxplots function

Details

The histogram will show the density over frequencies for each sample

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

##load example data

#data(ASEset)
#a <- ASEset
#hist(a)

56 import-bam

implodeList.old implode list of arguments into environment

Description

apply on list of variables to be put in the local environment

Usage

implodeList.old(x)

Arguments

x list of variables

Details

help the propagation of e.g. graphical paramters

Author(s)

Jesper R. Gadin

Examples

lst <- list(hungry='yes', thirsty='no')
implodeList.old(lst)
#the check ls()
ls()

import-bam Import Bam

Description

Imports a specified genomic region from a bam file using a GRanges object as search area.

Usage

impBamGAL(UserDir, ...)

S4 method for signature 'character'
impBamGAL(
UserDir,
searchArea,
files = NULL,

import-bam 57

XStag = FALSE,
verbose = TRUE,
...

)

Arguments

UserDir The relative or full path of folder containing bam files.

... arguments to pass on

searchArea A GenomicRanges object that contains the regions of interest

files use character vector to specify one or more files to import. The default imports
all bam files from the directory.

XStag Setting XStag=TRUE stores the strand specific information in the mcols slot ’XS’

verbose makes the function more talkative.

Details

If the sequence data is strand-specific you may want to set XStag=TRUE. The strand specific infor-
mation has then to be stored in the meta columns with column name ’XS’. If the aligner did not set
the XS-tag and the data is strand- specific it is still be possible to infer the strand from the bit flags
after importing the reads to R. Depending on the strand-specific protocol different combinations of
the flags will have to be used. For illumina fr-secondstrand, 83 and 163 are minus strand reads and
99 and 147 are plus strand reads.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#Declare searchArea
searchArea <- GRanges(seqnames=c('17'), ranges=IRanges(79478301,79478361))

#Relative or full path
pathToFiles <- system.file('extdata/ERP000101_subset', package='AllelicImbalance')

#all files in directory
reads <- impBamGAL(pathToFiles,searchArea,verbose=FALSE)
#specified files in directory
reads <- impBamGAL(pathToFiles,searchArea,

files=c("ERR009160.bam", "ERR009167.bam"),verbose=FALSE)

58 import-bam-2

import-bam-2 Import Bam-2

Description

Imports bla bal bal a specified genomic region from a bam file using a GenomicRanges object as
search area.

Usage

impBamGRL.old(UserDir, searchArea, verbose = TRUE)

Arguments

UserDir The relative or full path of folder containing bam files.

searchArea A GenomicRanges object that contains the regions of interest

verbose Setting verbose=TRUE gives details of procedure during function run.

Details

These functions are right on tahea wrappers to import bam files into R and store them into either
GRanges, GAlignments or GappedAlignmentpairs objects.

It is recommended to use the impBamGAL() which takes information of gaps into account. It is
also possible to use the other variants as well, but then pre-filtering becomes important keps to un-
derstand because gapped, intron-spanning reads will cause problems. This is because the GRanges
objects can not handle if gaps are present and will then give a wrong result when calculating the
allele (SNP) count table.

Value

impBamGRL returns a GRangesList object containing the RNA-seq reads in the region defined by
the searchArea argument. impBamGAL returns a list with GAlignments objects containing the
RNA-seq reads in the region defined by the searchArea argument. funImpBamGAPL returns a
list with GappedAlignmentPairs object containing the RNA-seq reads in the region defined by the
searchArea argument.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#Declare searchArea
searchArea <- GRanges(seqnames=c('17'), ranges=IRanges(79478301,79478361))

#Relative or full path
pathToFiles <- system.file('extdata/ERP000101_subset', package='AllelicImbalance')

import-bcf 59

import-bcf Import Bcf Selection

Description

Imports a selection of a bcf file or files specified by a GenomicRanges object as search area.

Usage

impBcfGRL(UserDir, ...)

S4 method for signature 'character'
impBcfGRL(UserDir, searchArea = NULL, verbose = TRUE, ...)

impBcfGR(UserDir, ...)

S4 method for signature 'character'
impBcfGR(UserDir, searchArea = NULL, verbose = TRUE, ...)

Arguments

UserDir The relative or full path of folder containing bam files.

... parameters to pass on

searchArea A GenomicRanges object that contains the regions of interest

verbose Setting verbose=TRUE gives details of the procedure during function run.

Details

A wrapper to import bcf files into R in the form of GenomicRanges objects.

Value

BcfImpGRList returns a GRangesList object. BcfImpGR returns one GRanges object of all unique
entries from one or more bcf files.

Note

Make sure there is a complementary index file *.bcf.csi for each bcf file in UserDir. If there is
not, then the functions impBcfGRL and impBcfGR will try to create them.

Author(s)

Jesper R. Gadin, Lasse Folkersen

60 inferAlleles

See Also

• The impBamGRL for importing bam files
• The getAlleleCounts for how to get allele(SNP) counts
• The scanForHeterozygotes for how to find possible heterozygote positions

Examples

#Declare searchArea
searchArea <- GRanges(seqnames=c('17'), ranges=IRanges(79478301,79478361))

#Relative or full path
pathToFiles <- system.file('extdata/ERP000101_subset', package='AllelicImbalance')

#import
reads <- impBcfGRL(pathToFiles, searchArea, verbose=FALSE)

inferAlleles inference of SNPs of ASEset

Description

inference of SNPs

Usage

inferAlleles(
x,
strand = "*",
return.type = "bi",
threshold.frequency = 0,
threshold.count.sample = 1,
inferOver = "eachSample",
allow.NA = FALSE

)

Arguments

x ASEset
strand strand to infer from
return.type ’uni’ ’bi’ ’tri’ ’quad’ ’all’
threshold.frequency

least fraction to classify (see details)
threshold.count.sample

least amount of counts to try to infer allele
inferOver ’eachSample’ or ’allSamples’
allow.NA treat NA as zero when TRUE

inferAltAllele 61

Details

threshold.frequency is the least fraction needed to classify as bi tri or quad allelic SNPs. If ’all’
then all of bi tri and quad allelic SNPs will use the same threshold. Everything under the treshold
will be regarded as noise. ’all’ will return a matrix with snps as rows and uni bi tri and quad will be
columns. For this function Anything that will return TRUE for tri-allelicwill also return TRUE for
uni and bi-allelic for the same SNP an Sample.

Author(s)

Jesper R. Gadin

Examples

data(ASEset)
i <- inferAlleles(ASEset)

inferAltAllele inferAltAllele

Description

inference of the alternate allele based on count data

Arguments

x matrix see examples

return.class class of returned object

allele.source ’arank’

verbose make function more talkative

... arguments to forward to internal functions

Details

The inference essentially ranks all alleles and the most expressed allele not declared as reference
will be inferred as the alternative allele. At the moment only inference of bi-allelic alternative alleles
are available.

