Package ‘ADaCGH?2’

February 1, 2026

Version 2.51.1
Date 2026-01-31

Title Analysis of Big Data from aCGH Experiments using Parallel
Computing and ff Objects

Author Ramon Diaz-Uriarte <rdiaz@2@gmail.com> and Os-
car M. Rueda <rueda.om@gmail.com>. Wavelet-based aCGH smooth-
ing code from Li Hsu <lih@fhcrc.org> and Douglas Grove <dgrove@fhcrc.org>. Im-
agemap code from Barry Rowling-
son <B.Rowlingson@lancaster.ac.uk>. HaarSeg code from Erez Ben-Yaacov; down-
loaded from <http://www.ee.technion.ac.il/people/YoninaEldar/Info/software/
HaarSeg.htm>. Code from ffbase <https://github.com/edwindj/ffbase> by Ed-
win de Jonge <edwindjonge@gmail.com>, Jan Wijffels, Jan van der Laan.

Maintainer Ramon Diaz-Uriarte <rdiaz@2@gmail . com>
Depends R (>= 3.2.0), parallel, ff

Imports bit, DNAcopy, tilingArray, waveslim, cluster, aCGH
Suggests CGHregions, Cairo, limma

Enhances Rmpi, GLAD

Description Analysis and plotting of array CGH data. Allows usage of
Circular Binary Segementation, wavelet-based smoothing
(both as in Liu et al., and HaarSeg as in Ben-Yaacov and Eldar),
HMM, GLAD, CGHseg. Most computations are
parallelized (either via forking or with clusters, including
MPI and sockets clusters) and use ff for storing data.

biocViews Microarray, CopyNumberVariants
LazyLoad Yes
License GPL (>=3)

URL https://github.com/rdiaz02/adacgh?2

git_url https://git.bioconductor.org/packages/ADaCGH2
git_branch devel

git_last_commit 7001ba5

http://www.ee.technion.ac.il/people/YoninaEldar/Info/software/HaarSeg.htm
http://www.ee.technion.ac.il/people/YoninaEldar/Info/software/HaarSeg.htm
https://github.com/edwindj/ffbase
https://github.com/rdiaz02/adacgh2

2 cutFile

git_last_commit_date 2026-01-31
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Contents
cutFile L 2
IputEX . . .o e 4
inputToADaCGH e 5
outputToCGHregions e 9
pChromPlot e 13
PSEZMENt e e e e e e 18

Index 29

cutFile Cut a file and return individual columns
Description

A text file is split by individual columns, creating as many files as individual columns. Splitting is
used using multiple cores, if available. Specified columns are renamed as ID.txt, Chrom.txt, Pos.txt,
and other columns can be deleted. The individual files can then all be read from a given directory
with inputToADaCGH.

Usage
cutFile(filename,
id.col,
chrom.col,
pos.col,
sep = "\t",
cols = NULL,
mc.cores = detectCores(),
delete.columns = NULL,
fork = FALSE)
Arguments
filename Name of the text file with the data. The file contains at least a column for probe
ID, a column for Chromosome, and a column for position, and one or more for
data. The column is expected to have a first row with an identifier. All columns
are to be separated by a single separating ccharacter colsep.
id.col The number of the column (starting from 1) that should be used as ID. This is the

name before any columns are possibly deleted (see argument delete.columns).

cutFile

chrom. col

pos.col

cols

sep

mc.cores

delete.columns

fork

Details

The number of the column (starting from 1) that should be used as the identifier
for Chromosome. This is the name before any columns are possibly deleted (see
argument delete.columns).

The number of the column (starting from 1) that should be used as the position
(the coordinates). This is the name before any columns are possibly deleted (see
argument delete.columns).

The number of columns of the file. If not specified, we try to guess it. But
guessing can be dangerous.

The field or column separator, similar to sep in read. table, etc. The default
is a tab. A space can be specified as sep =" "’. If you use the default in, say,
read. table, which is ’sep = ""’, then multiple consecutive tab or space field
separators are taken as one —this is also the behavior in read.table or awk,
which is what we use.

The number of processes to launch simultaneously.

The number of the columns (starting from 1) that you do not want to preserve.
You probably do not want to have too many of these, and if you do you should
note that the file is cut into pieces BEFORE dealing with the unwanted columns
so many unwanted columns will mean that we are doing many unwanted calls
to cut.

Should we fork R processes, via mclapply, or just send several system com-
mands from this R process. The default (FALSE) is probably the most reason-
able option for large files.

This function is unlikely to work under Windows unless MinGW or similar are installed (and even
then it might not work). This function should work under Mac OS, and it does in the machines
we’ve tried it, but it seems not to work on the BioC testing machine.

This function basically calls "head" and "awk" using system, and trying to divide all the jobs into
as many cores as you specify (argument cores).

Value

This function is used for it main effect: cutting a file into individual one-column files. These files
are named "col_1.txt", "col_2.txt", etc, and there are three called "ID.txt", "Chrom.txt", "Pos.txt".
The files are created in the current working directory.

As we move the files corresponding to "ID", "Chrom", and "Position", the stdout output is shown
to the user (to check that things worked).

After calling this function, you can call inputToADaCGH.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

4 inputEx

Examples

Read a tab separated file, and assign the first,
second, and third positions to ID, Chrom, and Position

if((.Platform$0S.type == "unix") && (Sys.info()['sysname'] != "Darwin”)) {
This will not work in Windows, and might, or might not, work under Mac

fnametxt <- list.files(path = system.file("data”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx.txt")
cutFile(fnametxt, 1, 2, 3, sep = "\t")

Verify we have ID, Chrom, Pos
c("ID.txt", "Chrom.txt", "Pos.txt") %in% list.files(getwd())

verify some other column

c("col_5.txt") %in% list.files(getwd())

Read a white space separated file, and assign the first, second, and
third positions to ID, Chrom, and Position, but remove the fifth

column

fnametxt2 <- list.files(path = system.file("data"”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx-sp.txt")

cutFile(fnametxt2, 1, 2, 3, sep = " ", delete.columns = 5)
}
inputEx A fictitious aCGH data set
Description

A fictitious aCGH data set.

Usage

data(inputEx)

Format

A data frame with 500 rows and 6 columns; the last three correspond to the aCGH data for three
samples. There are data for five chromosomes. The same file is available in three formats: an RData
file, a tab separated text file, and a space-separate text file.

