
Package ‘xcms’
January 30, 2026

Version 4.8.0

Title LC-MS and GC-MS Data Analysis

Description Framework for processing and visualization of chromatographically
separated and single-spectra mass spectral data. Imports from AIA/ANDI NetCDF,
mzXML, mzData and mzML files. Preprocesses data for high-throughput, untargeted
analyte profiling.

Depends R (>= 4.1.0), BiocParallel (>= 1.8.0)

Imports MSnbase (>= 2.33.3), mzR (>= 2.25.3), methods, Biobase,
BiocGenerics, ProtGenerics (>= 1.37.1), lattice,
MassSpecWavelet (>= 1.66.0), S4Vectors, IRanges,
SummarizedExperiment, MsCoreUtils (>= 1.19.2), MsFeatures,
MsExperiment (>= 1.5.4), Spectra (>= 1.16.1), progress,
RColorBrewer, MetaboCoreUtils (>= 1.11.2), data.table

Suggests BiocStyle, caTools, knitr (>= 1.1.0), faahKO, msdata (>=
0.25.1), ncdf4, testthat (>= 3.1.9), pander, rmarkdown,
MALDIquant, pheatmap, RANN, multtest, MsBackendMgf, signal,
mgcv, rhdf5

Enhances Rgraphviz, rgl

License GPL (>= 2) + file LICENSE

URL https://github.com/sneumann/xcms

BugReports https://github.com/sneumann/xcms/issues/new

VignetteBuilder knitr

biocViews ImmunoOncology, MassSpectrometry, Metabolomics

RoxygenNote 7.3.3

Encoding UTF-8

Roxygen list(markdown=TRUE)

Collate 'AllGenerics.R' 'functions-XChromatograms.R'
'functions-XChromatogram.R' 'DataClasses.R' 'Deprecated.R'
'MPI.R' 'MsExperiment-functions.R' 'MsExperiment.R'
'XcmsExperiment-functions.R' 'XcmsExperiment-plotting.R'
'XcmsExperiment.R' 'XcmsExperimentHdf5-functions.R'
'hidden_aliases.R' 'XcmsExperimentHdf5.R' 'c.R' 'cwTools.R'
'databases.R' 'functions-MsFeatureData.R'
'do_adjustRtime-functions.R' 'functions-binning.R'
'do_findChromPeaks-functions.R' 'functions-Params.R'

1

https://github.com/sneumann/xcms
https://github.com/sneumann/xcms/issues/new

2 Contents

'do_groupChromPeaks-functions.R' 'fastMatch.R'
'functions-Chromatogram.R' 'functions-utils.R' 'functions-IO.R'
'functions-OnDiskMSnExp.R' 'functions-ProcessHistory.R'
'functions-XCMSnExp.R' 'functions-imputation.R'
'functions-xcmsEIC.R' 'functions-xcmsFragments.R'
'functions-xcmsRaw.R' 'functions-xcmsSet.R'
'functions-xcmsSwath.R' 'init.R' 'loadXcmsData.R'
'matchpeaks.R' 'method-filterFeatures.R'
'methods-Chromatogram.R' 'methods-IO.R'
'methods-MChromatograms.R' 'methods-MsFeatureData.R'
'methods-OnDiskMSnExp.R' 'methods-Params.R'
'methods-ProcessHistory.R' 'methods-XCMSnExp.R'
'methods-XChromatogram.R' 'methods-XChromatograms.R'
'methods-group-features.R' 'methods-xcmsEIC.R'
'methods-xcmsFileSource.R' 'methods-xcmsFragments.R'
'methods-xcmsPeaks.R' 'methods-xcmsRaw.R' 'methods-xcmsSet.R'
'models.R' 'mzClust.R' 'plotQC.R' 'specDist.R'
'write.mzquantML.R' 'writemzdata.R' 'writemztab.R'
'xcmsSource.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/xcms

git_branch RELEASE_3_22

git_last_commit 8c7e9cf

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Colin A. Smith [aut],
Ralf Tautenhahn [aut],
Steffen Neumann [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7899-7192>),

Paul Benton [aut],
Christopher Conley [aut],
Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),
Michael Witting [ctb],
William Kumler [aut] (ORCID: <https://orcid.org/0000-0002-5022-8009>),
Philippine Louail [aut] (ORCID:

<https://orcid.org/0009-0007-5429-6846>),
Pablo Vangeenderhuysen [ctb] (ORCID:

<https://orcid.org/0000-0002-5492-6904>),
Carl Brunius [ctb] (ORCID: <https://orcid.org/0000-0003-3957-870X>)

Maintainer Steffen Neumann <sneumann@ipb-halle.de>

Contents
absent-methods . 6
adjustRtime . 7
adjustRtime,XcmsExperiment,LamaParama-method . 11
applyAdjustedRtime . 15
AutoLockMass-methods . 16
bin,XCMSnExp-method . 17

https://orcid.org/0000-0002-7899-7192
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0002-5022-8009
https://orcid.org/0009-0007-5429-6846
https://orcid.org/0000-0002-5492-6904
https://orcid.org/0000-0003-3957-870X

Contents 3

binYonX . 19
BlankFlag . 22
breaks_on_binSize . 24
breaks_on_nBins . 25
c-methods . 26
CalibrantMassParam-class . 27
calibrate-methods . 28
CentWaveParam-class . 29
chromatogram,XCMSnExp-method . 46
chromPeakChromatograms . 49
chromPeakSpectra . 51
chromPeakSummary . 54
collect-methods . 55
colMax . 56
correlate,Chromatogram,Chromatogram-method . 57
descendZero . 59
diffreport-methods . 60
dirname . 62
doubleMatrix . 62
do_adjustRtime_peakGroups . 63
do_findChromPeaks_centWave . 65
do_findChromPeaks_centWaveWithPredIsoROIs . 69
do_findChromPeaks_massifquant . 73
do_findChromPeaks_matchedFilter . 76
do_findPeaks_MSW . 79
do_groupChromPeaks_density . 80
do_groupChromPeaks_nearest . 83
do_groupPeaks_mzClust . 84
DratioFilter . 86
estimatePrecursorIntensity,MsExperiment-method . 88
etg . 89
exportMetaboAnalyst . 90
extractMsData,OnDiskMSnExp-method . 91
feature-grouping . 92
featureChromatograms . 93
featureSpectra . 96
featureSummary . 98
fillChromPeaks . 100
fillPeaks-methods . 104
fillPeaks.chrom-methods . 105
fillPeaks.MSW-methods . 106
filterColumnsIntensityAbove,MChromatograms-method 107
filterFeatureDefinitions . 109
filterFeatures . 124
filtfft . 126
findChromPeaks . 127
findChromPeaks,Chromatogram,CentWaveParam-method 129
findChromPeaks,Chromatogram,MatchedFilterParam-method 130
findChromPeaks-centWave . 132
findChromPeaks-centWaveWithPredIsoROIs . 135
findChromPeaks-massifquant . 139
findChromPeaks-matchedFilter . 142

4 Contents

findChromPeaksIsolationWindow . 145
findEqualGreater . 147
findMZ . 148
findneutral . 149
findPeaks-methods . 150
findPeaks-MSW . 151
findPeaks.addPredictedIsotopeFeatures-methods . 154
findPeaks.centWave-methods . 156
findPeaks.centWaveWithPredictedIsotopeROIs-methods 158
findPeaks.massifquant-methods . 161
findPeaks.matchedFilter,xcmsRaw-method . 163
findPeaks.MS1-methods . 164
findPeaks.MSW,xcmsRaw-method . 165
GenericParam-class . 166
getEIC-methods . 167
getPeaks-methods . 168
getScan-methods . 169
getSpec-methods . 169
getXcmsRaw-methods . 170
group-methods . 171
group.density . 172
group.mzClust . 172
group.nearest . 173
groupChromPeaks . 175
groupFeatures-abundance-correlation . 178
groupFeatures-eic-similarity . 180
groupFeatures-similar-rtime . 182
groupnames,XCMSnExp-method . 184
groupnames-methods . 185
groupOverlaps . 185
groupval-methods . 186
highlightChromPeaks . 187
image-methods . 188
imputeLinInterpol . 189
imputeRowMin . 191
imputeRowMinRand . 192
isolationWindowTargetMz,OnDiskMSnExp-method . 194
levelplot-methods . 194
loadRaw-methods . 195
loadXcmsData . 196
manualChromPeaks . 197
medianFilter . 199
msn2xcmsRaw . 200
na.flatfill . 201
overlappingFeatures . 201
panel.cor . 202
peakPlots-methods . 203
peaksWithCentWave . 203
peaksWithMatchedFilter . 206
peakTable-methods . 207
PercentMissingFilter . 208
phenoDataFromPaths . 210

Contents 5

plot.xcmsEIC . 210
plotAdjustedRtime . 211
plotChrom-methods . 213
plotChromatogramsOverlay . 213
plotChromPeakDensity,XCMSnExp-method . 216
plotChromPeaks . 218
plotEIC-methods . 220
plotFeatureGroups . 221
plotMsData . 222
plotPeaks-methods . 223
plotPrecursorIons . 223
plotQC . 224
plotRaw-methods . 225
plotrt-methods . 226
plotScan-methods . 227
plotSpec-methods . 227
plotSurf-methods . 228
plotTIC-methods . 228
ProcessHistory-class . 229
profGenerate . 230
profMat,MsExperiment-method . 232
profMedFilt-methods . 234
profMethod-methods . 235
profRange-methods . 235
profStep-methods . 236
pval . 237
quantify,XCMSnExp-method . 238
rawEIC-methods . 239
rawMat-methods . 240
reconstructChromPeakSpectra . 241
rectUnique . 243
refineChromPeaks . 244
removeIntensity,Chromatogram-method . 248
retcor-methods . 249
retcor.obiwarp . 250
retcor.peakgroups-methods . 251
retexp . 252
rla . 252
RsdFilter . 253
sampnames-methods . 254
showError,xcmsSet-method . 255
specDist-methods . 256
specDist.cosine . 257
specDist.meanMZmatch . 258
specDist.peakCount-methods . 259
specNoise . 259
specPeaks . 260
split.xcmsRaw . 261
split.xcmsSet . 261
SSgauss . 262
stitch-methods . 263
toXcmsExperimentHdf5 . 264

6 absent-methods

updateObject,xcmsSet-method . 268
useOriginalCode . 269
verify.mzQuantM . 270
write.cdf-methods . 270
write.mzdata-methods . 271
write.mzQuantML-methods . 272
writeMSData,XCMSnExp,character-method . 272
writeMzTab . 273
XChromatograms . 274
xcms-deprecated . 286
xcmsEIC-class . 286
xcmsFileSource-class . 287
xcmsFragments . 288
xcmsFragments-class . 289
XCMSnExp-class . 290
xcmsPeaks-class . 300
xcmsRaw . 301
xcmsRaw-class . 303
xcmsSet . 305
xcmsSet-class . 307
xcmsSource-class . 309
xcmsSource-methods . 310
[,XCMSnExp,ANY,ANY,ANY-method . 310
[,xcmsRaw,logicalOrNumeric,missing,missing-method 314

Index 316

absent-methods Determine which peaks are absent / present in a sample class

Description

Determine which peaks are absent / present in a sample class

Arguments

object xcmsSet-class object

class Name of a sample class from sampclass

minfrac minimum fraction of samples necessary in the class to be absent/present

Details

Determine which peaks are absent / present in a sample class The functions treat peaks that are only
present because of fillPeaks correctly, i.e. does not count them as present.

Value

An logical vector with the same length as nrow(groups(object)).

Methods

object = "xcmsSet" absent(object, ...) present(object, ...)

adjustRtime 7

See Also

group diffreport

adjustRtime Alignment: Retention time correction methods.

Description

The adjustRtime method(s) perform retention time correction (alignment) between chromatograms
of different samples/dataset. Alignment is performed by default on MS level 1 data. Retention times
of spectra from other MS levels, if present, are subsequently adjusted based on the adjusted reten-
tion times of the MS1 spectra. Note that calling adjustRtime on a xcms result object will remove
any eventually present previous alignment results as well as any correspondence analysis results.
To run a second round of alignment, raw retention times need to be replaced with adjusted ones
using the applyAdjustedRtime() function.

The alignment method can be specified (and configured) using a dedicated param argument.

Supported param objects are:

• ObiwarpParam: performs retention time adjustment based on the full m/z - rt data using the
obiwarp method (Prince (2006)). It is based on the original code but supports in addition
alignment of multiple samples by aligning each against a center sample. The alignment is
performed directly on the profile-matrix and can hence be performed independently of the
peak detection or peak grouping.

• PeakGroupsParam: performs retention time correction based on the alignment of features de-
fined in all/most samples (corresponding to house keeping compounds or marker compounds)
(Smith 2006). First the retention time deviation of these features is described by fitting either a
polynomial (smooth = "loess") or a linear (smooth = "linear") function to the data points.
These are then subsequently used to adjust the retention time of each spectrum in each sample
(even from spectra of MS levels different than MS 1). Since the function is based on features
(i.e. chromatographic peaks grouped across samples) a initial correspondence analysis has to
be performed before using the groupChromPeaks() function. Alternatively, it is also possible
to manually define a numeric matrix with retention times of markers in each samples that
should be used for alignment. Such a matrix can be passed to the alignment function using
the peakGroupsMatrix parameter of the PeakGroupsParam parameter object. By default the
adjustRtimePeakGroups function is used to define this matrix. This function identifies peak
groups (features) for alignment in object based on the parameters defined in param. See also
do_adjustRtime_peakGroups() for the core API function.

• LamaParama: This function performs retention time correction by aligning chromatographic
data to an external reference dataset (concept and initial implementation by Carl Brunius).
The process involves identifying and aligning peaks within the experimental chromatographic
data, represented as an XcmsExperiment object, to a predefined set of landmark features called
"lamas". These landmark features are characterized by their mass-to-charge ratio (m/z) and
retention time. see LamaParama() for more information on the method.

Usage

adjustRtime(object, param, ...)

adjustRtimePeakGroups(object, param, ...)

http://obi-warp.sourceforge.net

8 adjustRtime

S4 method for signature 'MsExperiment,ObiwarpParam'
adjustRtime(object, param, chunkSize = 2L, BPPARAM = bpparam())

S4 method for signature 'MsExperiment,PeakGroupsParam'
adjustRtime(object, param, msLevel = 1L, ...)

PeakGroupsParam(
minFraction = 0.9,
extraPeaks = 1,
smooth = "loess",
span = 0.2,
family = "gaussian",
peakGroupsMatrix = matrix(nrow = 0, ncol = 0),
subset = integer(),
subsetAdjust = c("average", "previous")

)

ObiwarpParam(
binSize = 1,
centerSample = integer(),
response = 1L,
distFun = "cor_opt",
gapInit = numeric(),
gapExtend = numeric(),
factorDiag = 2,
factorGap = 1,
localAlignment = FALSE,
initPenalty = 0,
subset = integer(),
subsetAdjust = c("average", "previous"),
rtimeDifferenceThreshold = 5

)

S4 method for signature 'OnDiskMSnExp,ObiwarpParam'
adjustRtime(object, param, msLevel = 1L)

S4 replacement method for signature 'ObiwarpParam'
binSize(object) <- value

S4 method for signature 'XCMSnExp,PeakGroupsParam'
adjustRtime(object, param, msLevel = 1L)

S4 method for signature 'XCMSnExp,ObiwarpParam'
adjustRtime(object, param, msLevel = 1L)

Arguments

object For adjustRtime: an MSnbase::OnDiskMSnExp(), XCMSnExp(), MsExperiment::MsExperiment()
or XcmsExperiment() object.

param The parameter object defining the alignment method (and its setting).

... ignored.

adjustRtime 9

chunkSize For adjustRtime if object is either an MsExperiment or XcmsExperiment:
integer(1) defining the number of files (samples) that should be loaded into
memory and processed at the same time. Alignment is then performed in paral-
lel (per sample) on this subset of loaded data. This setting thus allows to balance
between memory demand and speed (due to parallel processing). Because par-
allel processing can only performed on the subset of data currently loaded into
memory in each iteration, the value for chunkSize should match the defined par-
allel setting setup. Using a parallel processing setup using 4 CPUs (separate pro-
cesses) but using chunkSize = 1will not perform any parallel processing, as only the data from one sample is loaded in memory at a time. On the other hand, settingchunkSize‘
to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM parallel processing setup. Defaults to BPPARAM = bpparam(). See BiocParallel::bpparam()
for details.

msLevel For adjustRtime: integer(1) defining the MS level on which the alignment
should be performed.

minFraction For PeakGroupsParam: numeric(1) between 0 and 1 defining the minimum
required proportion of samples in which peaks for the peak group were identi-
fied. Peak groups passing this criteria will be aligned across samples and reten-
tion times of individual spectra will be adjusted based on this alignment. For
minFraction = 1 the peak group has to contain peaks in all samples of the ex-
periment. Note that if subset is provided, the specified fraction is relative to
the defined subset of samples and not to the total number of samples within the
experiment (i.e., a peak has to be present in the specified proportion of subset
samples).

extraPeaks For PeakGroupsParam: numeric(1) defining the maximal number of additional
peaks for all samples to be assigned to a peak group (feature) for retention time
correction. For a data set with 6 samples, extraPeaks = 1 uses all peak groups
with a total peak count <= 6 + 1. The total peak count is the total num-
ber of peaks being assigned to a peak group and considers also multiple peaks
within a sample that are assigned to the group. This parameter is ignored for
adjustRtime() on an XcmsExperimentHdf5().

smooth For PeakGroupsParam: character(1) defining the function to be used to inter-
polate corrected retention times for all peak groups. Can be either "loess" or
"linear".

span For PeakGroupsParam: numeric(1) defining the degree of smoothing (if smooth
= "loess"). This parameter is passed to the internal call to stats::loess().

family For PeakGroupsParam: character(1) defining the method for loess smooth-
ing. Allowed values are "gaussian" and "symmetric". See stats::loess()
for more information.

peakGroupsMatrix

For PeakGroupsParam: optional matrix of (raw) retention times for the (marker)
peak groups on which the alignment should be performed. Each column repre-
sents a sample, each row a feature/peak group. The adjustRtimePeakGroups
method is used by default to determine this matrix on the provided object.

subset For ObiwarpParam and PeakGroupsParam: integer with the indices of sam-
ples within the experiment on which the alignment models should be estimated.
Samples not part of the subset are adjusted based on the closest subset sample.
See Subset-based alignment section for details.

subsetAdjust For ObiwarpParam and PeakGroupsParam: character(1) specifying the method
with which non-subset samples should be adjusted. Supported options are "previous"
and "average" (default). See Subset-based alignment section for details.

10 adjustRtime

binSize numeric(1) defining the bin size (in mz dimension) to be used for the pro-
file matrix generation. See step parameter in profile-matrix documentation for
more details.

centerSample integer(1) defining the index of the center sample in the experiment. It de-
faults to floor(median(1:length(fileNames(object)))). Note that if subset
is used, the index passed with centerSample is within these subset samples.

response For ObiwarpParam: numeric(1) defining the responsiveness of warping with
response = 0 giving linear warping on start and end points and response = 100
warping using all bijective anchors.

distFun For ObiwarpParam: character(1) defining the distance function to be used.
Allowed values are "cor" (Pearson’s correlation), "cor_opt" (calculate only
10% diagonal band of distance matrix; better runtime), "cov" (covariance),
"prd" (product) and "euc" (Euclidian distance). The default value is distFun
= "cor_opt".

gapInit For ObiwarpParam: numeric(1) defining the penalty for gap opening. The de-
fault value for depends on the value of distFun: distFun = "cor" and distFun
= "cor_opt" it is 0.3, for distFun = "cov" and distFun = "prd" 0.0 and for
distFun = "euc" 0.9.

gapExtend For ObiwarpParam: numeric(1) defining the penalty for gap enlargement. The
default value for gapExtend depends on the value of distFun: for distFun =
"cor" and distFun = "cor_opt" it is 2.4, distFun = "cov" 11.7, for distFun
= "euc" 1.8 and for distFun = "prd" 7.8.

factorDiag For ObiwarpParam: numeric(1) defining the local weight applied to diagonal
moves in the alignment.

factorGap For ObiwarpParam: numeric(1) defining the local weight for gap moves in the
alignment.

localAlignment For ObiwarpParam: logical(1) whether a local alignment should be performed
instead of the default global alignment.

initPenalty For ObiwarpParam: numeric(1) defining the penalty for initiating an alignment
(for local alignment only).

rtimeDifferenceThreshold

For ObiwarpParam: numeric(1) defining the threshold to identify a gap in the
sequence of retention times of (MS1) spectra of a sample/file. A gap is defined if
the difference in retention times between consecutive spectra is > rtimeDifferenceThreshold
of the median observed difference or retenion times of that data sample/file.
Spectra with an retention time after such a gap will not be adjusted. The default
for this parameter is rtimeDifferenceThreshold = 5. For Waters data with
lockmass scans or LC-MS/MS data this might however be a too low threshold
and it should be increased. See also issue #739.

value For all assignment methods: the value to set/replace.

Value

adjustRtime on an OnDiskMSnExp or XCMSnExp object will return an XCMSnExp object with the
alignment results.

adjustRtime on an MsExperiment or XcmsExperiment will return an XcmsExperiment with the
adjusted retention times stored in an new spectra variable rtime_adjusted in the object’s spectra.

ObiwarpParam, PeakGroupsParam and LamaParama return the respective parameter object.

adjustRtimeGroups returns a matrix with the retention times of marker features in each sample
(each row one feature, each row one sample).

https://github.com/sneumann/xcms/issues/739

adjustRtime,XcmsExperiment,LamaParama-method 11

Subset-based alignment

All alignment methods allow to perform the retention time correction on a user-selected subset of
samples (e.g. QC samples) after which all samples not part of that subset will be adjusted based on
the adjusted retention times of the closest subset sample (close in terms of index within object and
hence possibly injection index). It is thus suggested to load MS data files in the order in which their
samples were injected in the measurement run(s).

How the non-subset samples are adjusted depends also on the parameter subsetAdjust: with
subsetAdjust = "previous", each non-subset sample is adjusted based on the closest previous
subset sample which results in most cases with adjusted retention times of the non-subset sample
being identical to the subset sample on which the adjustment bases. The second, default, option is
subsetAdjust = "average" in which case each non subset sample is adjusted based on the aver-
age retention time adjustment from the previous and following subset sample. For the average, a
weighted mean is used with weights being the inverse of the distance of the non-subset sample to
the subset samples used for alignment.

See also section Alignment of experiments including blanks in the xcms vignette for more details.

Author(s)

Colin Smith, Johannes Rainer, Philippine Louail, Carl Brunius

References

Prince, J. T., and Marcotte, E. M. (2006) "Chromatographic Alignment of ESI-LC-MS Proteomic
Data Sets by Ordered Bijective Interpolated Warping" Anal. Chem., 78 (17), 6140-6152. doi:
10.1021/ac0605344

Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006). "XCMS: Processing
Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and
Identification" Anal. Chem. 78:779-787. doi: 10.1021/ac051437y

See Also

plotAdjustedRtime() for visualization of alignment results.

adjustRtime,XcmsExperiment,LamaParama-method

Landmark-based alignment: aligning a dataset against an external
reference

Description

Alignment is achieved using the adjustRtime() method with a param of class LamaParama. This
method corrects retention time by aligning chromatographic data with an external reference dataset.

Chromatographic peaks in the experimental data are first matched to predefined (external) landmark
features based on their mass-to-charge ratio and retention time and subsequently the data is aligned
by minimizing the differences in retention times between the matched chromatographic peaks and
lamas. This adjustment is performed file by file.

Adjustable parameters such as ppm, tolerance, and toleranceRt define acceptable deviations dur-
ing the matching process. It’s crucial to note that only lamas and chromatographic peaks exhibiting
a one-to-one mapping are considered when estimating retention time shifts. If a file has no peaks

https://doi.org/10.1021/ac0605344
https://doi.org/10.1021/ac051437y

12 adjustRtime,XcmsExperiment,LamaParama-method

matching with lamas, no adjustment will be performed, and the the retention times will be returned
as-is. Users can evaluate this matching, for example, by checking the number of matches and ranges
of the matching peaks, by first running [matchLamasChromPeaks()].

Different warping methods are available; users can choose to fit a loess (method = "loess", the
default) or a gam (method = "gam") between the reference data points and observed matching
ChromPeaks. Additional parameters such as span, weight, outlierTolerance, zeroWeight, and
bs are specific to these models. These parameters offer flexibility in fine-tuning how the match-
ing chromatographic peaks are fitted to the lamas, thereby generating a model to align the overall
retention time for a single file.

Other functions related to this method:

• LamaParama(): return the respective parameter object for alignment using adjustRtime()
function. It is also the input for the functions listed below.

• matchLamasChromPeaks(): quickly matches each file’s ChromPeaks to Lamas, allowing the
user to evaluate the matches for each file.

• summarizeLamaMatch(): generates a summary of the LamaParama method. See below for the
details of the return object.

• matchedRtimes(): Access the list of data.frame saved in the LamaParama object, generated
by the matchLamasChromPeaks() function.

• plot():plot the chromatographic peaks versus the reference lamas as well as the fitting line
for the chosen model type. The user can decide what file to inspect by specifying the assay
number with the parameter assay

Usage

S4 method for signature 'XcmsExperiment,LamaParama'
adjustRtime(object, param, BPPARAM = bpparam(), ...)

matchLamasChromPeaks(object, param, BPPARAM = bpparam())

summarizeLamaMatch(param)

matchedRtimes(param)

LamaParama(
lamas = matrix(ncol = 2, nrow = 0, dimnames = list(NULL, c("mz", "rt"))),
method = c("loess", "gam"),
span = 0.5,
outlierTolerance = 3,
zeroWeight = 10,
ppm = 20,
tolerance = 0,
toleranceRt = 5,
bs = "tp"

)

S4 method for signature 'LamaParama,ANY'
plot(
x,
index = 1L,
colPoints = "#00000060",

adjustRtime,XcmsExperiment,LamaParama-method 13

colFit = "#00000080",
xlab = "Matched Chromatographic peaks",
ylab = "Lamas",
...

)

Arguments

object An object of class XcmsExperiment with defined ChromPeaks.

param An object of class LamaParama that will later be used for adjustment using the
adjustRtime() function.

BPPARAM For matchLamasChromPeaks(): parallel processing setup. Defaults to BPPARAM
= bpparam(). See BiocParallel::bpparam() for more information.

... For plot(): extra parameters to be passed to the function.

lamas For LamaParama: matrix or data.frame with the m/z and retention times val-
ues of features (as first and second column) from the external dataset on which
the alignment will be based on.

method For LamaParama:character(1) with the type of warping. Either method =
"gam" or method = "loess" (default).

span For LamaParama: numeric(1) defining the degree of smoothing (method = "loess").
This parameter is passed to the internal call to loess().

outlierTolerance

For LamaParama: numeric(1) defining the settings for outlier removal during
the fitting. By default (with outlierTolerance = 3), all data points with abso-
lute residuals larger than 3 times the mean absolute residual of all data points
from the first, initial fit, are removed from the final model fit.

zeroWeight For LamaParama: numeric(1): defines the weight of the first data point (i.e.
retention times of the first lama-chromatographic peak pair). Values larger than
1 reduce warping problems in the early RT range.

ppm For LamaParama: numeric(1) defining the m/z-relative maximal allowed differ-
ence in m/z between lamas and chromatographic peaks. Used for the mapping
of identified chromatographic peaks and lamas.

tolerance For LamaParama: numeric(1) defining the absolute acceptable difference in
m/z between lamas and chromatographic peaks. Used for the mapping of iden-
tified chromatographic peaks and lamas.

toleranceRt For LamaParama: numeric(1) defining the absolute acceptable difference in
retention time between lamas and chromatographic peaks. Used for the mapping
of identified chromatographic peaks and lamas.

bs For LamaParama(): character(1) defining the GAM smoothing method. (de-
faults to thin plate, bs = "tp")

x For plot(): object of class LamaParama to be plotted.

index For plot(): numeric(1) index of the file that should be plotted.

colPoints For plot(): color for the plotting of the datapoint.

colFit For plot(): color of the fitting line.

xlab, ylab For plot(): x- and y-axis labels.

14 adjustRtime,XcmsExperiment,LamaParama-method

Value

For matchLamasChromPeaks(): A LamaParama object with new slot rtMap composed of a list of
matrices representing the 1:1 matches between Lamas (ref) and ChromPeaks (obs). To access this,
matchedRtimes() can be used.

For matchedRtimes(): A list of data.frame representing matches between chromPeaks and lamas
for each files.

For summarizeLamaMatch():A data.frame with:

• "Total_peaks": total number of chromatographic peaks in the file.

• "Matched_peak": The number of matched peaks to Lamas.

• "Total_Lamas": Total number of Lamas.

• "Model_summary": summary.loess or summary.gam object for each file.

Note

If there are no matches when using matchLamasChromPeaks(), the file retention will not be ad-
justed when calling adjustRtime() with the same LamaParama and XcmsExperiment object.

To see examples on how to utilize this methods and its functionality, see the vignette.

Author(s)

Carl Brunius, Philippine Louail

Examples

load test and reference datasets
ref <- loadXcmsData("xmse")
tst <- loadXcmsData("faahko_sub2")

create lamas input from the reference dataset
library(MsExperiment)
f <- sampleData(ref)$sample_type
f[f == "QC"] <- NA
ref <- filterFeatures(ref, PercentMissingFilter(threshold = 0, f = f))
ref_mz_rt <- featureDefinitions(ref)[, c("mzmed","rtmed")]

Set up the LamaParama object
param <- LamaParama(lamas = ref_mz_rt, method = "loess", span = 0.5,

outlierTolerance = 3, zeroWeight = 10, ppm = 20,
tolerance = 0, toleranceRt = 20, bs = "tp")

input into `adjustRtime()`
tst_adjusted <- adjustRtime(tst, param = param)

run diagnostic functions to pre-evaluate alignment
param <- matchLamasChromPeaks(tst, param = param)
mtch <- matchedRtimes(param)

Access summary of matches and model information
summary <- summarizeLamaMatch(param)

##coverage for each file
summary$Matched_peaks / summary$Total_peaks * 100

applyAdjustedRtime 15

Access the information on the model of for the first file
summary$model_summary[[1]]

applyAdjustedRtime Replace raw with adjusted retention times

Description

Replaces the raw retention times with the adjusted retention time or returns the object unchanged if
none are present.

Usage

applyAdjustedRtime(object)

Arguments

object An XCMSnExp or XcmsExperiment object.

Details

Adjusted retention times are stored in parallel to the adjusted retention times in XCMSnExp or
XcmsExperiment objects. The applyAdjustedRtime replaces the raw (original) retention times
with the adjusted retention times.

Value

An XCMSnExp or XcmsExperiment object with the raw (original) retention times being replaced with
the adjusted retention time.

Note

Replacing the raw retention times with adjusted retention times disables the possibility to restore
raw retention times using the dropAdjustedRtime() method. This function does not remove the
retention time processing step with the settings of the alignment from the processHistory() of
the object to ensure that the processing history is preserved.

Author(s)

Johannes Rainer

See Also

adjustRtime() for the function to perform the alignment (retention time correction).

[adjustedRtime()] for the method to extract adjusted retention times from
an [XCMSnExp] object.

[dropAdjustedRtime] for the method to delete alignment results and to
restore the raw retention times.

16 AutoLockMass-methods

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

xod <- adjustRtime(faahko_sub, param = ObiwarpParam())

hasAdjustedRtime(xod)

Replace raw retention times with adjusted retention times.
xod <- applyAdjustedRtime(xod)

No adjusted retention times present
hasAdjustedRtime(xod)

Raw retention times have been replaced with adjusted retention times
plot(split(rtime(faahko_sub), fromFile(faahko_sub))[[1]] -

split(rtime(xod), fromFile(xod))[[1]], type = "l")

And the process history still contains the settings for the alignment
processHistory(xod)

AutoLockMass-methods Automatic parameter for Lock mass fixing AutoLockMass ~~

Description

AutoLockMass - This function decides where the lock mass scans are in the xcmsRaw object. This
is done by using the scan time differences.

Arguments

object An xcmsRaw-class object

Value

AutoLockMass A numeric vector of scan locations corresponding to lock Mass scans

Methods

object = "xcmsRaw" signature(object = "xcmsRaw")

Author(s)

Paul Benton, <hpaul.benton08@imperial.ac.uk>

bin,XCMSnExp-method 17

Examples

Not run: library(xcms)
library(faahKO)
These files do not have this problem
to correct for but just for an example
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xr<-xcmsRaw(cdffiles[1])
xr
##Lets assume that the lockmass starts at 1 and is every 100 scans
lockMass<-xcms:::makeacqNum(xr, freq=100, start=1)
these are equalvent
lockmass2<-AutoLockMass(xr)
all((lockmass == lockmass2) == TRUE)

ob<-stitch(xr, lockMass)

End(Not run)

bin,XCMSnExp-method XCMSnExp data manipulation methods inherited from MSnbase

Description

The methods listed on this page are XCMSnExp() methods inherited from its parent, the MSnbase::OnDiskMSnExp()
class from the MSnbase package, that alter the raw data or are related to data subsetting. Thus call-
ing any of these methods causes all xcms pre-processing results to be removed from the XCMSnExp()
object to ensure its data integrity.

bin(): allows to bin spectra. See MSnbase::bin() documentation in the MSnbase package for
more details and examples.

clean(): removes unused 0 intensity data points. See MSnbase::clean() documentation in the
MSnbase package for details and examples.

filterAcquisitionNum(): filters the XCMSnExp() object keeping only spectra with the provided
acquisition numbers. See MSnbase::filterAcquisitionNum() for details and examples.

The normalize() method performs basic normalization of spectra intensities. See MSnbase::normalize()
documentation in the MSnbase package for details and examples.

The pickPeaks() method performs peak picking. See documentation for that function in the
MSnbase package for details and examples.

The removePeaks() method removes mass peaks (intensities) lower than a threshold. Note that
these peaks refer to mass peaks, which are different to the chromatographic peaks detected and
analyzed in a metabolomics experiment! See MSnbase::removePeaks() documentation for details
and examples.

The smooth() method smooths spectra. See MSnbase::smooth() documentation in MSnbase for
details and examples.

Usage

S4 method for signature 'XCMSnExp'
bin(x, binSize = 1L, msLevel.)

18 bin,XCMSnExp-method

S4 method for signature 'XCMSnExp'
clean(object, all = FALSE, verbose = FALSE, msLevel.)

S4 method for signature 'XCMSnExp'
filterAcquisitionNum(object, n, file)

S4 method for signature 'XCMSnExp'
normalize(object, method = c("max", "sum"), ...)

S4 method for signature 'XCMSnExp'
pickPeaks(
object,
halfWindowSize = 3L,
method = c("MAD", "SuperSmoother"),
SNR = 0L,
...

)

S4 method for signature 'XCMSnExp'
removePeaks(object, t = "min", verbose = FALSE, msLevel.)

S4 method for signature 'XCMSnExp'
smooth(
x,
method = c("SavitzkyGolay", "MovingAverage"),
halfWindowSize = 2L,
verbose = FALSE,
...

)

Arguments

x XCMSnExp() or MSnbase::OnDiskMSnExp() object.

binSize numeric(1) defining the size of a bin (in Dalton).

msLevel. For bin(), clean(), filterMsLevel(), removePeaks(): integer(1) defin-
ing the MS level(s) to which operations should be applied or to which the object
should be subsetted.

object XCMSnExp or OnDiskMSnExp object.

all For clean(): logical(1), if TRUE all zeros are removed.

verbose logical(1) whether progress information should be displayed.

n For filterAcquisitionNum(): integer defining the acquisition numbers of
the spectra to which the data set should be sub-setted.

file For filterAcquisitionNum(): integer defining the file index within the ob-
ject to subset the object by file.

method For normalize(): character(1) specifying the normalization method. See
MSnbase::normalize() in the MSnbase package for details. For pickPeaks():
character(1) defining the method. See help for pickPeaks() in the MSnbase
package for options. For smooth(): character(1) defining the method. See
MSnbase::smooth() in the MSnbase package for options and details.

binYonX 19

... Optional additional arguments.
halfWindowSize For pickPeaks() and smooth(): integer(1) defining the window size for the

peak picking. See help for pickPeaks and [MSnbase::smooth()‘ in the MSnbase
package for details and options.