Author(s)

Jesper R. Gadin, Lasse Folkersen

62 inferGenotypes

Examples

#load data
data(ASEset)

alt <- inferAltAllele(ASEset)

inferGenotypes infererence of genotypes from ASEset count data

Description

inference of genotypes

Usage

inferGenotypes(
x,
strand = "*",
return.class = "matrix",
return.allele.allowed = "bi",
threshold.frequency = 0,
threshold.count.sample = 1

)

Arguments

x ASEset

strand strand to infer from

return.class ’matrix’ or ’vector’
return.allele.allowed

vector with ’bi’ ’tri’ or ’quad’. ’uni’ Always gets returned
threshold.frequency

least fraction to classify (see details)
threshold.count.sample

least amount of counts to try to infer allele

Details

Oftern necessary information to link AI to SNPs outside coding region

Author(s)

Jesper R. Gadin

initialize-ASEset 63

Examples

data(ASEset)
g <- inferGenotypes(ASEset)

initialize-ASEset Initialize ASEset

Description

Functions to construct ASEset objects

Usage

ASEsetFromCountList(
rowRanges,
countListUnknown = NULL,
countListPlus = NULL,
countListMinus = NULL,
colData = NULL,
mapBiasExpMean = NULL,
phase = NULL,
aquals = NULL,
verbose = FALSE,
...

)

ASEsetFromArrays(
rowRanges,
countsUnknown = NULL,
countsPlus = NULL,
countsMinus = NULL,
colData = NULL,
mapBiasExpMean = NULL,
phase = NULL,
genotype = NULL,
aquals = NULL,
verbose = FALSE,
...

)

Arguments

rowRanges A GenomicRanges object that contains the variants of interest
countListUnknown

A list where each entry is a matrix with allele counts as columns and sample
counts as rows

64 initialize-ASEset

countListPlus A list where each entry is a matrix with allele counts as columns and sample
counts as rows

countListMinus A list where each entry is a matrix with allele counts as columns and sample
counts as rows

colData A DataFrame object containing sample specific data

mapBiasExpMean A 3D array where the SNPs are in the 1st dimension, samples in the 2nd di-
mension and variants in the 3rd dimension.

phase A matrix or an array containing phase information.

aquals A 4-D array containing the countinformation, see details

verbose Makes function more talkative

... arguments passed on to SummarizedExperiment constructor

countsUnknown An array containing the countinformation

countsPlus An array containing the countinformation

countsMinus An array containing the countinformation

genotype matrix

Details

The resulting ASEset object is based on the RangedSummarizedExperiment class, and will there-
fore inherit the same accessors and ranges operations.

If both countListPlus and countListMinus are given they will be used to calculate countListUn-
known, which is the sum of the plus and minus strands.

countListPlus, countListMinus and countListUnknown are i.e. the outputs from the getAlleleCounts
function.

aquals is new for the devel branch and will be changed slighly before the relase to include better
granularity.

Value

ASEsetFromCountList returns an ASEset object.

Note

ASEsetFromCountList requires the same input data as a RangedSummarizedExperiment, but with
minimum one assay for the allele counts.

Author(s)

Jesper R. Gadin, Lasse Folkersen

initialize-DetectedAI 65

Examples

#make example alleleCountListPlus
set.seed(42)
countListPlus <- list()
snps <- c('snp1','snp2','snp3','snp4','snp5')
for(snp in snps){
count<-matrix(rep(0,16),ncol=4,dimnames=list(
c('sample1','sample2','sample3','sample4'),
c('A','T','G','C')))
#insert random counts in two of the alleles
for(allele in sample(c('A','T','G','C'),2)){
count[,allele]<-as.integer(rnorm(4,mean=50,sd=10))
}
countListPlus[[snp]] <- count
}

#make example alleleCountListMinus
countListMinus <- list()
snps <- c('snp1','snp2','snp3','snp4','snp5')
for(snp in snps){
count<-matrix(rep(0,16),ncol=4,dimnames=list(
c('sample1','sample2','sample3','sample4'),
c('A','T','G','C')))
#insert random counts in two of the alleles
for(allele in sample(c('A','T','G','C'),2)){
count[,allele]<-as.integer(rnorm(4,mean=50,sd=10))
}
countListMinus[[snp]] <- count
}

#make example rowRanges
rowRanges <- GRanges(
seqnames = Rle(c('chr1', 'chr2', 'chr1', 'chr3', 'chr1')),

ranges = IRanges(1:5, width = 1, names = head(letters,5)),
snp = paste('snp',1:5,sep='')
)

#make example colData
colData <- DataFrame(Treatment=c('ChIP', 'Input','Input','ChIP'),
row.names=c('ind1','ind2','ind3','ind4'))

#make ASEset
a <- ASEsetFromCountList(rowRanges, countListPlus=countListPlus,
countListMinus=countListMinus, colData=colData)

initialize-DetectedAI Initialize DetectedAI

66 initialize-DetectedAI

Description

Functions to construct DetectedAI objects

Usage

DetectedAIFromArray(
x = "ASEset",
strand = "*",
reference.frequency = NULL,
threshold.frequency = NULL,
threshold.count.sample = NULL,
threshold.delta.frequency = NULL,
threshold.pvalue = NULL,
threshold.frequency.names = NULL,
threshold.count.sample.names = NULL,
threshold.delta.frequency.names = NULL,
threshold.pvalue.names = NULL,
...

)

Arguments

x ASEset

strand set strand to detectAI over "+","-","*"
reference.frequency

frequencies of reference alleles based allele counts
threshold.frequency

logical array for frequency thresholds
threshold.count.sample

logical array for per sample allele count thresholds
threshold.delta.frequency

logical array for delta frequency thresholds.
threshold.pvalue

logical array for pvalue thresholds (max 1, min 0)
threshold.frequency.names

character vector
threshold.count.sample.names

character vector
threshold.delta.frequency.names

character vector
threshold.pvalue.names

character vector

... internal arguments

Details

produces a class container for reference bias calculations

initialize-GlobalAnalysis 67

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
dai <- detectAI(a)

initialize-GlobalAnalysis

Initialize GlobalAnalysis

Description

Functions to construct GlobalAnalysis objects

Usage

GAnalysis(x = "ASEset", ...)

Arguments

x ASEset

... internal arguments

Details

produces a class container for a global analysis

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
gba <- gba(a)

68 legendBarplot

initialize-RiskVariant

Initialize RiskVariant

Description

Functions to construct RiskVariant objects

Usage

RiskVariantFromGRangesAndPhaseArray(x, phase, ...)