Source

Simulated data

inputToADaCGH 5

inputToADaCGH Convert CGH data to ff or RAM objects for use with ADaCGH?2

Description

Input data with CGH data are converted to several ff files and data checked for potential errors and
location duplications.

Usage
inputToADaCGH(ff.or.RAM = "RAM",
robjnames = c("cgh.dat”, "chrom.dat”,
"pos.dat”, "probenames.dat"),
ffpattern = paste(getwd(), "/", sep = ""),

MAList = NULL,
cloneinfo = NULL,
RDatafilename = NULL,
textfilename = NULL,
dataframe = NULL,

path = NULL,
excludefiles = NULL,
cloneinfosep = "\t",
cloneinfoquote = "\"",

minNumPerChrom = 10,
verbose = FALSE,
mc.cores = floor(detectCores()/2))

Arguments

ff.or.RAM Whether you want to store the output as ff or RAM objects ("usual” R objects,
such as data frames and vectors).

robjnames Name of the objects that will be created in you use ff.or.RAM = "RAM". If the
names existing in the environment from where the function is called, they will
not be overwritten, and the function will abort.

ffpattern See argument pattern in ff. The default is to create the "ff" files in the current
working directory.

MAList The name of an object of class MAList (as.MAList). See vignnettes of package
limma for details about these objects.
You have to specify one, and only one, of MAList, RDatafilename, textfilename,
path.

cloneinfo A character vector with the full path to a file that conforms to the character-

istics of file in the function read.clonesinfo from the no-longer-available
snapCGH package (see details in the vignette) or the name of a data frame with
at least a column named "Chr" (with chromosomal informtaion) and "Position".

inputToADaCGH

This is only needed if you use MAList and your MAList object does not have
Position and Chr columns.

RDatafilename Name of data RData file that contains the data frame with original, non-ff, data.
Note: this is the name of the RData file (possibly including path), NOT the name
of the data frame. (For that, look at dataframe).

The first three columns of the data frame are the IDs of the probes, the chro-
mosome number, and the position, and all remaining columns contain the data
for the arrays, one column per array. The names of the first three column do
not matter, but the order does. Names of the remaining columns will be used if
existing; otherwise, fake array names will be created.

You have to specify one, and only one, of MAList, RDatafilename, textfilename,
path.

textfilename The name of a text file with the data. It should be a tab separated file, with a
header. The first three columns of the data frame are the IDs of the probes, the
chromosome number, and the position, and all remaining columns contain the
data for the arrays, one column per array. The names of the first three column
do not matter, but the order does. Names of the remaining columns will be used
if existing; otherwise, fake array names will be created.

You have to specify one, and only one, of MAList, RDatafilename, textfilename,
path.

dataframe The name of a data frame with the data. The first three columns of the data
frame are the IDs of the probes, the chromosome number, and the position, and
all remaining columns contain the data for the arrays, one column per array. The
names of the first three column do not matter, but the order does. Names of the
remaining columns will be used if existing; otherwise, fake array names will be
created.

path The name of the directory (the full path) to where each of the individual, one-
column, files are. We will read ALL of the files in this directory, except for
those listed under excludefiles. One file has to be named "ID.txt", another
"Chrom.txt", and a third "Pos.txt". The rest of the files can be named any way
you want and those are the files that contain the CGH data.
All of the files are expected to be one-column text files, with a first row with a
header. The header will not be used for "ID.txt", "Chrom.txt", or "Pos.txt", but
the header will be used as the name of the array/subject for the CGH data files.
You have to specify one, and only one, of MAList, RDatafilename, textfilename,
path.

excludefiles If you have specified path, names of files not to be read. A vector of strings.
These should be the names of the files, without path information (as all of the
files are in the same directory, as specified by path).

cloneinfosep Argument to read. table if reading a cloneinfo file. Note: this is NOT used
if reading a text file given in textfilename.

cloneinfoquote Argument to read. table if reading a cloneinfo file. Note: this is NOT used
if reading a text file given in textfilename.

minNumPerChrom If any chromosome has fewer observations than minNumPerChrom the function
will fail. This can help detect upstream pre-processing errors.

inputToADaCGH 7

verbose If TRUE, provide additional information that can be useful to debug problems.
Right now it provides the list of files that will be read if using a directory. The
default is FALSE.

mc.cores The number of cores to use when reading files. This is always 1 in Windows. See

details about the number of cores in mclapply and detectCores. Contention
problems in I/O might be minimized by making this number smaller or much
smaller than what is returned by detectCores. For long running jobs, please
do some initial benchmarking. See comments and discussion in file "bench-
mark.pdf". In general, if you have a single SATA disk make this a small number
(say, 2 or 3 or 6); in contrast, if you have many fast SAS disks in a RAIDO or
RAIDI10 array, you can increase the number quite a bit (but generally always
well below what detectCores gives).

Details

If there are identical positions (in the same chromosome) a small random uniform variate is added
to get unique locations.

We carry out several checks (e.g., no duplicated positions), but note that we DO NOT check for
extremely large or small values, and this includes NOT CHECKING for infinite values.

Missing values are allowed in the data columns. However, we do not check for missing values in
the ID, chromosome, or position columns, except if you are using as input an RData file or MA
list. You better not have any missing values there; otherwise, things will break in strange ways.
Why this inconsistency? Checking for missing values can consume a lot of resources (CPU and
memory). If your are really huge, they will probably be stored as text files, and you are expected to
use the appropriate tools there to filter (e.g., sed, awk, whatever). If they exist as an MA list or an
RData file, they once fitted in RAM, so checking for these NAs is probably reasonable.

If you provide a text file as input (textfilename), the reading operation is carried out using
read.table. ffdf, to allow for reading very large files. Using this option, however, does not force
you to produce as output ff objects.

Commented examples of reading objects from limma are provided in the vignnette.

Value

This function is used mainly for its side effects: writing either several ff files to the current working
directory, or several RAM objects (the usual, in memory, local, R objects). The actual names are
printed out.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

See Also

cutFile for obtaining files in the format needed if you read from a directory.