SNR For pickPeaks(): numeric(1) defining the signal to noise ratio to be con-
sidered. See the documentation for pickPeaks() in the MSnbase package for
details.

t For removePeaks(): either a numeric(1) or "min" defining the threshold (method)
to be used. See MSnbase::removePeaks() for details.

Value

For all methods: a XCMSnExp object.

Author(s)

Johannes Rainer

See Also

XCMSnExp-filter for methods to filter and subset XCMSnExp objects. XCMSnExp() for base class
documentation. MSnbase::OnDiskMSnExp() for the documentation of the parent class.

binYonX Aggregate values in y for bins defined on x

Description

This functions takes two same-sized numeric vectors x and y, bins/cuts x into bins (either a pre-
defined number of equal-sized bins or bins of a pre-defined size) and aggregates values in y corre-
sponding to x values falling within each bin. By default (i.e. method = "max") the maximal y value
for the corresponding x values is identified. x is expected to be incrementally sorted and, if not, it
will be internally sorted (in which case also y will be ordered according to the order of x).

Usage

binYonX(
x,
y,
breaks,
nBins,
binSize,
binFromX,
binToX,
fromIdx = 1L,
toIdx = length(x),
method = "max",
baseValue,
sortedX = !is.unsorted(x),
shiftByHalfBinSize = FALSE,
returnIndex = FALSE,
returnX = TRUE

)

20 binYonX

Arguments

x Numeric vector to be used for binning.

y Numeric vector (same length than x) from which the maximum values for each
bin should be defined. If not provided, x will be used.

breaks Numeric vector defining the breaks for the bins, i.e. the lower and upper values
for each bin. See examples below.

nBins integer(1) defining the number of desired bins.

binSize numeric(1) defining the desired bin size.

binFromX Optional numeric(1) allowing to manually specify the range of x-values to be
used for binning. This will affect only the calculation of the breaks for the bins
(i.e. if nBins or binSize is provided). If not provided the minimal value in the
sub-set fromIdx-toIdx in input vector x will be used.

binToX Same as binFromX, but defining the maximum x-value to be used for binning.

fromIdx Integer vector defining the start position of one or multiple sub-sets of input
vector x that should be used for binning.

toIdx Same as toIdx, but defining the maximum index (or indices) in x to be used for
binning.

method A character string specifying the method that should be used to aggregate values
in y. Allowed are "max", "min", "sum" and "mean" to identify the maximal or
minimal value or to sum all values within a bin or calculate their mean value.

baseValue The base value for empty bins (i.e. bins into which either no values in x did fall,
or to which only NA values in y were assigned). By default (i.e. if not specified),
NA is assigned to such bins.

sortedX Whether x is sorted.
shiftByHalfBinSize

Logical specifying whether the bins should be shifted by half the bin size to the
left. Thus, the first bin will have its center at fromX and its lower and upper
boundary are fromX - binSize/2 and fromX + binSize/2. This argument is
ignored if breaks are provided.

returnIndex Logical indicating whether the index of the max (if method = "max") or min (if
method = "min") value within each bin in input vector x should also be reported.
For methods other than "max" or "min" this argument is ignored.

returnX logical allowing to avoid returning $x, i.e. the mid-points of the bins. returnX
= FALSE might be useful in cases where breaks are pre-defined as it consider-
ably reduces the memory demand.

Details

The breaks defining the boundary of each bin can be either passed directly to the function with the
argument breaks, or are calculated on the data based on arguments nBins or binSize along with
fromIdx, toIdx and optionally binFromX and binToX. Arguments fromIdx and toIdx allow to
specify subset(s) of the input vector x on which bins should be calculated. The default the full x
vector is considered. Also, if not specified otherwise with arguments binFromX and binToX, the
range of the bins within each of the sub-sets will be from x[fromIdx] to x[toIdx]. Arguments
binFromX and binToX allow to overwrite this by manually defining the a range on which the breaks
should be calculated. See examples below for more details.

binYonX 21

Calculation of breaks: for `nBins` the breaks correspond to
`seq(min(x[fromIdx])), max(x[fromIdx], length.out = (nBins + 1))`.
For `binSize` the breaks correspond to
`seq(min(x[fromIdx]), max(x[toIdx]), by = binSize)` with the
exception that the last break value is forced to be equal to
`max(x[toIdx])`. This ensures that all values from the specified
range are covered by the breaks defining the bins. The last bin could
however in some instances be slightly larger than `binSize`. See
[breaks_on_binSize()] and [breaks_on_nBins()] for
more details.

Value

Returns a list of length 2, the first element (named "x") contains the bin mid-points, the second
element (named "y") the aggregated values from input vector y within each bin. For returnIndex
= TRUE the list contains an additional element "index" with the index of the max or min (depending
on whether method = "max" or method = "min") value within each bin in input vector x.

Note

The function ensures that all values within the range used to define the breaks are considered in
the binning (and assigned to a bin). This means that for all bins except the last one values in x
have to be >= xlower and < xupper (with xlower and xupper being the lower and upper bound-
ary, respectively). For the last bin the condition is x >= xlower & x <= xupper. Note also that if
shiftByHalfBinSize is TRUE the range of values that is used for binning is expanded by binSize
(i.e. the lower boundary will be fromX - binSize/2, the upper toX + binSize/2). Setting this
argument to TRUE resembles the binning that is/was used in profBin function from xcms < 1.51.

`NA` handling: by default the function ignores `NA` values in
`y` (thus inherently assumes `na.rm = TRUE`). No `NA`
values are allowed in `x`.

Author(s)

Johannes Rainer

See Also

imputeLinInterpol()

Examples

########
Simple example illustrating the breaks and the binning.
##
Define breaks for 5 bins:
brks <- seq(2, 12, length.out = 6)
The first bin is then [2,4), the second [4,6) and so on.
brks
Get the max value falling within each bin.
binYonX(x = 1:16, y = 1:16, breaks = brks)
Thus, the largest value in x = 1:16 falling into the bin [2,4) (i.e. being
>= 2 and < 4) is 3, the largest one falling into [4,6) is 5 and so on.
Note however the function ensures that the minimal and maximal x-value
(in this example 1 and 12) fall within a bin, i.e. 12 is considered for

22 BlankFlag

the last bin.

#######
Performing the binning ons sub-set of x
##
X <- 1:16
Bin X from element 4 to 10 into 5 bins.
X[4:10]
binYonX(X, X, nBins = 5L, fromIdx = 4, toIdx = 10)
This defines breaks for 5 bins on the values from 4 to 10 and bins
the values into these 5 bins. Alternatively, we could manually specify
the range for the binning, i.e. the minimal and maximal value for the
breaks:
binYonX(X, X, nBins = 5L, fromIdx = 4, toIdx = 10, binFromX = 1, binToX = 16)
In this case the breaks for 5 bins were defined from a value 1 to 16 and
the values 4 to 10 were binned based on these breaks.

#######
Bin values within a sub-set of x, second example
##
This example illustrates how the fromIdx and toIdx parameters can be used.
x defines 3 times the sequence form 1 to 10, while y is the sequence from
1 to 30. In this very simple example x is supposed to represent M/Z values
from 3 consecutive scans and y the intensities measured for each M/Z in
each scan. We want to get the maximum intensities for M/Z value bins only
for the second scan, and thus we use fromIdx = 11 and toIdx = 20. The breaks
for the bins are defined with the nBins, binFromX and binToX.
X <- rep(1:10, 3)
Y <- 1:30
Bin the M/Z values in the second scan into 5 bins and get the maximum
intensity for each bin. Note that we have to specify sortedX = TRUE as
the x and y vectors would be sorted otherwise.
binYonX(X, Y, nBins = 5L, sortedX = TRUE, fromIdx = 11, toIdx = 20)

#######
Bin in overlapping sub-sets of X
##
In this example we define overlapping sub-sets of X and perform the binning
within these.
X <- 1:30
Define the start and end indices of the sub-sets.
fIdx <- c(2, 8, 21)
tIdx <- c(10, 25, 30)
binYonX(X, nBins = 5L, fromIdx = fIdx, toIdx = tIdx)
The same, but pre-defining also the desired range of the bins.
binYonX(X, nBins = 5L, fromIdx = fIdx, toIdx = tIdx, binFromX = 4, binToX = 28)
The same bins are thus used for each sub-set.

BlankFlag Flag features based on the intensity in blank samples

Description

The BlankFlag class and method enable users to flag features of an XcmsExperiment or SummarizedExperiment
object based on the relationship between the intensity of a feature in blanks compared to the inten-
sity in the samples.

BlankFlag 23

This class and method are part of the possible dispatch of the generic function filterFeatures.
Features below (<) the user-input threshold will be flagged by calling the filterFeatures func-
tion. This means that an extra column will be created in featureDefinitions or rowData called
possible_contaminants with a logical value for each feature.

Usage

BlankFlag(
threshold = 2,
blankIndex = integer(),
qcIndex = integer(),
na.rm = TRUE

)

S4 method for signature 'XcmsResult,BlankFlag'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,BlankFlag'
filterFeatures(object, filter, assay = 1)

Arguments

threshold numeric indicates the minimum difference required between the mean abun-
dance of a feature in samples compared to the mean abundance of the same
feature in blanks for it to not be considered a possible contaminant. For exam-
ple, the default threshold of 2 signifies that the mean abundance of the features
in samples has to be at least twice the mean abundance in blanks for it to not be
flagged as a possible contaminant.

blankIndex integer (or logical) vector corresponding to the indices of blank samples.
qcIndex integer (or logical) vector corresponding to the indices of quality control

(QC) samples.
na.rm logical indicates whether missing values (NA) should be removed prior to the

calculations.
object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,

the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

... Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

Value

For BlankFlag: a BlankFlag class. filterFeatures returns the input object with an added
column in the features metadata called possible_contaminants with a logical value for each
feature. This is added to featureDefinitions for XcmsExperiment objects and rowData for
SummarizedExperiment objects.

24 breaks_on_binSize

Author(s)

Philippine Louail

See Also

Other Filter features in xcms: DratioFilter, PercentMissingFilter, RsdFilter

breaks_on_binSize Generate breaks for binning using a defined bin size.

Description

Defines breaks for binSize sized bins for values ranging from fromX to toX.

Usage

breaks_on_binSize(fromX, toX, binSize)

Arguments

fromX numeric(1) specifying the lowest value for the bins.

toX numeric(1) specifying the largest value for the bins.

binSize numeric(1) defining the size of a bin.

Details

This function creates breaks for bins of size binSize. The function ensures that the full data range
is included in the bins, i.e. the last value (upper boundary of the last bin) is always equal toX. This
however means that the size of the last bin will not always be equal to the desired bin size.

See examples for more details and a comparisom to R’s seq() function.

Value

A numeric vector defining the lower and upper bounds of the bins.

Author(s)

Johannes Rainer

See Also

binYonX() for a binning function.

Other functions to define bins: breaks_on_nBins()

breaks_on_nBins 25

Examples

Define breaks with a size of 0.13 for a data range from 1 to 10:
breaks_on_binSize(1, 10, 0.13)
The size of the last bin is however larger than 0.13:
diff(breaks_on_binSize(1, 10, 0.13))
If we would use seq, the max value would not be included:
seq(1, 10, by = 0.13)

In the next example we use binSize that leads to an additional last bin with
a smaller binSize:
breaks_on_binSize(1, 10, 0.51)
Again, the max value is included, but the size of the last bin is < 0.51.
diff(breaks_on_binSize(1, 10, 0.51))
Using just seq would result in the following bin definition:
seq(1, 10, by = 0.51)
Thus it defines one bin (break) less.

breaks_on_nBins Generate breaks for binning

Description

Calculate breaks for same-sized bins for data values from fromX to toX.

Usage

breaks_on_nBins(fromX, toX, nBins, shiftByHalfBinSize = FALSE)

Arguments

fromX numeric(1) specifying the lowest value for the bins.

toX numeric(1) specifying the largest value for the bins.

nBins numeric(1) defining the number of bins.
shiftByHalfBinSize

Logical indicating whether the bins should be shifted left by half bin size. This
results centered bins, i.e. the first bin being centered at fromX and the last around
toX.

Details

This generates bins such as a call to seq(fromX, toX, length.out = nBins) would. The first and
second element in the result vector thus defines the lower and upper boundary for the first bin, the
second and third value for the second bin and so on.

Value

A numeric vector of length nBins + 1 defining the lower and upper bounds of the bins.

Author(s)

Johannes Rainer

26 c-methods

See Also

binYonX() for a binning function.

Other functions to define bins: breaks_on_binSize()

Examples

Create breaks to bin values from 3 to 20 into 20 bins
breaks_on_nBins(3, 20, nBins = 20)
The same call but using shiftByHalfBinSize
breaks_on_nBins(3, 20, nBins = 20, shiftByHalfBinSize = TRUE)

c-methods Combine xcmsSet objects

Description

Combines the samples and peaks from multiple xcmsSet objects into a single object. Group and
retention time correction data are discarded. The profinfo list is set to be equal to the first object.

Arguments

xs1 xcmsSet object

... xcmsSet objects

Value

A xcmsSet object.

Methods

xs1 = "xcmsRaw" c(xs1, ...)

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsSet-class

CalibrantMassParam-class 27

CalibrantMassParam-class

Calibrant mass based calibration of chromatgraphic peaks

Description

Calibrate peaks using mz values of known masses/calibrants. mz values of identified peaks are
adjusted based on peaks that are close to the provided mz values. See details below for more
information.

The isCalibrated function returns TRUE if chromatographic peaks of the XCMSnExp object x
were calibrated and FALSE otherwise.

Usage

CalibrantMassParam(
mz = list(),
mzabs = 1e-04,
mzppm = 5,
neighbors = 3,
method = "linear"

)

isCalibrated(object)

S4 method for signature 'XCMSnExp'
calibrate(object, param)

Arguments

mz a numeric or list of numeric vectors with reference mz values. If a numeric
vector is provided, this is used for each sample in the XCMSnExp object. If a
list is provided, it’s length has to be equal to the number of samples in the
experiment.

mzabs numeric(1) the absolute error/deviation for matching peaks to calibrants (in
Da).

mzppm numeric(1) the relative error for matching peaks to calibrants in ppm (parts per
million).

neighbors integer(1) with the maximal number of peaks within the permitted distance to
the calibrants that are considered. Among these the mz value of the peak with
the largest intensity is used in the calibration function estimation.

method character(1) defining the method that should be used to estimate the calibra-
tion function. Can be "shift", "linear" (default) or "edgeshift".

object An XCMSnExp object.

param The CalibrantMassParam object with the calibration settings.

28 calibrate-methods

Details

The method does first identify peaks that are close to the provided mz values and, given that there
difference to the calibrants is smaller than the user provided cut off (based on arguments mzabs
and mzppm), their mz values are replaced with the provided mz values. The mz values of all other
peaks are either globally shifted (for method = "shift" or estimated by a linear model through all
calibrants. Peaks are considered close to a calibrant mz if the difference between the calibrant and
its mz is <= mzabs + mz * mzppm /1e6.

Adjustment methods: adjustment function/factor is estimated using the difference between cal-
ibrant and peak mz values only for peaks that are close enough to the calibrants. The availabel
methods are:

• shift: shifts the m/z of each peak by a global factor which corresponds to the average differ-
ence between peak mz and calibrant mz.

• linear: fits a linear model throught the differences between calibrant and peak mz values and
adjusts the mz values of all peaks using this.

• edgeshift: performs same adjustment as linear for peaks that are within the mz range of
the calibrants and shift outside of it.

For more information, details and examples refer to the xcms-direct-injection vignette.

Value

For CalibrantMassParam: a CalibrantMassParam instance. For calibrate: an XCMSnExp
object with chromatographic peaks being calibrated. Be aware that the actual raw mz values are
not (yet) calibrated, but only the identified chromatographic peaks.

The CalibrantMassParam() function returns an instance of the CalibrantMassParam class with
all settings and properties set.

The calibrate method returns an XCMSnExp object with the chromatographic peaks being cal-
ibrated. Note that only the detected peaks are calibrated, but not the individual mz values in each
spectrum.

Note

CalibrantMassParam classes don’t have exported getter or setter methods.

Author(s)

Joachim Bargsten, Johannes Rainer

calibrate-methods Calibrate peaks for correcting unprecise m/z values

Description

Calibrate peaks of a xcmsSet via a set of known masses

CentWaveParam-class 29

Arguments

object a xcmsSet object with uncalibrated mz

calibrants a vector or a list of vectors with reference m/z-values

method the used calibrating-method, see below

mzppm the relative error used for matching peaks in ppm (parts per million)

mzabs the absolute error used for matching peaks in Da

neighbours the number of neighbours from wich the one with the highest intensity is used
(instead of the nearest)

plotres can be set to TRUE if wanted a result-plot showing the found m/z with the
distances and the regression

Value

object a xcmsSet with one ore more samples

calibrants for each sample different calibrants can be used, if a list of m/z-vectors is given.
The length of the list must be the same as the number of samples, alternatively
a single vector of masses can be given which is used for all samples.

method "shift" for shifting each m/z, "linear" does a linear regression and adds a linear
term to each m/z. "edgeshift" does a linear regression within the range of the
mz-calibrants and a shift outside.

Methods

object = "xcmsSet" calibrate(object, calibrants,method="linear", mzabs=0.0001, mzppm=5,
neighbours=3, plotres=FALSE)

See Also

xcmsSet-class,

CentWaveParam-class Internal page for hidden aliases

Description

For S4 methods that require a documentation entry but only clutter the index.

Usage

S4 method for signature 'XcmsExperiment'
show(object)

S4 method for signature 'XcmsExperimentHdf5'
show(object)

S4 method for signature 'XcmsExperimentHdf5,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'XcmsExperimentHdf5'

30 CentWaveParam-class

filterMsLevel(object, msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperimentHdf5'
filterIsolationWindow(object, mz = numeric())

S4 method for signature 'XcmsExperimentHdf5'
filterRt(object, rt, msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperimentHdf5'
filterMzRange(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperimentHdf5,Param'
findChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
add = FALSE,
...,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperimentHdf5'
dropChromPeaks(object, keepAdjustedRtime = FALSE)

S4 method for signature 'XcmsExperimentHdf5'
hasChromPeaks(object, msLevel = integer())

S4 replacement method for signature 'XcmsExperimentHdf5'
chromPeaks(object) <- value

S4 method for signature 'XcmsExperimentHdf5'
chromPeaks(
object,
rt = numeric(),
mz = numeric(),
ppm = 0,
msLevel = integer(),
type = c("any", "within", "apex_within"),
isFilledColumn = FALSE,
columns = character(),
bySample = FALSE

)

S4 replacement method for signature 'XcmsExperimentHdf5'
chromPeakData(object) <- value

S4 method for signature 'XcmsExperimentHdf5,MergeNeighboringPeaksParam'
refineChromPeaks(
object,
param,
msLevel = 1L,

CentWaveParam-class 31

chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperimentHdf5,CleanPeaksParam'
refineChromPeaks(object, param = CleanPeaksParam(), msLevel = 1L)

S4 method for signature 'XcmsExperimentHdf5'
hasFilledChromPeaks(object)

S4 method for signature 'XcmsExperimentHdf5,ChromPeakAreaParam'
fillChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperimentHdf5'
dropFilledChromPeaks(object)

S4 method for signature 'XcmsExperimentHdf5'
manualChromPeaks(
object,
chromPeaks = matrix(numeric()),
samples = seq_along(object),
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperimentHdf5,BetaDistributionParam'
chromPeakSummary(
object,
param,
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperimentHdf5'
dropAdjustedRtime(object)

S4 method for signature 'XcmsExperimentHdf5'
hasFeatures(object, msLevel = integer())

S4 method for signature 'XcmsExperimentHdf5'
dropFeatureDefinitions(object, keepAdjustedRtime = FALSE)

S4 method for signature 'XcmsExperimentHdf5,Param'
groupChromPeaks(object, param, msLevel = 1L, add = FALSE)

32 CentWaveParam-class

S4 method for signature 'XcmsExperimentHdf5'
featureArea(
object,
mzmin = min,
mzmax = max,
rtmin = min,
rtmax = max,
features = character(),
msLevel = 1L,
minMzWidthPpm = 0

)

S4 replacement method for signature 'XcmsExperimentHdf5'
featureDefinitions(object) <- value

S4 method for signature 'XcmsExperimentHdf5'
featureDefinitions(
object,
mz = numeric(),
rt = numeric(),
ppm = 0,
type = c("any", "within", "apex_within"),
msLevel = integer()

)

S4 method for signature 'XcmsExperimentHdf5'
featureValues(
object,
method = c("medret", "maxint", "sum"),
value = "into",
intensity = "into",
filled = TRUE,
missing = NA_real_,
msLevel = integer()

)

S4 method for signature 'XcmsExperimentHdf5'
manualFeatures(object, peakIdx = list(), msLevel = 1L)

S4 method for signature 'XcmsExperimentHdf5'
chromatogram(
object,
rt = matrix(nrow = 0, ncol = 2),
mz = matrix(nrow = 0, ncol = 2),
aggregationFun = "sum",
msLevel = 1L,
chunkSize = 2L,
isolationWindowTargetMz = NULL,
return.type = c("XChromatograms", "MChromatograms"),
include = character(),
chromPeaks = c("apex_within", "any", "none"),

CentWaveParam-class 33

BPPARAM = bpparam()
)

S4 method for signature 'XcmsExperimentHdf5'
chromPeakSpectra(
object,
method = c("all", "closest_rt", "closest_mz", "largest_tic", "largest_bpi"),
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = 0,
skipFilled = FALSE,
peaks = character(),
chromPeakColumns = c("rt", "mz"),
return.type = c("Spectra", "List"),
...

)

S4 method for signature 'XcmsExperimentHdf5'
featureSpectra(
object,
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = 0,
skipFilled = FALSE,
return.type = c("Spectra", "List"),
features = character(),
method = c("all", "closest_rt", "closest_mz", "largest_tic", "largest_bpi"),
chromPeakColumns = c("rt", "mz"),
featureColumns = c("rtmed", "mzmed"),
...

)

S4 method for signature 'XcmsExperimentHdf5'
featureChromatograms(
object,
expandRt = 0,
expandMz = 0,
aggregationFun = "max",
features = character(),
return.type = "XChromatograms",
chunkSize = 2L,
mzmin = min,
mzmax = max,
rtmin = min,
rtmax = max,
...,
progressbar = TRUE,
BPPARAM = bpparam()

)

34 CentWaveParam-class

fixedRt(object)

fixedMz(object)

S4 method for signature 'MsFeatureData'
show(object)

S4 method for signature 'MsFeatureData'
hasAdjustedRtime(object)

S4 method for signature 'MsFeatureData'
hasFeatures(object, msLevel = integer())

S4 method for signature 'MsFeatureData'
hasChromPeaks(object, msLevel = integer())

S4 method for signature 'MsFeatureData'
adjustedRtime(object)

S4 replacement method for signature 'MsFeatureData'
adjustedRtime(object) <- value

S4 method for signature 'MsFeatureData'
dropAdjustedRtime(object, rtraw)

S4 method for signature 'MsFeatureData'
featureDefinitions(object, msLevel = integer())

S4 replacement method for signature 'MsFeatureData'
featureDefinitions(object) <- value

S4 method for signature 'MsFeatureData'
dropFeatureDefinitions(object, dropAdjustedRtime = FALSE)

S4 method for signature 'MsFeatureData'
chromPeaks(object)

S4 replacement method for signature 'MsFeatureData'
chromPeaks(object) <- value

S4 method for signature 'MsFeatureData'
dropChromPeaks(object)

S4 method for signature 'MsFeatureData'
chromPeakData(object, columns = character())

S4 replacement method for signature 'MsFeatureData'
chromPeakData(object) <- value

S4 method for signature 'OnDiskMSnExp'
hasAdjustedRtime(object)

CentWaveParam-class 35

S4 method for signature 'CentWaveParam'
ppm(object)

S4 replacement method for signature 'CentWaveParam'
ppm(object) <- value

S4 method for signature 'CentWaveParam'
peakwidth(object)

S4 replacement method for signature 'CentWaveParam'
peakwidth(object) <- value

S4 method for signature 'CentWaveParam'
snthresh(object)

S4 replacement method for signature 'CentWaveParam'
snthresh(object) <- value

S4 method for signature 'CentWaveParam'
prefilter(object)

S4 replacement method for signature 'CentWaveParam'
prefilter(object) <- value

S4 method for signature 'CentWaveParam'
mzCenterFun(object)

S4 replacement method for signature 'CentWaveParam'
mzCenterFun(object) <- value

S4 method for signature 'CentWaveParam'
integrate(f)

S4 replacement method for signature 'CentWaveParam'
integrate(object) <- value

S4 method for signature 'CentWaveParam'
mzdiff(object)

S4 replacement method for signature 'CentWaveParam'
mzdiff(object) <- value

S4 method for signature 'CentWaveParam'
fitgauss(object)

S4 replacement method for signature 'CentWaveParam'
fitgauss(object) <- value

S4 method for signature 'CentWaveParam'
noise(object)

S4 replacement method for signature 'CentWaveParam'

36 CentWaveParam-class

noise(object) <- value

S4 method for signature 'CentWaveParam'
verboseColumns(object)

S4 replacement method for signature 'CentWaveParam'
verboseColumns(object) <- value

S4 method for signature 'CentWaveParam'
roiList(object)

S4 replacement method for signature 'CentWaveParam'
roiList(object) <- value

S4 method for signature 'CentWaveParam'
firstBaselineCheck(object)

S4 replacement method for signature 'CentWaveParam'
firstBaselineCheck(object) <- value

S4 method for signature 'CentWaveParam'
roiScales(object)

S4 replacement method for signature 'CentWaveParam'
roiScales(object) <- value

S4 method for signature 'MatchedFilterParam'
binSize(object)

S4 replacement method for signature 'MatchedFilterParam'
binSize(object) <- value

S4 method for signature 'MatchedFilterParam'
impute(object)

S4 replacement method for signature 'MatchedFilterParam'
impute(object) <- value

S4 method for signature 'MatchedFilterParam'
baseValue(object)

S4 replacement method for signature 'MatchedFilterParam'
baseValue(object) <- value

S4 method for signature 'MatchedFilterParam'
distance(object)

S4 replacement method for signature 'MatchedFilterParam'
distance(object) <- value

S4 method for signature 'MatchedFilterParam'
fwhm(object)

CentWaveParam-class 37

S4 replacement method for signature 'MatchedFilterParam'
fwhm(object) <- value

S4 method for signature 'MatchedFilterParam'
sigma(object)

S4 replacement method for signature 'MatchedFilterParam'
sigma(object) <- value

S4 method for signature 'MatchedFilterParam'
max(x)

S4 replacement method for signature 'MatchedFilterParam'
max(object) <- value

S4 method for signature 'MatchedFilterParam'
snthresh(object)

S4 replacement method for signature 'MatchedFilterParam'
snthresh(object) <- value

S4 method for signature 'MatchedFilterParam'
steps(object)

S4 replacement method for signature 'MatchedFilterParam'
steps(object) <- value

S4 method for signature 'MatchedFilterParam'
mzdiff(object)

S4 replacement method for signature 'MatchedFilterParam'
mzdiff(object) <- value

S4 method for signature 'MatchedFilterParam'
index(object)

S4 replacement method for signature 'MatchedFilterParam'
index(object) <- value

S4 method for signature 'MassifquantParam'
ppm(object)

S4 replacement method for signature 'MassifquantParam'
ppm(object) <- value

S4 method for signature 'MassifquantParam'
peakwidth(object)

S4 replacement method for signature 'MassifquantParam'
peakwidth(object) <- value

38 CentWaveParam-class

S4 method for signature 'MassifquantParam'
snthresh(object)

S4 replacement method for signature 'MassifquantParam'
snthresh(object) <- value

S4 method for signature 'MassifquantParam'
prefilter(object)

S4 replacement method for signature 'MassifquantParam'
prefilter(object) <- value

S4 method for signature 'MassifquantParam'
mzCenterFun(object)

S4 replacement method for signature 'MassifquantParam'
mzCenterFun(object) <- value

S4 method for signature 'MassifquantParam'
integrate(f)

S4 replacement method for signature 'MassifquantParam'
integrate(object) <- value

S4 method for signature 'MassifquantParam'
mzdiff(object)

S4 replacement method for signature 'MassifquantParam'
mzdiff(object) <- value

S4 method for signature 'MassifquantParam'
fitgauss(object)

S4 replacement method for signature 'MassifquantParam'
fitgauss(object) <- value

S4 method for signature 'MassifquantParam'
noise(object)

S4 replacement method for signature 'MassifquantParam'
noise(object) <- value

S4 method for signature 'MassifquantParam'
verboseColumns(object)

S4 replacement method for signature 'MassifquantParam'
verboseColumns(object) <- value

S4 method for signature 'MassifquantParam'
criticalValue(object)

S4 replacement method for signature 'MassifquantParam'

CentWaveParam-class 39

criticalValue(object) <- value

S4 method for signature 'MassifquantParam'
consecMissedLimit(object)

S4 replacement method for signature 'MassifquantParam'
consecMissedLimit(object) <- value

S4 method for signature 'MassifquantParam'
unions(object)

S4 replacement method for signature 'MassifquantParam'
unions(object) <- value

S4 method for signature 'MassifquantParam'
checkBack(object)

S4 replacement method for signature 'MassifquantParam'
checkBack(object) <- value

S4 method for signature 'MassifquantParam'
withWave(object)

S4 replacement method for signature 'MassifquantParam'
withWave(object) <- value

S4 method for signature 'MSWParam'
snthresh(object)

S4 replacement method for signature 'MSWParam'
snthresh(object) <- value

S4 method for signature 'MSWParam'
verboseColumns(object)

S4 replacement method for signature 'MSWParam'
verboseColumns(object) <- value

S4 method for signature 'MSWParam'
scales(object)

S4 replacement method for signature 'MSWParam'
scales(object) <- value

S4 method for signature 'MSWParam'
nearbyPeak(object)

S4 replacement method for signature 'MSWParam'
nearbyPeak(object) <- value

S4 method for signature 'MSWParam'
peakScaleRange(object)

40 CentWaveParam-class

S4 replacement method for signature 'MSWParam'
peakScaleRange(object) <- value

S4 method for signature 'MSWParam'
ampTh(object)

S4 replacement method for signature 'MSWParam'
ampTh(object) <- value

S4 method for signature 'MSWParam'
minNoiseLevel(object)

S4 replacement method for signature 'MSWParam'
minNoiseLevel(object) <- value

S4 method for signature 'MSWParam'
ridgeLength(object)

S4 replacement method for signature 'MSWParam'
ridgeLength(object) <- value

S4 method for signature 'MSWParam'
peakThr(object)

S4 replacement method for signature 'MSWParam'
peakThr(object) <- value

S4 method for signature 'MSWParam'
tuneIn(object)

S4 replacement method for signature 'MSWParam'
tuneIn(object) <- value

S4 method for signature 'MSWParam'
addParams(object)

S4 replacement method for signature 'MSWParam'
addParams(object) <- value

S4 method for signature 'CentWavePredIsoParam'
snthreshIsoROIs(object)

S4 replacement method for signature 'CentWavePredIsoParam'
snthreshIsoROIs(object) <- value

S4 method for signature 'CentWavePredIsoParam'
maxCharge(object)

S4 replacement method for signature 'CentWavePredIsoParam'
maxCharge(object) <- value

CentWaveParam-class 41

S4 method for signature 'CentWavePredIsoParam'
maxIso(object)

S4 replacement method for signature 'CentWavePredIsoParam'
maxIso(object) <- value

S4 method for signature 'CentWavePredIsoParam'
mzIntervalExtension(object)

S4 replacement method for signature 'CentWavePredIsoParam'
mzIntervalExtension(object) <- value

S4 method for signature 'CentWavePredIsoParam'
polarity(object)

S4 replacement method for signature 'CentWavePredIsoParam'
polarity(object) <- value

S4 method for signature 'PeakDensityParam'
sampleGroups(object)

S4 replacement method for signature 'PeakDensityParam'
sampleGroups(object) <- value

S4 method for signature 'PeakDensityParam'
bw(object)

S4 replacement method for signature 'PeakDensityParam'
bw(object) <- value

S4 method for signature 'PeakDensityParam'
minFraction(object)

S4 replacement method for signature 'PeakDensityParam'
minFraction(object) <- value

S4 method for signature 'PeakDensityParam'
minSamples(object)

S4 replacement method for signature 'PeakDensityParam'
minSamples(object) <- value

S4 method for signature 'PeakDensityParam'
binSize(object)

S4 replacement method for signature 'PeakDensityParam'
binSize(object) <- value

S4 method for signature 'PeakDensityParam'
maxFeatures(object)

S4 replacement method for signature 'PeakDensityParam'

42 CentWaveParam-class

maxFeatures(object) <- value

S4 method for signature 'PeakDensityParam'
ppm(object)

S4 method for signature 'MzClustParam'
sampleGroups(object)

S4 replacement method for signature 'MzClustParam'
sampleGroups(object) <- value

S4 method for signature 'MzClustParam'
ppm(object)

S4 replacement method for signature 'MzClustParam'
ppm(object) <- value

S4 method for signature 'MzClustParam'
absMz(object)

S4 replacement method for signature 'MzClustParam'
absMz(object) <- value

S4 method for signature 'MzClustParam'
minFraction(object)

S4 replacement method for signature 'MzClustParam'
minFraction(object) <- value

S4 method for signature 'MzClustParam'
minSamples(object)

S4 replacement method for signature 'MzClustParam'
minSamples(object) <- value

S4 method for signature 'NearestPeaksParam'
sampleGroups(object)

S4 replacement method for signature 'NearestPeaksParam'
sampleGroups(object) <- value

S4 method for signature 'NearestPeaksParam'
mzVsRtBalance(object)

S4 replacement method for signature 'NearestPeaksParam'
mzVsRtBalance(object) <- value

S4 method for signature 'NearestPeaksParam'
absMz(object)

S4 replacement method for signature 'NearestPeaksParam'
absMz(object) <- value

CentWaveParam-class 43

S4 method for signature 'NearestPeaksParam'
absRt(object)

S4 replacement method for signature 'NearestPeaksParam'
absRt(object) <- value

S4 method for signature 'NearestPeaksParam'
kNN(object)

S4 replacement method for signature 'NearestPeaksParam'
kNN(object) <- value

S4 method for signature 'PeakGroupsParam'
minFraction(object)

S4 replacement method for signature 'PeakGroupsParam'
minFraction(object) <- value

S4 method for signature 'PeakGroupsParam'
extraPeaks(object)

S4 replacement method for signature 'PeakGroupsParam'
extraPeaks(object) <- value

S4 method for signature 'PeakGroupsParam'
smooth(x)

S4 replacement method for signature 'PeakGroupsParam'
smooth(object) <- value

S4 method for signature 'PeakGroupsParam'
span(object)

S4 replacement method for signature 'PeakGroupsParam'
span(object) <- value

S4 method for signature 'PeakGroupsParam'
family(object)

S4 replacement method for signature 'PeakGroupsParam'
family(object) <- value

S4 method for signature 'PeakGroupsParam'
peakGroupsMatrix(object)

S4 replacement method for signature 'PeakGroupsParam'
peakGroupsMatrix(object) <- value

S4 method for signature 'PeakGroupsParam'
subset(x)

44 CentWaveParam-class

S4 replacement method for signature 'PeakGroupsParam'
subset(object) <- value

S4 method for signature 'PeakGroupsParam'
subsetAdjust(object)

S4 replacement method for signature 'PeakGroupsParam'
subsetAdjust(object) <- value

S4 method for signature 'ObiwarpParam'
binSize(object)

S4 method for signature 'ObiwarpParam'
centerSample(object)

S4 replacement method for signature 'ObiwarpParam'
centerSample(object) <- value

S4 method for signature 'ObiwarpParam'
response(object)

S4 replacement method for signature 'ObiwarpParam'
response(object) <- value

S4 method for signature 'ObiwarpParam'
distFun(object)

S4 replacement method for signature 'ObiwarpParam'
distFun(object) <- value

S4 method for signature 'ObiwarpParam'
gapInit(object)

S4 replacement method for signature 'ObiwarpParam'
gapInit(object) <- value

S4 method for signature 'ObiwarpParam'
gapExtend(object)

S4 replacement method for signature 'ObiwarpParam'
gapExtend(object) <- value

S4 method for signature 'ObiwarpParam'
factorDiag(object)

S4 replacement method for signature 'ObiwarpParam'
factorDiag(object) <- value

S4 method for signature 'ObiwarpParam'
factorGap(object)

S4 replacement method for signature 'ObiwarpParam'

CentWaveParam-class 45

factorGap(object) <- value

S4 method for signature 'ObiwarpParam'
localAlignment(object)

S4 replacement method for signature 'ObiwarpParam'
localAlignment(object) <- value

S4 method for signature 'ObiwarpParam'
initPenalty(object)

S4 replacement method for signature 'ObiwarpParam'
initPenalty(object) <- value

S4 method for signature 'ObiwarpParam'
subset(x)

S4 replacement method for signature 'ObiwarpParam'
subset(object) <- value

S4 method for signature 'ObiwarpParam'
subsetAdjust(object)

S4 replacement method for signature 'ObiwarpParam'
subsetAdjust(object) <- value

S4 method for signature 'FillChromPeaksParam'
expandMz(object)

S4 replacement method for signature 'FillChromPeaksParam'
expandMz(object) <- value

S4 method for signature 'FillChromPeaksParam'
expandRt(object)

S4 replacement method for signature 'FillChromPeaksParam'
expandRt(object) <- value

S4 method for signature 'FillChromPeaksParam'
ppm(object)

S4 replacement method for signature 'FillChromPeaksParam'
ppm(object) <- value

S4 method for signature 'ProcessHistory'
show(object)

S4 method for signature 'XProcessHistory'
show(object)

S4 method for signature 'XCMSnExp'
show(object)

46 chromatogram,XCMSnExp-method

S4 method for signature 'XcmsResult,PeakGroupsParam'
adjustRtimePeakGroups(object, param = PeakGroupsParam(), msLevel = 1L)

S4 method for signature 'XChromatogram'
show(object)

S4 method for signature 'XChromatograms'
show(object)

S4 method for signature 'xcmsEIC'
show(object)

S4 method for signature 'xcmsFragments'
show(object)

S4 method for signature 'xcmsPeaks'
show(object)

S4 method for signature 'xcmsRaw'
show(object)

S4 method for signature 'xcmsSet'
show(object)

Value

Not applicable

chromatogram,XCMSnExp-method

Extracting chromatograms

Description

chromatogram: extract chromatographic data (such as an extracted ion chromatogram, a base peak
chromatogram or total ion chromatogram) from an MSnbase::OnDiskMSnExp or XCMSnExp ob-
jects. See also the help page of the chromatogram function in the MSnbase package.