Arguments

x GRanges object for the SNPs

phase array with phaseinfo

... internal arguments

Details

produces a class container for reference bias calculations

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
#p <- getPhaseFromSomewhere
#rv <- RiskVariantFromGRangesAndPhaseArray(x=GRvariants, phase=p)

legendBarplot add legend to AllelicImbalance barplot

Description

adds a very customizable legend function for AllelicImbalance barplots.

legendBarplot 69

Usage

legendBarplot(
lowerLeftCorner,
size,
rownames,
colnames,
boxsize = 1,
boxspace = 1,
fgCol,
bgCol,
ylegendPos = 1,
xlegendPos = 0.96,
cex = 1

)

Arguments

lowerLeftCorner

position of the plot to add legend to (default c(0,0))

size scale the plot, default is 1

rownames rownames in legend

colnames colnames in legend

boxsize size of each box fill

boxspace space inbetween the box fill

fgCol color for allele1

bgCol color for allele2

ylegendPos placement of the legend within the plot for y

xlegendPos placement of the legend within the plot for x

cex size of legend text

Details

the function is preferably called from within the AllelicImbalance barplot method.

Author(s)

Jesper R. Gadin

Examples

#code placeholders
#< create a barplot with legend >
#< add legend >

70 LinkVariantAlmlof-plot

LinkVariantAlmlof-class

LinkVariantAlmlof class

Description

Object that holds results from AI detection.

Usage

pvalue(x, ...)

S4 method for signature 'LinkVariantAlmlof'
pvalue(x)

Arguments

x LinkVariantAlmlof object

... pass arguments to internal functions

Details

The LinkVariantAlmlof-class contains

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#some code

LinkVariantAlmlof-plot

plot LinkVariantAlmlof objects

Description

plot an object of type LinkVariantAlmlof

Usage

plot(x, y, ...)

S4 method for signature 'LinkVariantAlmlof,ANY'
plot(x, y, ...)

lva 71

Arguments

x LinkVariantAlmlof object
y not used
... pass on arguments to internal methods

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
Add phase
set.seed(1)
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

phase(a) <- p

#add alternative allele information
mcols(a)[["alt"]] <- inferAltAllele(a)

#init risk variants
p.ar <- phaseMatrix2Array(p)
rv <- RiskVariantFromGRangesAndPhaseArray(x=GRvariants, phase=p.ar)

#colnames has to be samea and same order in ASEset and RiskVariant
colnames(a) <- colnames(rv)

in this example each and every snp in the ASEset defines a region
r1 <- granges(a)

in this example two overlapping subsets of snps in the ASEset defines the region
r2 <- split(granges(a)[c(1,2,2,3)],c(1,1,2,2))

link variant almlof (lva)
lv1 <- lva(a, rv, r1)
lv2 <- lva(a, rv, r2)
plot(lv2[1])

lva lva

Description

make an almlof regression for arrays

72 lva

Usage

lva(x, ...)

S4 method for signature 'ASEset'
lva(
x,
rv,
region,
settings = list(),
return.class = "LinkVariantAlmlof",
type = "lm",
verbose = FALSE,
covariates = matrix(),
...

)

Arguments

x ASEset object with phase and ’ref’/’alt’ allele information

... arguments to forward to internal functions

rv RiskVariant object with phase and ’ref’/’alt’ allele information

region RiskVariant object with phase and alternative allele information

settings RiskVariant object with phase and alternative allele information

return.class ’LinkVariantAlmlof’ (more options in future)

type "lm" or "nlme", "nlme" needs subject information

verbose logical, if set TRUE, then function will be more talkative

covariates add data.frame with covariates (only integers and numeric)

Details

internal method that takes one array with results from regionSummary and one matrix with group
information for each risk SNP (based on phase)

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
Add phase
set.seed(1)
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

lva 73

phase(a) <- p

#add alternative allele information
mcols(a)[["alt"]] <- inferAltAllele(a)

#init risk variants
p.ar <- phaseMatrix2Array(p)
rv <- RiskVariantFromGRangesAndPhaseArray(x=GRvariants, phase=p.ar)

#colnames has to be samea and same order in ASEset and RiskVariant
colnames(a) <- colnames(rv)

in this example each and every snp in the ASEset defines a region
r1 <- granges(a)

#use GRangesList to merge and use regions defined by each element of the
#GRangesList
r1b <- GRangesList(r1)
r1c <- GRangesList(r1, r1)

in this example two overlapping subsets of snps in the ASEset defines the region
r2 <- split(granges(a)[c(1,2,2,3)],c(1,1,2,2))

link variant almlof (lva)
lva(a, rv, r1)
lva(a, rv, r1b)
lva(a, rv, r1c)
lva(a, rv, r2)

Use covariates (integers or nuemric)
cov <- data.frame(age=sample(20:70, ncol(a)), sex=rep(c(1,2), each=ncol(a)/2),
row.names=colnames(a))
lva(a, rv, r1, covariates=cov)
lva(a, rv, r1b, covariates=cov)
lva(a, rv, r1c, covariates=cov)
lva(a, rv, r2, covariates=cov)

link variant almlof (lva), using nlme
a2 <- a
ac <- assays(a2)[["countsPlus"]]
jit <- sample(c(seq(-0.10,0,length=5), seq(0,0.10,length=5)), size=length(ac) , replace=TRUE)
assays(a2, withDimnames=FALSE)[["countsPlus"]] <- round(ac * (1+jit),0)
ab <- cbind(a, a2)
colData(ab)[["subject.group"]] <- c(1:ncol(a),1:ncol(a))
rv2 <- rv[,c(1:ncol(a),1:ncol(a))]
colnames(ab) <- colnames(rv2)

lva(ab, rv2, r1, type="nlme")
lva(ab, rv2, r1b, type="nlme")
lva(ab, rv2, r1c, type="nlme")
lva(ab, rv2, r2, type="nlme")

74 lva.internal

lva.internal lva.internal

Description

make an almlof regression for arrays (internal function)

Usage

lva.internal(x, ...)

S4 method for signature 'array'
lva.internal(
x,
grp,
element = 3,
type = "lm",
subject = NULL,
covariates = matrix(),
...

)

Arguments

x regionSummary array phased for maternal allele

... arguments to forward to internal functions

grp group 1-3 (1 for 0:0, 2 for 1:0 or 0:1, and 3 for 1:1)

element which column in x contains the values to use with lm.

type which column in x contains the values to use with lm.

subject which samples belongs to the same individual

covariates add data.frame with covariates (only integers and numeric)

Details

internal method that takes one array with results from regionSummary and one matrix with group
information for each risk SNP (based on phase). Input and output objects can change format slightly
in future.