8 inputToADaCGH

Examples

Create a temp dir for storing output.
(Not needed, but cleaner).
dir.create("ADaCGH2_example_input_dir")
originalDir <- getwd()
setwd("”"ADaCGH2_example_input_dir")

Sys.sleep(1)

Get location (and full filename) of example data file
fnameRData <- list.files(path = system.file("data”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx.RData")

fnametxt <- list.files(path = system.file("data”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx.txt")

namepath <- system.file("example-datadir”, package = "ADaCGH2")

Read from RData and write to ff
inputToADaCGH(ff.or.RAM = "ff",
RDatafilename = fnameRData)

Read from text file and write to ff
#it You might want to adapt mc.cores to your hardware
inputToADaCGH(ff.or.RAM = "ff",

textfilename = fnametxt,

mc.cores = 2)

Read from text file and write to RAM
#it You might want to adapt mc.cores to your hardware
inputToADaCGH(ff.or.RAM = "RAM",

textfilename = fnametxt,

mc.cores = 2)

Read from a directory and write to ff
#it You might want to adapt mc.cores to your hardware
inputToADaCGH(ff.or.RAM = "ff",

path = namepath,

mc.cores = 2)

Clean up (DO NOT do this with objects you want to keep!!!)
load("”chromData.RData")

load("posData.RData")

load("cghData.RData")

delete(cghData); rm(cghData)
delete(posData); rm(posData)
delete(chromData); rm(chromData)
unlink("chromData.RData")
unlink("posData.RData")
unlink("cghData.RData")

outputToCGHregions 9

unlink("probeNames.RData")

Running in a separate process. Only makes sense
if returning ff objects (ff.or.RAM = "ff")
This example will not work on Windows

Not run:
mcparallel (inputToADaCGH(ff.or.RAM = "ff",
RDatafilename = fnameRData),
silent = FALSE)
tableChromArray <- mccollect()
if(inherits(tableChromArray, "try-error”)) {
stop(”"ERROR in input data conversion”)
}
Clean up (DO NOT do this with objects you want to keep!!!)
load("chromData.RData")
load("posData.RData")
load("cghData.RData")

delete(cghData); rm(cghData)
delete(posData); rm(posData)
delete(chromData); rm(chromData)
unlink("chromData.RData")
unlink("posData.RData")
unlink("cghData.RData")
unlink("probeNames.RData")

End(Not run)

Try to prevent problems in R CMD check
Sys.sleep(2)

#i## Delete temp dir

setwd(originalDir)

Sys.sleep(2)

unlink("ADaCGH2_example_input_dir"”, recursive = TRUE)
Sys.sleep(2)

outputToCGHregions ADaCGH?2 output as input to CGHregions

Description

Convert ADaCGH2 output to a data frame that can be used as input for CGHregions. This function
takes as input the two possible types of input produced by the pSegment functions: either an ff
object (and its associated directory) or the names of the RAM objects (the usual, in memory R
objects) with the output, and chromosome, position, and probe name information.

10 outputToCGHregions

Usage

outputToCGHregions(ffoutput = NULL, directory = getwd(),
output.dat = NULL,
chrom.dat = NULL,
pos.dat = NULL,
probenames.dat = NULL)

Arguments

ffoutput The name of the ff object with the output from a call to a pSegment func-
tion. You must provide either this argument or all of the arguments output.dat,
chrom.dat, pos.dat and probenames.dat.

directory The directory where the initial data transformation and the analysis have been
carried out. It is a lot better if you just work on a single directory for a set of
files. Otherwise, unless you keep very carefull track of where you do what, you
will run into trouble.

This is only relevant if you use an ff object (i.e., if ffoutput is not NULL.)

output.dat The name of the RAM object with the output from a call to a pSegment func-
tion. You must provide this argument (as well as chrom.dat, pos.dat and probe-
names.dat) OR the name of an ffobject to argument ffoutput.

chrom.dat The name of the RAM object with the chromosome data information. See the
help for inputToADaCGH.

pos.dat The name of the RAM object with the position data information. See the help
for inputToADaCGH.

probenames.dat The name of the RAM object with the probe names. See the help for inputToADaCGH.

Value

A data frame of 4 + k columns that can be used as input to the CGHregions function. The first four
columns are the probe name, the chromosome, the position and the position. The last k columns are
the calls for the k samples.

Note

This function does NOT check if the calls are meaningfull. In particular, you probably do NOT

ns

want to use this function when pSegment has been called using ‘merging = "none"’.

Moreover, we do not check if there are missing values, and CGHregions is likely to fail when there
are NAs. Finally, we do not try to use ff objects, so using this function with very large objects will
probably fail.

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

See Also

pSegment

outputToCGHregions 11

Examples

Get location (and full filename) of example data file
We will read from a text file

fnametxt <- list.files(path = system.file("data”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx.txt")

HHHHHHEEEEE A
HHHHH

#i##HH# Using RAM objects

HHHE
B

Read data into RAM objects

#i You might want to adapt mc.cores to your hardware
inputToADaCGH(ff.or.RAM = "RAM",

textfilename = fnametxt,

mc.cores = 2)

Run segmentation (e.g., HaarSeg)

#it You might want to adapt mc.cores to your hardware

haar.RAM.fork <- pSegmentHaarSeg(cgh.dat, chrom.dat,
merging = "MAD",
mc.cores = 2)

forcghr <- outputToCGHregions(output.dat = haar.RAM. fork,
chrom.dat = chrom.dat,
pos.dat = pos.dat,
probenames.dat = probenames.dat)

Run CGHregions

if(require(CGHregions)) {
regions1 <- CGHregions(na.omit(forcghr))
regionsi

}

HHHEHHAREERH AR
HHHHH

#i##HH# Using ff objects

HHEHEE
HHHHHHARE R

if(.Platform$0S.type != "windows") {

We do not want this to run in Windows the automated tests since

12

issues with I/0. It should work, though, in interactive usage

Create a temp dir for storing output.