Usage

S4 method for signature 'XCMSnExp'
chromatogram(
object,
rt,
mz,
aggregationFun = "sum",
missing = NA_real_,
msLevel = 1L,
BPPARAM = bpparam(),
adjustedRtime = hasAdjustedRtime(object),

chromatogram,XCMSnExp-method 47

filled = FALSE,
include = c("apex_within", "any", "none"),
...

)

Arguments

object Either a MSnbase::OnDiskMSnExp or XCMSnExp object from which the chro-
matograms should be extracted.

rt numeric(2) or two-column matrix defining the lower and upper boundary for
the retention time range(s). If not specified, the full retention time range of the
original data will be used.

mz numeric(2) or two-column matrix defining the lower and upper mz value for
the MS data slice(s). If not specified, the chromatograms will be calculated on
the full mz range.

aggregationFun character(1) specifying the function to be used to aggregate intensity values
across the mz value range for the same retention time. Allowed values are "sum"
(the default), "max", "mean" and "min".

missing numeric(1) allowing to specify the intensity value to be used if for a given re-
tention time no signal was measured within the mz range of the corresponding
scan. Defaults to NA_real_ (see also Details and Notes sections below). Use
missing = 0 to resemble the behaviour of the getEIC from the old user inter-
face.

msLevel integer(1) specifying the MS level from which the chromatogram should be
extracted. Defaults to msLevel = 1L.

BPPARAM Parallelisation backend to be used, which will depend on the architecture. De-
fault is BiocParallel::bparam().

adjustedRtime For chromatogram,XCMSnExp: whether the adjusted (adjustedRtime = TRUE)
or raw retention times (adjustedRtime = FALSE) should be used for filtering
and returned in the resulting MSnbase::MChromatograms object. Adjusted re-
tention times are used by default if available.

filled logical(1) whether filled-in peaks should also be returned. Defaults to filled
= FALSE, i.e. returns only detected chromatographic peaks in the result object.

include character(1) defining which chromatographic peaks should be returned. Sup-
ported are include = "apex_within" (the default) which returns chromato-
graphic peaks that have their apex within the mz rt range, include = "any"
to return all chromatographic peaks which m/z and rt ranges overlap the mz and
rt or include = "none" to not include any chromatographic peaks.

... optional parameters - currently ignored.

Details

Arguments rt and mz allow to specify the MS data slice (i.e. the m/z range and retention time
window) from which the chromatogram should be extracted. These parameters can be either a
numeric of length 2 with the lower and upper limit, or a matrix with two columns with the lower
and upper limits to extract multiple EICs at once. The parameter aggregationSum allows to specify
the function to be used to aggregate the intensities across the m/z range for the same retention time.
Setting aggregationFun = "sum" would e.g. allow to calculate the total ion chromatogram (TIC),
aggregationFun = "max" the base peak chromatogram (BPC).

48 chromatogram,XCMSnExp-method

If for a given retention time no intensity is measured in that spectrum a NA intensity value is returned
by default. This can be changed with the parameter missing, setting missing = 0 would result in a
0 intensity being returned in these cases.

Value

chromatogram returns a XChromatograms object with the number of columns corresponding to the
number of files in object and number of rows the number of specified ranges (i.e. number of rows
of matrices provided with arguments mz and/or rt). All chromatographic peaks with their apex
position within the m/z and retention time range are also retained as well as all feature definitions
for these peaks.

Note

For XCMSnExp objects, if adjusted retention times are available, the chromatogram method will
by default report and use these (for the subsetting based on the provided parameter rt). This can be
changed by setting adjustedRtime = FALSE.

Author(s)

Johannes Rainer

See Also

XCMSnExp for the data object. MSnbase::Chromatogram() for the object representing chromato-
graphic data.

[XChromatograms] for the object allowing to arrange
multiple [XChromatogram] objects.

[plot] to plot a [XChromatogram] or [MSnbase::MChromatograms] objects.

`as` (`as(x, "data.frame")`) in `MSnbase` for a method to extract
the MS data as `data.frame`.

Examples

Load a test data set with identified chromatographic peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

Extract the ion chromatogram for one chromatographic peak in the data.
chrs <- chromatogram(faahko_sub, rt = c(2700, 2900), mz = 335)

chrs

Identified chromatographic peaks
chromPeaks(chrs)

Plot the chromatogram

chromPeakChromatograms 49

plot(chrs)

Extract chromatograms for multiple ranges.
mzr <- matrix(c(335, 335, 344, 344), ncol = 2, byrow = TRUE)
rtr <- matrix(c(2700, 2900, 2600, 2750), ncol = 2, byrow = TRUE)
chrs <- chromatogram(faahko_sub, mz = mzr, rt = rtr)

chromPeaks(chrs)

plot(chrs)

Get access to all chromatograms for the second mz/rt range
chrs[1,]

Plot just that one
plot(chrs[1, , drop = FALSE])

chromPeakChromatograms

Extract an ion chromatogram for each chromatographic peak

Description

Extract an ion chromatogram (EIC) for each chromatographic peak in an XcmsExperiment() ob-
ject. The result is returned as an XChromatograms() of length equal to the number of chromato-
graphic peaks (and one column).

Usage

chromPeakChromatograms(object, ...)

S4 method for signature 'XcmsExperiment'
chromPeakChromatograms(
object,
expandRt = 0,
expandMz = 0,
aggregationFun = "max",
peaks = character(),
return.type = c("XChromatograms", "MChromatograms"),
...,
progressbar = TRUE

)

Arguments

object An XcmsExperiment() with identified chromatographic peaks.

... currently ignored.

expandRt numeric(1) to eventually expand the retention time range from which the signal
should be integrated. The chromatogram will contain signal from chromPeaks[,
"rtmin"] - expandRt to chromPeaks[, "rtmax"] + expandRt. The default is
expandRt = 0.

50 chromPeakChromatograms

expandMz numeric(1) to eventually expand the m/z range from which the signal should be
integrated. The chromatogram will contain signal from chromPeaks[, "mzmin"]
- expandMz to chromPeaks[, "mzmax"] + expandMz. The default is expandMz
= 0.

aggregationFun character(1) defining the function how signals within the m/z range in each
spectrum (i.e. for each discrete retention time) should be aggregated. The de-
fault (aggregationFun = "max") reports the largest signal for each spectrum.

peaks optional character providing the IDs of the chromatographic peaks (i.e. the
row names of the peaks in chromPeaks(object)) for which chromatograms
should be returned.

return.type character(1) specifying the type of the returned object. Can be either return.type
= "XChromatograms" (the default) or return.type = "MChromatograms" to re-
turn either a chromatographic object with or without the identified chromato-
graphic peaks, respectively.

progressbar logical(1) whether the progress of the extraction process should be displayed.

Author(s)

Johannes Rainer

See Also

featureChromatograms() to extract an EIC for each feature.

Examples

Load a test data set with detected peaks
library(MSnbase)
library(xcms)
library(MsExperiment)
faahko_sub <- loadXcmsData("faahko_sub2")

Get EICs for every detected chromatographic peak
chrs <- chromPeakChromatograms(faahko_sub)
chrs

Order of EICs matches the order in chromPeaks
chromPeaks(faahko_sub) |> head()

variable "sample_index" provides the index of the sample the EIC was
extracted from
fData(chrs)$sample_index

Get the EIC for selected peaks only.
pks <- rownames(chromPeaks(faahko_sub))[c(6, 12)]
pks

Expand the data on retention time dimension by 15 seconds (on each side)
res <- chromPeakChromatograms(faahko_sub, peaks = pks, expandRt = 5)
plot(res[1,])

chromPeakSpectra 51

chromPeakSpectra Extract spectra associated with chromatographic peaks

Description

Extract (MS1 or MS2) spectra from an XcmsExperiment or XCMSnExp object for identified chro-
matographic peaks. To return spectra for selected chromatographic peaks, their peak ID (i.e., row
name in the chromPeaks matrix) can be provided with parameter peaks. For msLevel = 1L (only
supported for return.type = "Spectra" or return.type = "List") MS1 spectra within the re-
tention time boundaries (in the file in which the peak was detected) are returned. For msLevel = 2L
MS2 spectra are returned for a chromatographic peak if their precursor m/z is within the retention
time and m/z range of the chromatographic peak. Parameter method allows to define whether all or
a single spectrum should be returned:

• method = "all": (default): return all spectra for each chromatographic peak.

• method = "closest_rt": return the spectrum with the retention time closest to the peak’s
retention time (at apex).

• method = "closest_mz": return the spectrum with the precursor m/z closest to the peaks’s
m/z (at apex); only supported for msLevel > 1.

• method = "largest_tic": return the spectrum with the largest total signal (sum of peaks
intensities).

• method = "largest_bpi": return the spectrum with the largest peak intensity (maximal peak
intensity).

• method = "signal": only for object being a XCMSnExp: return the spectrum with the sum of
intensities most similar to the peak’s apex signal ("maxo"); only supported for msLevel = 2L.

Parameter return.type allows to specify the type of the result object. With return.type =
"Spectra" (the default) a Spectra::Spectra object with all matching spectra is returned. With
return.type = "Spectra" a List of Spectra is returned. The length of the list is equal to the
number of rows of chromPeaks. Each element of the list contains thus a Spectra with all spectra
for one chromatographic peak (or a Spectra of length 0 if no spectrum was found for the respective
chromatographic peak).

Parameter chromPeakColumns allows the user to add specific metadata columns from the chro-
matographic peaks (chromPeaks) to the returned spectra object. This can be useful to keep infor-
mation such as retention time (rt), m/z (mz). The columns will be named as they are written in
the chromPeaks object with the prefix "chrom_peak_". The peak ID (i.e., the row name of the
peak in the chromPeaks matrix) is always added to the spectra object as a metadata column named
"chrom_peak_id".

See also the LC-MS/MS data analysis vignette for more details and examples.

Usage

chromPeakSpectra(object, ...)

S4 method for signature 'XcmsExperiment'
chromPeakSpectra(
object,
method = c("all", "closest_rt", "closest_mz", "largest_tic", "largest_bpi"),
msLevel = 2L,

52 chromPeakSpectra

expandRt = 0,
expandMz = 0,
ppm = 0,
skipFilled = FALSE,
peaks = character(),
chromPeakColumns = c("rt", "mz"),
return.type = c("Spectra", "List"),
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp'
chromPeakSpectra(
object,
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = 0,
method = c("all", "closest_rt", "closest_mz", "signal", "largest_tic", "largest_bpi"),
skipFilled = FALSE,
return.type = c("Spectra", "MSpectra", "List", "list"),
peaks = character()

)

Arguments

object XcmsExperiment or XCMSnExp object with identified chromatographic peaks
for which spectra should be returned.

... ignored.

method character(1) specifying which spectra to include in the result. Defaults to
method = "all". See function description for details.

msLevel integer(1) defining the MS level of the spectra that should be returned.

expandRt numeric(1) to expand the retention time range of each peak by a constant value
on each side.

expandMz numeric(1) to expand the m/z range of each peak by a constant value on each
side.

ppm numeric(1) to expand the m/z range of each peak (on each side) by a value
dependent on the peak’s m/z.

skipFilled logical(1) whether spectra for filled-in peaks should be reported or not. De-
faults to skipFilled = FALSE thus also spectra for gap-filled chromatographic
peaks are returned. Set to skipFilled = TRUE to get only spectra for detected
chromatographic peaks.

peaks character, logical or integer allowing to specify a subset of chromato-
graphic peaks in chromPeaks for which spectra should be returned (providing
either their ID, a logical vector same length than nrow(chromPeaks(x)) or their
index in chromPeaks(x)). Be aware that when peaks are provided, parameter
skipFilled is ignored. Spectra are returned for any chromatographic peak,
detected or gap-filled, that are defined with peaks.

chromPeakColumns

character vector with the names of the columns from chromPeaks that should
be added to the returned spectra object. The columns will be named as they

chromPeakSpectra 53

are written in the chromPeaks object with a prefix "chrom_peak_". Defaults to
c("mz", "rt").

return.type character(1) defining the type of result object that should be returned.

BPPARAM parallel processing setup. Defaults to BiocParallel::bpparam().

Value

parameter return.type allow to specify the type of the returned object:

• return.type = "Spectra" (default): a Spectra object (defined in the Spectra package).
The result contains all spectra for all peaks. Metadata column "peak_id" provides the ID of
the respective peak (i.e. its rowname in chromPeaks().

• return.type = "List": List of length equal to the number of chromatographic peaks is
returned, each element being a Spectra with the spectra for one chromatographic peak.

For backward compatibility options "MSpectra" and "list" are also supported but are not sug-
gested.

• return.type = "MSpectra" (deprecated): a MSnbase::MSpectra object with elements being
Spectrum objects. The result objects contains all spectra for all peaks. Metadata column
"peak_id" provides the ID of the respective peak (i.e. its rowname in chromPeaks()).

• return.type = "list": list of lists that are either of length 0 or contain Spectrum2 ob-
ject(s) within the m/z-rt range. The length of the list matches the number of peaks.

Author(s)

Johannes Rainer

Examples

Read a file with DDA LC-MS/MS data
library(MsExperiment)
fl <- system.file("TripleTOF-SWATH/PestMix1_DDA.mzML", package = "msdata")

dda <- readMsExperiment(fl)

Perform MS1 peak detection
dda <- findChromPeaks(dda, CentWaveParam(peakwidth = c(5, 15),

prefilter = c(5, 1000)))

Return all MS2 spectro for each chromatographic peaks as a Spectra object
ms2_sps <- chromPeakSpectra(dda)
ms2_sps

spectra variable *chrom_peak_id* contain the row names of the peaks in the
chromPeak matrix and allow thus to map chromatographic peaks to the
returned MS2 spectra
ms2_sps$chrom_peak_id
chromPeaks(dda)

Alternatively, return the result as a List of Spectra objects. This list
is parallel to chromPeaks hence the mapping between chromatographic peaks
and MS2 spectra is easier.
ms2_sps <- chromPeakSpectra(dda, return.type = "List")
names(ms2_sps)

54 chromPeakSummary

rownames(chromPeaks(dda))
ms2_sps[[1L]]

Parameter `msLevel` allows to define from which MS level spectra should
be returned. By default `msLevel = 2L` but with `msLevel = 1L` all
MS1 spectra with a retention time within the retention time range of
a chromatographic peak can be returned. Alternatively, selected
spectra can be returned by specifying the selection criteria/method
with the `method` parameter. Below we extract for each chromatographic
peak the MS1 spectra with a retention time closest to the
chromatographic peak's apex position. Alternatively it would also be
possible to select the spectrum with the highest total signal or
highest (maximal) intensity.
ms1_sps <- chromPeakSpectra(dda, msLevel = 1L, method = "closest_rt")
ms1_sps

Parameter peaks would allow to extract spectra for specific peaks only.
Peaks can be defined with parameter `peaks` which can be either an
`integer` with the index of the peak in the `chromPeaks` matrix or a
`character` with its rowname in `chromPeaks`.
chromPeakSpectra(dda, msLevel = 1L, method = "closest_rt", peaks = c(3, 5))

chromPeakSummary Chromatographic peak summaries

Description

The chromPeakSummary() method calculates summary statistics or other metrics for each of the
identified chromatographic peaks in an xcms result object, such as the XcmsExperiment(). Dif-
ferent metrics can be calculated, depending upon (and configured by) using dedicated parameter
classes. As a result, the method returns a matrix or data.frame with one row per chromatographic
peak. Each column contains calculated values, depending on the used method/parameter class.

Currently implemented methods/parameter classes are:

• BetaDistributionParam: calculates the beta_cor and beta_snr quality metrics as described
in Kumler 2023 representing the result from a (correlation) test of similarity (using Pearson’s
correlation coefficient) to a bell curve and the signal-to-noise ratio calculated on the residuals
of this test.

Usage

chromPeakSummary(object, param, ...)

S4 method for signature 'XcmsExperiment,BetaDistributionParam'
chromPeakSummary(
object,
param,
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

BetaDistributionParam()

collect-methods 55

Arguments

object an xcms result object containing information on identified chromatographic peaks.

param a parameter object defining the method/summaries that should be calculated (see
description above for supported parameter classes).

... additional arguments passed to the method implementation.

msLevel integer(1) with the MS level of the chromatographic peaks on which the met-
ric should be calculated.

chunkSize integer(1) defining the number of samples from which data should be loaded
and processed at a time.

BPPARAM Parallel processing setup. See BiocParallel::bpparam() for details.

Value

A matrix or data.frame with the same number of rows as there are chromatographic peaks.
Columns contain the calculated values. The number of columns, their names and content depend
on the used parameter object. See the respective documentation above for more details.

Author(s)

Pablo Vangeenderhuysen, Johannes Rainer, William Kumler

References

Kumler W, Hazelton B J and Ingalls A E (2023) "Picky with peakpicking: assessing chromato-
graphic peak quality with simple metrics in metabolomics" BMC Bioinformatics 24(1):404. doi:
10.1186/s12859-023-05533-4

collect-methods Collect MS^n peaks into xcmsFragments

Description

Collecting Peaks into xcmsFragmentss from several MS-runs using xcmsSet and xcmsRaw.

Arguments

object (empty) xcmsFragments-class object

xs A xcmsSet-class object which contains picked ms1-peaks from several exper-
iments

compMethod ("floor", "round", "none"): compare-method which is used to find the parent
peak of a MSnpeak through comparing the MZ-values of the MS1peaks with
the MSnParentPeaks.

snthresh, mzgap, uniq
these are the parameters for the getspec-peakpicker included in xcmsRaw.

Details

After running collect(xFragments,xSet) The peak table of the xcmsFragments includes the ms1Peaks
from all experiments stored in a xcmsSet-object. Further it contains the relevant msN-peaks from
the xcmsRaw-objects, which were created temporarily with the paths in xcmsSet.

https://doi.org/10.1186/s12859-023-05533-4

56 colMax

Value

A matrix with columns:

peakID unique identifier of every peak
MSnParentPeakID

PeakID of the parent peak of a msLevel>1 - peak, it is 0 if the peak is msLevel
1.

msLevel The msLevel of the peak.

rt retention time of the peak midpoint

mz the mz-Value of the peak

intensity the intensity of the peak

sample the number of the sample from the xcmsSet

GroupPeakMSn Used for grouped xcmsSet groups
CollisionEnergy

The collision energy of the fragment

Methods

object = "xcmsFragments" collect(object, ...)

colMax Find row and column maximum values

Description

Find row and column maximum values for numeric arrays.

Usage

colMax(x, na.rm = FALSE, dims = 1)
rowMax(x, na.rm = FALSE, dims = 1)
which.colMax(x, na.rm = FALSE, dims = 1)
which.rowMax(x, na.rm = FALSE, dims = 1)

Arguments

x an array of two or more dimensions, containing numeric values

na.rm logical. Should missing values (including ’NaN’) be omitted from the calcula-
tions? (not currently implemented)

dims Which dimensions are regarded as "rows" or "columns" to maximize. For rowMax,
the maximum is over dimensions dims+1, ...; for colMax it is over dimensions
1:dims.

Details

These functions are designed to act like the colSums series of functions except that they only cur-
rently handle real arrays and will not remove NA values.

correlate,Chromatogram,Chromatogram-method 57

Value

A numeric array of suitable size, or a vector if the result is one-dimensional. The dimnames (or
names for a vector result) are taken from the original array.

For the which.* functions, an integer array of suitable size, or a vector if the result is one-dimensional.
The indecies returned are for accessing x one-dimensionally (i.e. x[index]). For which.colMax(),
the actual row indecies my be determined using (which.colMax(x)-1) %% nrow(x) + 1. For which.rowMax(),
the actual column indecies may be determined using ceiling(rowMax(x)/nrow(x)).

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

colSums

correlate,Chromatogram,Chromatogram-method

Correlate chromatograms

Description

For xcms >= 3.15.3 please use MSnbase::compareChromatograms() instead of correlate
Correlate intensities of two chromatograms with each other. If the two Chromatogram objects have
different retention times they are first aligned to match data points in the first to data points in the
second chromatogram. See help on alignRt in MSnbase::Chromatogram() for more details.

If correlate is called on a single MSnbase::MChromatograms() object a pairwise correlation of
each chromatogram with each other is performed and a matrix with the correlation coefficients is
returned.

Note that the correlation of two chromatograms depends also on their order, e.g. correlate(chr1,
chr2) might not be identical to correlate(chr2, chr1). The lower and upper triangular part of
the correlation matrix might thus be different.

Usage

S4 method for signature 'Chromatogram,Chromatogram'
correlate(
x,
y,
use = "pairwise.complete.obs",
method = c("pearson", "kendall", "spearman"),
align = c("closest", "approx"),
...

)

S4 method for signature 'MChromatograms,missing'
correlate(
x,
y = NULL,

58 correlate,Chromatogram,Chromatogram-method

use = "pairwise.complete.obs",
method = c("pearson", "kendall", "spearman"),
align = c("closest", "approx"),
...

)

S4 method for signature 'MChromatograms,MChromatograms'
correlate(
x,
y = NULL,
use = "pairwise.complete.obs",
method = c("pearson", "kendall", "spearman"),
align = c("closest", "approx"),
...

)

Arguments

x MSnbase::Chromatogram() or MSnbase::MChromatograms() object.

y MSnbase::Chromatogram() or MSnbase::MChromatograms() object.

use character(1) passed to the cor function. See cor() for details.

method character(1) passed to the cor function. See stats::cor() for details.

align character(1) defining the alignment method to be used. See help on alignRt
in MSnbase::Chromatogram() for details. The value of this parameter is passed
to the method parameter of alignRt.

... optional parameters passed along to the alignRt method such as tolerance
that, if set to 0 requires the retention times to be identical.

Value

numeric(1) or matrix (if called on MChromatograms objects) with the correlation coefficient. If a
matrix is returned, the rows represent the chromatograms in x and the columns the chromatograms
in y.

Author(s)

Michael Witting, Johannes Rainer

Examples

library(MSnbase)
chr1 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),

intensity = c(5, 29, 50, NA, 100, 12, 3, 4, 1, 3))
chr2 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),

intensity = c(80, 50, 20, 10, 9, 4, 3, 4, 1, 3))
chr3 <- Chromatogram(rtime = 3:9 + rnorm(7, sd = 0.3),

intensity = c(53, 80, 130, 15, 5, 3, 2))

chrs <- MChromatograms(list(chr1, chr2, chr3))

Using `compareChromatograms` instead of `correlate`.
compareChromatograms(chr1, chr2)
compareChromatograms(chr2, chr1)

descendZero 59

compareChromatograms(chrs, chrs)

descendZero Find start and end points of a peak

Description

Decends down the sides of a data peak and finds either the points greater than or equal to the zero
intercept, the intercept with a given value, or the bottom of the first valley on each side.

Usage

descendZero(y, istart = which.max(y))
descendValue(y, value, istart = which.max(y))
descendMin(y, istart = which.max(y))

Arguments

y numeric vector with values

istart starting point for descent

value numeric value to descend to

Value

An integer vector of length 2 with the starting and ending indicies of the peak start and end points.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

descendValue

Examples

normdist <- dnorm(seq(-4, 4, .1)) - .1
xcms:::descendZero(normdist)
normdist[xcms:::descendZero(normdist)]
xcms:::descendValue(normdist, .15)
normdist[xcms:::descendValue(normdist, .15)]
xcms:::descendMin(normdist)

60 diffreport-methods

diffreport-methods Create report of analyte differences

Description

Create a report showing the most significant differences between two sets of samples. Optionally
create extracted ion chromatograms for the most significant differences.

Arguments

object the xcmsSet object

class1 character vector with the first set of sample classes to be compared

class2 character vector with the second set of sample classes to be compared

filebase base file name to save report, .tsv file and _eic will be appended to this name
for the tabular report and EIC directory, respectively. if blank nothing will be
saved

eicmax number of the most significantly different analytes to create EICs for

eicwidth width (in seconds) of EICs produced

sortpval logical indicating whether the reports should be sorted by p-value

classeic character vector with the sample classes to include in the EICs

value intensity values to be used for the diffreport.
If value="into", integrated peak intensities are used.
If value="maxo", maximum peak intensities are used.
If value="intb", baseline corrected integrated peak intensities are used (only
available if peak detection was done by findPeaks.centWave).

metlin mass uncertainty to use for generating link to Metlin metabolite database. the
sign of the uncertainty indicates negative or positive mode data for M+H or M-H
calculation. a value of FALSE or 0 removes the column

h Numeric variable for the height of the eic and boxplots that are printed out.

w Numeric variable for the width of the eic and boxplots print out made.

mzdec Number of decimal places of title m/z values in the eic plot.

missing numeric(1) defining an optional value for missing values. missing = 0 would
e.g. replace all NA values in the feature matrix with 0. Note that also a call to
fillPeaks results in a feature matrix in which NA values are replaced by 0.

... optional arguments to be passed to mt.teststat from the multtest package.

Details

This method handles creation of summary reports with statistics about which analytes were most
significantly different between two sets of samples. It computes Welch’s two-sample t-statistic for
each analyte and ranks them by p-value. It returns a summary report that can optionally be written
out to a tab-separated file.

Additionally, it does all the heavy lifting involved in creating superimposed extracted ion chro-
matograms for a given number of analytes. It does so by reading the raw data files associated with
the samples of interest one at a time. As it does so, it prints the name of the sample it is currently
reading. Depending on the number and size of the samples, this process can take a long time.

diffreport-methods 61

If a base file name is provided, the report (see Value section) will be saved to a tab separated file.
If EICs are generated, they will be saved as 640x480 PNG files in a newly created subdirectory.
However this parameter can be changed with the commands arguments. The numbered file names
correspond to the rows in the report.

Chromatographic traces in the EICs are colored and labeled by their sample class. Sample classes
take their color from the current palette. The color a sample class is assigned is dependent its order
in the xcmsSet object, not the order given in the class arguments. Thus levels(sampclass(object))[1]
would use color palette()[1] and so on. In that way, sample classes maintain the same color
across any number of different generated reports.

When there are multiple sample classes, xcms will produce boxplots of the different classes and
will generate a single anova p-value statistic. Like the eic’s the plot number corresponds to the row
number in the report.

Value

A data frame with the following columns:

fold mean fold change (always greater than 1, see tstat for which set of sample
classes was higher)

tstat Welch’s two sample t-statistic, positive for analytes having greater intensity in
class2, negative for analytes having greater intensity in class1

pvalue p-value of t-statistic

anova p-value of the anova statistic if there are multiple classes

mzmed median m/z of peaks in the group

mzmin minimum m/z of peaks in the group

mzmax maximum m/z of peaks in the group

rtmed median retention time of peaks in the group

rtmin minimum retention time of peaks in the group

rtmax maximum retention time of peaks in the group

npeaks number of peaks assigned to the group

Sample Classes number samples from each sample class represented in the group

metlin A URL to metlin for that mass

... one column for every sample class

Sample Names integrated intensity value for every sample

... one column for every sample

Methods

object = "xcmsSet" diffreport(object, class1 = levels(sampclass(object))[1], class2
= levels(sampclass(object))[2], filebase = character(), eicmax = 0, eicwidth = 200,
sortpval = TRUE, classeic = c(class1,class2), value=c("into","maxo","intb"), metlin
= FALSE, h=480,w=640, mzdec=2, missing = numeric(), ...)

See Also

xcmsSet-class, palette

62 doubleMatrix

dirname Change the file path of an OnDiskMSnExp object

Description

dirname allows to get and set the path to the directory containing the source files of the OnDiskMSnExp
(or XCMSnExp) object.

Usage

S4 method for signature 'OnDiskMSnExp'
dirname(path)

S4 replacement method for signature 'OnDiskMSnExp'
dirname(path) <- value

Arguments

path OnDiskMSnExp.
value character of length 1 or length equal to the number of files defining the new

path to the files.

Author(s)

Johannes Rainer

doubleMatrix Allocate double, integer, or logical matricies

Description

Allocate double, integer, or logical matricies in one step without copying memory around.

Usage

doubleMatrix(nrow = 0, ncol = 0)
integerMatrix(nrow = 0, ncol = 0)
logicalMatrix(nrow = 0, ncol = 0)

Arguments

nrow number of matrix rows
ncol number of matrix columns

Value

Matrix of double, integer, or logical values. Memory is not zeroed.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

do_adjustRtime_peakGroups 63

do_adjustRtime_peakGroups

Align spectrum retention times across samples using peak groups
found in most samples

Description

The function performs retention time correction by assessing the retention time deviation across all
samples using peak groups (features) containg chromatographic peaks present in most/all samples.
The retention time deviation for these features in each sample is described by fitting either a poly-
nomial (smooth = "loess") or a linear (smooth = "linear") model to the data points. The models
are subsequently used to adjust the retention time for each spectrum in each sample.

Usage

do_adjustRtime_peakGroups(
peaks,
peakIndex,
rtime = list(),
minFraction = 0.9,
extraPeaks = 1,
smooth = c("loess", "linear"),
span = 0.2,
family = c("gaussian", "symmetric"),
peakGroupsMatrix = matrix(ncol = 0, nrow = 0),
subset = integer(),
subsetAdjust = c("average", "previous")

)

Arguments

peaks a matrix or data.frame with the identified chromatographic peaks in the sam-
ples.

peakIndex a list of indices that provides the grouping information of the chromatographic
peaks (across and within samples).

rtime a list of numeric vectors with the retention times per file/sample.

minFraction For PeakGroupsParam: numeric(1) between 0 and 1 defining the minimum
required proportion of samples in which peaks for the peak group were identi-
fied. Peak groups passing this criteria will be aligned across samples and reten-
tion times of individual spectra will be adjusted based on this alignment. For
minFraction = 1 the peak group has to contain peaks in all samples of the ex-
periment. Note that if subset is provided, the specified fraction is relative to
the defined subset of samples and not to the total number of samples within the
experiment (i.e., a peak has to be present in the specified proportion of subset
samples).

extraPeaks For PeakGroupsParam: numeric(1) defining the maximal number of additional
peaks for all samples to be assigned to a peak group (feature) for retention time
correction. For a data set with 6 samples, extraPeaks = 1 uses all peak groups
with a total peak count <= 6 + 1. The total peak count is the total num-
ber of peaks being assigned to a peak group and considers also multiple peaks

64 do_adjustRtime_peakGroups

within a sample that are assigned to the group. This parameter is ignored for
adjustRtime() on an XcmsExperimentHdf5().

smooth For PeakGroupsParam: character(1) defining the function to be used to inter-
polate corrected retention times for all peak groups. Can be either "loess" or
"linear".

span For PeakGroupsParam: numeric(1) defining the degree of smoothing (if smooth
= "loess"). This parameter is passed to the internal call to stats::loess().

family For PeakGroupsParam: character(1) defining the method for loess smooth-
ing. Allowed values are "gaussian" and "symmetric". See stats::loess()
for more information.

peakGroupsMatrix

optional matrix of (raw) retention times for peak groups on which the alignment
should be performed. Each column represents a sample, each row a feature/peak
group. If not provided, this matrix will be determined depending on parameters
minFraction and extraPeaks. If provided, minFraction and extraPeaks will
be ignored.

subset For ObiwarpParam and PeakGroupsParam: integer with the indices of sam-
ples within the experiment on which the alignment models should be estimated.
Samples not part of the subset are adjusted based on the closest subset sample.
See Subset-based alignment section for details.

subsetAdjust For ObiwarpParam and PeakGroupsParam: character(1) specifying the method
with which non-subset samples should be adjusted. Supported options are "previous"
and "average" (default). See Subset-based alignment section for details.

Details

The alignment bases on the presence of compounds that can be found in all/most samples of an
experiment. The retention times of individual spectra are then adjusted based on the alignment of
the features corresponding to these house keeping compounds. The parameters minFraction and
extraPeaks can be used to fine tune which features should be used for the alignment (i.e. which
features most likely correspond to the above mentioned house keeping compounds).

Parameter subset allows to define a subset of samples within the experiment that should be aligned.
All samples not being part of the subset will be aligned based on the adjustment of the closest sample
within the subset. This allows to e.g. exclude blank samples from the alignment process with their
retention times being still adjusted based on the alignment results of the real samples.

Value

A list with numeric vectors with the adjusted retention times grouped by sample.

Note

The method ensures that returned adjusted retention times are increasingly ordered, just as the raw
retention times.

Author(s)

Colin Smith, Johannes Rainer

do_findChromPeaks_centWave 65

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787.

do_findChromPeaks_centWave

Core API function for centWave peak detection

Description

This function performs peak density and wavelet based chromatographic peak detection for high
resolution LC/MS data in centroid mode Tautenhahn 2008.