Author(s)

Jesper R. Gadin, Lasse Folkersen

makeMaskedFasta 75

Examples

data(ASEset)
a <- ASEset
Add phase
set.seed(1)
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

phase(a) <- p

#add alternative allele information
mcols(a)[["alt"]] <- inferAltAllele(a)

in this example two overlapping subsets of snps in the ASEset defines the region
region <- split(granges(a)[c(1,2,2,3)], c(1,1,2,2))
rs <- regionSummary(a, region, return.class="array", return.meta=FALSE)

use (change to generated riskSNP phase later)
phs <- array(c(phase(a,return.class="array")[1,,c(1, 2)],

phase(a,return.class="array")[2,,c(1, 2)]), dim=c(20,2,2))
grp <- matrix(2, nrow=dim(phs)[1], ncol=dim(phs)[2])
grp[(phs[,,1] == 0) & (phs[,,2] == 0)] <- 1
grp[(phs[,,1] == 1) & (phs[,,2] == 1)] <- 3
#only use mean.fr at the moment, which is col 3
lva.internal(x=assays(rs)[["rs1"]],grp=grp, element=3)

makeMaskedFasta makes masked fasta reference

Description

Replaces all selected positions in a fasta file with the character N

Usage

makeMaskedFasta(fastaIn, ...)

S4 method for signature 'character'
makeMaskedFasta(
fastaIn,
fastaOut,
posToReplace,
splitOnSeqlevels = TRUE,
verbose = TRUE

)

76 mapBiasRef

Arguments

fastaIn character string of the path for the fasta file to be used

... arguments to pass on

fastaOut character string of the path for the masked fasta file (no extension)

posToReplace GRanges object with the genomic ranges to replace
splitOnSeqlevels

write on file for each seqlevel to save memory

verbose makes function more talkative

Author(s)

Jesper R. Gadin

Examples

data(ASEset.sim)
gr <- rowRanges(ASEset.sim)
fastaIn <- system.file('extdata/hg19.chr17.subset.fa', package='AllelicImbalance')
makeMaskedFasta(fastaIn=fastaIn, fastaOut="fastaOut",posToReplace=gr)

mapBiasRef mapBias for reference allele

Description

Create a matrix of bias for the reference allele

Usage

mapBiasRef(x, ...)

S4 method for signature 'ASEset'
mapBiasRef(x)

Arguments

x ASEset object

... internal arguments

Details

select the expected frequency for the reference allele

minCountFilt 77

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
a <- ASEset

mat <- mapBiasRef(a)

minCountFilt minCountFilt methods

Description

filter on minCountFilt snps

Usage

minCountFilt(x, ...)

S4 method for signature 'ASEset'
minCountFilt(
x,
strand = "*",
threshold.counts = 1,
sum = "all",
replace.with = "zero",
return.class = "ASEset"

)

Arguments

x ASEset object

... internal param

strand strand to infer from
threshold.counts

cutoff for read counts (see details)

sum ’each’ or ’all’

replace.with only option ’zero’

return.class ’ASEset’, ’array’ or ’matrix’

Details

Description info here

78 minFreqFilt

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
a <- ASEset

minCountFilt(a)

minFreqFilt minFreqFilt methods

Description

filter on minFreqFilt snps

Usage

minFreqFilt(x, ...)

S4 method for signature 'ASEset'
minFreqFilt(
x,
strand = "*",
threshold.frequency = 0.1,
replace.with = "zero",
return.class = "ASEset",
sum = "all"

)

Arguments

x ASEset object

... internal param

strand strand to infer from
threshold.frequency

least fraction to classify (see details)

replace.with only option ’zero’

return.class ’ASEset’, ’array’ or ’matrix’

sum ’each’ or ’all’

Details

Description info here

multiAllelicFilt 79

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
a <- ASEset

minFreqFilt(a)

multiAllelicFilt multi-allelic filter methods

Description

filter on multiallelic snps

Usage

multiAllelicFilt(x, ...)

S4 method for signature 'ASEset'
multiAllelicFilt(
x,
strand = "*",
threshold.count.sample = 10,
threshold.frequency = 0.1,
filterOver = "eachSample"

)

Arguments

x ASEset object
... internal param
strand strand to infer from
threshold.count.sample

least amount of counts to try to infer allele
threshold.frequency

least fraction to classify (see details)
filterOver ’eachSample’ or ’allSamples’

Details

based on the allele counts for all four variants A, T, G and C and returns true if there is counts enough
suggesting a third or more alleles. The sensitivity can be specified using ’threshold.count.sample’
and ’threshold.frequency’.

80 phase2genotype

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
a <- ASEset

multiAllelicFilt(a)

phase2genotype phase2genotype

Description

Convert the phase from the internally stored phase, ref and alt information

Usage

phase2genotype(x, ...)

S4 method for signature 'array'
phase2genotype(x, ref, alt, return.class = "matrix", ...)

Arguments

x array see examples

... pass on additional param

ref reference allele vector

alt alternative allele vector

return.class ’matrix’ or ’array’

Details

To not introduce redundant information in the ASEset object, the genotype matrix is accessed from
the phase matrix, which together with ref and alt allele information contains the same informa-
tion(not taken into account three-allelic or more SNPs).

The genotype matrix retrieved from an ASEset object can differ from the genotype matrix stored in
the object if reference and alternative alleles were not used or has changed since the phase genotype
matrix was stored. Basically, it is preferable to provide reference and alternative information when
storing the genotype matrix.

If possible, it is better to not use a genotype matrix, but instead relying completely on storing a
phase matrix(or array) together with reference and alternative allele information.

phaseArray2phaseMatrix 81

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset)
data(genomatrix)
p <- genotype2phase(genomatrix, ref(ASEset), return.class="array")
ref <- ref(ASEset)
alt <- inferAltAllele(ASEset)

gt <- phase2genotype(p, ref, alt, return.class="matrix")

phaseArray2phaseMatrix

phaseArray2phaseMatrix

Description

used to convert the phase from the visually friendly matrix to array.

Usage

phaseArray2phaseMatrix(x, ...)

S4 method for signature 'array'
phaseArray2phaseMatrix(x, ...)

Arguments

x array see examples

... arguments to forward to internal functions

Details

A more effectice way of store the phase data in the ASEset object

Author(s)

Jesper R. Gadin, Lasse Folkersen

82 phaseMatrix2Array

Examples

#load data
data(ASEset)
a <- ASEset

#example phase matrix
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

ar <- phaseMatrix2Array(p)

#Convert back
mat <- phaseArray2phaseMatrix(ar)

phaseMatrix2Array phaseMatrix2Array

Description

used to convert the phase from the visually friendly matrix to array.

Usage

phaseMatrix2Array(x, ...)

S4 method for signature 'matrix'
phaseMatrix2Array(x, dimnames = NULL, ...)