(Not needed, but cleaner).
dir.create("ADaCGH2_cghreg_example_tmp_dir")
originalDir <- getwd()
setwd("ADaCGH2_cghreg_example_tmp_dir")

Sys.sleep(1)

#it You might want to adapt mc.cores to your hardware
inputToADaCGH(ff.or .RAM = "ff",

textfilename = fnametxt,

mc.cores = 2)

#it You might want to adapt mc.cores to your hardware

haar.ff.fork <- pSegmentHaarSeg("cghData.RData",
"chromData.RData",
merging = "MAD",
mc.cores = 2)

forcghr.ff <- outputToCGHregions(ffoutput = haar.ff.fork)

if(require(CGHregions)) {
regions1 <- CGHregions(na.omit(forcghr.ff))
regionsi

}

Clean up (DO NOT do this with objects you want to keep!!!)

load("chromData.RData")
load("posData.RData")
load("”cghData.RData")

delete(cghData); rm(cghData)
delete(posData); rm(posData)
delete(chromData); rm(chromData)
unlink("chromData.RData")
unlink("posData.RData")
unlink("cghData.RData")
unlink("probeNames.RData")

lapply(haar.ff.fork, delete)
rm(haar.ff.fork)

#i## Delete all files and temp dir

setwd(originalDir)

Sys.sleep(2)

unlink("ADaCGH2_cghreg_example_tmp_dir", recursive = TRUE)
Sys.sleep(2)

3

outputToCGHregions

pChromPlot

13

pChromPlot

Segment plots for aCGH as PNG

Description

Produce PNG figures of segment plots (by chromosome) for aCGH segmentation results. Internal
calls are parallelized for increased speed and we use ff objets to allow the handling of very large
objects. The output can include files for creating HTML with imagemaps.

Usage

pChromPlot (out
pro
pos

RDataName, cghRDataName, chromRDataName,
benamesRDataName = NULL,
RDataName = NULL,

imgheight = 500,

pix
pch

els.point = 3,
= 20,

colors = c("orange"”, "red”, "green”, "blue", "black"),
imagemap = FALSE,

typ
mc.
typ
cer
loa

eParall = "fork",
cores = detectCores(),
edev = "default”,
tain_noNA = FALSE,
dBalance = TRUE,

.2

Arguments

outRDataName

cghRDataName

chromRDataName

The RAM object or the RData file name that contains the results from the seg-
mentation (as an ffdf object), as carried out by any of the pSegment functions.

Note that the type of object in outRDataName, cghRDataName, chromRDataName,
posRDataName, should all be of the same type: all ff objects, or all RAM ob-
jects.

As well, note that if you use RAM objects, you must use typeParall = "fork";
with ff objects you can use both typeParall = "cluster” and typeParall =
"fork". Further details are provided in the vignette.

The Rdata file name that contains the ffdf with the aCGH data or the name of
the RAM object with the data.

If this is an ffdf object, it can be created using as. ffdf with a data frame with
genes (probes) in rows and subjects or arrays in columns. You can also use
inputToADaCGH to produce these type of files.

The RData file name with the ff (short integer) vector with the chromosome in-
dicator, or the name of the RAM object with the data. Function inputToADaCGH
produces these type of files.

14

posRDataName

pChromPlot

The RData file name with the ff double vector with the location (e.g., position in
kbases) of each probe in the chromosome, or the name of the RAM object with
the data. Function inputToADaCGH produces these type of files.

This argument is used for the spacing in the plots. If NULL, the x-axis goes
from l:number of probes in that chromosome.

probenamesRDataName

imgheight

pixels.point

pch

colors

imagemap

typeParall

mc.cores

typedev

certain_noNA

The RData file name with the vector with the probe names or the RAM object.
Function inputToADaCGH produces these type of files. (Note even if this is an
RData file stored on disk, this is not an ff file.) This won’t be needed unless you
set imagemap = TRUE.

Height of png image. See png.

Approximate number of pixels that each point takes; this determines also final
figure size. With many probes per chromosome, you will want to make this a
small value.

The type of plotting symbol. See par.

A five-element character vector with the colors for: probes without change,
probes that have a "gained" status, probes that have a "lost" status, the line that
connects (smoothed values of) probes, the horizontal line at the 0 level.

If FALSE only the png figure is produced. If TRUE, for each array * chromo-
some, two additional files are produced: "pngCoord_ChrNN@MM" and "gene-
Names_ChrNN@MM", where "NN" is the chromosome number and "MM" is
the array name. The first file contains the coordinates of the png and radius and
the second the gene or probe names, so that you can easily produce an HTML
imagemap. (Former versions of ADaCGH did this automatically with Python.
In this version we include the Python files under "imagemap-example".)

One of "fork" or "cluster". "fork" is unavailable in Windows, and will lead
to sequential execution. "cluster" requires having set up a cluster before, with
appropriate calls to makeCluster, in which case the cluster can be one of the
available types (e.g., sockets, MPI, etc).

Using "fork" and "cluster" will lead to different schemes for parallelization. See
the vignette.

If you use ff objects, you can use different options for typeParall for segmen-
tation and plotting.

The number of cores used if typeParall = "fork"”. See details in mclapply

non

The device type. One of "cairo", "cairo-png", "Cairo", or "default". "Cairo"
requires the Cairo package to be available, but might work with headless Linux
server without png support, and might be a better choice with Mac OS. "default"
chooses "Cairo" for Mac, and "cairo" otherwise.

Are you certain, absolutely sure, your data contain no missing values? (Default
is FALSE). If you are, you can achieve considerable speed ups by setting it to
TRUE. See the help for this option in pSegment. Of course, if you are setting
it to true, the object you pass with the output, outRDataName, must have been
generated using certain_noNA.

pChromPlot 15

loadBalance If TRUE (the default) use load balancing with MPI (use clusterApplylLB in-
stead of clusterApply) and a similar approach for forking (set mc. preschedule
= FALSE in the call to mclapply).

Additional arguments; not used.

Value

Used only for its side effects of producing PNG plots, stored in the current working directory
(getwd().)

Author(s)

Ramon Diaz-Uriarte <rdiaz02@gmail.com>

See Also

pSegment

Examples

B R
H#iHH

Using forking with RAM objects

fizizd

HHHEHHHEHEE A

Note to windows users: under Windows, this will
result in sequential execution, as forking is not
available.