Usage

do_findChromPeaks_centWave(
mz,
int,
scantime,
valsPerSpect,
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
roiList = list(),
firstBaselineCheck = TRUE,
roiScales = NULL,
sleep = 0,
extendLengthMSW = FALSE,
verboseBetaColumns = FALSE

)

Arguments

mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

scantime Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

valsPerSpect Numeric vector with the number of values for each spectrum.

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

66 do_findChromPeaks_centWave

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh numeric(1) defining the signal to noise ratio cutoff.
prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI

detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.
roiList An optional list of regions-of-interest (ROI) representing detected mass traces.

If ROIs are submitted the first analysis step is omitted and chromatographic
peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data.frame.

firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roiList that should be used for the centWave-wavelets.

sleep numeric(1) defining the number of seconds to wait between iterations. De-
faults to sleep = 0. If > 0 a plot is generated visualizing the identified chro-
matographic peak. Note: this argument is for backward compatibility only and
will be removed in future.

extendLengthMSW

Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect" method. See https://github.com/sneumann/xcms/issues/445 for more
information.

do_findChromPeaks_centWave 67

verboseBetaColumns

Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,
corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

Details

This algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data in centroid
mode. In the first phase the method identifies regions of interest (ROIs) representing mass traces
that are characterized as regions with less than ppm m/z deviation in consecutive scans in the LC/MS
map. In detail, starting with a single m/z, a ROI is extended if a m/z can be found in the next scan
(spectrum) for which the difference to the mean m/z of the ROI is smaller than the user defined ppm
of the m/z. The mean m/z of the ROI is then updated considering also the newly included m/z value.

These ROIs are then, after some cleanup, analyzed using continuous wavelet transform (CWT) to
locate chromatographic peaks on different scales. The first analysis step is skipped, if regions of
interest are passed with the roiList parameter.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

• "mz": Intensity weighted mean of m/z values of the peak across scans.

• "mzmin": Minimum m/z of the peak.

• "mzmax": Maximum m/z of the peak.

• "rt": Retention time of the peak’s midpoint.

• "rtmin": Minimum retention time of the peak.

• ‘"rtmax: Maximum retention time of the peak.

• "into": Integrated (original) intensity of the peak.

• "intb": Per-peak baseline corrected integrated peak intensity.

• "maxo": Maximum intensity of the peak.

• "sn": Signal to noise ratio, defined as (maxo - baseline)/sd, sd being the standard deviation
of local chromatographic noise.

• "egauss": RMSE of Gaussian fit.

Additional columns for verboseColumns = TRUE:

• "mu": Gaussian parameter mu.

• "sigma": Gaussian parameter sigma.

• "h": Gaussian parameter h.

• "f": Region number of the m/z ROI where the peak was localized.

• "dppm": m/z deviation of mass trace across scans in ppm.

• "scale": Scale on which the peak was localized.

• "scpos": Peak position found by wavelet analysis (scan number).

• "scmin": Left peak limit found by wavelet analysis (scan number).

• "scmax": Right peak limit found by wavelet analysis (scan numer).

68 do_findChromPeaks_centWave

Additional columns for verboseBetaColumns = TRUE:

• "beta_cor": Correlation between an "ideal" bell curve and the raw data.

• "beta_snr": Signal-to-noise residuals calculated from the beta_cor fit.

Note

The centWave was designed to work on centroided mode, thus it is expected that such data is pre-
sented to the function.

This function exposes core chromatographic peak detection functionality
of the *centWave* method. While this function can be called
directly, users will generally call the corresponding method for the
data object instead.

Author(s)

Ralf Tautenhahn, Johannes Rainer

References

Ralf Tautenhahn, Christoph Böttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504 doi: 10.1186/1471-2105-9-504

See Also

Other core peak detection functions: do_findChromPeaks_centWaveWithPredIsoROIs(), do_findChromPeaks_massifquant(),
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

Calling the function. We're using a large value for noise and prefilter
to speed up the call in the example - in a real use case we would either
set the value to a reasonable value or use the default value.
res <- do_findChromPeaks_centWave(mz = unlist(mzs), int = unlist(ints),

scantime = rtime(data), valsPerSpect = valsPerSpect, noise = 10000,
prefilter = c(3, 10000))

head(res)

https://doi.org/10.1186/1471-2105-9-504

do_findChromPeaks_centWaveWithPredIsoROIs 69

do_findChromPeaks_centWaveWithPredIsoROIs

Core API function for two-step centWave peak detection with isotopes

Description

The do_findChromPeaks_centWaveWithPredIsoROIs performs a two-step centWave based peak
detection: chromatographic peaks are identified using centWave followed by a prediction of the
location of the identified peaks’ isotopes in the mz-retention time space. These locations are fed as
regions of interest (ROIs) to a subsequent centWave run. All non overlapping peaks from these two
peak detection runs are reported as the final list of identified peaks.

The do_findChromPeaks_centWaveAddPredIsoROIs performs centWave based peak detection based
in regions of interest (ROIs) representing predicted isotopes for the peaks submitted with argument
peaks. The function returns a matrix with the identified peaks consisting of all input peaks and
peaks representing predicted isotopes of these (if found by the centWave algorithm).

Usage

do_findChromPeaks_centWaveWithPredIsoROIs(
mz,
int,
scantime,
valsPerSpect,
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
roiList = list(),
firstBaselineCheck = TRUE,
roiScales = NULL,
snthreshIsoROIs = 6.25,
maxCharge = 3,
maxIso = 5,
mzIntervalExtension = TRUE,
polarity = "unknown",
extendLengthMSW = FALSE,
verboseBetaColumns = FALSE

)

do_findChromPeaks_addPredIsoROIs(
mz,
int,
scantime,
valsPerSpect,

70 do_findChromPeaks_centWaveWithPredIsoROIs

ppm = 25,
peakwidth = c(20, 50),
snthresh = 6.25,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
peaks. = NULL,
maxCharge = 3,
maxIso = 5,
mzIntervalExtension = TRUE,
polarity = "unknown"

)

Arguments

mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

scantime Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

valsPerSpect Numeric vector with the number of values for each spectrum.
ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans

in parts per million (ppm) for the initial ROI definition.
peakwidth numeric(2) with the expected approximate peak width in chromatographic space.

Given as a range (min, max) in seconds.
snthresh For do_findChromPeaks_addPredIsoROIs: numeric(1) defining the signal to

noise threshold for the centWave algorithm. For do_findChromPeaks_centWaveWithPredIsoROIs:
numeric(1) defining the signal to noise threshold for the initial (first) centWave
run.

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

do_findChromPeaks_centWaveWithPredIsoROIs 71

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

roiList An optional list of regions-of-interest (ROI) representing detected mass traces.
If ROIs are submitted the first analysis step is omitted and chromatographic
peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data.frame.

firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roiList that should be used for the centWave-wavelets.

snthreshIsoROIs

numeric(1) defining the signal to noise ratio cutoff to be used in the second
centWave run to identify peaks for predicted isotope ROIs.

maxCharge integer(1) defining the maximal isotope charge. Isotopes will be defined for
charges 1:maxCharge.

maxIso integer(1) defining the number of isotope peaks that should be predicted for
each peak identified in the first centWave run.

mzIntervalExtension

logical(1) whether the mz range for the predicted isotope ROIs should be
extended to increase detection of low intensity peaks.

polarity character(1) specifying the polarity of the data. Currently not used, but has
to be "positive", "negative" or "unknown" if provided.

extendLengthMSW

Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect" method. See https://github.com/sneumann/xcms/issues/445 for more
information.

verboseBetaColumns

Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,
corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

peaks. A matrix such as one returned by a call to do_findChromPeaks_centWave()
(with verboseColumns = TRUE) with the peaks for which isotopes should be
predicted and used for an additional peak detectoin using the centWave method.
Required columns are: "mz", "mzmin", "mzmax", "scmin", "scmax", "scale"
and "into".

72 do_findChromPeaks_centWaveWithPredIsoROIs

Details

For more details on the centWave algorithm see centWave().

Value

A matrix, each row representing an identified chromatographic peak. All non-overlapping peaks
identified in both centWave runs are reported. The matrix columns are:

• "mz": Intensity weighted mean of m/z values of the peaks across scans.

• "mzmin": Minimum m/z of the peaks.

• "mzmax": Maximum m/z of the peaks.

• "rt": Retention time of the peak’s midpoint.

• "rtmin": Minimum retention time of the peak.

• "rtmax": Maximum retention time of the peak.

• "into": Integrated (original) intensity of the peak.

• "intb": Per-peak baseline corrected integrated peak intensity.

• "maxo": Maximum intensity of the peak.

• "sn": Signal to noise ratio, defined as (maxo - baseline)/sd, sd being the standard deviation
of local chromatographic noise.

• "egauss": RMSE of Gaussian fit.

Additional columns for verboseColumns = TRUE:

• "mu": Gaussian parameter mu.

• "sigma": Gaussian parameter sigma.

• "h": Gaussian parameter h.

• "f": Region number of the m/z ROI where the peak was localized.

• "dppm": m/z deviation of mass trace across scans in ppm.

• "scale": Scale on which the peak was localized.

• "scpos": Peak position found by wavelet analysis (scan number).

• "scmin": Left peak limit found by wavelet analysis (scan number).

• "scmax": Right peak limit found by wavelet analysis (scan numer).

Additional columns for verboseBetaColumns = TRUE:

• "beta_cor": Correlation between an "ideal" bell curve and the raw data.

• "beta_snr": Signal-to-noise residuals calculated from the beta_cor fit.

Author(s)

Hendrik Treutler, Johannes Rainer

See Also

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_massifquant(),
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

do_findChromPeaks_massifquant 73

do_findChromPeaks_massifquant

Core API function for massifquant peak detection

Description

Massifquant is a Kalman filter (KF)-based chromatographic peak detection for XC-MS data in cen-
troid mode. The identified peaks can be further refined with the centWave method (see do_findChromPeaks_centWave()
for details on centWave) by specifying withWave = TRUE.

Usage

do_findChromPeaks_massifquant(
mz,
int,
scantime,
valsPerSpect,
ppm = 10,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
criticalValue = 1.125,
consecMissedLimit = 2,
unions = 1,
checkBack = 0,
withWave = FALSE

)

Arguments

mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

scantime Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

valsPerSpect Numeric vector with the number of values for each spectrum.

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh numeric(1) defining the signal to noise ratio cutoff.

74 do_findChromPeaks_massifquant

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

criticalValue numeric(1). Suggested values: (0.1-3.0). This setting helps determine the
the Kalman Filter prediciton margin of error. A real centroid belonging to a
bonafide peak must fall within the KF prediction margin of error. Much like in
the construction of a confidence interval, criticalVal loosely translates to be a
multiplier of the standard error of the prediction reported by the Kalman Filter.
If the peak in the XC-MS sample have a small mass deviance in ppm error, a
smaller critical value might be better and vice versa.

consecMissedLimit

integer(1) Suggested values: (1,2,3). While a peak is in the proces of being
detected by a Kalman Filter, the Kalman Filter may not find a predicted centroid
in every scan. After 1 or more consecutive failed predictions, this setting informs
Massifquant when to stop a Kalman Filter from following a candidate peak.

unions integer(1) set to 1 if apply t-test union on segmentation; set to 0 if no t-test to
be applied on chromatographically continous peaks sharing same m/z range. Ex-
planation: With very few data points, sometimes a Kalman Filter stops tracking
a peak prematurely. Another Kalman Filter is instantiated and begins following
the rest of the signal. Because tracking is done backwards to forwards, this algo-
rithmic defect leaves a real peak divided into two segments or more. With this
option turned on, the program identifies segmented peaks and combines them
(merges them) into one with a two sample t-test. The potential danger of this
option is that some truly distinct peaks may be merged.

checkBack integer(1) set to 1 if turned on; set to 0 if turned off. The convergence of
a Kalman Filter to a peak’s precise m/z mapping is very fast, but sometimes it
incorporates erroneous centroids as part of a peak (especially early on). The
scanBack option is an attempt to remove the occasional outlier that lies beyond
the converged bounds of the Kalman Filter. The option does not directly affect

do_findChromPeaks_massifquant 75

identification of a peak because it is a postprocessing measure; it has not shown
to be a extremely useful thus far and the default is set to being turned off.

withWave logical(1) if TRUE, the peaks identified first with Massifquant are subsequently
filtered with the second step of the centWave algorithm, which includes wavelet
estimation.

Details

This algorithm’s performance has been tested rigorously on high resolution LC/(OrbiTrap, TOF)-
MS data in centroid mode. Simultaneous kalman filters identify peaks and calculate their area under
the curve. The default parameters are set to operate on a complex LC-MS Orbitrap sample. Users
will find it useful to do some simple exploratory data analysis to find out where to set a minimum
intensity, and identify how many scans an average peak spans. The consecMissedLimit parameter
has yielded good performance on Orbitrap data when set to (2) and on TOF data it was found
best to be at (1). This may change as the algorithm has yet to be tested on many samples. The
criticalValue parameter is perhaps most dificult to dial in appropriately and visual inspection
of peak identification is the best suggested tool for quick optimization. The ppm and checkBack
parameters have shown less influence than the other parameters and exist to give users flexibility
and better accuracy.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

• "mz": Intensity weighted mean of m/z values of the peaks across scans.

• "mzmin": Minumum m/z of the peak.

• "mzmax": Maximum m/z of the peak.

• "rtmin": Minimum retention time of the peak.

• "rtmax": Maximum retention time of the peak.

• "rt": Retention time of the peak’s midpoint.

• "into": Integrated (original) intensity of the peak.

• "maxo": Maximum intensity of the peak.

If withWave is set to TRUE, the result is the same as returned by the do_findChromPeaks_centWave()
method.

Author(s)

Christopher Conley

References

Conley CJ, Smith R, Torgrip RJ, Taylor RM, Tautenhahn R and Prince JT "Massifquant: open-
source Kalman filter-based XC-MS isotope trace feature detection" Bioinformatics 2014, 30(18):2636-
43. doi: 10.1093/bioinformatics/btu359

See Also

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_centWaveWithPredIsoROIs(),
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

https://doi.org/10.1093/bioinformatics/btu359

76 do_findChromPeaks_matchedFilter

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

Perform the peak detection using massifquant - setting prefilter to
a high value to speed up the call for the example
res <- do_findChromPeaks_massifquant(mz = unlist(mzs), int = unlist(ints),

scantime = rtime(data), valsPerSpect = valsPerSpect,
prefilter = c(3, 10000))

head(res)

do_findChromPeaks_matchedFilter

Core API function for matchedFilter peak detection

Description

This function identifies peaks in the chromatographic time domain as described in Smith 2006. The
intensity values are binned by cutting The LC/MS data into slices (bins) of a mass unit (binSize
m/z) wide. Within each bin the maximal intensity is selected. The peak detection is then per-
formed in each bin by extending it based on the steps parameter to generate slices comprising bins
current_bin - steps +1 to current_bin + steps - 1. Each of these slices is then filtered with
matched filtration using a second-derative Gaussian as the model peak shape. After filtration peaks
are detected using a signal-to-ration cut-off. For more details and illustrations see Smith 2006.

Usage

do_findChromPeaks_matchedFilter(
mz,
int,
scantime,
valsPerSpect,
binSize = 0.1,
impute = "none",
baseValue,
distance,
fwhm = 30,
sigma = fwhm/2.3548,
max = 5,
snthresh = 10,
steps = 2,
mzdiff = 0.8 - binSize * steps,

do_findChromPeaks_matchedFilter 77

index = FALSE,
sleep = 0

)

Arguments

mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

scantime Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

valsPerSpect Numeric vector with the number of values for each spectrum.

binSize numeric(1) specifying the width of the bins/slices in m/z dimension.

impute Character string specifying the method to be used for missing value imputation.
Allowed values are "none" (no linear interpolation), "lin" (linear interpola-
tion), "linbase" (linear interpolation within a certain bin-neighborhood) and
"intlin". See imputeLinInterpol() for more details.

baseValue The base value to which empty elements should be set. This is only con-
sidered for method = "linbase" and corresponds to the profBinLinBase()’s
baselevel argument.

distance For method = "linbase": number of non-empty neighboring element of an
empty element that should be considered for linear interpolation. See details
section for more information.

fwhm numeric(1) specifying the full width at half maximum of matched filtration
gaussian model peak. Only used to calculate the actual sigma, see below.

sigma numeric(1) specifying the standard deviation (width) of the matched filtration
model peak.

max numeric(1) representing the maximum number of peaks that are expected/will
be identified per slice.

snthresh numeric(1) defining the signal to noise ratio cutoff.

steps numeric(1) defining the number of bins to be merged before filtration (i.e. the
number of neighboring bins that will be joined to the slice in which filtration
and peak detection will be performed).

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

index logical(1) specifying whether indicies should be returned instead of values
for m/z and retention times.

sleep numeric(1) defining the number of seconds to wait between iterations. De-
faults to sleep = 0. If > 0 a plot is generated visualizing the identified chro-
matographic peak. Note: this argument is for backward compatibility only and
will be removed in future.

78 do_findChromPeaks_matchedFilter

Details

The intensities are binned by the provided m/z values within each spectrum (scan). Binning is
performed such that the bins are centered around the m/z values (i.e. the first bin includes all m/z
values between min(mz) - bin_size/2 and min(mz) + bin_size/2).

For more details on binning and missing value imputation see
[binYonX()] and [imputeLinInterpol()] functions.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

• "mz": Intensity weighted mean of m/z values of the peak across scans.

• "mzmin": Minimum m/z of the peak.

• "mzmax": Maximum m/z of the peak.

• "rt": Retention time of the peak’s midpoint.

• "rtmin": Minimum retention time of the peak.

• "rtmax": Maximum retention time of the peak.

• "into": Integrated (original) intensity of the peak.

• "intf": Integrated intensity of the filtered peak.

• "maxo": Maximum intensity of the peak.

• "maxf": Maximum intensity of the filtered peak.

• "i": Rank of peak in merged EIC (<= max).

• "sn": Signal to noise ratio of the peak.

Note

This function exposes core peak detection functionality of the matchedFilter method.

Author(s)

Colin A Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787. doi: 10.1021/ac051437y

See Also

binYonX() for a binning function, imputeLinInterpol() for the interpolation of missing values.

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_centWaveWithPredIsoROIs(),
do_findChromPeaks_massifquant(), do_findPeaks_MSW()

https://doi.org/10.1021/ac051437y

do_findPeaks_MSW 79

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

res <- do_findChromPeaks_matchedFilter(mz = unlist(mzs), int = unlist(ints),
scantime = rtime(data), valsPerSpect = valsPerSpect)

head(res)

do_findPeaks_MSW Core API function for single-spectrum non-chromatography MS data
peak detection

Description

This function performs peak detection in mass spectrometry direct injection spectrum using a
wavelet based algorithm.

Usage

do_findPeaks_MSW(
mz,
int,
snthresh = 3,
verboseColumns = FALSE,
scantime = numeric(),
valsPerSpect = integer(),
...

)

Arguments

mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

snthresh numeric(1) defining the signal to noise ratio cutoff.

verboseColumns logical(1) whether additional peak meta data columns should be returned.

scantime ignored.

valsPerSpect ignored.

... Additional parameters to be passed to the peakDetectionCWT function.

80 do_groupChromPeaks_density

Details

This is a wrapper around the peak picker in Bioconductor’s MassSpecWavelet package calling
peakDetectionCWT() and tuneInPeakInfo() functions. See the xcmsDirect vignette for more
information.

Value

A matrix, each row representing an identified peak, with columns:

• "mz": m/z value of the peak at the centroid position.

• "mzmin": Minimum m/z of the peak.

• "mzmax": Maximum m/z of the peak.

• "rt": Always -1.

• "rtmin": Always -1.

• "rtmax": Always -1.

• "into": Integrated (original) intensity of the peak.

• "maxo": Maximum intensity of the peak.

• "intf": Always NA.

• "maxf": Maximum MSW-filter response of the peak.

• "sn": Signal to noise ratio.

Author(s)

Joachim Kutzera, Steffen Neumann, Johannes Rainer

See Also

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_centWaveWithPredIsoROIs(),
do_findChromPeaks_massifquant(), do_findChromPeaks_matchedFilter()

do_groupChromPeaks_density

Core API function for peak density based chromatographic peak
grouping

Description

The do_groupChromPeaks_density function performs chromatographic peak grouping based on
the density (distribution) of peaks, found in different samples, along the retention time axis in slices
of overlapping m/z ranges. By default (with parameter ppm = 0) these m/z ranges have all the same
(constant) size (depending on parameter binSize). For values of ppm larger than 0 the m/z bins
(ranges or slices) will have increasing sizes depending on the m/z value. This better models the
m/z-dependent measurement error/precision seen on some MS instruments.

do_groupChromPeaks_density 81

Usage

do_groupChromPeaks_density(
peaks,
sampleGroups,
bw = 30,
minFraction = 0.5,
minSamples = 1,
binSize = 0.25,
maxFeatures = 50,
sleep = 0,
index = seq_len(nrow(peaks)),
ppm = 0

)

Arguments

peaks A matrix or data.frame with the mz values and retention times of the identi-
fied chromatographic peaks in all samples of an experiment. Required columns
are "mz", "rt" and "sample". The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

sampleGroups For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for PeakDensityParam and has to be defined also
if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group). Samples for which a NA is provided will
not be considered in the feature definitions step. Providing NA for all blanks in
an experiment will for example avoid features to be defined for signals (chrom
peaks) present only in blank samples.

bw For PeakDensityParam: numeric(1) defining the bandwidth (standard devi-
ation ot the smoothing kernel) to be used. This argument is passed to the
[stats::density() method.

minFraction For PeakDensityParam: numeric(1) defining the minimum fraction of sam-
ples in at least one sample group in which the peaks have to be present to be
considered as a peak group (feature).

minSamples For PeakDensityParam: numeric(1) with the minimum number of samples in
at least one sample group in which the peaks have to be detected to be considered
a peak group (feature).

binSize For PeakDensityParam: numeric(1) defining the size of the overlapping slices
in m/z dimension.

maxFeatures For PeakDensityParam: numeric(1) with the maximum number of peak groups
to be identified in a single mz slice.

sleep numeric(1) defining the time to sleep between iterations and plot the result
from the current iteration.

index An optional integer providing the indices of the peaks in the original peak
matrix.

ppm For MzClustParam: numeric(1) representing the relative m/z error for the clus-
tering/grouping (in parts per million). For PeakDensityParam: numeric(1) to
define m/z-dependent, increasing m/z bin sizes. If ppm = 0 (the default) m/z
bins are defined by the sequence of values from the smallest to the larges m/z

82 do_groupChromPeaks_density

value with a constant bin size of binSize. For ppm > 0 the size of each bin is
increased in addition by the ppm of the (upper) m/z boundary of the bin. The
maximal bin size (used for the largest m/z values) would then be binSize plus
ppm parts-per-million of the largest m/z value of all peaks in the data set.

Details

For overlapping slices along the mz dimension, the function calculates the density distribution of
identified peaks along the retention time axis and groups peaks from the same or different samples
that are close to each other. See (Smith 2006) for more details.

Value

A data.frame, each row representing a (mz-rt) feature (i.e. a peak group) with columns:

• "mzmed": median of the peaks’ apex mz values.

• "mzmin": smallest mz value of all peaks’ apex within the feature.

• "mzmax":largest mz value of all peaks’ apex within the feature.

• "rtmed": the median of the peaks’ retention times.

• "rtmin": the smallest retention time of the peaks in the group.

• "rtmax": the largest retention time of the peaks in the group.

• "npeaks": the total number of peaks assigned to the feature.

• "peakidx": a list with the indices of all peaks in a feature in the peaks input matrix.

Note that this number can be larger than the total number of samples, since multiple peaks from the
same sample could be assigned to a feature.

Note

The default settings might not be appropriate for all LC/GC-MS setups, especially the bw and
binSize parameter should be adjusted accordingly.

Author(s)

Colin Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787. doi: 10.1021/ac051437y

See Also

Other core peak grouping algorithms: do_groupChromPeaks_nearest(), do_groupPeaks_mzClust()

https://doi.org/10.1021/ac051437y

do_groupChromPeaks_nearest 83

Examples

Load the test file
library(xcms)
library(MsExperiment)
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Extract the matrix with the identified peaks from the xcmsSet:
pks <- chromPeaks(faahko_sub)

Perform the peak grouping with default settings:
res <- do_groupChromPeaks_density(pks, sampleGroups = rep(1, 3))

The feature definitions:
head(res)

do_groupChromPeaks_nearest

Core API function for chromatic peak grouping using a nearest neigh-
bor approach

Description

The do_groupChromPeaks_nearest function groups peaks across samples by creating a master
peak list and assigning corresponding peaks from all samples to each peak group (i.e. feature). The
method is inspired by the correspondence algorithm of mzMine (Katajamaa 2006).

Usage

do_groupChromPeaks_nearest(
peaks,
sampleGroups,
mzVsRtBalance = 10,
absMz = 0.2,
absRt = 15,
kNN = 10

)

Arguments

peaks A matrix or data.frame with the mz values and retention times of the identi-
fied chromatographic peaks in all samples of an experiment. Required columns
are "mz", "rt" and "sample". The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

sampleGroups For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for PeakDensityParam and has to be defined also
if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group). Samples for which a NA is provided will
not be considered in the feature definitions step. Providing NA for all blanks in

84 do_groupPeaks_mzClust

an experiment will for example avoid features to be defined for signals (chrom
peaks) present only in blank samples.

mzVsRtBalance For NearestPeaksParam: numeric(1) representing the factor by which m/z
values are multiplied before calculating the (euclician) distance between two
peaks.

absMz For NearestPeaksParam and MzClustParam: numeric(1) maximum tolerated
distance for m/z values.

absRt For NearestPeaksParam: numeric(1) maximum tolerated distance for reten-
tion times.

kNN For NearestPeaksParam: integer(1) representing the number of nearest neigh-
bors to check.

Value

A list with elements "featureDefinitions" and "peakIndex". "featureDefinitions" is a
matrix, each row representing an (mz-rt) feature (i.e. peak group) with columns:

• "mzmed": median of the peaks’ apex mz values.

• "mzmin": smallest mz value of all peaks’ apex within the feature.

• "mzmax":largest mz value of all peaks’ apex within the feature.

• "rtmed": the median of the peaks’ retention times.

• "rtmin": the smallest retention time of the peaks in the feature.

• "rtmax": the largest retention time of the peaks in the feature.

• "npeaks": the total number of peaks assigned to the feature.

"peakIndex" is a list with the indices of all peaks in a feature in the peaks input matrix.

References

Katajamaa M, Miettinen J, Oresic M: MZmine: Toolbox for processing and visualization of mass
spectrometry based molecular profile data. Bioinformatics 2006, 22:634-636. doi: 10.1093/bioin-
formatics/btk039

See Also

Other core peak grouping algorithms: do_groupChromPeaks_density(), do_groupPeaks_mzClust()

do_groupPeaks_mzClust Core API function for peak grouping using mzClust

Description

The do_groupPeaks_mzClust function performs high resolution correspondence on single spectra
samples.

https://doi.org/10.1093/bioinformatics/btk039
https://doi.org/10.1093/bioinformatics/btk039

do_groupPeaks_mzClust 85

Usage

do_groupPeaks_mzClust(
peaks,
sampleGroups,
ppm = 20,
absMz = 0,
minFraction = 0.5,
minSamples = 1

)

Arguments

peaks A matrix or data.frame with the mz values and retention times of the identi-
fied chromatographic peaks in all samples of an experiment. Required columns
are "mz", "rt" and "sample". The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

sampleGroups For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for PeakDensityParam and has to be defined also
if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group). Samples for which a NA is provided will
not be considered in the feature definitions step. Providing NA for all blanks in
an experiment will for example avoid features to be defined for signals (chrom
peaks) present only in blank samples.

ppm For MzClustParam: numeric(1) representing the relative m/z error for the clus-
tering/grouping (in parts per million). For PeakDensityParam: numeric(1) to
define m/z-dependent, increasing m/z bin sizes. If ppm = 0 (the default) m/z
bins are defined by the sequence of values from the smallest to the larges m/z
value with a constant bin size of binSize. For ppm > 0 the size of each bin is
increased in addition by the ppm of the (upper) m/z boundary of the bin. The
maximal bin size (used for the largest m/z values) would then be binSize plus
ppm parts-per-million of the largest m/z value of all peaks in the data set.

absMz For NearestPeaksParam and MzClustParam: numeric(1) maximum tolerated
distance for m/z values.

minFraction For PeakDensityParam: numeric(1) defining the minimum fraction of sam-
ples in at least one sample group in which the peaks have to be present to be
considered as a peak group (feature).

minSamples For PeakDensityParam: numeric(1) with the minimum number of samples in
at least one sample group in which the peaks have to be detected to be considered
a peak group (feature).

Value

A list with elements "featureDefinitions" and "peakIndex". "featureDefinitions" is a
matrix, each row representing an (mz-rt) feature (i.e. peak group) with columns:

• "mzmed": median of the peaks’ apex mz values.

• "mzmin": smallest mz value of all peaks’ apex within the feature.

• "mzmax": largest mz value of all peaks’ apex within the feature.

• "rtmed": always -1.

86 DratioFilter

• "rtmin": always -1.

• "rtmax": always -1.

• "npeaks": the total number of peaks assigned to the feature. Note that this number can be
larger than the total number of samples, since multiple peaks from the same sample could be
assigned to a group.

"peakIndex" is a list with the indices of all peaks in a peak group in the peaks input matrix.

References

Saira A. Kazmi, Samiran Ghosh, Dong-Guk Shin, Dennis W. Hill and David F. Grant
Alignment of high resolution mass spectra: development of a heuristic approach for metabolomics.
Metabolomics, Vol. 2, No. 2, 75-83 (2006)

See Also

Other core peak grouping algorithms: do_groupChromPeaks_density(), do_groupChromPeaks_nearest()

DratioFilter Filter features based on the dispersion ratio

Description

The DratioFilter class and method enable users to filter features from an XcmsExperiment or
SummarizedExperiment object based on the D-ratio or dispersion ratio. This is defined as the
standard deviation for QC samples divided by the standard deviation for biological test samples, for
each feature of the object (Broadhurst et al.).

This filter is part of the possible dispatch of the generic function filterFeatures. Features
above (>) the user-input threshold will be removed from the entire dataset.

Usage

DratioFilter(
threshold = 0.5,
qcIndex = integer(),
studyIndex = integer(),
na.rm = TRUE,
mad = FALSE

)

S4 method for signature 'XcmsResult,DratioFilter'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,DratioFilter'
filterFeatures(object, filter, assay = 1)

DratioFilter 87

Arguments

threshold numeric value representing the threshold. Features with a D-ratio strictly higher
(>) than this will be removed from the entire dataset.

qcIndex integer (or logical) vector corresponding to the indices of QC samples.

studyIndex integer (or logical) vector corresponding of the indices of study samples.

na.rm logical Indicates whether missing values (NA) should be removed prior to the
calculations.

mad logical Indicates whether the Median Absolute Deviation (MAD) should be
used instead of the standard deviation. This is suggested for non-gaussian dis-
tributed data.

object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

... Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

Value

For DratioFilter: a DratioFilter class. filterFeatures return the input object minus the
features that did not met the user input threshold

Author(s)

Philippine Louail

References

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines
and considerations for the use of system suitability and quality control samples in mass spectrometry
assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14(6):72. doi:
10.1007/s11306-018-1367-3. Epub 2018 May 18. PMID: 29805336; PMCID: PMC5960010.

See Also

Other Filter features in xcms: BlankFlag, PercentMissingFilter, RsdFilter

https://doi.org/10.1007/s11306-018-1367-3

88 estimatePrecursorIntensity,MsExperiment-method

estimatePrecursorIntensity,MsExperiment-method

Estimate precursor intensity for MS level 2 spectra

Description

estimatePrecursorIntensity() determines the precursor intensity for a MS 2 spectrum based
on the intensity of the respective signal from the neighboring MS 1 spectra (i.e. based on the peak
with the m/z matching the precursor m/z of the MS 2 spectrum). Based on parameter method
either the intensity of the peak from the previous MS 1 scan is used (method = "previous") or an
interpolation between the intensity from the previous and subsequent MS1 scan is used (method =
"interpolation", which considers also the retention times of the two MS1 scans and the retention
time of the MS2 spectrum).

Usage

S4 method for signature 'MsExperiment'
estimatePrecursorIntensity(
object,
ppm = 10,
tolerance = 0,
method = c("previous", "interpolation"),
BPPARAM = bpparam()

)

S4 method for signature 'OnDiskMSnExp'
estimatePrecursorIntensity(
object,
ppm = 10,
tolerance = 0,
method = c("previous", "interpolation"),
BPPARAM = bpparam()

)

Arguments

object MsExperiment, XcmsExperiment, OnDiskMSnExp or XCMSnExp object.

ppm numeric(1) defining the maximal acceptable difference (in ppm) of the precur-
sor m/z and the m/z of the corresponding peak in the MS 1 scan.

tolerance numeric(1) with the maximal allowed difference of m/z values between the
precursor m/z of a spectrum and the m/z of the respective ion on the MS1 scan.

method character(1) defining the method how the precursor intensity should be deter-
mined (see description above for details). Defaults to method = "previous".

BPPARAM parallel processing setup. See BiocParallel::bpparam() for details.

Value

numeric with length equal to the number of spectra in x. NA is returned for MS 1 spectra or if no
matching peak in a MS 1 scan can be found for an MS 2 spectrum

etg 89

Author(s)

Johannes Rainer with feedback and suggestions from Corey Broeckling

etg Empirically Transformed Gaussian function

Description

A general function for asymmetric chromatographic peaks.

Usage

etg(x, H, t1, tt, k1, kt, lambda1, lambdat, alpha, beta)

Arguments

x times to evaluate function at

H peak height

t1 time of leading edge inflection point

tt time of trailing edge inflection point

k1 leading edge parameter

kt trailing edge parameter

lambda1 leading edge parameter

lambdat trailing edge parameter

alpha leading edge parameter

beta trailing edge parameter

Value

The function evaluated at times x.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

References

Jianwei Li. Development and Evaluation of Flexible Empirical Peak Functions for Processing Chro-
matographic Peaks. Anal. Chem., 69 (21), 4452-4462, 1997. http://dx.doi.org/10.1021/
ac970481d

http://dx.doi.org/10.1021/ac970481d
http://dx.doi.org/10.1021/ac970481d

90 exportMetaboAnalyst

exportMetaboAnalyst Export data for use in MetaboAnalyst

Description

Export the feature table for further analysis in the MetaboAnalyst software (or the MetaboAnalystR
R package).

Usage

exportMetaboAnalyst(
x,
file = NULL,
label,
value = "into",
digits = NULL,
groupnames = FALSE,
...

)

Arguments

x XCMSnExp object with identified chromatographic peaks grouped across sam-
ples.

file character(1) defining the file name. If not specified, the matrix with the
content is returned.

label either character(1) specifying the phenodata column in x defining the sample
grouping or a vector with the same length than samples in x defining the group
assignment of the samples.

value character(1) specifying the value to be returned for each feature. See featureValues()
for more details.

digits integer(1) defining the number of significant digits to be used for numeric.
The default NULL uses getOption("digits"). See format() for more infor-
mation.

groupnames logical(1) whether row names of the resulting matrix should be the feature
IDs (groupnames = FALSE; default) or IDs that are composed of the m/z and
retention time of the features (in the format M<m/z>T<rt> (groupnames = TRUE).
See help of the groupnames function for details.

... additional parameters to be passed to the featureValues() function.

Value

If file is not specified, the function returns the matrix in the format supported by MetaboAnalyst.

Author(s)

Johannes Rainer

extractMsData,OnDiskMSnExp-method 91

extractMsData,OnDiskMSnExp-method

DEPRECATED: Extract a data.frame containing MS data

Description

UPDATE: the extractMsData and plotMsData functions are deprecated and as(x, "data.frame")
and plot(x, type = "XIC") (x being an OnDiskMSnExp or XCMSnExp object) should be used in-
stead. See examples below. Be aware that filtering the raw object might however drop the adjusted
retention times. In such cases it is advisable to use the applyAdjustedRtime() function prior to
filtering.

