
Package ‘AMOUNTAIN’
February 1, 2026

Type Package

Title Active modules for multilayer weighted gene co-expression
networks: a continuous optimization approach

Version 1.37.0

Date 2016-11-12

Author Dong Li, Shan He, Zhisong Pan and Guyu Hu

Maintainer Dong Li <dxl466@cs.bham.ac.uk>

Description
A pure data-driven gene network, weighted gene co-expression network (WGCN) could be con-
structed only from expression profile. Different layers in such networks may represent differ-
ent time points, multiple conditions or various species. AMOUNTAIN aims to search ac-
tive modules in multi-layer WGCN using a continuous optimization approach.

License GPL (>= 2)

Depends R (>= 3.3.0)

Imports stats

RoxygenNote 5.0.1

SystemRequirements gsl

biocViews GeneExpression, Microarray, DifferentialExpression, Network

Suggests BiocStyle, qgraph, knitr, rmarkdown

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/AMOUNTAIN

git_branch devel

git_last_commit 96cb01a

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

2 CGPFixSS

Contents
CGPFixSS . 2
CGPFixSSMultiLayer . 3
CGPFixSSTwolayer . 4
EuclideanProjectionENNORM . 6
moduleIdentificationGPFixSS . 7
moduleIdentificationGPFixSSMultilayer . 8
moduleIdentificationGPFixSSTwolayer . 9
multilayernetworkSimulation . 10
networkSimulation . 11
twolayernetworkSimulation . 12

Index 14

CGPFixSS Module Identification

Description

Call C version of moduleIdentificationGPFixSS

Usage

CGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W edge score matrix of the network, n x n matrix

z node score vector of the network, n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

CGPFixSSMultiLayer 3

See Also

moduleIdentificationGPFixSS

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
use default parameters here
x <- CGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

CGPFixSSMultiLayer Module Identification for multi-layer network

Description

Call C version of moduleIdentificationGPFixSSMultilayer

Usage

CGPFixSSMultiLayer(W, listzs, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W edge score matrix of the network, n x n matrix

listzs a list of node score vectors, each layer has a n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score of other layers

maxiter maximal interation of whole procedure

Value

a list containing solution for network 1 and network 2

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

4 CGPFixSSTwolayer

See Also

moduleIdentificationGPFixSSMultilayer

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
use default parameters here
x <- CGPFixSSMultiLayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

CGPFixSSTwolayer Module Identification for two-layer network

Description

Call C version of moduleIdentificationGPFixSSTwolayer

Usage

CGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, interlayerA, lambda1 = 1,
lambda2 = 1, lambda3 = 1, maxiter = 100, a1 = 0.5, a2 = 0.5)

Arguments

W1 edge score matrix of the network 1, n_1 x n_1 matrix

z1 node score vector of the network 1, n_1-length vector

x0 initial solution of network 1, n_1-length vector

W2 edge score matrix of the network 2, n_2 x n_2 matrix

z2 node score vector of the network 2, n_2-length vector

y0 initial solution of network 2, n_2-length vector

interlayerA inter-layer links weight, n_1 x n_2 matrix

lambda1 parameter in objective, coefficient of node score of network 1

lambda2 parameter in objective, coefficient of node score of network 2

CGPFixSSTwolayer 5

lambda3 parameter in objective, coefficient of inter-layer links part

maxiter maximal interation of whole procedure

a1 parameter in elastic net the same as in EuclideanProjectionENNORM

a2 parameter in elastic net the same as in EuclideanProjectionENNORM

Value

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSTwolayer

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
use default parameters here
modres=CGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

6 EuclideanProjectionENNORM

EuclideanProjectionENNORM

Euclidean projection on elastic net

Description

Piecewise root finding algorithm for Euclidean projection on elastic net

Usage

EuclideanProjectionENNORM(y, t, alpha = 0.5)

Arguments

y constant vector

t radius of elastic net ball

alpha parameter in elastic net: alpha x_1 + (1-alpha)*x_2^2=t

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

Gong, Pinghua, Kun Gai, and Changshui Zhang. "Efficient euclidean projections via piecewise root
finding and its application in gradient projection." Neurocomputing 74.17 (2011): 2754-2766.

Examples

y=rnorm(100)
x=EuclideanProjectionENNORM(y,1,0.5)
sparistyx = sum(x==0)/100

moduleIdentificationGPFixSS 7

moduleIdentificationGPFixSS

Module Identification

Description

Algorithm for Module Identification on single network

Usage

moduleIdentificationGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 1000)

Arguments

W edge score matrix of the network, n x n matrix

z node score vector of the network, n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
use default parameters here
x <- moduleIdentificationGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)

8 moduleIdentificationGPFixSSMultilayer

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

moduleIdentificationGPFixSSMultilayer

Module Identification for multi-layer network

Description

Algorithm for Module Identification on multi-layer network sharing the same set of genes

Usage

moduleIdentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
maxiter = 1000)

Arguments

W edge score matrix of the network, n x n matrix

listz a list of node score vectors, each layer has a n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score of other layers

maxiter maximal interation of whole procedure

Value

a list containing objective values and solution

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSMultilayer

moduleIdentificationGPFixSSTwolayer 9

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
use default parameters here
x <- moduleIdentificationGPFixSSMultilayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

moduleIdentificationGPFixSSTwolayer

Module Identification for two-layer network

Description

Algorithm for Module Identification on two-layer network

Usage

moduleIdentificationGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, A, lambda1 = 1,
lambda2 = 1, lambda3 = 1, maxiter = 1000, a1 = 0.5, a2 = 0.5)