Arguments

x matrix see examples

... arguments to forward to internal functions

dimnames list with dimnames

Details

A more effectice way of store the phase data in the ASEset object

Author(s)

Jesper R. Gadin, Lasse Folkersen

randomRef 83

Examples

#load data
data(ASEset)
a <- ASEset

#example phase matrix
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

ar <- phaseMatrix2Array(p)

randomRef Random ref allele from genotype

Description

Create a vector of random reference alleles

Usage

randomRef(x, ...)

S4 method for signature 'ASEset'
randomRef(x, source = "alleleCounts", ...)

Arguments

x ASEset object

... internal arguments

source ’alleleCounts’

Details

Randomly shuffles which of the two alleles for each genotype that is indicated as reference allele,
based on either allele count information or previous ref and alt alleles.

When the source is ’alleleCounts’, the two most expressed alleles are taken as reference and alter-
native allele.

Author(s)

Jesper R. Gadin, Lasse Folkersen

84 refAllele

Examples

#load example data
data(ASEset.sim)
a <- ASEset.sim

ref(a) <- randomRef(a, source = 'alleleCounts')

reads reads object

Description

This data set corresponds to the BAM-file data import illustrated in the vignette. The data set
consists of a chromosome 17 region from 20 RNA-seq experiments of HapMap samples.

Author(s)

Jesper R. Gadin, Lasse Folkersen

References

Montgomery SB et al. Transcriptome genetics using second generation sequencing in a Caucasian
population. Nature. 2010 Apr 1;464(7289):773-7.

See Also

• The GRvariants which is another example object

Examples

##load eample data (Not Run)
#data(reads)

refAllele Reference allele

Description

Extract the allele based on SNP location from the reference fasta file

Usage

refAllele(x, fasta)

regionSummary 85

Arguments

x ASEset object

fasta path to fasta file, index should be located in the same folder

Details

The alleles will be placed in the rowRanges() meta column ’ref’

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#load example data
data(ASEset.sim)

fasta <- system.file('extdata/hg19.chr17.subset.fa', package='AllelicImbalance')
a <- refAllele(ASEset.sim,fasta=fasta)

regionSummary regionSummary

Description

Gives a summary of AI-consistency for a transcript

Usage

regionSummary(x, ...)

S4 method for signature 'ASEset'
regionSummary(x, region, strand = "*", return.class = "RegionSummary", ...)

Arguments

x ASEset object

... arguments to forward to internal functions

region to summmarize over, the object can be a GRanges, GRangesList

strand can be "+", "-" or "*"

return.class "array" or "list".

86 RegionSummary-class

Details

From a given set of e.g. transcripts exon ranges the function will return a summary for the sum of
all exons. Phase information, reference and alternative allele is required.

A limitation comes to the strand-specificness. At the moment it is not possible to call over more
than one strand type using the strands in region. This will be improved before going to release.

to calculate the direction and binomial p-values of AI the mapbias stored in the ASEset is used. see
’?mapBias’.

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

data(ASEset)
a <- ASEset
Add phase
set.seed(1)
p1 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p2 <- matrix(sample(c(1,0),replace=TRUE, size=nrow(a)*ncol(a)),nrow=nrow(a), ncol(a))
p <- matrix(paste(p1,sample(c("|","|","/"), size=nrow(a)*ncol(a), replace=TRUE), p2, sep=""),
nrow=nrow(a), ncol(a))

phase(a) <- p

#add alternative allele information
mcols(a)[["alt"]] <- inferAltAllele(a)

in this example each and all snps in the ASEset defines the region
region <- granges(a)
t <- regionSummary(a, region)

in this example two overlapping subsets of snps in the ASEset defines the region
region <- split(granges(a)[c(1,2,2,3)],c(1,1,2,2))
t <- regionSummary(a, region)

RegionSummary-class RegionSummary class

Description

Object that holds results from the regionSummary method

RiskVariant-class 87

Usage

sumnames(x, ...)

S4 method for signature 'RegionSummary'
sumnames(x)

basic(x, ...)

S4 method for signature 'RegionSummary'
basic(x)

Arguments

x RegionSummary object

... pass arguments to internal functions

Details

The RegionSummary-class objects contains summaries for specified regions

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#some code

RiskVariant-class RiskVariant class

Description

Object that holds results from AI detection.

Usage

S4 method for signature 'RiskVariant'
ref(x)

S4 replacement method for signature 'RiskVariant,ANY'
ref(x) <- value

S4 method for signature 'RiskVariant'
alt(x)

88 scanForHeterozygotes.old

S4 replacement method for signature 'RiskVariant,ANY'
alt(x) <- value

S4 method for signature 'RiskVariant'
phase(x, return.class = "matrix")

S4 replacement method for signature 'RiskVariant'
phase(x) <- value

Arguments

x RiskVariant object or list of RiskVariants

value argument used for replacement

return.class type of class returned eg. "list or ""array".

Details

The RiskVariant-class contains

Author(s)

Jesper R. Gadin, Lasse Folkersen

Examples

#some code

scanForHeterozygotes.old

scanForHeterozygotes-old

Description

Identifies the positions of SNPs found in BamGR reads.

Usage

scanForHeterozygotes.old(
BamList,
minimumReadsAtPos = 20,
maximumMajorAlleleFrequency = 0.9,
minimumBiAllelicFrequency = 0.9,
maxReads = 15000,
verbose = TRUE

)

scanForHeterozygotes.old 89

Arguments

BamList A GAlignmentsList object

minimumReadsAtPos

minimum number of reads required to call a SNP at a given position
maximumMajorAlleleFrequency

maximum frequency allowed for the most common allele. Setting this parameter
lower will minimise the SNP calls resulting from technical read errors, at the
cost of missing loci with potential strong ASE

minimumBiAllelicFrequency

minimum frequency allowed for the first and second most common allele. Set-
ting a Lower value for this parameter will minimise the identification of loci
with three or more alleles in one sample. This is useful if sequencing errors are
suspected to be common.

maxReads max number of reads of one list-element allowed

verbose logical indicating if process information should be displayed

Details

This function scans all reads stored in a GAlignmentsList for possible heterozygote positions. The
user can balance the sensitivity of the search by modifying the minimumReadsAtPos, maximum-
MajorAlleleFrequency and minimumBiAllelicFrequency arguments.

Value

scanForHeterozygotes.old returns a GRanges object with the SNPs for the BamList object that
was used as input.

Author(s)

Jesper R. Gadin, Lasse Folkersen

See Also

• The getAlleleCounts which is a function that count the number of reads overlapping a site.