Extract a data.frame of retention time, mz and intensity values from each file/sample in the pro-
vided rt-mz range (or for the full data range if rt and mz are not defined).

Usage

S4 method for signature 'OnDiskMSnExp'
extractMsData(object, rt, mz, msLevel = 1L)

S4 method for signature 'XCMSnExp'
extractMsData(
object,
rt,
mz,
msLevel = 1L,
adjustedRtime = hasAdjustedRtime(object)

)

Arguments

object A XCMSnExp or OnDiskMSnExp object.

rt numeric(2) with the retention time range from which the data should be ex-
tracted.

mz numeric(2) with the mz range.

msLevel integer defining the MS level(s) to which the data should be sub-setted prior
to extraction; defaults to msLevel = 1L.

adjustedRtime (for extractMsData,XCMSnExp): logical(1) specifying if adjusted or raw re-
tention times should be reported. Defaults to adjusted retention times, if these
are present in object.

Value

A list of length equal to the number of samples/files in object. Each element being a data.frame
with columns "rt", "mz" and "i" with the retention time, mz and intensity tuples of a file. If no
data is available for the mz-rt range in a file a data.frame with 0 rows is returned for that file.

Author(s)

Johannes Rainer

92 feature-grouping

See Also

XCMSnExp for the data object.

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

Extract the full MS data for a certain retention time range
as a data.frame
tmp <- filterRt(faahko_sub, rt = c(2800, 2900))
ms_all <- as(tmp, "data.frame")
head(ms_all)
nrow(ms_all)

feature-grouping Compounding of LC-MS features

Description

Feature compounding aims at identifying and grouping LC-MS features representing different ions
or adducts (including isotopes) of the same originating compound. The MsFeatures package pro-
vides a general framework and functionality to group features based on different properties. The
groupFeatures methods for XcmsExperiment() or XCMSnExp objects implemented in xcms ex-
tend these to enable the compounding of LC-MS data considering also e.g. feature peak shaped.
Note that these functions simply define feature groups but don’t actually aggregate or combine the
features.

See MsFeatures::groupFeatures() for an overview on the general feature grouping concept as
well as details on the individual settings and parameters.

The available options for groupFeatures on xcms preprocessing results (i.e. on XcmsExperiment
or XCMSnExp objects after correspondence analysis with groupChromPeaks()) are:

• Grouping by similar retention times: groupFeatures-similar-rtime().
• Grouping by similar feature values across samples: MsFeatures::AbundanceSimilarityParam().
• Grouping by similar peak shape of extracted ion chromatograms: EicSimilarityParam().

An ideal workflow grouping features should sequentially perform the above methods (in the listed
order).

Compounded feature groups can be accessed with the featureGroups function.

Usage

S4 method for signature 'XcmsResult'
featureGroups(object)

S4 replacement method for signature 'XcmsResult'
featureGroups(object) <- value

https://bioconductor.org/packages/MsFeatures

featureChromatograms 93

Arguments

object an XcmsExperiment() or XCMSnExp() object with LC-MS pre-processing re-
sults.

value for featureGroups<-: replacement for the feature groups in object. Has to be
of length 1 or length equal to the number of features in object.

Author(s)

Johannes Rainer, Mar Garcia-Aloy, Vinicius Veri Hernandes

See Also

plotFeatureGroups() for visualization of grouped features.

featureChromatograms Extract ion chromatograms for each feature

Description

Extract ion chromatograms for features in an XcmsExperiment or XCMSnExp object. The func-
tion returns for each feature the extracted ion chromatograms (along with all associated chromato-
graphic peaks) in each sample. The chromatogram is extracted from the m/z - rt region that in-
cludes all chromatographic peaks of a feature. By default, this region is defined using the range of
the chromatographic peaks’ m/z and retention times (with mzmin = min, mzmax = max, rtmin = min
and rtmax = max). For some features, and depending on the data, the m/z and rt range can thus be
relatively large. The boundaries of the m/z - rt region can also be restricted by changing parameters
mzmin, mzmax, rtmin and rtmax to a different functions, such as median.

By default only chromatographic peaks associated with a feature are included in the returned
XChromatograms object. For object being an XCMSnExp object parameter include allows also
to return all chromatographic peaks with their apex position within the selected region (include
= "apex_within") or any chromatographic peak overlapping the m/z and retention time range
(include = "any").

Usage

featureChromatograms(object, ...)

S4 method for signature 'XcmsExperiment'
featureChromatograms(
object,
expandRt = 0,
expandMz = 0,
aggregationFun = "max",
features = character(),
return.type = "XChromatograms",
chunkSize = 2L,
mzmin = min,
mzmax = max,
rtmin = min,
rtmax = max,

94 featureChromatograms

...,
progressbar = TRUE,
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp'
featureChromatograms(
object,
expandRt = 0,
aggregationFun = "max",
features,
include = c("feature_only", "apex_within", "any", "all"),
filled = FALSE,
n = length(fileNames(object)),
value = c("maxo", "into"),
expandMz = 0,
...

)

Arguments

object XcmsExperiment or XCMSnExp object with grouped chromatographic peaks.
... optional arguments to be passed along to the chromatogram() function.
expandRt numeric(1) to expand the retention time range for each chromatographic peak

by a constant value on each side.
expandMz numeric(1) to expand the m/z range for each chromatographic peak by a con-

stant value on each side. Be aware that by extending the m/z range the extracted
EIC might no longer represent the actual identified chromatographic peak be-
cause intensities of potential additional mass peaks within each spectra would be
aggregated into the final reported intensity value per spectrum (retention time).

aggregationFun character(1) specifying the name that should be used to aggregate intensity
values across the m/z value range for the same retention time. The default "max"
returns a base peak chromatogram.

features integer, character or logical defining a subset of features for which chro-
matograms should be returned. Can be the index of the features in featureDefinitions,
feature IDs (row names of featureDefinitions) or a logical vector.

return.type character(1) defining how the result should be returned. At present only
return.type = "XChromatograms" is supported and the results are thus re-
turned as an XChromatograms() object.

chunkSize For object being an XcmsExperiment: integer(1) defining the number of
files from which the data should be loaded at a time into memory. Defaults to
chunkSize = 2L.

mzmin function defining how the lower boundary of the m/z region from which the
EIC is integrated should be defined. Defaults to mzmin = min thus the smallest
"mzmin" value for all chromatographic peaks of a feature will be used.

mzmax function defining how the upper boundary of the m/z region from which the
EIC is integrated should be defined. Defaults to mzmax = max thus the largest
"mzmax" value for all chromatographic peaks of a feature will be used.

rtmin function defining how the lower boundary of the rt region from which the
EIC is integrated should be defined. Defaults to rtmin = min thus the smallest
"rtmin" value for all chromatographic peaks of a feature will be used.

featureChromatograms 95

rtmax function defining how the upper boundary of the rt region from which the
EIC is integrated should be defined. Defaults to rtmax = max thus the largest
"rtmax" value for all chromatographic peaks of a feature will be used.

progressbar logical(1) defining whether a progress bar is shown.

BPPARAM For object being an XcmsExperiment: parallel processing setup. Defaults to
BPPARAM = bpparam(). See BiocParallel::bpparam() for more information.

include Only for object being an XCMSnExp: character(1) defining which chromato-
graphic peaks (and related feature definitions) should be included in the returned
XChromatograms(). Defaults to "feature_only"; See description above for
options and details.

filled Only for object being an XCMSnExp: logical(1) whether filled-in peaks should
be included in the result object. The default is filled = FALSE, i.e. only de-
tected peaks are reported.

n Only for object being an XCMSnExp: integer(1) to optionally specify the
number of top n samples from which the EIC should be extracted.

value Only for object being an XCMSnExp: character(1) specifying the column to
be used to sort the samples. Can be either "maxo" (the default) or "into" to use
the maximal peak intensity or the integrated peak area, respectively.

Value

XChromatograms() object. In future, depending on parameter return.type, the data might be
returned as a different object.

Note

The EIC data of a feature is extracted from every sample using the same m/z - rt area. The EIC in
a sample does thus not exactly represent the signal of the actually identified chromatographic peak
in that sample. The chromPeakChromatograms() function would allow to extract the actual EIC of
the chromatographic peak in a specific sample. See also examples below.

Parameters include, filled, n and value are only supported for object being an XCMSnExp.

When extracting EICs from only the top n samples it can happen that one or more of the features
specified with features are dropped because they have no detected peak in the top n samples. The
chance for this to happen is smaller if x contains also filled-in peaks (with fillChromPeaks).

Author(s)

Johannes Rainer

See Also

filterColumnsKeepTop() to filter the extracted EICs keeping only the top n columns (samples)
with the highest intensity. chromPeakChromatograms() for a function to extract an EIC for each
chromatographic peak.

Examples

Load a test data set with detected peaks
library(xcms)
library(MsExperiment)
faahko_sub <- loadXcmsData("faahko_sub2")

96 featureSpectra

Disable parallel processing for this example
register(SerialParam())

Perform correspondence analysis
xdata <- groupChromPeaks(faahko_sub,

param = PeakDensityParam(minFraction = 0.8, sampleGroups = rep(1, 3)))

Get the feature definitions
featureDefinitions(xdata)

Extract ion chromatograms for the first 3 features. Parameter
`features` can be either the feature IDs or feature indices.
chrs <- featureChromatograms(xdata,

features = rownames(featureDefinitions)[1:3])

Plot the EIC for the first feature using different colors for each file.
plot(chrs[1,], col = c("red", "green", "blue"))

The EICs for all 3 samples use the same m/z and retention time range,
which was defined using the `featureArea` function:
featureArea(xdata, features = rownames(featureDefinitions(xdata))[1:3],

mzmin = min, mzmax = max, rtmin = min, rtmax = max)

To extract the actual (exact) EICs for each chromatographic peak of
a feature in each sample, the `chromPeakChromatograms` function would
need to be used instead. Below we extract the EICs for all
chromatographic peaks of the first feature. We need to first get the
IDs of all chromatographic peaks assigned to the first feature:
peak_ids <- rownames(chromPeaks(xdata))[featureDefinitions(xdata)$peakidx[[1L]]]

We can now pass these to the `chromPeakChromatograms` function with
parameter `peaks`:
eic_1 <- chromPeakChromatograms(xdata, peaks = peak_ids)

To plot these into a single plot we need to use the
`plotChromatogramsOverlay` function:
plotChromatogramsOverlay(eic_1)

featureSpectra Extract spectra associated with features

Description

This function returns spectra associated with the identified features in the input object. By de-
fault, spectra are returned for all features (from all MS levels), but parameter features allows to
specify/select features for which spectra should be returned. Parameter msLevel allows to define
whether MS level 1 or 2 spectra should be returned. For msLevel = 1L MS1 spectra within the reten-
tion time range of each chromatographic peak (in that respective data file) associated with a feature
are returned. For msLevel = 2L MS2 spectra with a retention time within the retention time range
and their precursor m/z within the m/z range of any chromatographic peak of a feature are returned.
Thus, only MS2 spectra for chromatographic peaks associated with the feature and also measured
in the sample in which the chromatographic was identified are reported. By default, all spectra
fulfilling the above described condition are reported. This can be adapted with parameter method.

featureSpectra 97

See the description of method in the chromPeakSpectra() documentation for more information.
Internally, featureSpectra() uses chromPeakSpectra() to extract the feature’s chromatographic
peaks’ spectra, thus any other parameter for this function can be passed through

Note that with the default for parameter skipFilled (skipFilled = FALSE) also gap-filled chro-
matographic peaks are considered. Use skipFilled = TRUE to report only spectra for detected
peaks.

The information from featureDefinitions for each feature can be included in the returned Spectra::Spectra()
object using the featureColumns parameter. This is useful for keeping details such as the median
retention time (rtmed) or median m/z (mzmed). The columns will retain their names as specified in
the featureDefinitions data, prefixed by "feature_" (e.g., "feature_mzmed"). Additionally,
the feature ID (i.e., the row name of the feature in the featureDefinitions data frame) is always
added as a metadata column named "feature_id".

See also chromPeakSpectra(), as it supports a similar parameter for including columns from the
chromatographic peaks in the returned spectra object. These parameters can be used in combina-
tion to include information from both the chromatographic peaks and the features in the returned
Spectra::Spectra(). The peak ID (i.e., the row name of the peak in the chromPeaks matrix) is
added as a metadata column named "chrom_peak_id".

Usage

featureSpectra(object, ...)

S4 method for signature 'XcmsExperiment'
featureSpectra(
object,
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = 0,
skipFilled = FALSE,
return.type = c("Spectra", "List"),
features = character(),
featureColumns = c("rtmed", "mzmed"),
...

)

S4 method for signature 'XCMSnExp'
featureSpectra(
object,
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = 0,
skipFilled = FALSE,
return.type = c("MSpectra", "Spectra", "list", "List"),
features = character(),
...

)

Arguments

object XcmsExperiment or XCMSnExp object with feature defitions.

98 featureSummary

... additional arguments to be passed along to chromPeakSpectra(), such as method
or chromPeakColumns.

msLevel integer(1) defining the MS level of the spectra that should be returned.

expandRt numeric(1) to expand the retention time range of each peak by a constant value
on each side.

expandMz numeric(1) to expand the m/z range of each peak by a constant value on each
side.

ppm numeric(1) to expand the m/z range of each peak (on each side) by a value
dependent on the peak’s m/z.

skipFilled logical(1) whether spectra for filled-in peaks should be reported or not. De-
faults to skipFilled = FALSE thus also spectra for gap-filled chromatographic
peaks are returned. Set to skipFilled = TRUE to get only spectra for detected
chromatographic peaks.

return.type character(1) defining the type of result object that should be returned.

features character, logical or integer allowing to specify a subset of features in
featureDefinitions for which spectra should be returned (providing either
their ID, a logical vector same length than nrow(featureDefinitions(x)) or
their index in featureDefinitions(x)). This parameter is only supported for
return.type being either "Spectra" or "List".

featureColumns character vector with the names of the columns from featureDefinitions
that should be added to the returned spectra object. The columns will be named
as they are written in the featureDefinitions object with the prefix "feature_.
Defaults to c("mzmed", "rtmed").

Value

The function returns either a Spectra::Spectra() (for return.type = "Spectra") or a List of
Spectra (for return.type = "List"). For the latter, the order and the length matches parameter
features (or if no features is defined the order of the features in featureDefinitions(object)).

Spectra variables "chrom_peak_id" and "feature_id" define to which chromatographic peak or
feature each individual spectrum is associated with.

Author(s)

Johannes Rainer

featureSummary Simple feature summaries

Description

Simple function to calculate feature summaries. These include counts and percentages of samples
in which a chromatographic peak is present for each feature and counts and percentages of samples
in which more than one chromatographic peak was annotated to the feature. Also relative stan-
dard deviations (RSD) are calculated for the integrated peak areas per feature across samples. For
perSampleCounts = TRUE also the individual chromatographic peak counts per sample are returned.

featureSummary 99

Usage

featureSummary(
x,
group,
perSampleCounts = FALSE,
method = "maxint",
skipFilled = TRUE

)

Arguments

x XcmsExperiment() or XCMSnExp() object with correspondence results.

group numeric, logical, character or factor with the same length than x has sam-
ples to aggregate counts by the groups defined in group.

perSampleCounts

logical(1) whether feature wise individual peak counts per sample should be
returned too.

method character passed to the featureValues() function. See respective help page
for more information.

skipFilled logical(1) whether filled-in peaks should be excluded (default) or included in
the summary calculation.

Value

matrix with one row per feature and columns:

• "count": the total number of samples in which a peak was found.

• "perc": the percentage of samples in which a peak was found.

• "multi_count": the total number of samples in which more than one peak was assigned to
the feature.

• "multi_perc": the percentage of those samples in which a peak was found, that have also
multiple peaks annotated to the feature. Example: for a feature, at least one peak was detected
in 50 samples. In 5 of them 2 peaks were assigned to the feature. "multi_perc" is in this
case 10%.

• "rsd": relative standard deviation (coefficient of variation) of the integrated peak area of the
feature’s peaks.

• The same 4 columns are repeated for each unique element (level) in group if group was
provided.

If perSampleCounts = TRUE also one column for each sample is returned with the peak counts per
sample.

Author(s)

Johannes Rainer

100 fillChromPeaks

fillChromPeaks Gap Filling

Description

Gap filling integrate signal in the m/z-rt area of a feature (i.e., a chromatographic peak group)
for samples in which no chromatographic peak for this feature was identified and add it to the
chromPeaks() matrix. Such filled-in peaks are indicated with a TRUE in column "is_filled" in
the result object’s chromPeakData() data frame.

The method for gap filling along with its settings can be defined with the param argument. Two
different approaches are available:

• param = FillChromPeaksParam(): the default of the original xcms code. Signal is integrated
from the m/z and retention time range as defined in the featureDefinitions() data frame,
i.e. from the "rtmin", "rtmax", "mzmin" and "mzmax". This method is not suggested as it
underestimates the actual peak area and it is also not available for object being an XcmsEx-
periment object. See details below for more information and settings for this method.

• param = ChromPeakAreaParam(): the area from which the signal for a feature is integrated is
defined based on the feature’s chromatographic peak areas. The m/z range is by default defined
as the the lower quartile of chromatographic peaks’ "mzmin" value to the upper quartile of the
chromatographic peaks’ "mzmax" values. The retention time range for the area is defined
analogously. Alternatively, by setting mzmin = median, mzmax = median, rtmin = median
and rtmax = median in ChromPeakAreaParam, the median "mzmin", "mzmax", "rtmin" and
"rtmax" values from all detected chromatographic peaks of a feature would be used instead.
Parameter minMzWidthPpm allows in addition to define a minimal guaranteed m/z width ex-
pressed in ppm of the features’ m/z and centered around it. The default is minMzWidthPpm
= 0.0. With a minMzWidthPpm > 0, the lower m/z boundary for a feature is defined as the
smaller value from the m/z derived from its chromatographic peaks’ "mzmin", and the fea-
ture’s m/z minus minMzWidthPpm / 2 ppm of its m/z. The upper m/z boundary is determined
in the same way. In contrast to the FillChromPeaksParam approach this method uses (all)
identified chromatographic peaks of a feature to define the area from which the signal should
be integrated.

Usage

fillChromPeaks(object, param, ...)

S4 method for signature 'XcmsExperiment,ChromPeakAreaParam'
fillChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

FillChromPeaksParam(
expandMz = 0,
expandRt = 0,
ppm = 0,

fillChromPeaks 101

fixedMz = 0,
fixedRt = 0

)

ChromPeakAreaParam(
mzmin = function(z, na.rm = TRUE) quantile(z, probs = 0.25, names = FALSE, na.rm =

na.rm),
mzmax = function(z, na.rm = TRUE) quantile(z, probs = 0.75, names = FALSE, na.rm =

na.rm),
rtmin = function(z, na.rm = TRUE) quantile(z, probs = 0.25, names = FALSE, na.rm =

na.rm),
rtmax = function(z, na.rm = TRUE) quantile(z, probs = 0.75, names = FALSE, na.rm =

na.rm),
minMzWidthPpm = 0

)

S4 method for signature 'XCMSnExp,FillChromPeaksParam'
fillChromPeaks(object, param, msLevel = 1L, BPPARAM = bpparam())

S4 method for signature 'XCMSnExp,ChromPeakAreaParam'
fillChromPeaks(object, param, msLevel = 1L, BPPARAM = bpparam())

S4 method for signature 'XCMSnExp,missing'
fillChromPeaks(object, param, BPPARAM = bpparam(), msLevel = 1L)

Arguments

object XcmsExperiment or XCMSnExp object with identified and grouped chromato-
graphic peaks.

param ChromPeakAreaParam or FillChromPeaksParam object defining which approach
should be used (see details section).

... currently ignored.

msLevel integer(1) defining the MS level on which peak filling should be performed
(defaults to msLevel = 1L). Only peak filling on one MS level at a time is sup-
ported, to fill in peaks for MS level 1 and 2 run first using msLevel = 1 and then
(on the returned result object) again with msLevel = 2.

chunkSize For fillChromPeaks if object is an XcmsExperiment: integer(1) defining
the number of files (samples) that should be loaded into memory and processed
at the same time. This setting thus allows to balance between memory demand
and speed (due to parallel processing). Because parallel processing can only
performed on the subset of data currently loaded into memory in each itera-
tion, the value for chunkSize should match the defined parallel setting setup.
Using a parallel processing setup using 4 CPUs (separate processes) but using
chunkSize = 1will not perform any parallel processing, as only the data from one sample is loaded in memory at a time. On the other hand, settingchunkSize‘
to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM Parallel processing settings.

expandMz for FillChromPeaksParam: numeric(1) defining the value by which the mz
width of peaks should be expanded. Each peak is expanded in mz direction by
expandMz * their original m/z width. A value of 0 means no expansion, a value
of 1 grows each peak by 1 * the m/z width of the peak resulting in peaks with

102 fillChromPeaks

twice their original size in m/z direction (expansion by half m/z width to both
sides).

expandRt for FillChromPeaksParam: numeric(1), same as expandMz but for the reten-
tion time width.

ppm for FillChromPeaksParam: numeric(1) optionally specifying a ppm by which
the m/z width of the peak region should be expanded. For peaks with an m/z
width smaller than mean(c(mzmin, mzmax)) * ppm / 1e6, the mzmin will be re-
placed by mean(c(mzmin, mzmax)) - (mean(c(mzmin, mzmax)) * ppm / 2 / 1e6)
mzmax by mean(c(mzmin, mzmax)) + (mean(c(mzmin, mzmax)) * ppm / 2 / 1e6).
This is applied before eventually expanding the m/z width using the expandMz
parameter.

fixedMz for FillChromPeaksParam: numeric(1) defining a constant factor by which
the m/z width of each feature is to be expanded. The m/z width is expanded on
both sides by fixedMz (i.e. fixedMz is subtracted from the lower m/z and added
to the upper m/z). This expansion is applied after expandMz and ppm.

fixedRt for FillChromPeaksParam: numeric(1) defining a constant factor by which the
retention time width of each factor is to be expanded. The rt width is expanded
on both sides by fixedRt (i.e. fixedRt is subtracted from the lower rt and
added to the upper rt). This expansion is applied after expandRt.

mzmin function to be applied to values in the "mzmin" column of all chromatographic
peaks of a feature to define the lower m/z value of the area from which signal for
the feature should be integrated. Defaults to mzmin = function(z) quantile(z,
probs = 0.25) hence using the 25% quantile of all values.

mzmax function to be applied to values in the "mzmax" column of all chromatographic
peaks of a feature to define the upper m/z value of the area from which signal for
the feature should be integrated. Defaults to mzmax = function(z) quantile(z,
probs = 0.75) hence using the 75% quantile of all values.

rtmin function to be applied to values in the "rtmin" column of all chromatographic
peaks of a feature to define the lower rt value of the area from which signal for
the feature should be integrated. Defaults to rtmin = function(z) quantile(z,
probs = 0.25) hence using the 25% quantile of all values.

rtmax function to be applied to values in the "rtmax" column of all chromatographic
peaks of a feature to define the upper rt value of the area from which signal for
the feature should be integrated. Defaults to rtmax = function(z) quantile(z,
probs = 0.75) hence using the 75% quantile of all values.

minMzWidthPpm For ChromPeakAreaParam(): numeric(1) defining the minimal guaranteed m/z
width (expressed in ppm of the feature’s m/z) that will be used to integrate signal
from (default minMzWidthPpm = 0.0). See documentation of ChromPeakAreaParam()
for more information.

Details

After correspondence (i.e. grouping of chromatographic peaks across samples) there will always
be features (peak groups) that do not include peaks from every sample. The fillChromPeaks
method defines intensity values for such features in the missing samples by integrating the signal
in the m/z-rt region of the feature. Two different approaches to define this region are available:
with ChromPeakAreaParam the region is defined based on the detected chromatographic peaks of
a feature, while with FillChromPeaksParam the region is defined based on the m/z and retention
times of the feature (which represent the m/z and retentention times of the apex position of the
associated chromatographic peaks). For the latter approach various parameters are available to

fillChromPeaks 103

increase the area from which signal is to be integrated, either by a constant value (fixedMz and
fixedRt) or by a feature-relative amount (expandMz and expandRt).

Adjusted retention times will be used if available.

Based on the peak finding algorithm that was used to identify the (chromatographic) peaks, dif-
ferent internal functions are used to guarantee that the integrated peak signal matches as much as
possible the peak signal integration used during the peak detection. For peaks identified with the
matchedFilter() method, signal integration is performed on the profile matrix generated with
the same settings used also during peak finding (using the same bin size for example). For direct
injection data and peaks identified with the MSW algorithm signal is integrated only along the mz
dimension. For all other methods the complete (raw) signal within the area is used.

Value

An XcmsExperiment or XCMSnExp object with previously missing chromatographic peaks for fea-
tures filled into its chromPeaks() matrix.

The FillChromPeaksParam() function returns a FillChromPeaksParam object.

Note

The reported "mzmin", "mzmax", "rtmin" and "rtmax" for the filled peaks represents the actual
MS area from which the signal was integrated.

No peak is filled in if no signal was present in a file/sample in the respective mz-rt area. These
samples will still show a NA in the matrix returned by the featureValues() method.

Author(s)

Johannes Rainer

See Also

groupChromPeaks() for methods to perform the correspondence.

featureArea for the function to define the m/z-retention time region for each feature.

Examples

Load a test data set with identified chromatographic peaks
library(xcms)
library(MsExperiment)
res <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Perform the correspondence. We assign all samples to the same group.
res <- groupChromPeaks(res,

param = PeakDensityParam(sampleGroups = rep(1, length(res))))

For how many features do we lack an integrated peak signal?
sum(is.na(featureValues(res)))

Filling missing peak data using the peak area from identified
chromatographic peaks.
res <- fillChromPeaks(res, param = ChromPeakAreaParam())

104 fillPeaks-methods

Alternatively, force a minimal guaranteed m/z width for the regions
to integrate signal from.
res <- fillChromPeaks(res, param = ChromPeakAreaParam(minMzWidthPpm = 10))

How many missing values do we have after peak filling?
sum(is.na(featureValues(res)))

Get the peaks that have been filled in:
fp <- chromPeaks(res)[chromPeakData(res)$is_filled,]
head(fp)

Get the process history step along with the parameters used to perform
The peak filling:
ph <- processHistory(res, type = "Missing peak filling")[[1]]
ph

The parameter class:
ph@param

It is also possible to remove filled-in peaks:
res <- dropFilledChromPeaks(res)

sum(is.na(featureValues(res)))

fillPeaks-methods Integrate areas of missing peaks

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

method the filling method

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. According to the type of raw-data there are 2 different methods available. for filling
gcms/lcms data the method "chrom" integrates raw-data in the chromatographic domain, whereas
"MSW" is used for peaklists without retention-time information like those from direct-infusion
spectra.

Value

A xcmsSet objects with filled in peak groups.

Methods

object = "xcmsSet" fillPeaks(object, method="")

fillPeaks.chrom-methods 105

See Also

xcmsSet-class, getPeaks

fillPeaks.chrom-methods

Integrate areas of missing peaks

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

nSlaves (DEPRECATED): number of slaves/cores to be used for parallel peak filling.
MPI is used if installed, otherwise the snow package is employed for multicore
support. If none of the two packages is available it uses the parallel package for
parallel processing on multiple CPUs of the current machine. Users are advised
to use the BPPARAM parameter instead.

expand.mz Expansion factor for the m/z range used for integration.

expand.rt Expansion factor for the rentention time range used for integration.

BPPARAM allows to define a specific parallel processing setup for the current task (see
bpparam() from the BiocParallel package help more information). The de-
fault uses the globally defined parallel setup.

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. In a given group, the start and ending retention time points for integration are defined
by the median start and end points of the other detected peaks. The start and end m/z values are
similarly determined. Intensities can be still be zero, which is a rather unusual intensity for a peak.
This is the case if e.g. the raw data was threshholded, and the integration area contains no actual
raw intensities, or if one sample is miscalibrated, such thet the raw data points are (just) outside the
integration area.

Importantly, if retention time correction data is available, the alignment information is used to more
precisely integrate the propper region of the raw data. If the corrected retention time is beyond the
end of the raw data, the value will be not-a-number (NaN).

Value

A xcmsSet objects with filled in peak groups (into and maxo).

Methods

object = "xcmsSet" fillPeaks.chrom(object, nSlaves=0,expand.mz=1,expand.rt=1, BPPARAM
= bpparam())

106 fillPeaks.MSW-methods

See Also

xcmsSet-class, getPeaks fillPeaks

fillPeaks.MSW-methods Integrate areas of missing peaks in FTICR-MS data

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. In a given group, the start and ending m/z values for integration are defined by the
median start and end points of the other detected peaks.

Value

A xcmsSet objects with filled in peak groups.

Methods

object = "xcmsSet" fillPeaks.MSW(object)

Note

In contrast to the fillPeaks.chrom method the maximum intensity reported in column "maxo" is
not the maximum intensity measured in the expected peak area (defined by columns "mzmin" and
"mzmax"), but the largest intensity of mz value(s) closest to the "mzmed" of the feature.

See Also

xcmsSet-class, getPeaks fillPeaks

filterColumnsIntensityAbove,MChromatograms-method 107

filterColumnsIntensityAbove,MChromatograms-method

Filtering sets of chromatographic data

Description

These functions allow to filter (subset) MSnbase::MChromatograms() or XChromatograms() ob-
jects, i.e. sets of chromatographic data, without changing the data (intensity and retention times)
within the individual chromatograms (MSnbase::Chromatogram() objects).

• filterColumnsIntensityAbove: subsets a MChromatograms objects keeping only columns
(samples) for which value is larger than the provided threshold in which rows (i.e. if which
= "any" a column is kept if any of the chromatograms in that column have a value larger
than threshold or with which = "all" all chromatograms in that column fulfill this criteria).
Parameter value allows to define on which value the comparison should be performed, with
value = "bpi" the maximum intensity of each chromatogram is compared to threshold, with
value = "tic" the total sum of intensities of each chromatogram is compared to thresh-
old. For XChromatogramsobject,value = "maxo"andvalue = "into"are supported which compares the largest intensity of all identified chromatographic peaks in the chromatogram withthreshold‘,
or the integrated peak area, respectively.

• filterColumnsKeepTop: subsets a MChromatograms object keeping the top n columns sorted
by the value specified with sortBy. In detail, for each column the value defined by sortBy
is extracted from each chromatogram and aggregated using the aggregationFun. Thus, by
default, for each chromatogram the maximum intensity is determined (sortBy = "bpi") and
these values are summed up for chromatograms in the same column (aggregationFun = sum).
The columns are then sorted by these values and the top n columns are retained in the returned
MChromatograms. Similar to the filterColumnsIntensityAbove function, this function al-
lows to use for XChromatograms objects to sort the columns by column sortBy = "maxo" or
sortBy = "into" of the chromPeaks matrix.

Usage

S4 method for signature 'MChromatograms'
filterColumnsIntensityAbove(
object,
threshold = 0,
value = c("bpi", "tic"),
which = c("any", "all")

)

S4 method for signature 'MChromatograms'
filterColumnsKeepTop(
object,
n = 1L,
sortBy = c("bpi", "tic"),
aggregationFun = sum

)

S4 method for signature 'XChromatograms'
filterColumnsIntensityAbove(
object,
threshold = 0,

108 filterColumnsIntensityAbove,MChromatograms-method

value = c("bpi", "tic", "maxo", "into"),
which = c("any", "all")

)

S4 method for signature 'XChromatograms'
filterColumnsKeepTop(
object,
n = 1L,
sortBy = c("bpi", "tic", "maxo", "into"),
aggregationFun = sum

)

Arguments

object MSnbase::MChromatograms() or XChromatograms() object.

threshold for filterColumnsIntensityAbove: numeric(1) with the threshold value to
compare against.

value character(1) defining which value should be used in the comparison or sort-
ing. Can be value = "bpi" (default) to use the maximum intensity per chro-
matogram or value = "tic" to use the sum of intensities per chromatogram.
For XChromatograms() objects also value = "maxo" and value = "into" is
supported to use the maximum intensity or the integrated area of identified chro-
matographic peaks in each chromatogram.

which for filterColumnsIntensityAbove: character(1) defining whether any (which
= "any", default) or all (which = "all") chromatograms in a column have to
fulfill the criteria for the column to be kept.

n for filterColumnsKeepTop: integer(1) specifying the number of columns
that should be returned. n will be rounded to the closest (larger) integer value.

sortBy for filterColumnsKeepTop: the value by which columns should be ordered to
determine the top n columns. Can be either sortBy = "bpi" (the default), in
which case the maximum intensity of each column’s chromatograms is used,
or sortBy = "tic" to use the total intensity sum of all chromatograms. For
XChromatograms() objects also value = "maxo" and value = "into" is sup-
ported to use the maximum intensity or the integrated area of identified chro-
matographic peaks in each chromatogram.

aggregationFun for filterColumnsKeepTop: function to be used to aggregate (combine) the
values from all chromatograms in each column. Defaults to aggregationFun =
sum in which case the sum of the values is used to rank the columns. Alterna-
tively the mean, median or similar function can be used.

Value

a filtered MChromatograms (or XChromatograms) object with the same number of rows (EICs) but
eventually a lower number of columns (samples).

Author(s)

Johannes Rainer

filterFeatureDefinitions 109

Examples

library(MSnbase)
chr1 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),

intensity = c(5, 29, 50, NA, 100, 12, 3, 4, 1, 3))
chr2 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),

intensity = c(80, 50, 20, 10, 9, 4, 3, 4, 1, 3))
chr3 <- Chromatogram(rtime = 3:9 + rnorm(7, sd = 0.3),

intensity = c(53, 80, 130, 15, 5, 3, 2))

chrs <- MChromatograms(list(chr1, chr2, chr1, chr3, chr2, chr3),
ncol = 3, byrow = FALSE)

chrs

filterColumnsIntensityAbove
##
Keep all columns with for which the maximum intensity of any of its
chromatograms is larger 90
filterColumnsIntensityAbove(chrs, threshold = 90)

Require that ALL chromatograms in a column have a value larger 90
filterColumnsIntensityAbove(chrs, threshold = 90, which = "all")

If none of the columns fulfills the criteria no columns are returned
filterColumnsIntensityAbove(chrs, threshold = 900)

Filtering XChromatograms allow in addition to filter on the columns
"maxo" or "into" of the identified chromatographic peaks within each
chromatogram.

filterColumnsKeepTop
##
Keep the 2 columns with the highest sum of maximal intensities in their
chromatograms
filterColumnsKeepTop(chrs, n = 1)

Keep the 50 percent of columns with the highest total sum of signal. Note
that n will be rounded to the next larger integer value
filterColumnsKeepTop(chrs, n = 0.5 * ncol(chrs), sortBy = "tic")

filterFeatureDefinitions

Next Generation xcms Result Object

Description

The XcmsExperiment is a data container for xcms preprocessing results (i.e. results from chro-
matographic peak detection, alignment and correspondence analysis). It is the preferred and default
result object since version 4 of xcms.

It provides the same functionality than the XCMSnExp object, but uses the more advanced and
modern MS infrastructure provided by the MsExperiment and Spectra Bioconductor packages. This
enables a much higher flexibility of data representation and storage and ensures future expandability.

Documentation of the various functions for XcmsExperiment objects are grouped by topic and
provided in the sections below.