Arguments

W1 edge score matrix of the network 1, n_1 x n_1 matrix
z1 node score vector of the network 1, n_1-length vector
x0 initial solution of network 1, n_1-length vector
W2 edge score matrix of the network 2, n_2 x n_2 matrix
z2 node score vector of the network 2, n_2-length vector
y0 initial solution of network 2, n_2-length vector
A inter-layer links weight, n_1 x n_2 matrix
lambda1 parameter in objective, coefficient of node score of network 1
lambda2 parameter in objective, coefficient of node score of network 2
lambda3 parameter in objective, coefficient of inter-layer links part
maxiter maximal interation of whole procedure
a1 parameter in elastic net the same as in EuclideanProjectionENNORM

a2 parameter in elastic net the same as in EuclideanProjectionENNORM

10 multilayernetworkSimulation

Value

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
use default parameters here
modres=moduleIdentificationGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

multilayernetworkSimulation

Illustration of multi-layer weighted network simulation

networkSimulation 11

Description

Simulate a multi-layer weighted network with each layer sharing the same set of nodes but different
nodes scores

Usage

multilayernetworkSimulation(n, k, theta, L)

Arguments

n number of nodes in each layer of the network

k number of nodes in the conserved module

theta module node score follow the uniform distribution in range [theta,1]

L number of layers

Value

a list containing all the layers, each as result object of networkSimulation

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

See Also

networkSimulation

Examples

n = 100
k = 20
theta = 0.5
L = 5
cpl <- multilayernetworkSimulation(n,k,theta,L)
No proper way to visualize it yet

networkSimulation Illustration of weighted network simulation

Description

Simulate a single weighted network

Usage

networkSimulation(n, k, theta)

12 twolayernetworkSimulation

Arguments

n number of nodes in the network

k number of nodes in the module, n < k

theta module node score follow the uniform distribution in range [theta,1]

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

pp <- networkSimulation(100,20,0.5)
moduleid <- pp[[3]]
netid <- 1:100
restp<- netid[-moduleid]
groupdesign=list(moduleid,restp)
names(groupdesign)=c('module','background')
Not run: library(qgraph)
pg<-qgraph(pp[[1]],groups=groupdesign,legend=TRUE)
End(Not run)

twolayernetworkSimulation

Illustration of two-layer weighted network simulation

Description

Simulate a two-layer weighted network

Usage

twolayernetworkSimulation(n1, k1, theta1, n2, k2, theta2)

Arguments

n1 number of nodes in the network1

k1 number of nodes in the module1, n1 < k1

theta1 module1 node score follow the uniform distribution in range [theta1,1]

n2 number of nodes in the network2

k2 number of nodes in the module2, n2 < k2

theta2 module2 node score follow the uniform distribution in range [theta2,1]

twolayernetworkSimulation 13

Value

a list containing network1, network2 and a inter-layer links matrix

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

See Also

networkSimulation

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
netid2 <- 1:n2
restp2<- netid2[-moduleid2]
labelling the groups
groupdesign=list(moduleid,restp,(moduleid2+n1),(restp2+n1))
names(groupdesign)=c('module1','background1','module2','background2')
twolayernet<-matrix(0,nrow=(n1+n2),ncol=(n1+n2))
twolayernet[1:n1,1:n1]<-pp[[1]]
twolayernet[(n1+1):(n1+n2),(n1+1):(n1+n2)]<-pp2[[1]]
twolayernet[1:n1,(n1+1):(n1+n2)] = A
twolayernet[(n1+1):(n1+n2),1:n1] = t(A)
Not run: library(qgraph)
g<-qgraph(twolayernet,groups=groupdesign,legend=TRUE)
End(Not run)

Index

∗ Euclidean
EuclideanProjectionENNORM, 6

∗ identification,
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSSMultilayer,

8
moduleIdentificationGPFixSSTwolayer,

9
∗ identification

CGPFixSS, 2
moduleIdentificationGPFixSS, 7

∗ module
CGPFixSS, 2
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSS, 7
moduleIdentificationGPFixSSMultilayer,

8
moduleIdentificationGPFixSSTwolayer,

9
∗ multi-layer

CGPFixSSMultiLayer, 3
moduleIdentificationGPFixSSMultilayer,

8
∗ projection

EuclideanProjectionENNORM, 6
∗ simulation

multilayernetworkSimulation, 10
networkSimulation, 11
twolayernetworkSimulation, 12

∗ two-layer
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSSTwolayer,

9

CGPFixSS, 2
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4

EuclideanProjectionENNORM, 2, 3, 5, 6, 7–10

moduleIdentificationGPFixSS, 3, 7
moduleIdentificationGPFixSSMultilayer,

4, 8, 8
moduleIdentificationGPFixSSTwolayer, 5,

9
multilayernetworkSimulation, 10

networkSimulation, 11, 11, 13

twolayernetworkSimulation, 12

14

	CGPFixSS
	CGPFixSSMultiLayer
	CGPFixSSTwolayer
	EuclideanProjectionENNORM
	moduleIdentificationGPFixSS
	moduleIdentificationGPFixSSMultilayer
	moduleIdentificationGPFixSSTwolayer
	multilayernetworkSimulation
	networkSimulation
	twolayernetworkSimulation
	Index