Get example input data and create data objects
data(inputEx)

(this is not necessary, but is convenient;

you could do the subsetting in the call themselves)
cgh.dat <- inputEx[, -c(1, 2, 3)]

chrom.dat <- as.integer(inputEx[, 2])

pos.dat <- inputEx[, 3]

Segment with HaarSeg

You might want to adapt mc.cores to your hardware

haar.RAM. fork <- pSegmentHaarSeg(cgh.dat, chrom.dat,
merging = "MAD",
mc.cores = 2)

#i# You might want to adapt mc.cores to your hardware
pChromPlot (haar.RAM. fork,
cghRDataName = cgh.dat,

pChromPlot

chromRDataName = chrom.dat,
posRDataName = pos.dat,
imgheight = 350,

mc.cores = 2)

Not run:

AR AR AR
fiziz:d

Using a cluster with ff objects and create imagemaps
H#HHHH
B

Create a temp dir for storing output
dir.create("ADaCGH2_plot_tmp_dir")
originalDir <- getwd()
setwd("ADaCGH2_plot_tmp_dir")

Start a socket cluster. Change the appropriate number of CPUs
for your hardware and use other types of clusters (e.g., MPI)
if you want.

cl2 <- makeCluster(4,"PSOCK")

clusterSetRNGStream(cl2)

setDefaultCluster(cl2)

clusterEvalQ(NULL, library("”ADaCGH2"))

The following is not really needed if you create the cluster AFTER
changing directories. But better to be explicit.

wdir <- getwd()

clusterExport(NULL, "wdir")

clusterEvalQ(NULL, setwd(wdir))

Get input data in ff format
(we loaded the RData above, but we need to find the full path
to use it in the call to inputToADaCGH)

fname <- list.files(path = system.file("data”, package = "ADaCGH2"),
full.names = TRUE, pattern = "inputEx.RData")

inputToADaCGH(ff.or.RAM = "ff",
RDatafilename = fname)

Segment with HaarSeg

haar.ff.cluster <- pSegmentHaarSeg("cghData.RData",
"chromData.RData",

pChromPlot

merging = "MAD",
typeParall= "cluster")

Save the output (an ff object) and plot
save(haar.ff.cluster, file = "haar.ff.cluster.out.RData",
compress = FALSE)

pChromPlot (outRDataName = "haar.ff.cluster.out.RData”,
cghRDataName = "cghData.RData",
chromRDataName = "chromData.RData",
posRDataName = "posData.RData”,
probenamesRDataName = "probeNames.RData"”,
imgheight = 350,
imagemap = TRUE,
typeParall= "cluster")

Explicitly stop cluster
stopCluster (NULL)

Clean up (DO NOT do this with objects you want to keep!!!)
load("chromData.RData")

load("posData.RData")

load("”cghData.RData")

delete(cghData); rm(cghData)
delete(posData); rm(posData)
delete(chromData); rm(chromData)
unlink("chromData.RData")
unlink("posData.RData")
unlink("cghData.RData")
unlink("probeNames.RData")

lapply(haar.ff.cluster, delete)
rm(haar.ff.cluster)
unlink("haar.ff.cluster.out.RData")

Try to prevent problems in R CMD check
Sys.sleep(2)

#i## Delete all png files and temp dir
setwd(originalDir)

Sys.sleep(2)

unlink("ADaCGH2_plot_tmp_dir"”, recursive = TRUE)
Sys.sleep(2)

End(Not run)

PNGs are in this directory
getwd()

17

18 pSegment

pSegment Parallelized/"unified" versions of several aCGH segementation algo-
rithms/methods

Description

These functions parallelize several segmentation algorithms and make their calling use the same
conventions as for other methods.

Usage

pSegmentDNAcopy (cghRDataName, chromRDataName, merging = "MAD",
mad.threshold = 3, smooth = TRUE,
alpha=0.01, nperm=10000,
p.method = "hybrid"”,
min.width = 2,
kmax=25, nmin=200,
eta = 0.05,trim = 0.025,
undo.splits = "none”,
undo.prune=0.05, undo.SD=3,
typeParall = "fork",
mc.cores = detectCores(),
certain_noNA = FALSE,
loadBalance = TRUE,

L)

pSegmentHaarSeg(cghRDataName, chromRDataName,
merging = "MAD", mad.threshold = 3,
W = vector(),
rawl = vector(),
breaksFdrQ = 0.001,
haarStartLevel = 1,
haarEndLevel = 5,
typeParall = "fork",
mc.cores = detectCores(),
certain_noNA = FALSE,
loadBalance = FALSE,

)
pSegmentHMM(cghRDataName, chromRDataName,
merging = "mergelLevels”, mad.threshold = 3,
aic.or.bic = "AIC",

typeParall = "fork",
mc.cores = detectCores(),
certain_noNA = FALSE,
loadBalance = TRUE,

L)

pSegment

pSegmentCGHseg(cghRDataName, chromRDataName, CGHseg.thres = -0.

merging = "MAD", mad.threshold = 3,
typeParall = "fork",
mc.cores = detectCores(),
certain_noNA = FALSE,

loadBalance = TRUE,

L)

pSegmentGLAD (cghRDataName, chromRDataName,

deltaN = 0.109,

forceGL = c(-0.15, 0.15),
deletion = -5,

amplicon = 1,

typeParall = "fork",
mc.cores = detectCores(),

certain_noNA = FALSE,
GLADdetails = FALSE,
loadBalance = TRUE,

)

pSegmentWavelets(cghRDataName, chromRDataName, merging = "MAD",

Arguments

cghRDataName

mad. threshold = 3,
minDiff = 0.25,
minMergeDiff = 0.05,
thrLvl = 3, initClusterLevels = 10,
typeParall = "fork",
mc.cores = detectCores(),
certain_noNA = FALSE,
loadBalance = TRUE,
.2)

05,

19

The Rdata file name that contains the ffdf with the aCGH data or the name of

the in-memory, RAM, R object with the data (a data frame).

If this is an ffdf object, it can be created using as. ffdf with a data frame with
genes (probes) in rows and subjects or arrays in columns. You can also use

inputToADaCGH to produce these type of files.

Note that the type of object in cghRDataName, chromRDataName, should all be of
the same type: all ff objects, or all RAM objects, the usual R objects. Moreover,
the type of input determines the type of output: if you use ff objects as input,

20

chromRDataName

merging

mad. threshold

typeParall

mc.cores

certain_noNA

loadBalance

smooth

alpha
nperm
p.method
min.width
kmax

nmin

eta

trim
undo.splits
undo.prune
undo.SD

pSegment

you will get the output as an ff object.

The RData file name with the ff (short integer) vector with the chromosome
indicator, or the name of the in-memory RAM R object with the data. Function
inputToADaCGH produces these type of files.