110 filterFeatureDefinitions

The default xcms data analysis workflow is to perform:

• chromatographic peak detection using findChromPeaks()

• optionally refine identified chromatographic peaks using refineChromPeaks() (this is highly
suggested for centWave-based chromatographic peak detection)

• retention time alignment (retention time adjustment) using adjustRtime(). Depending on
the method used, this may require to run a correspondence analysis first

• correspondence analysis to group chromatographic peaks across samples to define the LC-MS
features using the groupChromPeaks() function

• gap-filling to rescue signal in samples in which no chromatographic peak was identified and
hence a missing value would be reported. This can be performed using the fillChromPeaks()
function.

For very large LC-MS experiments (either with a very large number of samples or very large data
files, or both), the XcmsExperimentHdf5() object can be used instead. See the respective help page
for more information.

Usage

filterFeatureDefinitions(object, ...)

S4 method for signature 'MsExperiment'
filterRt(object, rt = numeric(), ...)

S4 method for signature 'MsExperiment'
filterMzRange(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'MsExperiment'
filterMz(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'MsExperiment'
filterMsLevel(object, msLevel. = uniqueMsLevels(object))

S4 method for signature 'MsExperiment'
uniqueMsLevels(object)

S4 method for signature 'MsExperiment'
filterFile(object, file = integer(), ...)

S4 method for signature 'MsExperiment'
rtime(object)

S4 method for signature 'MsExperiment'
fromFile(object)

S4 method for signature 'MsExperiment'
fileNames(object)

S4 method for signature 'MsExperiment'
polarity(object)

S4 method for signature 'MsExperiment'

filterFeatureDefinitions 111

filterIsolationWindow(object, mz = numeric())

S4 method for signature 'MsExperiment'
chromatogram(
object,
rt = matrix(nrow = 0, ncol = 2),
mz = matrix(nrow = 0, ncol = 2),
aggregationFun = "sum",
msLevel = 1L,
isolationWindowTargetMz = NULL,
chunkSize = 2L,
return.type = "MChromatograms",
BPPARAM = bpparam()

)

S4 method for signature 'MsExperiment,missing'
plot(x, y, msLevel = 1L, peakCol = "#ff000060", ...)

S3 method for class 'XcmsExperiment'
c(...)

S4 method for signature 'XcmsExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'XcmsExperiment'
filterIsolationWindow(object, mz = numeric())

S4 method for signature 'XcmsExperiment'
filterRt(object, rt, msLevel.)

S4 method for signature 'XcmsExperiment'
filterMzRange(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperiment'
filterMsLevel(object, msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperiment'
hasChromPeaks(object, msLevel = integer())

S4 method for signature 'XcmsExperiment'
dropChromPeaks(object, keepAdjustedRtime = FALSE)

S4 replacement method for signature 'XcmsExperiment'
chromPeaks(object) <- value

S4 method for signature 'XcmsExperiment'
chromPeaks(
object,
rt = numeric(),
mz = numeric(),
ppm = 0,
msLevel = integer(),

112 filterFeatureDefinitions

type = c("any", "within", "apex_within"),
isFilledColumn = FALSE,
columns = character()

)

S4 replacement method for signature 'XcmsExperiment'
chromPeakData(object) <- value

S4 method for signature 'XcmsExperiment'
chromPeakData(
object,
msLevel = integer(),
columns = character(),
return.type = c("DataFrame", "data.frame")

)

S4 method for signature 'XcmsExperiment'
filterChromPeaks(
object,
keep = rep(TRUE, nrow(.chromPeaks(object))),
method = "keep",
...

)

S4 method for signature 'XcmsExperiment'
dropAdjustedRtime(object)

S4 method for signature 'MsExperiment'
hasAdjustedRtime(object)

S4 method for signature 'XcmsExperiment'
rtime(object, adjusted = hasAdjustedRtime(object))

S4 method for signature 'XcmsExperiment'
adjustedRtime(object)

S4 method for signature 'XcmsExperiment'
hasFeatures(object, msLevel = integer())

S4 method for signature 'XcmsResult'
featureArea(
object,
mzmin = min,
mzmax = max,
rtmin = min,
rtmax = max,
features = character(),
minMzWidthPpm = 0

)

S4 replacement method for signature 'XcmsExperiment'
featureDefinitions(object) <- value

filterFeatureDefinitions 113

S4 method for signature 'XcmsExperiment'
featureDefinitions(
object,
mz = numeric(),
rt = numeric(),
ppm = 0,
type = c("any", "within", "apex_within"),
msLevel = integer()

)

S4 method for signature 'XcmsExperiment'
dropFeatureDefinitions(object, keepAdjustedRtime = FALSE)

S4 method for signature 'XcmsExperiment'
filterFeatureDefinitions(object, features = integer())

S4 method for signature 'XcmsExperiment'
hasFilledChromPeaks(object)

S4 method for signature 'XcmsExperiment'
dropFilledChromPeaks(object)

S4 method for signature 'XcmsExperiment'
quantify(object, ...)

S4 method for signature 'XcmsExperiment'
featureValues(
object,
method = c("medret", "maxint", "sum"),
value = "into",
intensity = "into",
filled = TRUE,
missing = NA_real_,
msLevel = integer()

)

S4 method for signature 'XcmsExperiment'
chromatogram(
object,
rt = matrix(nrow = 0, ncol = 2),
mz = matrix(nrow = 0, ncol = 2),
aggregationFun = "sum",
msLevel = 1L,
chunkSize = 2L,
isolationWindowTargetMz = NULL,
return.type = c("XChromatograms", "MChromatograms"),
include = character(),
chromPeaks = c("apex_within", "any", "none"),
BPPARAM = bpparam()

)

114 filterFeatureDefinitions

S4 method for signature 'XcmsExperiment'
processHistory(object, type)

S4 method for signature 'XcmsExperiment'
filterFile(
object,
file,
keepAdjustedRtime = hasAdjustedRtime(object),
keepFeatures = FALSE,
...

)

Arguments

object An XcmsExperiment object.

... Additional optional parameters. For quantify(): any parameter for the featureValues
call used to extract the feature value matrix.

rt For chromPeaks() and featureDefinitions(): numeric(2) defining the re-
tention time range for which chromatographic peaks or features should be re-
turned. The full range is used by default. For chromatogram(): two column
numerical matrix with each row representing the lower and upper retention
time window(s) for the chromatograms. If not provided the full retention time
range is used.

mz For chromPeaks() and featureDefinitions(): numeric(2) optionally defin-
ing the m/z range for which chromatographic peaks or feature definitions should
be returned. The full m/z range is used by default. For chromatogram(): two-
column numerical matrix with each row representing m/z range that should be
aggregated into a chromatogram. If not provided the full m/z range of the data
will be used (and hence a total ion chromatogram will be returned if aggregationFun
= "sum" is used). For filterIsolationWindow(): numeric(1) defining the
m/z that should be contained within the spectra’s isolation window.

msLevel. For filterRt(): ignored. filterRt() will always filter by retention times on
all MS levels regardless of this parameter. For chromatogram(): integer with
the MS level from which the chromatogram(s) should be extracted. Has to be
either of length 1 or length equal to the numer of rows of the parameters mz
and rt defining the m/z and rt regions from which the chromatograms should
be created. Defaults to msLevel = 1L. for filterMsLevel(): integer defining
the MS level(s) to which the data should be subset.

file For filterFile(): integer with the indices of the samples (files) to which the
data should be subsetted.

aggregationFun For chromatogram(): character(1) defining the function that should be used
to aggregate intensities for retention time (i.e. each spectrum) along the speci-
fied m/z range (parameter mz). Defaults to aggregationFun = "sum" and hence
all intensities will be summed up. Alternatively, use aggregationFun = "max"
to use the maximal intensity per m/z range to create a base peak chromatogram
(BPC).

msLevel integer defining the MS level (or multiple MS level if the function supports it).
isolationWindowTargetMz

For chromatogram(): numeric (of length equal to the number of rows of rt
and mz) with the isolation window target m/z of the MS2 spectra from which the

filterFeatureDefinitions 115

chromatgrom should be generated. For MS1 data (msLevel = 1L, the default),
this parameter is ignored. See examples on chromatogram() below for further
information.

chunkSize For chromatogram(): integer(1) defining the number of files from which the
data should be loaded at a time into memory. Defaults to chunkSize = 2L.

return.type For chromPeakData(): character(1) defining the class of the returned object.
Can be either "DataFrame" (the default) or "data.frame". For chromatogram():
character(1) defining the type of the returned object. Currently only return.type
= "MChromatograms" is supported.

BPPARAM For chromatogram(): parallel processing setup. Defaults to BPPARAM = bpparam().
See BiocParallel::bpparam() for more information.

x An XcmsExperiment object.
y For plot(): should not be defined as it is not supported.
peakCol For plot(): defines the border color of the rectangles indicating the identified

chromatographic peaks. Only a single color is supported. Defaults to ‘peakCol
= "#ff000060".

i For [: integer or logical defining the samples/files to subset.
j For [: not supported.
drop For [: ignored.
keepAdjustedRtime

logical(1): whether adjusted retention times (if present) should be retained.
value For featureValues(): character(1) defining which value should be reported

for each feature in each sample. Can be any column of the chromPeaks() matrix
or "index" if simply the index of the assigned peak should be returned. Defaults
to value = "into" thus the integrated peak area is reported.

ppm For chromPeaks() and featureDefinitions(): optional numeric(1) speci-
fying the ppm by which the m/z range (defined by mz should be extended. For
a value of ppm = 10, all peaks within mz[1] - ppm / 1e6 and mz[2] + ppm / 1e6
are returned.

type For chromPeaks() and featureDefinitions() and only if either mz and rt
are defined too: character(1): defining which peaks (or features) should be
returned. For type = "any": returns all chromatographic peaks or features also
only partially overlapping any of the provided ranges. For type = "within":
returns only peaks or features completely within the region defined by mz and/or
rt. For type = "apex_within": returns peaks or features for which the m/z
and retention time of the peak’s apex is within the region defined by mz and/or
rt. For processHistory(): restrict returned processing steps to specific types.
Use processHistoryTypes() to list all supported values.

isFilledColumn For chromPeaks(): logical(1) whether a column "is_filled" should be in-
cluded in the returned matrix with the information whether a peak was detected
or only filled-in. Note that this information is also provided in the chromPeakData
data frame.

columns For chromPeaks() and chromPeakData(): optional character to specify the
names of the columns that should be returned. By default (with columns =
character() all columns are returned.

keep For filterChromPeaks(): logical, integer or character specifying which
chromatographic peaks to keep. If logical the length of keep needs to match
the number of rows of chromPeaks(). Alternatively, keep allows to specify the
index (row) of peaks to keep or their ID (i.e. row name in chromPeaks()).

116 filterFeatureDefinitions

method For featureValues(): character(1) specifying the method to resolve multi-
peak mappings within the same sample (correspondence analysis can assign
more than one chromatographic peak within a sample to the same feature, e.g. if
they are close in retention time). Options: method = "medret": report the value
for the chromatographic peak closest to the feature’s median retention time.
method = "maxint": report the value for the chromatographic peak with the
largest signal (parameter intensity allows to select the column in chromPeaks
that should be used for signal). method = "sum": sum the value for all chromato-
graphic peaks in a sample assigned to the same feature. The default is method =
"medret". For filterChromPeaks(): currently only method = "keep" is sup-
ported.

adjusted For rtime,XcmsExperiment: whether adjusted or raw retention times should
be returned. The default is to return adjusted retention times, if available.

mzmin For featureArea(): function to calculate the "mzmin" of a feature based on
the "mzmin" values of the individual chromatographic peaks assigned to that
feature. Defaults to mzmin = min.

mzmax For featureArea(): function to calculate the "mzmax" of a feature based on
the "mzmax" values of the individual chromatographic peaks assigned to that
feature. Defaults to mzmax = max.

rtmin For featureArea(): function to calculate the "rtmin" of a feature based on
the "rtmin" values of the individual chromatographic peaks assigned to that
feature. Defaults to rtmin = min.

rtmax For featureArea(): function to calculate the "rtmax" of a feature based on
the "rtmax" values of the individual chromatographic peaks assigned to that
feature. Defaults to rtmax = max.

features For filterFeatureDefinitions() and featureArea(): logical, integer
or character defining the features to keep or from which to extract the feature
area, respectively. See function description for more information.

minMzWidthPpm For featureArea(): numeric(1) defining the minimal guaranteed m/z width
(expressed in ppm of the feature’s m/z) of the reported feature areas. Defaults
to minMzWidthPpm = 0.0. See documentation of the featureArea() for more
information.

intensity For featureValues(): character(1) specifying the name of the column in
the chromPeaks(objects) matrix containing the intensity value of the peak
that should be used for the conflict resolution if method = "maxint".

filled For featureValues(): logical(1) specifying whether values for filled-in peaks
should be reported. For filled = TRUE (the default) filled peak values are re-
turned, otherwise NA is reported for the respective features in the samples in
which no peak was detected.

missing For featureValues(): default value for missing values. Allows to define the
value that should be reported for a missing peak intensity. Defaults to missing
= NA_real_.

include For chromatogram(): deprecated; use parameter chromPeaks instead.
chromPeaks For chromatogram(): character(1) defining which chromatographic peaks

should be returned. Can be either chromPeaks = "apex_within" (default) to
return all chromatographic peaks with the m/z and RT of their apex within the
m/z and retention time window, chromPeaks = "any" for all chromatographic
peaks that are overlapping with the m/z - retention time window or chromPeaks
= "none" to not include any chromatographic peaks. See also parameter type
below for additional information.

filterFeatureDefinitions 117

keepFeatures for most subsetting functions ([, filterFile()): logical(1): wheter even-
tually present feature definitions should be retained in the returned (filtered)
object.

Subset, filter and combine

• [: subset an XcmsExperiment by sample (parameter i). Subsetting will by default drop
correspondence results (as subsetting by samples will obviously affect the feature defini-
tion) while alignment results (adjusted retention times) and identified chromatographic peaks
(for the selected samples) will be retained. Which preprocessing results should be kept or
dropped can also be configured with optional parameters keepChromPeaks (by default TRUE),
keepAdjustedRtime (by default TRUE) and keepFeatures (by default FALSE).

• c(): multiple XcmsExperiment objects can be combined into one using the c() function.
This requires however that all the XcmsExperiments’ Spectra objects use the same type of
MsBackend and that their processing queues are empty. Also, only combining of peak de-
tection results is supported. Any eventually present alignment or correspondence results will
be dropped before combining the XcmsExperiment objects. Finally, at present, only the MS
data of the individual XcmsExperiment objects is combined and any data eventually present
in the @qdata, @otherData and @experimentFiles slots is ignored. The function returns a
XcmsExperiment objects with the combined MS data (Spectra objects) and chromatographic
peak detection results.

• filterChromPeaks(): filter chromatographic peaks of an XcmsExperiment keeping only
those specified with parameter keep. Returns the XcmsExperiment with the filtered data.
Chromatographic peaks to retain can be specified either by providing their index in the chromPeaks()
matrix, their ID (rowname in chromPeaks()) or with a logical vector with the same length
than number of rows of chromPeaks(). Assignment of chromatographic peaks are updated to
eventually present feature definitions after filtering.

• filterFeatureDefinitions(): filter feature definitions of an XcmsExperiment keeping
only those defined with parameter features, which can be a logical of length equal to the
number of features, an integer with the index of the features in featureDefinitions(object)
to keep or a character with the feature IDs (i.e. row names in featureDefinitions(object)).

• filterFile(): filter an XcmsExperiment (or MsExperiment) by file (sample). The index
of the samples to which the data should be subsetted can be specified with parameter file.
The sole purpose of this function is to provide backward compatibility with the MSnbase
package. Wherever possible, the [function should be used instead for any sample-based
subsetting. Parameters keepChromPeaks, keepAdjustedRtime and keepChromPeaks can be
passed using Note also that in contrast to [, filterFile() does not support subsetting
in arbitrary order.

• filterIsolationWindow(): filter the spectra within an MsExperiment or XcmsExperiment
object keeping only those with an isolation window containing the specified m/z (i.e., keep-
ing spectra with an "isolationWindowLowerMz" smaller than the user-provided mz and an
"isolationWindowUpperMz" larger than mz). For an XcmsExperiment also all chromato-
graphic peaks (and subsequently also features) are removed for which the range of their
"isolationWindowLowerMz" and "isolationWindowUpperMz" (columns in chromPeakData())
do not contain the user provided mz.

• filterMsLevel(): filter the data of the XcmsExperiment or MsExperiment to keep only data
of the MS level(s) specified with parameter msLevel..

• filterMz(), filterMzRange(): filter the spectra within an XcmsExperiment or MsExperiment
to the specified m/z range (parameter mz). For XcmsExperiment also identified chromato-
graphic peaks and features are filtered keeping only those that are within the specified m/z
range (i.e. for which the m/z of the peak apex is within the m/z range). Parameter msLevels.

118 filterFeatureDefinitions

allows to restrict the filtering to only specified MS levels. By default data from all MS levels
are filtered.

• filterRt(): filter an XcmsExperiment keeping only data within the specified retention time
range (parameter rt). This function will keep all preprocessing results present within the
retention time range: all identified chromatographic peaks with the retention time of the apex
position within the retention time range rt are retained along, if present, with the associated
features. Parameter msLevel. is currently ignored, i.e. filtering will always performed on all
MS levels of the object.

Functionality related to chromatographic peaks

• chromatogram(): extract chromatographic data from a data set. Parameters mz and rt al-
low to define specific m/z - retention time regions to extract the data from (to e.g. for
extracted ion chromatograms EICs). Both parameters are expected to be numerical two-
column matrices with the first column defining the lower and the second the upper mar-
gin. Each row can define a separate m/z - retention time region. Currently the function
returns a MSnbase::MChromatograms() object for object being a MsExperiment or, for
object being an XcmsExperiment, either a MChromatograms or XChromatograms() depend-
ing on parameter return.type (can be either "MChromatograms" or "XChromatograms").
For the latter also chromatographic peaks detected within the provided m/z and retention
times are returned. Parameter chromPeaks allows to specify which chromatographic peaks
should be reported. See documentation on the chromPeaks parameter for more information.
If the XcmsExperiment contains correspondence results, also the associated feature defini-
tions will be included in the returned XChromatograms. By default the function returns chro-
matograms from MS1 data, but by setting parameter msLevel = 2L it is possible to e.g. extract
also MS2 chromatograms. By default, with parameter isolationWindowTargetMz = NULL
or isolationWindowTargetMz = NA_real_, data from all MS2 spectra will be considered
in the chromatogram extraction. If MS2 data was generated within different m/z isolation
windows (such as e.g. with Scies SWATH data), the parameter isolationWindowTargetMz
should be used to ensure signal is only extracted from the respective isolation window. The
isolationWindowTargetMz() function on the Spectra object can be used to inspect/list
available isolation windows of a data set. See also the xcms LC-MS/MS vignette for examples
and details.

• chromPeaks(): returns a numeric matrix with the identified chromatographic peaks. Each
row represents a chromatographic peak identified in one sample (file). The number of columns
depends on the peak detection algorithm (see findChromPeaks()) but most methods return
the following columns: "mz" (intensity-weighted mean of the m/z values of all mass peaks
included in the chromatographic peak), "mzmin" (smallest m/z value of any mass peak in the
chromatographic peak), "mzmax" (largest m/z value of any mass peak in the chromatographic
peak), "rt" (retention time of the peak apex), "rtmin" (retention time of the first scan/mass
peak of the chromatographic peak), "rtmax" (retention time of the last scan/mass peak of the
chromatographic peak), "into" (integrated intensity of the chromatographic peak), "maxo"
(maximal intensity of any mass peak of the chromatographic peak), "sample" (index of the
sample in object in which the peak was identified). Parameters rt, mz, ppm, msLevel and
type allow to extract subsets of identified chromatographic peaks from the object. Parameter
columns allows to optionally define which columns to extract. See parameter description
below for details.

• chromPeakData(): returns a DataFrame with potential additional annotations for the identi-
fied chromatographic peaks. Each row in this DataFrame corresponds to a row (same index
and row name) in the chromPeaks() matrix. The default annotations are "ms_level" (the
MS level in which the peak was identified) and "is_filled" (whether the chromatographic

filterFeatureDefinitions 119

peak was detected (by findChromPeaks()) or filled-in (by fillChromPeaks()). Parame-
ter columns can be used to restrict the returned data frame to selected columns. Parameter
return.type can be used to specify the type of returned objects, either a DataFrame (the
default, return.type = "DataFrame") or a data.frame (return.type = "data.frame").

• chromPeakSpectra(): extract MS spectra for identified chromatographic peaks. This can
be either all (full scan) MS1 spectra with retention times between the retention time range of
a chromatographic peak, all MS2 spectra (if present) with a retention time within the reten-
tion time range of a (MS1) chromatographic peak and a precursor m/z within the m/z range
of the chromatographic peak or single, selected spectra depending on their total signal or
highest signal. Parameter msLevel allows to define from which MS level spectra should be
extracted, parameter method allows to define if all or selected spectra should be returned. See
chromPeakSpectra() for details.

• dropChromPeaks(): removes (all) chromatographic peak detection results from object. This
will also remove any correspondence results (i.e. features) and eventually present adjusted re-
tention times from the object if the alignment was performed after the peak detection. Align-
ment results (adjusted retention times) can be retained if parameter keepAdjustedRtime is
set to TRUE.

• dropFilledChromPeaks(): removes chromatographic peaks added by gap filling with fillChromPeaks().

• fillChromPeaks(): perform gap filling to integrate signal missing values in samples in
which no chromatographic peak was found. This depends on correspondence results, hence
groupChromPeaks() needs to be called first. For details and options see fillChromPeaks().

• findChromPeaks: perform chromatographic peak detection. See findChromPeaks() for de-
tails.

• hasChromPeaks(): whether the object contains peak detection results. Parameter msLevel
allows to check whether peak detection results are available for the specified MS level(s).

• hasFilledChromPeaks(): whether gap-filling results (i.e., filled-in chromatographic peaks)
are present.

• manualChromPeaks(): manually add chromatographic peaks by defining their m/z and reten-
tion time ranges. See manualChromPeaks() for details and examples.

• plotChromPeakImage(): show the density of identified chromatographic peaks per file along
the retention time. See plotChromPeakImage() for details.

• plotChromPeaks(): indicate identified chromatographic peaks from one sample in the RT-
m/z space. See plotChromPeaks() for details.

• plotPrecursorIons(): general visualization of precursor ions of LC-MS/MS data. See
plotPrecursorIons() for details.

• refineChromPeaks(): refines identified chromatographic peaks in object. See refineChromPeaks()
for details.

Functionality related to alignment

• adjustedRtime(): extract adjusted retention times. This is just an alias for rtime(object,
adjusted = TRUE).

• adjustRtime(): performs retention time adjustment (alignment) of the data. See adjustRtime()
for details.

• applyAdjustedRtime(): replaces the original (raw) retention times with the adjusted ones.
See applyAdjustedRtime() for more information.

• dropAdjustedRtime(): drops alignment results (adjusted retention time) from the result ob-
ject. This also reverts the retention times of identified chromatographic peaks if present in the

120 filterFeatureDefinitions

result object. Note that any results from a correspondence analysis (i.e. feature definitions)
will be dropped too (if the correspondence analysis was performed after the alignment). This
can be overruled with keepAdjustedRtime = TRUE.

• hasAdjustedRtime(): whether alignment was performed on the object (i.e., the object con-
tains alignment results).

• plotAdjustedRtime(): plot the alignment results; see plotAdjustedRtime() for more in-
formation.

Functionality related to correspondence analysis

• dropFeatureDefinitions(): removes any correspondence analysis results from object as
well as any filled-in chromatographic peaks. By default (with parameter keepAdjustedRtime
= FALSE) also all alignment results will be removed if alignment was performed after the
correspondence analysis. This can be overruled with keepAdjustedRtime = TRUE.

• featureArea(): returns a matrix with columns "mzmin", "mzmax", "rtmin" and "rtmax"
with the m/z and retention time range for each feature (row) in object. By default these
represent the minimal m/z and retention times as well as maximal m/z and retention times
for all chromatographic peaks assigned to that feature. Parameter minMzWidthPpm (default
minMzWidthPpm = 0.01) can be used to define a minimal required (total) m/z width expressed in ppm of the features' m/z. With a min-
MzWidthPpmlarger than 0 the reported"mzmin"is the minimum of the determined minimal m/z for a feature (based on parametermzmin) and the m/z of the feature minus min-
MzWidthPpm / 2ppm of the feature's m/z value. The reported"mzmax"is calculated in the same way. Parameterfeaturesallows to extract these values for selected features only. Parametersmzmin, mz-
max, rtminandrtmaxallow to define the function to calculate the reported"mzmin", "mz-
max", "rtmin"and"rtmax"‘ values.

• featureChromatograms(): extract ion chromatograms (EICs) for each feature in object.
See featureChromatograms() for more details.

• featureDefinitions(): returns a data.frame with feature definitions or an empty data.frame
if no correspondence analysis results are present. Parameters msLevel, mz, ppm and rt allow
to define subsets of feature definitions that should be returned with the parameter type defin-
ing how these parameters should be used to subset the returned data.frame. See parameter
descriptions for details.

• featureSpectra(): returns a Spectra::Spectra() or List of Spectra with (MS1 or MS2)
spectra associated to each feature’s chromatographic peaks. See featureSpectra() for more
details and available parameters.

• featuresSummary(): calculate a simple summary on features. See featureSummary() for
details.

• groupChromPeaks(): performs the correspondence analysis (i.e., grouping of chromatographic
peaks into LC-MS features). See groupChromPeaks() for details.

• hasFeatures(): whether correspondence analysis results are presentin in object. The op-
tional parameter msLevel allows to define the MS level(s) for which it should be determined
if feature definitions are available.

• overlappingFeatures(): identify features that overlapping or close in m/z - rt dimension.
See overlappingFeatures() for more information.

Extracting data and results from an XcmsExperiment

Preprocessing results can be extracted using the following functions:

• chromPeaks(): extract identified chromatographic peaks. See section on chromatographic
peak detection for details.

filterFeatureDefinitions 121

• featureDefinitions(): extract the definition of features (chromatographic peaks grouped
across samples). See section on correspondence analysis for details.

• featureValues(): extract a matrix of values for features from each sample (file). Rows are
features, columns samples. Which value should be returned can be defined with parameter
value, which can be any column of the chromPeaks() matrix. By default (value = "into")
the integrated chromatographic peak intensities are returned. With parameter msLevel it
is possible to extract values for features from certain MS levels. During correspondence
analysis, more than one chromatographic peak per sample can be assigned to the same fea-
ture (e.g. if they are very close in retention time). Parameter method allows to define the
strategy to deal with such cases: method = "medret": report the value from the chromato-
graphic peak with the apex position closest to the feautre’s median retention time. method =
"maxint": report the value from the chromatographic peak with the largest signal (parameter
intensity allows to define the column in chromPeaks that should be selected; defaults to
intensity = "into"). method = "sum"‘: sum the values for all chromatographic peaks
assigned to the feature in the same sample.

• quantify(): extract the correspondence analysis results as a SummarizedExperiment::SummarizedExperiment().
The feature values are used as assay in the returned SummarizedExperiment, rowData con-
tains the featureDefinitions (without column "peakidx") and colData the sampleData
of object. Additional parameters to the featureValues function (that is used to extract the
feature value matrix) can be passed via

Visualization

• plot(): plot for each file the position of individual peaks in the m/z - retention time space
(with color-coded intensity) and a base peak chromatogram. This function should ideally be
called only on a data subset (i.e. after using filterRt() and filterMz() to restrict to a
region of interest). Parameter msLevel allows to define from which MS level the plot should
be created. If x is a XcmsExperiment with available identified chromatographic peaks, also
the region defining the peaks are indicated with a rectangle. Parameter peakCol allows to
define the color of the border for these rectangles.

• plotAdjustedRtime(): plot the alignment results; see plotAdjustedRtime() for more in-
formation.

• plotChromPeakImage(): show the density of identified chromatographic peaks per file along
the retention time. See plotChromPeakImage() for details.

• plotChromPeaks(): indicate identified chromatographic peaks from one sample in the RT-
m/z space. See plotChromPeaks() for details.

General functionality and functions for backward compatibility

• uniqueMsLevels(): returns the unique MS levels of the spectra in object.

The functions listed below ensure compatibility with the older XCMSnExp() xcms result object.
Also, an XcmsExperiment can be coerced to the older XCMSnExp class using as(object, "XCMSnExp")
same as a XCMSnExp class can be coerced to XcmsExperiment using as(object, "XcmsExperiment").

• fileNames(): returns the original data file names for the spectra data. Ideally, the dataOrigin
or dataStorage spectra variables from the object’s spectra() should be used instead.

• fromFile(): returns the file (sample) index for each spectrum within object. Generally,
subsetting by sample using the [is the preferred way to get spectra from a specific sample.

• polarity(): returns the polarity information for each spectrum in object.

122 filterFeatureDefinitions

• processHistory(): returns a list with ProcessHistory process history objects that contain
also the parameter object used for the different processings. Optional parameter type allows
to query for specific processing steps.

• rtime(): extract retention times of the spectra from the MsExperiment or XcmsExperiment
object. It is thus a shortcut for rtime(spectra(object)) which would be the preferred way
to extract retention times from an MsExperiment. The rtime() method for XcmsExperiment
has an additional parameter adjusted which allows to define whether adjusted retention times
(if present - adjusted = TRUE) or raw retention times (adjusted = FALSE) should be returned.
By default adjusted retention times are returned if available.

Differences compared to the XCMSnExp() object

• Subsetting by [supports arbitrary ordering.

Author(s)

Johannes Rainer

Examples

Create a MsExperiment object representing the data from an LC-MS
experiment.
library(MsExperiment)

Define the raw data files
fls <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),

system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))

Define a data frame with the sample characterization
df <- data.frame(mzML_file = basename(fls),

sample = c("ko15", "ko16", "ko18"))
Importe the data. This will initialize a `Spectra` object representing
the raw data and assign these to the individual samples.
mse <- readMsExperiment(spectraFiles = fls, sampleData = df)

Extract a total ion chromatogram and base peak chromatogram
from the data
bpc <- chromatogram(mse, aggregationFun = "max")
tic <- chromatogram(mse)

Plot them
par(mfrow = c(2, 1))
plot(bpc, main = "BPC")
plot(tic, main = "TIC")

Extracting MS2 chromatographic data
##
To show how MS2 chromatograms can be extracted we first load a DIA
(SWATH) data set.
mse_dia <- readMsExperiment(system.file("TripleTOF-SWATH",

"PestMix1_SWATH.mzML", package = "msdata"))

Extracting MS2 chromatogram requires also to specify the isolation
window from which to extract the data. Without that chromatograms
will be empty:

filterFeatureDefinitions 123

chr_ms2 <- chromatogram(mse_dia, msLevel = 2L)
intensity(chr_ms2[[1L]])

First we list available isolation windows
table(isolationWindowTargetMz(spectra(mse_dia)))

We can then extract the TIC of MS2 data for a specific isolation window
chr_ms2 <- chromatogram(mse_dia, msLevel = 2L,

isolationWindowTargetMz = 244.05)
plot(chr_ms2)

####
Chromatographic peak detection

Perform peak detection on the data using the centWave algorith. Note
that the parameters are chosen to reduce the run time of the example.
p <- CentWaveParam(noise = 10000, snthresh = 40, prefilter = c(3, 10000))
xmse <- findChromPeaks(mse, param = p)
xmse

Have a quick look at the identified chromatographic peaks
head(chromPeaks(xmse))

Extract chromatographic peaks identified between 3000 and 3300 seconds
chromPeaks(xmse, rt = c(3000, 3300), type = "within")

Extract ion chromatograms (EIC) for the first two chromatographic
peaks.
chrs <- chromatogram(xmse,

mz = chromPeaks(xmse)[1:2, c("mzmin", "mzmax")],
rt = chromPeaks(xmse)[1:2, c("rtmin", "rtmax")])

An EIC for each sample and each of the two regions was extracted.
Identified chromatographic peaks in the defined regions are extracted
as well.
chrs

Plot the EICs for the second defined region
plot(chrs[2,])

Subsetting the data to the results (and data) for the second sample
a <- xmse[2]
nrow(chromPeaks(xmse))
nrow(chromPeaks(a))

Filtering the result by retention time: keeping all spectra and
chromatographic peaks within 3000 and 3500 seconds.
xmse_sub <- filterRt(xmse, rt = c(3000, 3500))
xmse_sub
nrow(chromPeaks(xmse_sub))

Perform an initial feature grouping to allow alignment using the
peak groups method:
pdp <- PeakDensityParam(sampleGroups = rep(1, 3))
xmse <- groupChromPeaks(xmse, param = pdp)

Perform alignment using the peak groups method.

124 filterFeatures

pgp <- PeakGroupsParam(span = 0.4)
xmse <- adjustRtime(xmse, param = pgp)

Visualizing the alignment results
plotAdjustedRtime(xmse)

Performing the final correspondence analysis
xmse <- groupChromPeaks(xmse, param = pdp)

Show the definition of the first 6 features
featureDefinitions(xmse) |> head()

Extract the feature values; show the results for the first 6 rows.
featureValues(xmse) |> head()

The full results can also be extracted as a `SummarizedExperiment`
that would eventually simplify subsequent analyses with other packages.
Any additional parameters passed to the function are passed to the
`featureValues` function that is called to generate the feature value
matrix.
se <- quantify(xmse, method = "sum")

EICs for all features can be extracted with the `featureChromatograms`
function. Note that, depending on the data set, extracting this for
all features might take some time. Below we extract EICs for the
first 10 features by providing the feature IDs.
chrs <- featureChromatograms(xmse,

features = rownames(featureDefinitions(xmse))[1:10])
chrs

plot(chrs[3,])

filterFeatures Filtering of features based on conventional quality assessment

Description

When dealing with metabolomics results, it is often necessary to filter features based on certain cri-
teria. These criteria are typically derived from statistical formulas applied to full rows of data, where
each row represents a feature and its abundance of signal in each samples. The filterFeatures
function filters features based on these conventional quality assessment criteria. Multiple types of
filtering are implemented and can be defined by the filter argument.

Supported filter arguments are:

• RsdFilter: Calculates the relative standard deviation (i.e. coefficient of variation) in abun-
dance for each feature in QC (Quality Control) samples and filters them in the input object
according to a provided threshold.

• DratioFilter: Computes the D-ratio or dispersion ratio, defined as the standard deviation in
abundance for QC samples divided by the standard deviation for biological test samples, for
each feature and filters them according to a provided threshold.

• PercentMissingFilter: Determines the percentage of missing values for each feature in the
various sample groups and filters them according to a provided threshold.

filterFeatures 125

• BlankFlag: Identifies features where the mean abundance in test samples is lower than a spec-
ified multiple of the mean abundance of blank samples. This can be used to flag features that
result from contamination in the solvent of the samples. A new column possible_contaminants
is added to the featureDefinitions (XcmsExperiment object) or rowData (SummarizedExperiment
object) reflecting this.

For specific examples, see the help pages of the individual parameter classes listed above.

Arguments

object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

... Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

Author(s)

Philippine Louail

References

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines
and considerations for the use of system suitability and quality control samples in mass spectrometry
assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14(6):72. doi:
10.1007/s11306-018-1367-3. Epub 2018 May 18. PMID: 29805336; PMCID: PMC5960010.