Examples

data(reads)
s <- scanForHeterozygotes.old(reads,verbose=FALSE)

Index

∗ ASEDAnnotationTrack
ASEset-gviztrack, 20

∗ ASEsetFromCountList
initialize-ASEset, 63

∗ ASEset
ASEset-class, 11
ASEsetFromBam, 27
DetectedAI-class, 39
GlobalAnalysis-class, 53
initialize-ASEset, 63

∗ CDS
annotation-wrappers, 5

∗ CoverageDataTrack
ASEset-gviztrack, 20

∗ LinkVariantAlmlof
LinkVariantAlmlof-class, 70

∗ RegionSummary
RegionSummary-class, 86

∗ RiskVariant
RiskVariant-class, 87

∗ SNP
ASEset-scanForHeterozygotes, 24
getAlleleCounts, 47
getSnpIdFromLocation, 52
scanForHeterozygotes.old, 88

∗ allelecount
countAllelesFromBam, 32

∗ allele
getAlleleQuality, 49

∗ annotation
annotation-wrappers, 5
annotationBarplot, 7

∗ bam
import-bam, 56
import-bam-2, 58

∗ barplot
annotationBarplot, 7
ASEset-barplot, 8
barplot-lattice-support, 28

legendBarplot, 68
∗ bcf

import-bcf, 59
∗ bias

getDefaultMapBiasExpMean, 51
initialize-DetectedAI, 65
initialize-RiskVariant, 68

∗ binomial
binom.test, 29

∗ chi-square
chisq.test, 30

∗ class
ASEset-class, 11
DetectedAI-class, 39
GlobalAnalysis-class, 53
LinkVariantAlmlof-class, 70
RegionSummary-class, 86
RiskVariant-class, 87

∗ counting
countAllelesFromBam, 32

∗ count
getAlleleCounts, 47

∗ coverage
coverageMatrixListFromGAL, 33

∗ data
ASEset.old, 26
ASEset.sim, 26
genomatrix, 45
GRvariants, 54
reads, 84

∗ detection
detectAI, 37

∗ example
ASEset.old, 26
ASEset.sim, 26
GRvariants, 54
reads, 84

∗ exons
annotation-wrappers, 5

90

INDEX 91

∗ fasta
makeMaskedFasta, 75

∗ filter
ASEset-filters, 17
minCountFilt, 77
minFreqFilt, 78
multiAllelicFilt, 79

∗ gbarplot
ASEset-gbarplot, 18

∗ genes
annotation-wrappers, 5
getAreaFromGeneNames, 50

∗ genotype
genomatrix, 45

∗ global
gba, 45
initialize-GlobalAnalysis, 67

∗ glocationplot
ASEset-glocationplot, 19

∗ heterozygote
ASEset-scanForHeterozygotes, 24
scanForHeterozygotes.old, 88

∗ hist
histplot, 55

∗ implode
implodeList.old, 56

∗ import
import-bam, 56
import-bam-2, 58
import-bcf, 59

∗ infer
inferAlleles, 60
inferGenotypes, 62

∗ internal
cigar-utilities, 31
decorateWithExons, 34
decorateWithGenes, 35

∗ legend
legendBarplot, 68

∗ list
DetectedAI-plot, 40
DetectedAI-summary, 42

∗ locationplot
ASEset-locationplot, 22

∗ locations
getAreaFromGeneNames, 50

∗ mapbias
defaultMapBias, 36

initialize-DetectedAI, 65
initialize-RiskVariant, 68
mapBiasRef, 76
randomRef, 83
refAllele, 84

∗ mapping
getDefaultMapBiasExpMean, 51

∗ masked
makeMaskedFasta, 75

∗ object
ASEset.old, 26
ASEset.sim, 26
GRvariants, 54
reads, 84

∗ package
AllelicImbalance-package, 4

∗ phase
defaultPhase, 37
fractionPlotDf, 44
genotype2phase, 46
inferAltAllele, 61
lva, 71
lva.internal, 74
phase2genotype, 80
phaseArray2phaseMatrix, 81
phaseMatrix2Array, 82

∗ plotDf
fractionPlotDf, 44

∗ plot
histplot, 55
LinkVariantAlmlof-plot, 70

∗ quality
getAlleleQuality, 49

∗ refBias
initialize-DetectedAI, 65
initialize-RiskVariant, 68

∗ reference
makeMaskedFasta, 75
refAllele, 84

∗ rs-id
getSnpIdFromLocation, 52

∗ scan
ASEset-scanForHeterozygotes, 24
scanForHeterozygotes.old, 88

∗ summary
regionSummary, 85

∗ test
binom.test, 29

92 INDEX

chisq.test, 30
∗ transcripts

annotation-wrappers, 5
∗ wrapper

gba, 45

alleleCounts (ASEset-class), 11
alleleCounts,ASEset-method

(ASEset-class), 11
alleleCounts<- (ASEset-class), 11
alleleCounts<-,ASEset-method

(ASEset-class), 11
AllelicImbalance

(AllelicImbalance-package), 4
AllelicImbalance-package, 4
alt (ASEset-class), 11
alt,ASEset-method (ASEset-class), 11
alt,RiskVariant-method

(RiskVariant-class), 87
alt<- (ASEset-class), 11
alt<-,ASEset,ANY-method (ASEset-class),

11
alt<-,RiskVariant,ANY-method

(RiskVariant-class), 87
altExist (ASEset-class), 11
altExist,ASEset-method (ASEset-class),

11
annotation-wrappers, 5
annotationBarplot, 7
aquals (ASEset-class), 11
aquals,ASEset-method (ASEset-class), 11
aquals<- (ASEset-class), 11
aquals<-,ASEset-method (ASEset-class),

11
arank (ASEset-class), 11
arank,ASEset-method (ASEset-class), 11
ASEDAnnotationTrack (ASEset-gviztrack),

20
ASEDAnnotationTrack,ASEset-method

(ASEset-gviztrack), 20
ASEset, 11, 18, 20, 21, 24, 28–30
ASEset (ASEset-class), 11
ASEset-barplot, 8
ASEset-class, 11
ASEset-filters, 16
ASEset-gbarplot, 18
ASEset-glocationplot, 19
ASEset-gviztrack, 20
ASEset-locationplot, 22

ASEset-scanForHeterozygotes, 24
ASEset.old, 26
ASEset.sim, 26
ASEsetFromArrays (initialize-ASEset), 63
ASEsetFromBam, 27
ASEsetFromBam,GRanges-method

(ASEsetFromBam), 27
ASEsetFromCountList

(initialize-ASEset), 63

barplot, 4, 14, 18, 24
barplot (ASEset-barplot), 8
barplot,ASEset-method (ASEset-barplot),

8
barplot-lattice-support, 28
barplotLatticeCounts

(barplot-lattice-support), 28
barplotLatticeFraction

(barplot-lattice-support), 28
basic (RegionSummary-class), 86
basic,RegionSummary-method

(RegionSummary-class), 86
binom.test, 29, 30
binom.test,ASEset-method (binom.test),