Merging method; for most methods one of "MAD" or "mergeLevels". For
CBS (pSegmentDNAcopy), GGHseg (pSegmentCGHseg), HaarSeg (pSegmen-
tHaarSeg), and Wavelets (as in Hsu et al. —pSegmentWavelets) also "none".
This option does not apply to GLAD (which has its own merging-like approach).
See details.

If using merging = "MAD" the value such that all segments where abs(smoothed
value) > m*MAD will be declared aberrant —see p. 1141 of Ben-Yaacov and
Eldar. No effect if merging = "mergeLevels" (or "none").

One of "fork" or "cluster". "fork" is unavailable in Windows, and will lead
to sequential execution. "cluster" requires having set up a cluster before, with
appropriate calls to makeCluster, in which case the cluster can be one of the
available types (e.g., sockets, MPI, etc).

Using "fork" and "cluster" will lead to different schemes for parallelization. See
details and the vignette.

The number of cores used if typeParall = "fork". See details in mclapply

Are you certain, absolutely sure, your data contain no missing values? (Default
is FALSE). If you are, you can achieve considerable speed ups by setting it
to TRUE. But if you set it to TRUE and you are wrong, some methods will fail
(some with harder to understand error messages) and, even worse, other methods
might appear to work (but give incorrect results). You’ve been warned.

If TRUE (the default for all methods except HaarSeg) use load balancing with
MPI (use clusterApplyLB instead of clusterApply) and a similar approach
for forking (set mc.preschedule = FALSE in the call to mclapply).

For DNAcopy only. If TRUE (default) carry out smoothing as explained in
smooth.CNA.

For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.
For DNAcopy only.

See segment.
See segment.
See segment.
See segment.
See segment.
See segment.
See segment.
See segment.
See segment.
See segment.

See segment.

pSegment

rawl

breaksFdrQ

haarStartLevel

haarEndLevel

aic.or.bic

CGHseg. thres

21

For HaarSeg: Weight matrix, corresponding to quality of measurment. Insert
1/(sigma**2) as weights if your platform output sigma as the quality of measur-
ment. W must have the same size as 1.

For HaarSeg. Mininum of the raw red and raw green measurment, before the
log. rawl is used for the non-stationary variance compensation. rawl must have
the same size as L.

For HaarSeg. The FDR q parameter. Common used values are 0.05, 0.01, 0.001.
Default value is 0.001.

For HaarSeg. The detail subband from which we start to detect peaks. The
higher this value is, the less sensitive we are to short segments. The default is
value is 1, corresponding to segments of 2 probes.

For HaarSeg. The detail subband until which we use to detect peaks. The higher
this value is, the more sensitive we re to large trends in the data. This value
DOES NOT indicate the largest possible segment that can be detected. The
default is value is 5, corresponding to step of 32 probes in each direction.

For HMM. One of "AIC" or "BIC".

The threshold for the adaptive penalization in Picard et al.’s CGHseg. See p.
13 of the original paper. Must be a negative number. The default value used in
the original reference is -0.5. However, our experience with the simulated data
in Willenbrock and Fridlyand (2005) indicates that for those data values around
-0.005 are more appropriate. We use here -0.05 as default.

deltaN Only for GLAD. See ‘deltaN’ in daglad.

forceGL Only for GLAD. See ‘forceGL’ in daglad.

deletion Only for GLAD. See ‘deletion’ in daglad.

amplicon Only for GLAD. See ‘amplicon’ in daglad.

GLADdetails Only for GLAD. If set to TRUE the function returns verbose output about where
it is along the execution. This option (setting it to FALSE) is likely to become
hard-coded in the future.

minMergeDiff Used only when doing merging in the wavelet method of Hsu et al.. The finall
call as to which segments go together is done by a mergelLevels approach, but
an initial collapsing of very close values is performed (otherwise, we could end
up passing to mergeLevels as many initial levels as there are points).

minDiff For Wavelets (Hsu et al.). Minimum (absolute) difference between the medi-
ans of two adjacent clusters for them to be considered truly different. Clusters
"closer" together than this are collapsed together to form a single cluster.

thrLvl The level used for the wavelet thresholding in Hsu et al.

initClusterLevels
For Wavelets (Hsu et al.). The initial number of clusters to form.

Additional arguments; not used.

Details

In most cases, these are wrappers to the original code, with modifications for parallelization and for
using ff objects, if appropriate.

22

pSegment

Using option typeParall = "fork" will, as it says, use the forking mechanism available in package
parallel. The objects used can be either ff objects or regular R objects. Using typeParall =
"cluster” will use a pre-existing cluster, and the objects used must be ff ones, since we only
pass pointers to the objects, not the objects themselves, to try to minimize communication and
memory usage. To put it the other way around: if you use RAM objects, you must use typeParall
= "fork"; with ff objects you can use both typeParall = "cluster” and typeParall = "fork".
Further details are provided in the vignette.

For HMM, CGHseg, and Wavelets, the first part of the analysis is conducted parallelizing over
array by chromosome (because the methods are slow and/or very memory consuming). The final
step (merging), however, is carried out over array (it is a step that must be carried array-wise). For
all other methods, we have parallelized over arrays: the extra communication overheads of the much
finer-grained parallelization of array by chromosome are rarely justified with these methods and, in
the case of GLAD, would require modifying the original C code.

CGHseg has been implemented here following the original authors description. Note that several
publications incorrectly claim that they use the CGHseg approach when, actually, they are only
using the "segment" function in the "tilingArray" package, but they are missing the key step of
choosing the optimal number of segments (see p. 13 in Picard et al, 2005). We implement the
author’s method in our (internal, so use "ADaCGH2:::piccardsKO" to see it) function "piccardsKO".

When using GLAD, we use the HaarSeg approach. This is the same as using the daglad function
with argument smoothfunc = "haarseg"”.

For HMM the smoothed results are merged, by default by the mergeLevels algorithm, as recom-
mended in Willenbrock and Fridlyand, 2005. For DNAcopy the default used to be mergeLevels,
following the above recommendations, but we are now using MAD by default, as it is much faster
and it is unclear that mergeLevels is the right approach with the type of data available today. Your
mileage might vary and you probably will want to try both on some test data and check which makes
more sense.