Examples

See the vignettes for more detailed examples
library(MsExperiment)

Load a test data set with features defined.
test_xcms <- loadXcmsData()
Set up parameter to filter based on coefficient of variation. By setting
the filter such as below, features that have a coefficient of variation
superior to 0.3 in QC samples will be removed from the object `test_xcms`
when calling the `filterFeatures` function.

rsd_filter <- RsdFilter(threshold = 0.3,
qcIndex = sampleData(test_xcms)$sample_type == "QC")

filtered_data_rsd <- filterFeatures(object = test_xcms, filter = rsd_filter)

Set up parameter to filter based on D-ratio. By setting the filter such
as below, features that have a D-ratio computed based on their abundance
between QC and study samples superior to 0.5 will be removed from the

https://doi.org/10.1007/s11306-018-1367-3

126 filtfft

object `test_xcms`.

dratio_filter <- DratioFilter(threshold = 0.5,
qcIndex = sampleData(test_xcms)$sample_type == "QC",
studyIndex = sampleData(test_xcms)$sample_type == "study")

filtered_data_dratio <- filterFeatures(object = test_xcms,
filter = dratio_filter)

Set up parameter to filter based on the percent of missing data.
Parameter f should represent the sample group of samples, for which the
percentage of missing values will be evaluated. As the setting is defined
bellow, if a feature as less (or equal) to 30% missing values in one
sample group, it will be kept in the `test_xcms` object.

missing_data_filter <- PercentMissingFilter(threshold = 30,
f = sampleData(test_xcms)$sample_type)

filtered_data_missing <- filterFeatures(object = test_xcms,
filter = missing_data_filter)

Set up parameter to flag possible contaminants based on blank samples'
abundance. By setting the filter such as below, features that have mean
abundance ratio between blank(here use study as an example) and QC
samples less than 2 will be marked as `TRUE` in an extra column named
`possible_contaminants` in the `featureDefinitions` table of the object
`test_xcms`.

filter <- BlankFlag(threshold = 2,
qcIndex = sampleData(test_xcms)$sample_type == "QC",
blankIndex = sampleData(test_xcms)$sample_type == "study")

filtered_xmse <- filterFeatures(test_xcms, filter)

filtfft Apply an convolution filter using an FFT

Description

Expands a vector to the length of the filter and then convolutes it using two successive FFTs.

Usage

filtfft(y, filt)

Arguments

y numeric vector of data to be filtered

filt filter with length nextn(length(y))

Value

A numeric vector the same length as y.

findChromPeaks 127

Author(s)

Colin A. Smith, <csmith@scripps.edu>

findChromPeaks Chromatographic Peak Detection

Description

The findChromPeaks method performs chromatographic peak detection on LC/GC-MS data. The
peak detection algorithm can be selected, and configured, using the param argument.

Supported param objects are:

• CentWaveParam(): chromatographic peak detection using the centWave algorithm.

• CentWavePredIsoParam(): centWave with predicted isotopes. Peak detection uses a two-step
centWave-based approach considering also feature isotopes.

• MatchedFilterParam(): peak detection using the matched filter algorithm.

• MassifquantParam(): peak detection using the Kalman filter-based massifquant method.

• MSWParam(): single-spectrum non-chromatography MS data peak detection.

For specific examples see the help pages of the individual parameter classes listed above.

Usage

findChromPeaks(object, param, ...)

S4 method for signature 'MsExperiment,Param'
findChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
hdf5File = character(),
force.overwrite = FALSE,
...,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperiment,Param'
findChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
add = FALSE,
...,
BPPARAM = bpparam()

)

128 findChromPeaks

Arguments

object The data object on which to perform the peak detection. Can be an MSnbase::OnDiskMSnExp(),
XCMSnExp(), MSnbase::MChromatograms() or MsExperiment::MsExperiment()
object.

param The parameter object selecting and configuring the algorithm.

... Optional parameters.

msLevel integer(1) defining the MS level on which the chromatographic peak detection
should be performed.

chunkSize integer(1) for object being an MsExperiment or XcmsExperiment(): de-
fines the number of files (samples) for which the full peaks data (m/z and in-
tensity values) should be loaded into memory at the same time. Peak detection
is then performed in parallel (per sample) on this subset of loaded data. This
setting thus allows to balance between memory demand and speed (due to par-
allel processing) of the peak detection. Because parallel processing can only
performed on the subset of data loaded currently into memory (in each itera-
tion), the value for chunkSize should be match the defined parallel setting setup.
Using a parallel processing setup using 4 CPUs (separate processes) but using
chunkSize = 1will not perform any parallel processing, as only the data from one sample is loaded in memory at a time. On the other hand, settingchunkSizeto the total number of samples in an experiment will load the full MS data into memory and will thus in most settings cause an out-of-memory error. By settingchunkSize
= -1the peak detection will be performed separately, and in parallel, for each sample. This will however not work for allSpectra‘
backends (see eventually Spectra::Spectra() for details).

hdf5File For object being an MsExperiment: character(1) specifying the name (in-
clusive path) of a file that should be used for on-disk storage of preprocessing
results. This option is suggested for very large data sets since it significantly
reduces the memory demand. See XcmsExperimentHdf5 for more information.
Note that an error is thrown if the file already exists. Overwriting an existing
result file can be forced using force.overwrite = TRUE.

force.overwrite

For object being an MsExperiment and parameter hdf5File being defined (see
below): logical(1) whether an eventually existing result file should be over-
written.

BPPARAM Parallel processing setup. Uses by default the system-wide default setup. See
BiocParallel::bpparam() for more details.

add logical(1) (if object contains already chromatographic peaks, i.e. is either an
XCMSnExp or XcmsExperiment) whether chromatographic peak detection results
should be added to existing results. By default (add = FALSE) any additional
findChromPeaks call on a result object will remove previous results.

Author(s)

Johannes Rainer

See Also

plotChromPeaks() to plot identified chromatographic peaks for one file.

refineChromPeaks() for methods to refine or clean identified chromatographic peaks.

manualChromPeaks() to manually add/define chromatographic peaks.

Other peak detection methods: findChromPeaks-centWave, findChromPeaks-centWaveWithPredIsoROIs,
findChromPeaks-massifquant, findChromPeaks-matchedFilter, findPeaks-MSW

findChromPeaks,Chromatogram,CentWaveParam-method 129

findChromPeaks,Chromatogram,CentWaveParam-method

centWave-based peak detection in purely chromatographic data

Description

findChromPeaks on a MSnbase::Chromatogram or MSnbase::MChromatograms object with a Cent-
WaveParam parameter object performs centWave-based peak detection on purely chromatographic
data. See centWave for details on the method and CentWaveParam for details on the parameter
class. Note that not all settings from the CentWaveParam will be used. See peaksWithCentWave()
for the arguments used for peak detection on purely chromatographic data.

After chromatographic peak detection, identified peaks can also be refined with the refineChromPeaks()
method, which can help to reduce peak detection artifacts.

Usage

S4 method for signature 'Chromatogram,CentWaveParam'
findChromPeaks(object, param, ...)

S4 method for signature 'MChromatograms,CentWaveParam'
findChromPeaks(object, param, BPPARAM = bpparam(), ...)

S4 method for signature 'MChromatograms,MatchedFilterParam'
findChromPeaks(object, param, BPPARAM = BPPARAM, ...)

Arguments

object a MSnbase::Chromatogram or MSnbase::MChromatograms object.

param a CentWaveParam object specifying the settings for the peak detection. See
peaksWithCentWave() for the description of arguments used for peak detec-
tion.

... currently ignored.

BPPARAM a parameter class specifying if and how parallel processing should be performed
(only for XChromatograms objects). It defaults to bpparam(). See BiocParallel::bpparam()
for more information.

Value

If called on a Chromatogram object, the method returns an XChromatogram object with the iden-
tified peaks. Columns "mz", "mzmin" and "mzmax" in the chromPeaks() peak matrix provide the
mean m/z and the maximum and minimum m/z value of the Chromatogram object. See peaksWithCentWave()
for details on the remaining columns.

Author(s)

Johannes Rainer

See Also

peaksWithCentWave() for the downstream function and centWave for details on the method.

130 findChromPeaks,Chromatogram,MatchedFilterParam-method

Examples

library(MSnbase)
Loading a test data set with identified chromatographic peaks
faahko_sub <- loadXcmsData("faahko_sub2")
faahko_sub <- filterRt(faahko_sub, c(2500, 3700))

##
od <- as(filterFile(faahko_sub, 1L), "MsExperiment")

Extract chromatographic data for a small m/z range
chr <- chromatogram(od, mz = c(272.1, 272.3))[1, 1]

Identify peaks with default settings
xchr <- findChromPeaks(chr, CentWaveParam())
xchr

Plot data and identified peaks.
plot(xchr)

library(MsExperiment)
library(xcms)
Perform peak detection on an MChromatograms object

fls <- c(system.file("cdf/KO/ko15.CDF", package = "faahKO"),
system.file("cdf/KO/ko16.CDF", package = "faahKO"),
system.file("cdf/KO/ko18.CDF", package = "faahKO"))

od3 <- readMsExperiment(fls)

Disable parallel processing for this example
register(SerialParam())

Extract chromatograms for a m/z - retention time slice
chrs <- chromatogram(od3, mz = 344, rt = c(2500, 3500))

Perform peak detection using CentWave
xchrs <- findChromPeaks(chrs, param = CentWaveParam())
xchrs

Extract the identified chromatographic peaks
chromPeaks(xchrs)

plot the result
plot(xchrs)

findChromPeaks,Chromatogram,MatchedFilterParam-method

matchedFilter-based peak detection in purely chromatographic data

Description

findChromPeaks on a MSnbase::Chromatogram() or MSnbase::MChromatograms() object with a
MatchedFilterParam parameter object performs matchedFilter-based peak detection on purely chro-
matographic data. See matchedFilter for details on the method and MatchedFilterParam for details
on the parameter class. Note that not all settings from the MatchedFilterParam will be used. See

findChromPeaks,Chromatogram,MatchedFilterParam-method 131

peaksWithMatchedFilter() for the arguments used for peak detection on purely chromatographic
data.

Usage

S4 method for signature 'Chromatogram,MatchedFilterParam'
findChromPeaks(object, param, ...)

Arguments

object a MSnbase::Chromatogram() or MSnbase::MChromatograms() object.

param a MatchedFilterParam object specifying the settings for the peak detection. See
peaksWithMatchedFilter() for the description of arguments used for peak
detection.

... currently ignored.

Value

If called on a Chromatogram object, the method returns a matrix with the identified peaks. Columns
"mz", "mzmin" and "mzmax" in the chromPeaks() peak matrix provide the mean m/z and the max-
imum and minimum m/z value of the Chromatogram object. See peaksWithMatchedFilter() for
details on the remaining columns.

Author(s)

Johannes Rainer

See Also

peaksWithMatchedFilter() for the downstream function and matchedFilter for details on the
method.

Examples

Loading a test data set with identified chromatographic peaks
faahko_sub <- loadXcmsData("faahko_sub2")
faahko_sub <- filterRt(faahko_sub, c(2500, 3700))

##
od <- as(filterFile(faahko_sub, 1L), "MsExperiment")

Extract chromatographic data for a small m/z range
chr <- chromatogram(od, mz = c(272.1, 272.3))[1, 1]

Identify peaks with default settings
xchr <- findChromPeaks(chr, MatchedFilterParam())

Plot the identified peaks
plot(xchr)

132 findChromPeaks-centWave

findChromPeaks-centWave

Chromatographic peak detection using the centWave method

Description

The centWave algorithm perform peak density and wavelet based chromatographic peak detection
for high resolution LC/MS data in centroid mode Tautenhahn 2008.

The findChromPeaks,OnDiskMSnExp,CentWaveParam() method performs chromatographic peak
detection using the centWave algorithm on all samples from an OnDiskMSnExp object. OnDiskMSnExp
objects encapsule all experiment specific data and load the spectra data (mz and intensity values)
on the fly from the original files applying also all eventual data manipulations.

Usage

CentWaveParam(
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1L,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
roiList = list(),
firstBaselineCheck = TRUE,
roiScales = numeric(),
extendLengthMSW = FALSE,
verboseBetaColumns = FALSE

)

S4 method for signature 'OnDiskMSnExp,CentWaveParam'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
...

)

S4 method for signature 'CentWaveParam'
as.list(x, ...)

Arguments

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

findChromPeaks-centWave 133

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh numeric(1) defining the signal to noise ratio cutoff.

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

roiList An optional list of regions-of-interest (ROI) representing detected mass traces.
If ROIs are submitted the first analysis step is omitted and chromatographic
peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data.frame.

firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roiList that should be used for the centWave-wavelets.

extendLengthMSW

Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect" method. See https://github.com/sneumann/xcms/issues/445 for more
information.

verboseBetaColumns

Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,

134 findChromPeaks-centWave

corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

object For findChromPeaks(): an MSnbase::OnDiskMSnExp() object containing the
MS- and all other experiment-relevant data.

For all other methods: a parameter object.

param An CentWaveParam() object containing all settings for the centWave algorithm.

BPPARAM A parameter class specifying if and how parallel processing should be per-
formed. It defaults to BiocParallel::bpparam(). See documentation of the
BiocParallel package for more details. If parallel processing is enabled, peak
detection is performed in parallel on several of the input samples.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

msLevel integer(1) defining the MS level on which the peak detection should be per-
formed. Defaults to msLevel = 1.

... ignored.

x The parameter object.

Details

The centWave algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data
in centroid mode. In the first phase the method identifies regions of interest (ROIs) representing
mass traces that are characterized as regions with less than ppm m/z deviation in consecutive scans
in the LC/MS map. In detail, starting with a single m/z, a ROI is extended if a m/z can be found
in the next scan (spectrum) for which the difference to the mean m/z of the ROI is smaller than the
user defined ppm of the m/z. The mean m/z of the ROI is then updated considering also the newly
included m/z value.

These ROIs are then, after some cleanup, analyzed using continuous wavelet transform (CWT) to
locate chromatographic peaks on different scales. The first analysis step is skipped, if regions of
interest are passed via the param parameter.

Parallel processing (one process per sample) is supported and can be configured either by the
BPPARAM parameter or by globally defining the parallel processing mode using the BiocParallel::register()
method from the BiocParallel package.

Value

The CentWaveParam() function returns a CentWaveParam class instance with all of the settings
specified for chromatographic peak detection by the centWave method.

For findChromPeaks(): if return.type = "XCMSnExp" an XCMSnExp() object with the results of
the peak detection. If return.type = "list" a list of length equal to the number of samples with
matrices specifying the identified peaks. If return.type = "xcmsSet" an xcmsSet object with the
results of the peak detection.

Note

These methods and classes are part of the updated and modernized xcms user interface which will
eventually replace the findPeaks() methods.

findChromPeaks-centWaveWithPredIsoROIs 135

Author(s)

Ralf Tautenhahn, Johannes Rainer

References

Ralf Tautenhahn, Christoph Böttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504 doi: 10.1186/1471-2105-9-504

See Also

The do_findChromPeaks_centWave() core API function and findPeaks.centWave() for the old
user interface.

peaksWithCentWave() for functions to perform centWave peak detection in purely chromato-
graphic data.

XCMSnExp() for the object containing the results of the peak detection.

Other peak detection methods: findChromPeaks(), findChromPeaks-centWaveWithPredIsoROIs,
findChromPeaks-massifquant, findChromPeaks-matchedFilter, findPeaks-MSW

Examples

Create a CentWaveParam object. Note that the noise is set to 10000 to
speed up the execution of the example - in a real use case the default
value should be used, or it should be set to a reasonable value.
cwp <- CentWaveParam(ppm = 25, noise = 10000, prefilter = c(3, 10000))
cwp

Perform the peak detection using centWave on some of the files from the
faahKO package. Files are read using the `readMsExperiment` function
from the MsExperiment package
library(faahKO)
library(xcms)
library(MsExperiment)
fls <- dir(system.file("cdf/KO", package = "faahKO"), recursive = TRUE,

full.names = TRUE)
raw_data <- readMsExperiment(fls[1])

Perform the peak detection using the settings defined above.
res <- findChromPeaks(raw_data, param = cwp)
head(chromPeaks(res))

findChromPeaks-centWaveWithPredIsoROIs

Two-step centWave peak detection considering also isotopes

Description

This method performs a two-step centWave-based chromatographic peak detection: in a first cent-
Wave run peaks are identified for which then the location of their potential isotopes in the mz-
retention time is predicted. A second centWave run is then performed on these regions of interest
(ROIs). The final list of chromatographic peaks comprises all non-overlapping peaks from both
centWave runs.

https://doi.org/10.1186/1471-2105-9-504

136 findChromPeaks-centWaveWithPredIsoROIs

The findChromPeaks,OnDiskMSnExp,CentWavePredIsoParam() method performs a two-step centWave-
based chromatographic peak detection on all samples from an OnDiskMSnExp object. OnDiskMSnExp
objects encapsule all experiment specific data and load the spectra data (mz and intensity values)
on the fly from the original files applying also all eventual data manipulations.

Usage

CentWavePredIsoParam(
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1L,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
roiList = list(),
firstBaselineCheck = TRUE,
roiScales = numeric(),
extendLengthMSW = FALSE,
verboseBetaColumns = FALSE,
snthreshIsoROIs = 6.25,
maxCharge = 3,
maxIso = 5,
mzIntervalExtension = TRUE,
polarity = "unknown"

)

S4 method for signature 'OnDiskMSnExp,CentWavePredIsoParam'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
...

)

Arguments

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh numeric(1) defining the signal to noise ratio cutoff.

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":

findChromPeaks-centWaveWithPredIsoROIs 137

mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

roiList An optional list of regions-of-interest (ROI) representing detected mass traces.
If ROIs are submitted the first analysis step is omitted and chromatographic
peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data.frame.

firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roiList that should be used for the centWave-wavelets.

extendLengthMSW

Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect" method. See https://github.com/sneumann/xcms/issues/445 for more
information.

verboseBetaColumns

Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,
corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

snthreshIsoROIs

numeric(1) defining the signal to noise ratio cutoff to be used in the second
centWave run to identify peaks for predicted isotope ROIs.

maxCharge integer(1) defining the maximal isotope charge. Isotopes will be defined for
charges 1:maxCharge.

138 findChromPeaks-centWaveWithPredIsoROIs

maxIso integer(1) defining the number of isotope peaks that should be predicted for
each peak identified in the first centWave run.

mzIntervalExtension

logical(1) whether the mz range for the predicted isotope ROIs should be
extended to increase detection of low intensity peaks.

polarity character(1) specifying the polarity of the data. Currently not used, but has
to be "positive", "negative" or "unknown" if provided.

object For findChromPeaks(): an MSnbase::OnDiskMSnExp() object containing the
MS- and all other experiment-relevant data.

For all other methods: a parameter object.

param An CentWavePredIsoParam object with the settings for the chromatographic
peak detection algorithm.

BPPARAM A parameter class specifying if and how parallel processing should be per-
formed. It defaults to BiocParallel::bpparam(). See documentation of the
BiocParallel package for more details. If parallel processing is enabled, peak
detection is performed in parallel on several of the input samples.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

msLevel integer(1) defining the MS level on which the peak detection should be per-
formed. Defaults to msLevel = 1.

... ignored.

Details

See centWave() for details on the centWave method.

Parallel processing (one process per sample) is supported and can be configured either by the
BPPARAM parameter or by globally defining the parallel processing mode using the BiocParallel::register()
method from the BiocParallel package.

Value

The CentWavePredIsoParam() function returns a CentWavePredIsoParam class instance with all
of the settings specified for the two-step centWave-based peak detection considering also isotopes.

For findChromPeaks(): if return.type = "XCMSnExp" an XCMSnExp object with the results of the
peak detection. If return.type = "list" a list of length equal to the number of samples with
matrices specifying the identified peaks. If return.type = "xcmsSet" an xcmsSet object with the
results of the peak detection.

Author(s)

Hendrik Treutler, Johannes Rainer

See Also

The do_findChromPeaks_centWaveWithPredIsoROIs() core API function.

XCMSnExp() for the object containing the results of the peak detection.

Other peak detection methods: findChromPeaks(), findChromPeaks-centWave, findChromPeaks-massifquant,
findChromPeaks-matchedFilter, findPeaks-MSW

findChromPeaks-massifquant 139

Examples

Create a param object
p <- CentWavePredIsoParam(maxCharge = 4, snthresh = 25)
p

findChromPeaks-massifquant

Chromatographic peak detection using the massifquant method

Description

Massifquant is a Kalman filter (KF)-based chromatographic peak detection for XC-MS data in cen-
troid mode. The identified peaks can be further refined with the centWave method (see findChromPeaks-centWave()
for details on centWave) by specifying withWave = TRUE.

The findChromPeaks,OnDiskMSnExp,MassifquantParam() method performs chromatographic
peak detection using the massifquant algorithm on all samples from an OnDiskMSnExp object.
OnDiskMSnExp objects encapsule all experiment specific data and load the spectra data (mz and
intensity values) on the fly from the original files applying also all eventual data manipulations.

Usage

MassifquantParam(
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1L,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
criticalValue = 1.125,
consecMissedLimit = 2,
unions = 1,
checkBack = 0,
withWave = FALSE

)

S4 method for signature 'OnDiskMSnExp,MassifquantParam'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
...

)

140 findChromPeaks-massifquant

Arguments

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

peakwidth numeric(2). Only the first element is used by massifquant, which specifices the
minimum peak length in time scans. For withWave = TRUE the second argument
represents the maximum peak length subject to being greater than the mininum
peak length (see also documentation of do_findChromPeaks_centWave()).

snthresh numeric(1) defining the signal to noise ratio cutoff.

prefilter numeric(2). The first argument is only used if (withWave = TRUE); see findChromPeaks-centWave()
for details. The second argument specifies the minimum threshold for the max-
imum intensity of a chromatographic peak that must be met.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate = 1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

criticalValue numeric(1). Suggested values: (0.1-3.0). This setting helps determine the
the Kalman Filter prediciton margin of error. A real centroid belonging to a
bonafide peak must fall within the KF prediction margin of error. Much like in
the construction of a confidence interval, criticalVal loosely translates to be a
multiplier of the standard error of the prediction reported by the Kalman Filter.
If the peak in the XC-MS sample have a small mass deviance in ppm error, a
smaller critical value might be better and vice versa.

consecMissedLimit

integer(1) Suggested values: (1,2,3). While a peak is in the proces of being
detected by a Kalman Filter, the Kalman Filter may not find a predicted centroid
in every scan. After 1 or more consecutive failed predictions, this setting informs
Massifquant when to stop a Kalman Filter from following a candidate peak.

unions integer(1) set to 1 if apply t-test union on segmentation; set to 0 if no t-test to
be applied on chromatographically continous peaks sharing same m/z range. Ex-
planation: With very few data points, sometimes a Kalman Filter stops tracking
a peak prematurely. Another Kalman Filter is instantiated and begins following
the rest of the signal. Because tracking is done backwards to forwards, this algo-
rithmic defect leaves a real peak divided into two segments or more. With this

findChromPeaks-massifquant 141

option turned on, the program identifies segmented peaks and combines them
(merges them) into one with a two sample t-test. The potential danger of this
option is that some truly distinct peaks may be merged.

checkBack integer(1) set to 1 if turned on; set to 0 if turned off. The convergence of
a Kalman Filter to a peak’s precise m/z mapping is very fast, but sometimes it
incorporates erroneous centroids as part of a peak (especially early on). The
scanBack option is an attempt to remove the occasional outlier that lies beyond
the converged bounds of the Kalman Filter. The option does not directly affect
identification of a peak because it is a postprocessing measure; it has not shown
to be a extremely useful thus far and the default is set to being turned off.

withWave logical(1) if TRUE, the peaks identified first with Massifquant are subsequently
filtered with the second step of the centWave algorithm, which includes wavelet
estimation.

object For findChromPeaks(): an OnDiskMSnExp object containing the MS- and all
other experiment-relevant data.

For all other methods: a parameter object.

param An MassifquantParam object containing all settings for the massifquant algo-
rithm.

BPPARAM A parameter class specifying if and how parallel processing should be per-
formed. It defaults to BiocParallel::bpparam(). See documentation of the
BiocParallel package for more details. If parallel processing is enabled, peak
detection is performed in parallel on several of the input samples.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

msLevel integer(1) defining the MS level on which the peak detection should be per-
formed. Defaults to msLevel = 1.

... ignored.

Details

This algorithm’s performance has been tested rigorously on high resolution LC/(OrbiTrap, TOF)-
MS data in centroid mode. Simultaneous kalman filters identify chromatographic peaks and cal-
culate their area under the curve. The default parameters are set to operate on a complex LC-MS
Orbitrap sample. Users will find it useful to do some simple exploratory data analysis to find
out where to set a minimum intensity, and identify how many scans an average peak spans. The
consecMissedLimit parameter has yielded good performance on Orbitrap data when set to (2) and
on TOF data it was found best to be at (1). This may change as the algorithm has yet to be tested on
many samples. The criticalValue parameter is perhaps most dificult to dial in appropriately and
visual inspection of peak identification is the best suggested tool for quick optimization. The ppm
and checkBack parameters have shown less influence than the other parameters and exist to give
users flexibility and better accuracy.

Parallel processing (one process per sample) is supported and can be configured either by the
BPPARAM parameter or by globally defining the parallel processing mode using the BiocParallel::register()
method from the BiocParallel package.

Value

The MassifquantParam() function returns a MassifquantParam class instance with all of the
settings specified for chromatographic peak detection by the massifquant method.

142 findChromPeaks-matchedFilter

For findChromPeaks(): if return.type = "XCMSnExp" an XCMSnExp object with the results of the
peak detection. If return.type = "list" a list of length equal to the number of samples with
matrices specifying the identified peaks. If return.type = "xcmsSet" an xcmsSet object with the
results of the peak detection.

Author(s)

Christopher Conley, Johannes Rainer

References

Conley CJ, Smith R, Torgrip RJ, Taylor RM, Tautenhahn R and Prince JT "Massifquant: open-
source Kalman filter-based XC-MS isotope trace feature detection" Bioinformatics 2014, 30(18):2636-
43. doi: 10.1093/bioinformatics/btu359

See Also

The do_findChromPeaks_massifquant() core API function and findPeaks.massifquant() for
the old user interface.

XCMSnExp() for the object containing the results of the peak detection.

Other peak detection methods: findChromPeaks(), findChromPeaks-centWave, findChromPeaks-centWaveWithPredIsoROIs,
findChromPeaks-matchedFilter, findPeaks-MSW

Examples

Create a MassifquantParam object.
mqp <- MassifquantParam(snthresh = 30, prefilter = c(6, 10000))
mqp

Perform the peak detection using massifquant on the files from the
faahKO package. Files are read using the readMSData from the MSnbase
package
library(faahKO)
library(MSnbase)
fls <- dir(system.file("cdf/KO", package = "faahKO"), recursive = TRUE,

full.names = TRUE)
raw_data <- readMSData(fls[1], mode = "onDisk")
Perform the peak detection using the settings defined above.
res <- findChromPeaks(raw_data, param = mqp)
head(chromPeaks(res))

findChromPeaks-matchedFilter

Peak detection in the chromatographic time domain

Description

The matchedFilter algorithm identifies peaks in the chromatographic time domain as described in
Smith 2006. The intensity values are binned by cutting The LC/MS data into slices (bins) of a mass
unit (binSize m/z) wide. Within each bin the maximal intensity is selected. The chromatographic
peak detection is then performed in each bin by extending it based on the steps parameter to
generate slices comprising bins current_bin - steps +1 to current_bin + steps - 1. Each of

https://doi.org/10.1093/bioinformatics/btu359

findChromPeaks-matchedFilter 143

these slices is then filtered with matched filtration using a second-derative Gaussian as the model
peak shape. After filtration peaks are detected using a signal-to-ratio cut-off. For more details and
illustrations see Smith 2006.

The findChromPeaks,OnDiskMSnExp,MatchedFilterParam() method performs peak detection
using the matchedFilter algorithm on all samples from an MSnbase::OnDiskMSnExp() object.
MSnbase::OnDiskMSnExp() objects encapsule all experiment specific data and load the spectra
data (mz and intensity values) on the fly from the original files applying also all eventual data
manipulations.

Usage

MatchedFilterParam(
binSize = 0.1,
impute = "none",
baseValue = numeric(),
distance = numeric(),
fwhm = 30,
sigma = fwhm/2.3548,
max = 5,
snthresh = 10,
steps = 2,
mzdiff = 0.8 - binSize * steps,
index = FALSE

)

S4 method for signature 'OnDiskMSnExp,MatchedFilterParam'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
...

)

Arguments

binSize numeric(1) specifying the width of the bins/slices in m/z dimension.
impute Character string specifying the method to be used for missing value imputation.

Allowed values are "none" (no linear interpolation), "lin" (linear interpola-
tion), "linbase" (linear interpolation within a certain bin-neighborhood) and
"intlin". See imputeLinInterpol() for more details.

baseValue The base value to which empty elements should be set. This is only con-
sidered for method = "linbase" and corresponds to the profBinLinBase()’s
baselevel argument.

distance For method = "linbase": number of non-empty neighboring element of an
empty element that should be considered for linear interpolation. See details
section for more information.

fwhm numeric(1) specifying the full width at half maximum of matched filtration
gaussian model peak. Only used to calculate the actual sigma, see below.

sigma numeric(1) specifying the standard deviation (width) of the matched filtration
model peak.

144 findChromPeaks-matchedFilter

max numeric(1) representing the maximum number of peaks that are expected/will
be identified per slice.

snthresh numeric(1) defining the signal to noise cutoff to be used in the chromatographic
peak detection step.

steps numeric(1) defining the number of bins to be merged before filtration (i.e. the
number of neighboring bins that will be joined to the slice in which filtration
and peak detection will be performed).

mzdiff numeric(1) defining the minimum difference in m/z for peaks with overlapping
retention times

index logical(1) specifying whether indicies should be returned instead of values
for m/z and retention times.

object For findChromPeaks(): an OnDiskMSnExp object containing the MS- and all
other experiment-relevant data.

For all other methods: a parameter object.

param An MatchedFilterParam object containing all settings for the matchedFilter
algorithm.

BPPARAM A parameter class specifying if and how parallel processing should be per-
formed. It defaults to BiocParallel::bpparam(). See documentation of the
BiocParallel package for more details. If parallel processing is enabled, peak
detection is performed in parallel on several of the input samples.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

msLevel integer(1) defining the MS level on which the peak detection should be per-
formed. Defaults to msLevel = 1.

... ignored.

Details

The intensities are binned by the provided m/z values within each spectrum (scan). Binning is
performed such that the bins are centered around the m/z values (i.e. the first bin includes all m/z
values between min(mz) - bin_size/2 and min(mz) + bin_size/2).

For more details on binning and missing value imputation see
[binYonX()] and [imputeLinInterpol()] methods.

Parallel processing (one process per sample) is supported and can be configured either by the
BPPARAM parameter or by globally defining the parallel processing mode using the BiocParallel::register()
method from the BiocParallel package.

Value

The MatchedFilterParam() function returns a MatchedFilterParam class instance with all of the
settings specified for chromatographic detection by the matchedFilter method.

For findChromPeaks(): if return.type = "XCMSnExp" an XCMSnExp() object with the results of
the peak detection. If return.type = "list" a list of length equal to the number of samples with
matrices specifying the identified peaks. If return.type = "xcmsSet" an xcmsSet object with the
results of the peak detection.

findChromPeaksIsolationWindow 145

Author(s)

Colin A Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787. doi: 10.1021/ac051437y

See Also

The do_findChromPeaks_matchedFilter() core API function and findPeaks.matchedFilter()
for the old user interface.

peaksWithMatchedFilter() for functions to perform matchedFilter peak detection in purely chro-
matographic data.

XCMSnExp() for the object containing the results of the chromatographic peak detection.

Other peak detection methods: findChromPeaks(), findChromPeaks-centWave, findChromPeaks-centWaveWithPredIsoROIs,
findChromPeaks-massifquant, findPeaks-MSW

Examples

Create a MatchedFilterParam object. Note that we use a unnecessarily large
binSize parameter to reduce the run-time of the example.
mfp <- MatchedFilterParam(binSize = 5, snthresh = 15)
mfp

Perform the peak detection using matchecFilter on the files from the
faahKO package. Files are read using the readMSData from the MSnbase
package
library(faahKO)
library(MSnbase)
fls <- dir(system.file("cdf/KO", package = "faahKO"), recursive = TRUE,

full.names = TRUE)
raw_data <- readMSData(fls[1], mode = "onDisk")
Perform the chromatographic peak detection using the settings defined
above. Note that we are also disabling parallel processing in this
example by registering a "SerialParam"
res <- findChromPeaks(raw_data, param = mfp)
head(chromPeaks(res))

findChromPeaksIsolationWindow

Data independent acquisition (DIA): peak detection in isolation win-
dows

Description

The findChromPeaksIsolationWindow function allows to perform a chromatographic peak de-
tection in MS level > 1 spectra of certain isolation windows (e.g. SWATH pockets). The function
performs a peak detection, separately for all spectra belonging to the same isolation window and
adds them to the chromPeaks() matrix of the result object. Information about the isolation window
in which they were detected is added to chromPeakData() data frame.

https://doi.org/10.1021/ac051437y

146 findChromPeaksIsolationWindow

Note that peak detection with this method does not remove previously identified chromatographic
peaks (e.g. on MS1 level using the findChromPeaks() function but adds newly identified peaks to
the existing chromPeaks() matrix.

Isolation windows can be defined with the isolationWindow parameter, that by default uses the
definition of isolationWindowTargetMz(), i.e. chromatographic peak detection is performed for
all spectra with the same isolation window target m/z (seprarately for each file). The parameter
param allows to define and configure the peak detection algorithm (see findChromPeaks() for
more information).

Usage

findChromPeaksIsolationWindow(object, ...)

S4 method for signature 'MsExperiment'
findChromPeaksIsolationWindow(
object,
param,
msLevel = 2L,
isolationWindow = isolationWindowTargetMz(spectra(object)),
chunkSize = 2L,
...,
BPPARAM = bpparam()

)

S4 method for signature 'OnDiskMSnExp'
findChromPeaksIsolationWindow(
object,
param,
msLevel = 2L,
isolationWindow = isolationWindowTargetMz(object),
...

)

Arguments

object MsExperiment, XcmsExperiment, OnDiskMSnExp or XCMSnExp object with the
DIA data.

... currently not used.

param Peak detection parameter object, such as a CentWaveParam object defining and
configuring the chromographic peak detection algorithm. See also findChromPeaks()
for more details.

msLevel integer(1) specifying the MS level in which the peak detection should be per-
formed. By default msLevel = 2L.

isolationWindow

factor or similar defining the isolation windows in which the peak detection
should be performed with length equal to the number of spectra in object.

chunkSize if object is an MsExperiment or XcmsExperiment: integer(1) defining the
number of files (samples) that should be loaded into memory and processed at a
time. See findChromPeaks() for more information.

BPPARAM if object is an MsExperiment or XcmsExperiment: parallel processing setup.
See BiocParallel::bpparam() for more information.

findEqualGreater 147

Value

An XcmsExperiment or XCMSnExp object with the chromatographic peaks identified in spectra of
each isolation window from each file added to the chromPeaks matrix. Isolation window definition
for each identified peak are stored as additional columns in chromPeakData().

Author(s)

Johannes Rainer, Michael Witting

See Also

reconstructChromPeakSpectra() for the function to reconstruct MS2 spectra for each MS1 chro-
matographic peak.

findEqualGreater Find values in sorted vectors

Description

Find values in sorted vectors.

Usage

findEqualGreater(x, value)
findEqualLess(x, value)
findEqualGreaterM(x, values)
findRange(x, values, NAOK = FALSE)

Arguments

x numeric vector sorted in increasing order
value value to find in x

values numeric values to find in x

NAOK don’t check for NA values in x

Details

findEqualGreater finds the index of the first value in x that is equal or greater than value.
findEqualLess does same except that it finds equal or less. findEqualGreaterM creates an in-
dex of a vector by finding specified values. findRange locates the start and stop indicides of a
range of two x values.

The only things that save time at this point are findeEqualGreaterM (when the length of values
approaches the lenght of x) and findRange (when NAOK is set to TRUE). They run in log(N) and N
time, respectively.

Value

An integer vector with the position(s) of the values(s).