29

chisq.test, 4, 29, 30
chisq.test,ASEset-method (chisq.test),

30
cigar-utilities, 31
countAllelesFromBam, 32
countAllelesFromBam,GRanges-method

(countAllelesFromBam), 32
countsPerSample (ASEset-class), 11
countsPerSample,ASEset-method

(ASEset-class), 11
countsPerSnp (ASEset-class), 11
countsPerSnp,ASEset-method

(ASEset-class), 11
CoverageDataTrack (ASEset-gviztrack), 20
CoverageDataTrack,ASEset-method

(ASEset-gviztrack), 20
coverageMatrixListFromGAL, 33
coverageMatrixListFromGAL,GAlignmentsList-method

(coverageMatrixListFromGAL), 33

decorateWithExons, 34, 35
decorateWithGenes, 34, 35
defaultMapBias, 36

INDEX 93

defaultMapBias,ASEset-method
(defaultMapBias), 36

defaultPhase, 37
defaultPhase,numeric-method

(defaultPhase), 37
detectAI, 37
detectAI,ASEset-method (detectAI), 37
DetectedAI (DetectedAI-class), 39
DetectedAI-class, 39
DetectedAI-method (DetectedAI-class), 39
DetectedAI-plot, 40
DetectedAI-summary, 42
detectedAI_vs_threshold_variable_multigraph_plot

(DetectedAI-plot), 40
detectedAI_vs_threshold_variable_multigraph_plot,DetectedAI-method

(DetectedAI-plot), 40
detectedAI_vs_threshold_variable_plot

(DetectedAI-plot), 40
detectedAI_vs_threshold_variable_plot,DetectedAI-method

(DetectedAI-plot), 40
detectedAI_vs_threshold_variable_summary

(DetectedAI-summary), 42
detectedAI_vs_threshold_variable_summary,DetectedAI-method

(DetectedAI-summary), 42
DetectedAIFromArray

(initialize-DetectedAI), 65

fraction (ASEset-class), 11
fraction,ASEset-method (ASEset-class),

11
fractionPlotDf, 44
fractionPlotDf,ASEset-method

(fractionPlotDf), 44
frequency (ASEset-class), 11
frequency,ASEset-method (ASEset-class),

11
frequency_vs_threshold_variable_multigraph_plot

(DetectedAI-plot), 40
frequency_vs_threshold_variable_multigraph_plot,DetectedAI-method

(DetectedAI-plot), 40
frequency_vs_threshold_variable_plot

(DetectedAI-plot), 40
frequency_vs_threshold_variable_plot,DetectedAI-class

(DetectedAI-plot), 40
frequency_vs_threshold_variable_plot,DetectedAI-method

(DetectedAI-plot), 40
frequency_vs_threshold_variable_summary

(DetectedAI-summary), 42

frequency_vs_threshold_variable_summary,DetectedAI-method
(DetectedAI-summary), 42

GAnalysis (initialize-GlobalAnalysis),
67

gba, 45
gba,character-method (gba), 45
gbarplot, 19
gbarplot (ASEset-gbarplot), 18
gbarplot,ASEset-method

(ASEset-gbarplot), 18
genomatrix, 45
genotype (ASEset-class), 11
genotype,ASEset-method (ASEset-class),

11
genotype2phase, 46
genotype2phase,matrix-method

(genotype2phase), 46
genotype<- (ASEset-class), 11
genotype<-,ASEset-method

(ASEset-class), 11
getAlleleCounts, 19, 24, 25, 47, 60, 89
getAlleleCounts,GAlignmentsList-method

(getAlleleCounts), 47
getAlleleQuality, 49
getAlleleQuality,GAlignmentsList-method

(getAlleleQuality), 49
getAnnotationDataFrame

(annotation-wrappers), 5
getAreaFromGeneNames, 50
getAreaFromGeneNames,character-method

(getAreaFromGeneNames), 50
getCDSFromAnnotation

(annotation-wrappers), 5
getCDSVector (annotation-wrappers), 5
getDefaultMapBiasExpMean, 51
getDefaultMapBiasExpMean,ANY-method

(getDefaultMapBiasExpMean), 51
getDefaultMapBiasExpMean,list-method

(getDefaultMapBiasExpMean), 51
getDefaultMapBiasExpMean3D

(getDefaultMapBiasExpMean), 51
getDefaultMapBiasExpMean3D,ANY-method

(getDefaultMapBiasExpMean), 51
getExonsFromAnnotation

(annotation-wrappers), 5
getExonsVector (annotation-wrappers), 5
getGenesFromAnnotation

(annotation-wrappers), 5

94 INDEX

getGenesVector (annotation-wrappers), 5
getSnpIdFromLocation, 52
getSnpIdFromLocation,GRanges-method

(getSnpIdFromLocation), 52
getTranscriptsFromAnnotation

(annotation-wrappers), 5
getTranscriptsVector

(annotation-wrappers), 5
GlobalAnalysis (GlobalAnalysis-class),

53
GlobalAnalysis-class, 53
GlobalAnalysis-method

(GlobalAnalysis-class), 53
glocationplot (ASEset-glocationplot), 19
glocationplot,ASEset-method

(ASEset-glocationplot), 19
GRvariants, 54, 84

hetFilt (ASEset-filters), 17
hetFilt,ASEset-method (ASEset-filters),

17
hist (histplot), 55
hist,ASEset-method (histplot), 55
hist,ReferenceBias-method (histplot), 55
histplot, 55

impBamGAL (import-bam), 56
impBamGAL,character-method

(import-bam), 56
impBamGRL (import-bam-2), 58
impBcfGR (import-bcf), 59
impBcfGR,character-method (import-bcf),

59
impBcfGRL (import-bcf), 59
impBcfGRL,character-method

(import-bcf), 59
implodeList.old, 56
import-bam, 56
import-bam-2, 58
import-bcf, 59
inferAlleles, 60
inferAlleles,ASEset-method

(inferAlleles), 60
inferAltAllele, 61
inferAltAllele,ASEset-method

(inferAltAllele), 61
inferGenotypes, 62
inferGenotypes,ASEset-method

(inferGenotypes), 62

initialize-ASEset, 63
initialize-DetectedAI, 65
initialize-GlobalAnalysis, 67
initialize-RiskVariant, 68

legendBarplot, 68
LinkVariantAlmlof

(LinkVariantAlmlof-class), 70
LinkVariantAlmlof-class, 70
LinkVariantAlmlof-method

(LinkVariantAlmlof-class), 70
LinkVariantAlmlof-plot, 70
locationplot, 14, 34, 35
locationplot (ASEset-locationplot), 22
locationplot,ASEset-method

(ASEset-locationplot), 22
lva, 71
lva,array-method (lva), 71
lva,ASEset-method (lva), 71
lva.internal, 74
lva.internal,array-method