Merging is also done in GLAD (with GLAD’s own merging algorithm). For HaarSeg, calling/merging
is carried out using MAD, following page 1141 of Ben-Yaacov and Eldar, section 2.3, "Determining
aberrant intervals": a MAD (per their definition) is computed and any segment with absolute value
larger than mad.threshold * MAD is considered aberrant. Merging is also performed for CGH-
seg (the default, however, is MAD, not mergeLevels). Merging (using either of "mergeLevels" or
"MAD") can also be used with the wavelet-based method of Hsu et al.; please note that the later is
an experimental feature implemented by us, and there is no study of its performance.

In summary, for all segmentation methods (except GLAD) merging is available as either "mergeLevels"
or "MAD". For DNAcopy, CGHseg, HaarSeg, and wavelets as in Hsu et al., you can also choose no
merging, though this will rarely be what you want (we offer this option to allow using the original
authors’ choices in their first descriptions of methods).

When using mergeLevels, we map the results to states of "Alteration", so that we categorize each
probe as taking one, and only one, of three possible values, -1 (loss of genomic DNA), 0 (no change
in DNA content), +1 (gain of genomic DNA). We have made the assumption, in this mapping, that
the "no change" class is the one that has the absolute value closest to zero, and any other classes
are either gains or losses. When the data are normalized, the "no change" class should be the most
common one. When using MAD this step is implicit in the procedure (any segment with absolute
value larger than mad.threshold * MAD is considered aberrant).

Note that "mergeLevels", in addition to being used for calling gains and losses, results in a decrease
in the number of distinct smoothed values, since it can merge two or more adjacent smoothed levels.

pSegment 23

"MAD", in contrast, performs no merging as such, but only calling.

For pSegmentGLAD to work, of course you need GLAD, and it might not be available for BioCon-
ductor 3.21.

Value

A list of two components (the components will be either ff or regular, in-memory R objects, de-
pending on the input):

outSmoothed The smoothed values, as either a ffdf object or a data frame object. Each col-
umn is an array or sample, and each row a probe.

outState The calls for each probe, as either an ffdf object or a data frame object. Each
column is an array or sample, and each row a probe. For methods that accept
"none" as an argument to ‘merging’, the states cannot be interpreted directly as
gain or loss; they are simply discrete codes for distinct segments.

If the output uses ffdf, rows and columns of each element can be accessed in the usual way for
ffdf objects, but accept also most of the usual R operations for data frames.

Author(s)

The code for DNAcopy, HMM, and GLAD are basically wrappers around the original functions by
their corresponding authors, with some modiffications for parallelization and usage of ff objects.
The original packages are: DNAcopy, aCGH, cgh, GLAD, respectively. The CGHseg method uses
package tilingArray.

HaarSeg has been turned into an R package, available from https://r-forge.r-project.org/
projects/haarseg/. That package uses, at its core, the same R and C code as we do, from Ben-
Yaacov and Eldar. We have not used the available R package for historical reasons (we used Eldar
and Ben-Yaacov’s C and R code in the former ADaCGH package, before a proper R package was
available).

For the wavelet-based method we have only wrapped the code that was kindly provided by L. Hsu
and D. Grove, and parallelized a few calls. Their original code is included in the sources of the
package.

Parallelization and modifications for using ff and additions are by Ramon Diaz-Uriarte <rdiaz@2@gmail . com>

References

Diaz-Uriarte, R. (2014). ADaCGH2: parallelized analysis of (big) CNA data. Bioinformatics, 30:
1759-1761.

Carro A, Rico D, Rueda O M, Diaz-Uriarte R, and Pisano DG. (2010). waviCGH: a web application
for the analysis and visualization of genomic copy number alterations. Nucleic Acids Research, 38
Suppl:W182-187.

Fridlyand, Jane and Snijders, Antoine M. and Pinkel, Dan and Albertson, Donna G. (2004). Hidden
Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis, 90:
132-153.

Hsu L, Self SG, Grove D, Randolph T, Wang K, Delrow 1J, Loo L, Porter P. (2005) Denoising
array-based comparative genomic hybridization data using wavelets. Biostatistics, 6:211-26.

https://r-forge.r-project.org/projects/haarseg/
https://r-forge.r-project.org/projects/haarseg/

24

pSegment

Hupe, P. and Stransky, N. and Thiery, J. P. and Radvanyi, F. and Barillot, E. (2004). Analysis of
array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20: 3413-3422.

Lingjaerde OC, Baumbusch LO, Liestol K, Glad I, Borresen-Dale AL. (2005). CGH-Explorer: a
program for analysis of CGH-data. Bioinformatics, 21: 821-822.

Olshen, A. B. and Venkatraman, E. S. and Lucito, R. and Wigler, M. (2004) Circular binary seg-
mentation for the analysis of array-based DNA copy number data. Biostatistics, 4, 557-572.

Picard, F. and Robin, S. and Lavielle, M. and Vaisse, C. and Daudin, J. J. (2005). A statistical
approach for array CGH data analysis. BMC Bioinformatics, 6, 27. doi:10.1186/14712105627.

Price TS, Regan R, Mott R, Hedman A, Honey B, Daniels RJ, Smith L, Greenfield A, Tiganescu
A, Buckle V, Ventress N, Ayyub H, Salhan A, Pedraza-Diaz S, Broxholme J, Ragoussis J, Higgs
DR, Flint J, Knight SJ. (2005) SW-ARRAY: a dynamic programming solution for the identification
of copy-number changes in genomic DNA using array comparative genome hybridization data.
Nucleic Acids Res., 33:3455-64.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study: applying segmentation to array
CGH data for downstream analyses. Bioinformatics, 21, 4084—-4091.

Diaz-Uriarte, R. and Rueda, O.M. (2007). ADaCGH: A parallelized web-based application and R
package for the analysis of aCGH data, PLoS ONE, 2: e737.

Ben-Yaacov, E. and Eldar, Y.C. (2008). A Fast and Flexible Method for the Segmentation of aCGH
Data, Bioinformatics, 24: 1139-i145.

See Also

pChromPlot, inputToADaCGH

Examples

AR A
H#it#

Using forking with RAM objects

H#it#
B g i

Note to windows users: under Windows, this will
result in sequential execution, as forking is not
available.