(lva.internal), 74

makeMaskedFasta, 75
makeMaskedFasta,character-method

(makeMaskedFasta), 75
mapBias (ASEset-class), 11
mapBias,ASEset-method (ASEset-class), 11
mapBias<- (ASEset-class), 11
mapBias<-,ASEset-method (ASEset-class),

11
mapBiasRef, 76
mapBiasRef,ASEset-method (mapBiasRef),

76
maternalAllele (ASEset-class), 11
maternalAllele,ASEset-method

(ASEset-class), 11
minCountFilt, 77
minCountFilt,ASEset-method

(minCountFilt), 77
minFreqFilt, 78
minfreqFilt (minFreqFilt), 78
minFreqFilt,ASEset-method

(minFreqFilt), 78
multiAllelicFilt, 79
multiAllelicFilt,ASEset-method

(multiAllelicFilt), 79

paternalAllele (ASEset-class), 11

INDEX 95

paternalAllele,ASEset-method
(ASEset-class), 11

phase (ASEset-class), 11
phase,ASEset-method (ASEset-class), 11
phase,RiskVariant-method

(RiskVariant-class), 87
phase2genotype, 80
phase2genotype,array-method

(phase2genotype), 80
phase<- (ASEset-class), 11
phase<-,ASEset-method (ASEset-class), 11
phase<-,RiskVariant-method

(RiskVariant-class), 87
phaseArray2phaseMatrix, 81
phaseArray2phaseMatrix,array-method

(phaseArray2phaseMatrix), 81
phaseMatrix2Array, 82
phaseMatrix2Array,matrix-method

(phaseMatrix2Array), 82
plot (LinkVariantAlmlof-plot), 70
plot,LinkVariantAlmlof,ANY-method

(LinkVariantAlmlof-plot), 70
plot,LinkVariantAlmlof-method

(LinkVariantAlmlof-plot), 70
pvalue (LinkVariantAlmlof-class), 70
pvalue,LinkVariantAlmlof-method

(LinkVariantAlmlof-class), 70

randomRef, 83
randomRef,ASEset-method (randomRef), 83
reads, 54, 84
realCigarPosition (cigar-utilities), 31
realCigarPositions (cigar-utilities), 31
realCigarPositionsList

(cigar-utilities), 31
ref (ASEset-class), 11
ref,ASEset-method (ASEset-class), 11
ref,RiskVariant-method

(RiskVariant-class), 87
ref<- (ASEset-class), 11
ref<-,ASEset,ANY-method (ASEset-class),

11
ref<-,RiskVariant,ANY-method

(RiskVariant-class), 87
refAllele, 84
refAllele,ASEset-method (refAllele), 84
reference_frequency_density_vs_threshold_variable_multigraph_plot

(DetectedAI-plot), 40

reference_frequency_density_vs_threshold_variable_multigraph_plot,DetectedAI-method
(DetectedAI-plot), 40

reference_frequency_density_vs_threshold_variable_plot
(DetectedAI-plot), 40

reference_frequency_density_vs_threshold_variable_plot,DetectedAI-method
(DetectedAI-plot), 40

referenceFrequency (DetectedAI-class),
39

referenceFrequency,DetectedAI-method
(DetectedAI-class), 39

refExist (ASEset-class), 11
refExist,ASEset-method (ASEset-class),

11
RegionSummary (RegionSummary-class), 86
regionSummary, 85
regionSummary,ASEset-method

(regionSummary), 85
regionSummary,numeric-method

(regionSummary), 85
RegionSummary-class, 86
RegionSummary-method

(RegionSummary-class), 86
RiskVariant (RiskVariant-class), 87
RiskVariant-class, 87
RiskVariant-method (RiskVariant-class),

87
RiskVariantFromGRangesAndPhaseArray

(initialize-RiskVariant), 68

scanForHeterozygotes, 48, 60
scanForHeterozygotes

(ASEset-scanForHeterozygotes),
24

scanForHeterozygotes,ASEset-method
(ASEset-scanForHeterozygotes),
24

scanForHeterozygotes,GAlignmentsList-method
(ASEset-scanForHeterozygotes),
24

scanForHeterozygotes.old, 88
sumnames (RegionSummary-class), 86
sumnames,RegionSummary-method

(RegionSummary-class), 86

thresholdCountSample
(DetectedAI-class), 39

thresholdCountSample,DetectedAI-method
(DetectedAI-class), 39

96 INDEX

thresholdDeltaFrequency
(DetectedAI-class), 39

thresholdDeltaFrequency,DetectedAI-method
(DetectedAI-class), 39

thresholdFrequency (DetectedAI-class),
39

thresholdFrequency,DetectedAI-method
(DetectedAI-class), 39

thresholdPvalue (DetectedAI-class), 39
thresholdPvalue,DetectedAI-method

(DetectedAI-class), 39

usedSNPs_vs_threshold_variable_summary
(DetectedAI-summary), 42

usedSNPs_vs_threshold_variable_summary,DetectedAI-method
(DetectedAI-summary), 42

	AllelicImbalance-package
	annotation-wrappers
	annotationBarplot
	ASEset-barplot
	ASEset-class
	ASEset-filters
	ASEset-gbarplot
	ASEset-glocationplot
	ASEset-gviztrack
	ASEset-locationplot
	ASEset-scanForHeterozygotes
	ASEset.old
	ASEset.sim
	ASEsetFromBam
	barplot-lattice-support
	binom.test
	chisq.test
	cigar-utilities
	countAllelesFromBam
	coverageMatrixListFromGAL
	decorateWithExons
	decorateWithGenes
	defaultMapBias
	defaultPhase
	detectAI
	DetectedAI-class
	DetectedAI-plot
	DetectedAI-summary
	fractionPlotDf
	gba
	genomatrix
	genotype2phase
	getAlleleCounts
	getAlleleQuality
	getAreaFromGeneNames
	getDefaultMapBiasExpMean
	getSnpIdFromLocation
	GlobalAnalysis-class
	GRvariants
	histplot
	implodeList.old
	import-bam
	import-bam-2
	import-bcf
	inferAlleles
	inferAltAllele
	inferGenotypes
	initialize-ASEset
	initialize-DetectedAI
	initialize-GlobalAnalysis
	initialize-RiskVariant
	legendBarplot
	LinkVariantAlmlof-class
	LinkVariantAlmlof-plot
	lva
	lva.internal
	makeMaskedFasta
	mapBiasRef
	minCountFilt
	minFreqFilt
	multiAllelicFilt
	phase2genotype
	phaseArray2phaseMatrix
	phaseMatrix2Array
	randomRef
	reads
	refAllele
	regionSummary
	RegionSummary-class
	RiskVariant-class
	scanForHeterozygotes.old
	Index