Get example input data and create data objects
data(inputEx)

(this is not necessary, but is convenient;

you could do the subsetting in the call themselves)
cgh.dat <- inputEx[, -c(1, 2, 3)]

chrom.dat <- as.integer(inputEx[, 21])

pos.dat <- inputEx[, 3]

https://doi.org/10.1186/1471-2105-6-27

pSegment 25

Segment with HaarSeg

#it You might want to adapt mc.cores to your hardware

haar.RAM.fork <- pSegmentHaarSeg(cgh.dat, chrom.dat,
merging = "MAD",
mc.cores = 2)

What does the output look like?
lapply(haar.RAM. fork, head)

Where and what length are segments in first sample?
rle(haar.RAM. fork$outSmoothed[, 11)

Repeat, without load-balancing

#i# You might want to adapt mc.cores to your hardware

haar.RAM.fork.nlb <- pSegmentHaarSeg(cgh.dat, chrom.dat,
merging = "MAD",
loadBalance = FALSE,
mc.cores = 2)

if(.Platform$0S. type != "windows") {

We do not want this to run in Windows the automated tests since
issues with I/0. It should work, though, in interactive usage

SHHHEHHREHHRAEHE AR AR R
H#it#

Using forking with ff objects

#iH#
B B i i

Note to windows users: under Windows, this will
result in sequential execution, as forking is not
available.

Create a temp dir for storing output and ff objects.
(Not needed, but cleaner).

dir.create("ADaCGH2_example_tmp_dir")
originalDir <- getwd()
setwd("”"ADaCGH2_example_tmp_dir")

Get input data in ff format
(we loaded the RData above, but we need to find the full path
to use it in the call to inputToADaCGH)

fname <- list.files(path = system.file("data"”, package = "ADaCGH2"),

26

pSegment

full.names = TRUE, pattern = "inputEx.RData")

inputToADaCGH(ff.or .RAM = "ff",
RDatafilename = fname)

Segment with HaarSeg

#it You might want to adapt mc.cores to your hardware

haar.ff.fork <- pSegmentHaarSeg("cghData.RData",
"chromData.RData",
merging = "MAD",
mc.cores = 2)

What does the output look like?
haar.ff.fork
Note the warnings; we will be gentler in next example.

B S s T
H#it#

Using a cluster with ff objects

#iH#

HHHH AR

Start a socket cluster. Change the appropriate number of CPUs
for your hardware and use other types of clusters (e.g., MPI)
if you want.

cl2 <- parallel::makeCluster(2,"PSOCK")
parallel::clusterSetRNGStream(cl2)

parallel: :setDefaultCluster(cl2)

parallel::clusterEvalQ(NULL, library("ADaCGH2"))

The following is not really needed if you create the cluster AFTER
changing directories. But better to be explicit.

wdir <- getwd()

parallel::clusterExport(NULL, "wdir")

parallel::clusterEvalQ(NULL, setwd(wdir))

Segment with HaarSeg

haar.ff.cluster <- pSegmentHaarSeg("cghData.RData",
"chromData.RData",
merging = "MAD",
typeParall= "cluster”)

Avoid warnings by opening the objects
names(haar.ff.cluster)
open(haar.ff.cluster$outSmoothed)

pSegment

open(haar.ff.cluster$outState)

Alternatively, we can open the two ffdfs with lapply
lapply(haar.ff.cluster, open)

HHHHHHAEEE AR
H#HiH#

Compare output (should be identical)
fizizd

HHHHHHHEEEEE AR

all.equal(haar.ff.cluster$outSmoothed[, 1,
haar.ff.fork$outSmoothed[, 1)

all.equal(haar.ff.cluster$outSmoothed[, 1,
haar.RAM. fork$outSmoothed[, 1)

identical (haar.ff.cluster$outState[, 1,
haar.ff.fork$outState[, 1)

identical (haar.ff.cluster$outState[, 1,
haar.RAM. fork$outStatel[, 1)

A AR R R
HiHH

H#itHE Clean up actions

HHH

#i### (These are not needed. They are convenient here, to prevent
leaving garbage in your hard drive. In "real life"” you will
have to decide what to delete and what to store).
B S S

Explicitly stop cluster
parallel::stopCluster(cl2)

All objects (RData and ff) are left in this directory
getwd()

We will clean it up, and do it step-by-step
BEWARE: DO NOT do this with objects you want to keep!!!

Remove ff and RData for the data
load("chromData.RData")
load("posData.RData")

load("cghData.RData")

delete(cghData); rm(cghData)
delete(posData); rm(posData)

27

28

delete(chromData); rm(chromData)
unlink("chromData.RData")
unlink("posData.RData")
unlink("cghData.RData")
unlink("probeNames.RData")

Remove ff and R objects with segmentation results

lapply(haar.ff.fork, delete)
rm(haar.ff.fork)

lapply(haar.ff.cluster, delete)
rm(haar.ff.cluster)

Try to prevent problems in R CMD check
Sys.sleep(2)

Delete temp dir

setwd(originalDir)

Sys.sleep(2)

unlink("ADaCGH2_example_tmp_dir", recursive = TRUE)
Sys.sleep(2)

3

pSegment

Index

* 10
cutFile, 2
inputToADaCGH, 5
outputToCGHregions, 9
pChromPlot, 13

x datasets
inputEx, 4

* hplot
pChromPlot, 13

* nonparametric
pSegment, 18

as.ffdf, 13,19

CGHregions, 9, 10
clusterApply, 15, 20
clusterApplylB, 15, 20
cutFile, 2,7

daglad, 21
detectCores, 7

ff, 5,21
ffdf, 13, 19, 23

inputEx, 4
inputEx-sp (inputEx), 4
inputEx.nona (inputEx), 4

inputToADaCGH, 3, 5, 10, 13, 14, 19, 20, 24

makeCluster, /4, 20
mclapply, 7, 14, 15, 20

outputToCGHregions, 9

par, 14

pChromPlot, 13, 24

png, 14
pSegment, 9, 10, 13-15, 18
pSegmentCGHseg (pSegment), 18
pSegmentDNAcopy (pSegment), 18

29

pSegmentGLAD (pSegment), 18
pSegmentHaarSeg (pSegment), 18
pSegmentHMM (pSegment), 18
pSegmentWavelets (pSegment), 18

read. table, 6
read.table.ffdf, 7

segment, 20
smooth.CNA, 20

	cutFile
	inputEx
	inputToADaCGH
	outputToCGHregions
	pChromPlot
	pSegment
	Index