Author(s)

Colin A. Smith, <csmith@scripps.edu>

148 findMZ

findMZ Find fragment ions in xcmsFragment objects

Description

This is a method to find a fragment mass with a ppm window in a xcmsFragment object

Usage

findMZ(object, find, ppmE=25, print=TRUE)

Arguments

object xcmsFragment object type

find The fragment ion to be found

ppmE the ppm error window for searching

print If we should print a nice little report

Details

The method simply searches for a given fragment ion in an xcmsFragment object type given a
certain ppm error window

Value

A data frame with the following columns:

PrecursorMz The precursor m/z of the fragment
MSnParentPeakID

An index ID of the location of the precursor peak in the xcmsFragment object

msLevel The level of the found fragment ion

rt the Retention time of the found ion

mz the actual m/z of the found fragment ion

intensity The intensity of the fragment ion

sample Which sample the fragment ion came from

GroupPeakMSn an ID if the peaks were grouped by an xcmsSet grouping
CollisionEnergy

The collision energy of the precursor scan

Author(s)

H. Paul Benton, <hpaul.beonton08@imperial.ac.uk>

References

H. Paul Benton, D.M. Wong, S.A.Strauger, G. Siuzdak "XCMS2" Analytical Chemistry 2008

See Also

findneutral,

findneutral 149

Examples

Not run:
library(msdata)
mzMLpath <- system.file("iontrap", package = "msdata")
mzMLfiles<-list.files(mzMLpath, pattern = "extracted.mzML",

recursive = TRUE, full.names = TRUE)
xs <- xcmsSet(mzMLfiles, method = "MS1")
##takes only one file from the file set
xfrag <- xcmsFragments(xs)
found<-findMZ(xfrag, 657.3433, 50)

End(Not run)

findneutral Find neutral losses in xcmsFragment objects

Description

This is a method to find a neutral loss with a ppm window in a xcmsFragment object

Usage

findneutral(object, find, ppmE=25, print=TRUE)

Arguments

object xcmsFragment object type

find The neutral loss to be found

ppmE the ppm error window for searching

print If we should print a nice little report

Details

The method searches for a given neutral loss in an xcmsFragment object type given a certain ppm
error window. The neutral losses are generated between neighbouring ions. The resulting data
frame shows the whole scan in which the neutral loss was found.

Value

A data frame with the following columns:

PrecursorMz The precursor m/z of the neutral losses
MSnParentPeakID

An index ID of the location of the precursor peak in the xcmsFragment object

msLevel The level of the found fragment ion

rt the Retention time of the found ion

mz the actual m/z of the found fragment ion

intensity The intensity of the fragment ion

sample Which sample the fragment ion came from

150 findPeaks-methods

GroupPeakMSn an ID if the peaks were grouped by an xcmsSet grouping
CollisionEnergy

The collision energy of the precursor scan

Author(s)

H. Paul Benton, <hpbenton@scripps.edu>

References

H. Paul Benton, D.M. Wong, S.A.Strauger, G. Siuzdak "XCMS2" Analytical Chemistry 2008

See Also

findMZ,

Examples

Not run:
library(msdata)
mzMLpath <- system.file("iontrap", package = "msdata")
mzMLfiles<-list.files(mzMLpath, pattern = "extracted.mzML",

recursive = TRUE, full.names = TRUE)
xs <- xcmsSet(mzMLfiles, method = "MS1")
##takes only one file from the file set
xfrag <- xcmsFragments(xs)
found<-findneutral(xfrag, 58.1455, 50)

End(Not run)

findPeaks-methods Feature detection for GC/MS and LC/MS Data - methods

Description

A number of peak pickers exist in XCMS. findPeaks is the generic method.

Arguments

object xcmsRaw-class object
method Method to use for peak detection. See details.
... Optional arguments to be passed along

Details

Different algorithms can be used by specifying them with the method argument. For example to use
the matched filter approach described by Smith et al (2006) one would use: findPeaks(object,
method="matchedFilter"). This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of nicknames for the algorithms available is returned by getOption("BioC")$xcms$findPeaks.methods.
If the nickname of a method is called "centWave", the help page for that specific method can be ac-
cessed with ?findPeaks.centWave.

findPeaks-MSW 151

Value

A matrix with columns:

mz weighted (by intensity) mean of peak m/z across scans

mzmin m/z of minimum step

mzmax m/z of maximum step

rt retention time of peak midpoint

rtmin leading edge of peak retention time

rtmax trailing edge of peak retention time

into integrated area of original (raw) peak

maxo maximum intensity of original (raw) peak

and additional columns depending on the choosen method.

Methods

object = "xcmsRaw" findPeaks(object, ...)

See Also

findPeaks.matchedFilter findPeaks.centWave findPeaks.addPredictedIsotopeFeatures
findPeaks.centWaveWithPredictedIsotopeROIs xcmsRaw-class

findPeaks-MSW Single-spectrum non-chromatography MS data peak detection

Description

Perform peak detection in mass spectrometry direct injection spectrum using a wavelet based algo-
rithm.

The findChromPeaks,OnDiskMSnExp,MSWParam() method performs peak detection in single-spectrum
non-chromatography MS data using functionality from the MassSpecWavelet package on all sam-
ples from an OnDiskMSnExp object. OnDiskMSnExp objects encapsule all experiment specific data
and load the spectra data (mz and intensity values) on the fly from the original files applying also
all eventual data manipulations.

Usage

MSWParam(
snthresh = 3,
verboseColumns = FALSE,
scales = c(1, seq(2, 30, 2), seq(32, 64, 4)),
nearbyPeak = TRUE,
peakScaleRange = 5,
ampTh = 0.01,
minNoiseLevel = ampTh/snthresh,
ridgeLength = 24,
peakThr = NULL,
tuneIn = FALSE,

152 findPeaks-MSW

...
)

S4 method for signature 'OnDiskMSnExp,MSWParam'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
...

)

Arguments

snthresh numeric(1) defining the signal to noise ratio cutoff.

verboseColumns logical(1) whether additional peak meta data columns should be returned.

scales Numeric defining the scales of the continuous wavelet transform (CWT).

nearbyPeak logical(1) whether to include nearby peaks of major peaks.

peakScaleRange numeric(1) defining the scale range of the peak (larger than 5 by default).

ampTh numeric(1) defining the minimum required relative amplitude of the peak (ratio
of the maximum of CWT coefficients).

minNoiseLevel numeric(1) defining the minimum noise level used in computing the SNR.

ridgeLength numeric(1) defining the minimum highest scale of the peak in 2-D CWT coef-
ficient matrix.

peakThr numeric(1) with the minimum absolute intensity (above baseline) of peaks
to be picked. If provided, the smoothing Savitzky-Golay filter is used (in the
MassSpecWavelet) package to estimate the local intensity.

tuneIn logical(1) whther to tune in the parameter estimation of the detected peaks.

... Additional parameters to be passed to the peakDetectionCWT() and identifyMajorPeaks()
functions from the MassSpecWavelet package.

object For findChromPeaks(): an OnDiskMSnExp object containing the MS- and all
other experiment-relevant data.

For all other methods: a parameter object.

param An MSWParam object containing all settings for the algorithm.

BPPARAM A parameter class specifying if and how parallel processing should be per-
formed. It defaults to BiocParallel::bpparam(). See documentation of the
BiocParallel package for more details. If parallel processing is enabled, peak
detection is performed in parallel on several of the input samples.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

msLevel integer(1) defining the MS level on which the peak detection should be per-
formed. Defaults to msLevel = 1.

findPeaks-MSW 153

Details

This is a wrapper for the peak picker in Bioconductor’s MassSpecWavelet package calling peakDetectionCWT
and tuneInPeakInfo functions. See the xcmsDirect vignette for more information.

Parallel processing (one process per sample) is supported and can be configured either by the
BPPARAM parameter or by globally defining the parallel processing mode using the BiocParallel::register()
method from the BiocParallel package.

Value

The MSWParam() function returns a MSWParam class instance with all of the settings specified for
peak detection by the MSW method.

For findChromPeaks(): if return.type = "XCMSnExp" an XCMSnExp object with the results of the
peak detection. If return.type = "list" a list of length equal to the number of samples with
matrices specifying the identified peaks. If return.type = "xcmsSet" an xcmsSet object with the
results of the detection.

Author(s)

Joachim Kutzera, Steffen Neumann, Johannes Rainer

See Also

The do_findPeaks_MSW() core API function and findPeaks.MSW() for the old user interface.

XCMSnExp() for the object containing the results of the peak detection.

Other peak detection methods: findChromPeaks(), findChromPeaks-centWave, findChromPeaks-centWaveWithPredIsoROIs,
findChromPeaks-massifquant, findChromPeaks-matchedFilter

Examples

library(MSnbase)
Create a MSWParam object
mp <- MSWParam(snthresh = 15)
mp

Loading a small subset of direct injection, single spectrum files
library(msdata)
fticrf <- list.files(system.file("fticr-mzML", package = "msdata"),

recursive = TRUE, full.names = TRUE)
fticr <- readMSData(fticrf[1], msLevel. = 1, mode = "onDisk")

Perform the MSW peak detection on these:
p <- MSWParam(scales = c(1, 7), peakThr = 80000, ampTh = 0.005,

SNR.method = "data.mean", winSize.noise = 500)
fticr <- findChromPeaks(fticr, param = p)

head(chromPeaks(fticr))

154 findPeaks.addPredictedIsotopeFeatures-methods

findPeaks.addPredictedIsotopeFeatures-methods

Feature detection based on predicted isotope features for high resolu-
tion LC/MS data

Description

Peak density and wavelet based feature detection aiming at isotope peaks for high resolution LC/MS
data in centroid mode

Arguments

object xcmsSet object

ppm maxmial tolerated m/z deviation in consecutive scans, in ppm (parts per million)

peakwidth Chromatographic peak width, given as range (min,max) in seconds

prefilter prefilter=c(k,I). Prefilter step for the first phase. Mass traces are only re-
tained if they contain at least k peaks with intensity >= I.

mzCenterFun Function to calculate the m/z center of the feature: wMean intensity weighted
mean of the feature m/z values, mean mean of the feature m/z values, apex use
m/z value at peak apex, wMeanApex3 intensity weighted mean of the m/z value
at peak apex and the m/z value left and right of it, meanApex3 mean of the m/z
value at peak apex and the m/z value left and right of it.

integrate Integration method. If =1 peak limits are found through descent on the mexican
hat filtered data, if =2 the descent is done on the real data. Method 2 is very
accurate but prone to noise, while method 1 is more robust to noise but less
exact.

mzdiff minimum difference in m/z for peaks with overlapping retention times, can be
negative to allow overlap

fitgauss logical, if TRUE a Gaussian is fitted to each peak

scanrange scan range to process

noise optional argument which is useful for data that was centroided without any inten-
sity threshold, centroids with intensity < noise are omitted from ROI detection

sleep number of seconds to pause between plotting peak finding cycles
verbose.columns

logical, if TRUE additional peak meta data columns are returned

xcmsPeaks peak list picked using the centWave algorithm with parameter verbose.columns
set to TRUE (columns scmin and scmax needed)

snthresh signal to noise ratio cutoff, definition see below.

maxcharge max. number of the isotope charge.

maxiso max. number of the isotope peaks to predict for each detected feature.
mzIntervalExtension

logical, if TRUE predicted isotope ROIs (regions of interest) are extended in the
m/z dimension to increase the detection of low intensity and hence noisy peaks.

findPeaks.addPredictedIsotopeFeatures-methods 155

Details

This algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data in centroid
mode. In the first phase of the method isotope ROIs (regions of interest) in the LC/MS map are
predicted. In the second phase these mass traces are further analysed. Continuous wavelet transform
(CWT) is used to locate chromatographic peaks on different scales. The resulting peak list and the
given peak list (xcmsPeaks) are merged and redundant peaks are removed.

Value

A matrix with columns:

mz weighted (by intensity) mean of peak m/z across scans

mzmin m/z peak minimum

mzmax m/z peak maximum

rt retention time of peak midpoint

rtmin leading edge of peak retention time

rtmax trailing edge of peak retention time

into integrated peak intensity

intb baseline corrected integrated peak intensity

maxo maximum peak intensity

sn Signal/Noise ratio, defined as (maxo - baseline)/sd, where
maxo is the maximum peak intensity,
baseline the estimated baseline value and
sd the standard deviation of local chromatographic noise.

egauss RMSE of Gaussian fit

if verbose.columns is TRUE additionally :

mu Gaussian parameter mu

sigma Gaussian parameter sigma

h Gaussian parameter h

f Region number of m/z ROI where the peak was localised

dppm m/z deviation of mass trace across scans in ppm

scale Scale on which the peak was localised

scpos Peak position found by wavelet analysis

scmin Left peak limit found by wavelet analysis (scan number)

scmax Right peak limit found by wavelet analysis (scan number)

Methods

object = "xcmsRaw" findPeaks.centWave(object, ppm=25, peakwidth=c(20,50), prefilter=c(3,100),
mzCenterFun="wMean", integrate=1, mzdiff=-0.001, fitgauss=FALSE, scanrange= numeric(),
noise=0, sleep=0, verbose.columns=FALSE, xcmsPeaks, snthresh=6.25, maxcharge=3,
maxiso=5, mzIntervalExtension=TRUE)

Author(s)

Ralf Tautenhahn

156 findPeaks.centWave-methods

References

Ralf Tautenhahn, Christoph Böttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504\ Hendrik Treutler and Steffen Neumann.
"Prediction, detection, and validation of isotope clusters in mass spectrometry data" Submitted to
Metabolites 2016, Special Issue "Bioinformatics and Data Analysis"

See Also

findPeaks.centWave findPeaks-methods xcmsRaw-class

findPeaks.centWave-methods

Feature detection for high resolution LC/MS data

Description

Peak density and wavelet based feature detection for high resolution LC/MS data in centroid mode

Arguments

object xcmsSet object

ppm maxmial tolerated m/z deviation in consecutive scans, in ppm (parts per million)

peakwidth Chromatographic peak width, given as range (min,max) in seconds

snthresh signal to noise ratio cutoff, definition see below.

prefilter prefilter=c(k,I). Prefilter step for the first phase. Mass traces are only re-
tained if they contain at least k peaks with intensity >= I.

mzCenterFun Function to calculate the m/z center of the feature: wMean intensity weighted
mean of the feature m/z values, mean mean of the feature m/z values, apex use
m/z value at peak apex, wMeanApex3 intensity weighted mean of the m/z value
at peak apex and the m/z value left and right of it, meanApex3 mean of the m/z
value at peak apex and the m/z value left and right of it.

integrate Integration method. If =1 peak limits are found through descent on the mexican
hat filtered data, if =2 the descent is done on the real data. Method 2 is very
accurate but prone to noise, while method 1 is more robust to noise but less
exact.

mzdiff minimum difference in m/z for peaks with overlapping retention times, can be
negative to allow overlap

fitgauss logical, if TRUE a Gaussian is fitted to each peak

scanrange scan range to process

noise optional argument which is useful for data that was centroided without any inten-
sity threshold, centroids with intensity < noise are omitted from ROI detection

sleep number of seconds to pause between plotting peak finding cycles
verbose.columns

logical, if TRUE additional peak meta data columns are returned

findPeaks.centWave-methods 157

ROI.list A optional list of ROIs that represents detected mass traces (ROIs). If this list is
empty (default) then centWave detects the mass trace ROIs, otherwise this step
is skipped and the supplied ROIs are used in the peak detection phase. Each ROI
object in the list has the following slots: scmin start scan index, scmax end scan
index, mzmin minimum m/z, mzmax maximum m/z, length number of scans,
intensity summed intensity.

firstBaselineCheck

logical, if TRUE continuous data within ROI is checked to be above 1st baseline

roiScales numeric, optional vector of scales for each ROI in ROI.list to be used for the
centWave-wavelets

Details

This algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data in centroid
mode. In the first phase of the method mass traces (characterised as regions with less than ppm m/z
deviation in consecutive scans) in the LC/MS map are located. In the second phase these mass traces
are further analysed. Continuous wavelet transform (CWT) is used to locate chromatographic peaks
on different scales.

Value

A matrix with columns:

mz weighted (by intensity) mean of peak m/z across scans

mzmin m/z peak minimum

mzmax m/z peak maximum

rt retention time of peak midpoint

rtmin leading edge of peak retention time

rtmax trailing edge of peak retention time

into integrated peak intensity

intb baseline corrected integrated peak intensity

maxo maximum peak intensity

sn Signal/Noise ratio, defined as (maxo - baseline)/sd, where
maxo is the maximum peak intensity,
baseline the estimated baseline value and
sd the standard deviation of local chromatographic noise.

egauss RMSE of Gaussian fit

if verbose.columns is TRUE additionally :

mu Gaussian parameter mu

sigma Gaussian parameter sigma

h Gaussian parameter h

f Region number of m/z ROI where the peak was localised

dppm m/z deviation of mass trace across scans in ppm

scale Scale on which the peak was localised

scpos Peak position found by wavelet analysis

scmin Left peak limit found by wavelet analysis (scan number)

scmax Right peak limit found by wavelet analysis (scan number)

158 findPeaks.centWaveWithPredictedIsotopeROIs-methods

Methods

object = "xcmsRaw" findPeaks.centWave(object, ppm=25, peakwidth=c(20,50), snthresh=10,
prefilter=c(3,100), mzCenterFun="wMean", integrate=1, mzdiff=-0.001, fitgauss=FALSE,
scanrange= numeric(), noise=0, sleep=0, verbose.columns=FALSE, ROI.list=list()),
firstBaselineCheck=TRUE, roiScales=NULL

Author(s)

Ralf Tautenhahn

References

Ralf Tautenhahn, Christoph Böttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504

See Also

centWave for the new user interface. findPeaks-methods xcmsRaw-class

findPeaks.centWaveWithPredictedIsotopeROIs-methods

Feature detection with centWave and additional isotope features

Description

Peak density and wavelet based feature detection for high resolution LC/MS data in centroid mode
with additional peak picking of isotope features on basis of isotope peak predictions

Arguments

object xcmsSet object

ppm maxmial tolerated m/z deviation in consecutive scans, in ppm (parts per million)

peakwidth Chromatographic peak width, given as range (min,max) in seconds

snthresh signal to noise ratio cutoff, definition see below.

prefilter prefilter=c(k,I). Prefilter step for the first phase. Mass traces are only re-
tained if they contain at least k peaks with intensity >= I.

mzCenterFun Function to calculate the m/z center of the feature: wMean intensity weighted
mean of the feature m/z values, mean mean of the feature m/z values, apex use
m/z value at peak apex, wMeanApex3 intensity weighted mean of the m/z value
at peak apex and the m/z value left and right of it, meanApex3 mean of the m/z
value at peak apex and the m/z value left and right of it.

integrate Integration method. If =1 peak limits are found through descent on the mexican
hat filtered data, if =2 the descent is done on the real data. Method 2 is very
accurate but prone to noise, while method 1 is more robust to noise but less
exact.

mzdiff minimum difference in m/z for peaks with overlapping retention times, can be
negative to allow overlap

fitgauss logical, if TRUE a Gaussian is fitted to each peak

findPeaks.centWaveWithPredictedIsotopeROIs-methods 159

scanrange scan range to process

noise optional argument which is useful for data that was centroided without any inten-
sity threshold, centroids with intensity < noise are omitted from ROI detection

sleep number of seconds to pause between plotting peak finding cycles
verbose.columns

logical, if TRUE additional peak meta data columns are returned

ROI.list A optional list of ROIs that represents detected mass traces (ROIs). If this list is
empty (default) then centWave detects the mass trace ROIs, otherwise this step
is skipped and the supplied ROIs are used in the peak detection phase. Each ROI
object in the list has the following slots: scmin start scan index, scmax end scan
index, mzmin minimum m/z, mzmax maximum m/z, length number of scans,
intensity summed intensity.

firstBaselineCheck

logical, if TRUE continuous data within ROI is checked to be above 1st baseline

roiScales numeric, optional vector of scales for each ROI in ROI.list to be used for the
centWave-wavelets

snthreshIsoROIs

signal to noise ratio cutoff for predicted isotope ROIs, definition see below.

maxcharge max. number of the isotope charge.

maxiso max. number of the isotope peaks to predict for each detected feature.
mzIntervalExtension

logical, if TRUE predicted isotope ROIs (regions of interest) are extended in the
m/z dimension to increase the detection of low intensity and hence noisy peaks.

Details

This algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data in centroid
mode. The centWave algorithm is applied in two peak picking steps as follows. In the first peak
picking step ROIs (regions of interest, characterised as regions with less than ppm m/z deviation in
consecutive scans) in the LC/MS map are located and further analysed using continuous wavelet
transform (CWT) for the localization of chromatographic peaks on different scales. In the second
peak picking step isotope ROIs in the LC/MS map are predicted further analysed using continuous
wavelet transform (CWT) for the localization of chromatographic peaks on different scales. The
peak lists resulting from both peak picking steps are merged and redundant peaks are removed.

Value

A matrix with columns:

mz weighted (by intensity) mean of peak m/z across scans

mzmin m/z peak minimum

mzmax m/z peak maximum

rt retention time of peak midpoint

rtmin leading edge of peak retention time

rtmax trailing edge of peak retention time

into integrated peak intensity

intb baseline corrected integrated peak intensity

maxo maximum peak intensity

160 findPeaks.centWaveWithPredictedIsotopeROIs-methods

sn Signal/Noise ratio, defined as (maxo - baseline)/sd, where
maxo is the maximum peak intensity,
baseline the estimated baseline value and
sd the standard deviation of local chromatographic noise.

egauss RMSE of Gaussian fit

if verbose.columns is TRUE additionally :

mu Gaussian parameter mu

sigma Gaussian parameter sigma

h Gaussian parameter h

f Region number of m/z ROI where the peak was localised

dppm m/z deviation of mass trace across scans in ppm

scale Scale on which the peak was localised

scpos Peak position found by wavelet analysis

scmin Left peak limit found by wavelet analysis (scan number)

scmax Right peak limit found by wavelet analysis (scan number)

Methods

object = "xcmsRaw" findPeaks.centWaveWithPredictedIsotopeROIs(object, ppm=25, peakwidth=c(20,50),
snthresh=10, prefilter=c(3,100), mzCenterFun="wMean", integrate=1, mzdiff=-0.001,
fitgauss=FALSE, scanrange= numeric(), noise=0, sleep=0, verbose.columns=FALSE,
ROI.list=list(), firstBaselineCheck=TRUE, roiScales=NULL, snthreshIsoROIs=6.25,
maxcharge=3, maxiso=5, mzIntervalExtension=TRUE)

Author(s)

Ralf Tautenhahn

References

Ralf Tautenhahn, Christoph Böttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504\ Hendrik Treutler and Steffen Neumann.
"Prediction, detection, and validation of isotope clusters in mass spectrometry data" Submitted to
Metabolites 2016, Special Issue "Bioinformatics and Data Analysis"

See Also

do_findChromPeaks_centWaveWithPredIsoROIs for the corresponding core API function. findPeaks.addPredictedIsotopeFeatures
findPeaks.centWave findPeaks-methods xcmsRaw-class

findPeaks.massifquant-methods 161

findPeaks.massifquant-methods

Feature detection for XC-MS data.

Description

Massifquant is a Kalman filter (KF) based feature detection for XC-MS data in centroid mode
(currently in experimental stage). Optionally allows for calling the method "centWave" on features
discovered by Massifquant to further refine the feature detection; to do so, supply any additional
parameters specific to centWave (even more experimental). The method may be conveniently called
through the xcmsSet(...) method.

Arguments

The following arguments are specific to Massifquant. Any additional arguments supplied must
correspond as specified by the method findPeaks.centWave.

object An xcmsRaw object.

criticalValue Numeric: Suggested values: (0.1-3.0). This setting helps determine the the
Kalman Filter prediciton margin of error. A real centroid belonging to a bonafide
feature must fall within the KF prediction margin of error. Much like in the con-
struction of a confidence interval, criticalVal loosely translates to be a multiplier
of the standard error of the prediction reported by the Kalman Filter. If the fea-
tures in the XC-MS sample have a small mass deviance in ppm error, a smaller
critical value might be better and vice versa.

consecMissedLimit

Integer: Suggested values:(1,2,3). While a feature is in the proces of being
detected by a Kalman Filter, the Kalman Filter may not find a predicted centroid
in every scan. After 1 or more consecutive failed predictions, this setting informs
Massifquant when to stop a Kalman Filter from following a candidate feature.

prefilter Numeric Vector: (Positive Integer, Positive Numeric): The first argument is only
used if (withWave = 1); see centWave for details. The second argument specifies
the minimum threshold for the maximum intensity of a feature that must be met.

peakwidth Integer Vector: (Positive Integer, Positive Integer): Only the first argument is
used for Massifquant, which specifices the minimum feature length in time
scans. If centWave is used, then the second argument is the maximum feature
length subject to being greater than the mininum feature length.

ppm The minimum estimated parts per million mass resolution a feature must pos-
sess.

unions Integer: set to 1 if apply t-test union on segmentation; set to 0 if no t-test to be
applied on chromatographically continous features sharing same m/z range. Ex-
planation: With very few data points, sometimes a Kalman Filter stops tracking
a feature prematurely. Another Kalman Filter is instantiated and begins follow-
ing the rest of the signal. Because tracking is done backwards to forwards, this
algorithmic defect leaves a real feature divided into two segments or more. With
this option turned on, the program identifies segmented features and combines
them (merges them) into one with a two sample t-test. The potential danger of
this option is that some truly distinct features may be merged.

162 findPeaks.massifquant-methods

withWave Integer: set to 1 if turned on; set to 0 if turned off. Allows the user to find
features first with Massifquant and then filter those features with the second
phase of centWave, which includes wavelet estimation.

checkBack Integer: set to 1 if turned on; set to 0 if turned off. The convergence of a Kalman
Filter to a feature’s precise m/z mapping is very fast, but sometimes it incorpo-
rates erroneous centroids as part of a feature (especially early on). The "scan-
Back" option is an attempt to remove the occasional outlier that lies beyond the
converged bounds of the Kalman Filter. The option does not directly affect iden-
tification of a feature because it is a postprocessing measure; it has not shown to
be a extremely useful thus far and the default is set to being turned off.

Details

This algorithm’s performance has been tested rigorously on high resolution LC/{OrbiTrap, TOF}-
MS data in centroid mode. Simultaneous kalman filters identify features and calculate their area
under the curve. The default parameters are set to operate on a complex LC-MS Orbitrap sample.
Users will find it useful to do some simple exploratory data analysis to find out where to set a min-
imum intensity, and identify how many scans an average feature spans. The "consecMissedLimit"
parameter has yielded good performance on Orbitrap data when set to (2) and on TOF data it was
found best to be at (1). This may change as the algorithm has yet to be tested on many samples. The
"criticalValue" parameter is perhaps most dificult to dial in appropriately and visual inspection of
peak identification is the best suggested tool for quick optimization. The "ppm" and "checkBack"
parameters have shown less influence than the other parameters and exist to give users flexibility
and better accuracy.

Value

If the method findPeaks.massifquant(...) is used, then a matrix is returned with rows corresponding
to features, and properties of the features listed with the following column names. Otherwise, if
centWave feature is used also (withWave = 1), or Massifquant is called through the xcmsSet(...)
method, then their corresponding return values are used.

mz weighted m/z mean (weighted by intensity) of the feature

mzmin m/z lower boundary of the feature

mzmax m/z upper boundary of the feature

rtmin starting scan time of the feature

rtmax starting scan time of the feature

into the raw quantitation (area under the curve) of the feature.

area feature area that is not normalized by the scan rate.

Methods

object = "xcmsRaw" findPeaks.massifquant(object, ppm=10, peakwidth=c(20,50), snthresh=10,
prefilter=c(3,100), mzCenterFun="wMean", integrate=1, mzdiff=-0.001, fitgauss=FALSE,
scanrange= numeric(), noise=0, sleep=0, verbose.columns=FALSE, criticalValue =
1.125, consecMissedLimit = 2, unions = 1, checkBack = 0, withWave = 0)

Author(s)

Christopher Conley

findPeaks.matchedFilter,xcmsRaw-method 163

References

Submitted for review. Christopher Conley, Ralf J .O Torgrip. Ryan Taylor, and John T. Prince.
"Massifquant: open-source Kalman filter based XC-MS feature detection". August 2013.

See Also

centWave for the new user interface. findPeaks-methods xcmsSet xcmsRaw xcmsRaw-class

Examples

library(faahKO)
library(xcms)
#load all the wild type and Knock out samples
cdfpath <- system.file("cdf", package = "faahKO")
Subset to only the first 2 files.
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)[1:2]

Run the massifquant analysis. Setting the noise level to 10000 to speed up
execution of the examples - in a real use case it should be set to a reasoable
value.
xset <- xcmsSet(cdffiles, method = "massifquant",

consecMissedLimit = 1,
snthresh = 10,
criticalValue = 1.73,
ppm = 10,
peakwidth= c(30, 60),
prefilter= c(1,3000),
noise = 10000,
withWave = 0)

findPeaks.matchedFilter,xcmsRaw-method

Peak detection in the chromatographic time domain

Description

Find peaks in the chromatographic time domain of the profile matrix. For more details see do_findChromPeaks_matchedFilter().

Usage

S4 method for signature 'xcmsRaw'
findPeaks.matchedFilter(
object,
fwhm = 30,
sigma = fwhm/2.3548,
max = 5,
snthresh = 10,
step = 0.1,
steps = 2,
mzdiff = 0.8 - step * steps,
index = FALSE,
sleep = 0,
scanrange = numeric()

)

164 findPeaks.MS1-methods

Arguments

object The xcmsRaw object on which peak detection should be performed.

fwhm numeric(1) specifying the full width at half maximum of matched filtration
gaussian model peak. Only used to calculate the actual sigma, see below.

sigma numeric(1) specifying the standard deviation (width) of the matched filtration
model peak.

max numeric(1) representing the maximum number of peaks that are expected/will
be identified per slice.

snthresh numeric(1) defining the signal to noise cutoff to be used in the chromatographic
peak detection step.

step numeric(1) specifying the width of the bins/slices in m/z dimension.

steps numeric(1) defining the number of bins to be merged before filtration (i.e. the
number of neighboring bins that will be joined to the slice in which filtration
and peak detection will be performed).

mzdiff numeric(1) defining the minimum difference in m/z for peaks with overlapping
retention times

index logical(1) specifying whether indicies should be returned instead of values
for m/z and retention times.

sleep (DEPRECATED). The use of this parameter is highly discouraged, as it could
cause problems in parallel processing mode.

scanrange Numeric vector defining the range of scans to which the original object should
be sub-setted before peak detection.

Value

A matrix, each row representing an intentified chromatographic peak.

Author(s)

Colin A. Smith

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787. doi: 10.1021/ac051437y

findPeaks.MS1-methods Collecting MS1 precursor peaks

Description

Collecting Tandem MS or MSn Mass Spectrometry precursor peaks as annotated in XML raw
file

Arguments

object xcmsRaw object

https://doi.org/10.1021/ac051437y

findPeaks.MSW,xcmsRaw-method 165

Details

Some mass spectrometers can acquire MS1 and MS2 (or MSn scans) quasi simultaneously, e.g.
in data dependent tandem MS or DDIT mode.

Since xcmsFragments attaches all MSn peaks to MS1 peaks in xcmsSet, it is important that
findPeaks and xcmsSet do not miss any MS1 precursor peak.

To be sure that all MS1 precursor peaks are in an xcmsSet, findPeaks.MS1 does not do an actual
peak picking, but simply uses the annotation stored in mzXML, mzData or mzML raw files.

This relies on the following XML tags:

mzData: <spectrum id="463"> <spectrumInstrument msLevel="2"> <cvParam cvLabel="psi"
accession="PSI:1000039" name="TimeInSeconds" value="92.7743"/> </spectrumInstrument>
<precursor msLevel="1" spectrumRef="461"> <cvParam cvLabel="psi" accession="PSI:1000040"
name="MassToChargeRatio" value="462.091"/> <cvParam cvLabel="psi" accession="PSI:1000042"
name="Intensity" value="366.674"/> </precursor> </spectrum>

mzXML: <scan num="17" msLevel="2" retentionTime="PT1.5224S"> <precursorMz precursorIntensity="125245">220.1828003</precursorMz>
</scan>

Several mzXML and mzData converters are known to create incomplete files, either without inten-
sities (they will be set to 0) or without the precursor retention time (then a reasonably close rt will
be chosen. NYI).

Value

A matrix with columns:

mz, mzmin, mzmax annotated MS1 precursor selection mass

rt, rtmin, rtmax annotated MS1 precursor retention time

into, maxo, sn annotated MS1 precursor intensity

Methods

object = "xcmsRaw" findPeaks.MS1(object)

Author(s)

Steffen Neumann, <sneumann@ipb-halle.de>

See Also

findPeaks-methods xcmsRaw-class

findPeaks.MSW,xcmsRaw-method

Peak detection for single-spectrum non-chromatography MS data

Description

This method performs peak detection in mass spectrometry direct injection spectrum using a wavelet
based algorithm.

166 GenericParam-class

Usage

S4 method for signature 'xcmsRaw'
findPeaks.MSW(object, snthresh = 3, verbose.columns = FALSE, ...)

Arguments

object The xcmsRaw object on which peak detection should be performed.

snthresh numeric(1) defining the signal to noise ratio cutoff.
verbose.columns

Logical whether additional peak meta data columns should be returned.

... Additional parameters to be passed to the peakDetectionCWT() and identifyMajorPeaks()
functions from the MassSpecWavelet package.

Details

This is a wrapper around the peak picker in Bioconductor’s MassSpecWavelet package calling
peakDetectionCWT and tuneInPeakInfo functions.

Value

A matrix, each row representing an intentified peak.

Author(s)

Joachim Kutzera, Steffen Neumann, Johannes Rainer

GenericParam-class Generic parameter class

Description

The GenericParam class allows to store generic parameter information such as the name of the
function that was/has to be called (slot fun) and its arguments (slot args). This object is used to
track the process history of the data processings of an XCMSnExp object. This is in contrast to e.g.
the CentWaveParam() object that is passed to the actual processing method.

Usage

GenericParam(fun = character(), args = list())

Arguments

fun character representing the name of the function.

args list (ideally named) with the arguments to the function.

Value

The GenericParam() function returns a GenericParam object.

getEIC-methods 167

Slots

fun character specifying the function name.

args list (ideally named) with the arguments to the function.

Author(s)

Johannes Rainer

See Also

processHistory() for how to access the process history of an XCMSnExp object.

Examples

prm <- GenericParam(fun = "mean")

prm <- GenericParam(fun = "mean", args = list(na.rm = TRUE))

getEIC-methods Get extracted ion chromatograms for specified m/z ranges

Description

Generate multiple extracted ion chromatograms for m/z values of interest. For xcmsSet objects,
reread original raw data and apply precomputed retention time correction, if applicable.

Note that this method will always return profile, not raw data (with profile data being the binned
data along M/Z). See details for further information.

Arguments

object the xcmsRaw or xcmsSet object

mzrange Either a two column matrix with minimum or maximum m/z or a matrix of any
dimensions containing columns mzmin and mzmax. If not specified, the method
for xcmsRaw returns the base peak chromatogram (BPC, i.e. the most intense
signal for each RT across all m/z).
For xcmsSet objects the group data will be used if mzrange is not provided.

rtrange A two column matrix the same size as mzrange with minimum and maximum
retention times between which to return EIC data points. If not specified, the
method returns the chromatogram for the full RT range.
For xcmsSet objects, it may also be a single number specifying the time window
around the peak to return EIC data points

step step (bin) size to use for profile generation. Note that a value of step = 0 is not
supported.

groupidx either character vector with names or integer vector with indicies of peak groups
for which to get EICs

sampleidx either character vector with names or integer vector with indicies of samples for
which to get EICs

rt "corrected" for using corrected retention times, or "raw" for using raw reten-
tion times

168 getPeaks-methods

Details

In contrast to the rawEIC method, that extracts the actual raw values, this method extracts them
from the object’s profile matrix (or if the provided step argument does not match the profStep of
the object the profile matrix is calculated on the fly and the values returned).

Value

For xcmsSet and xcmsRaw objects, an xcmsEIC object.

Methods

object = "xcmsRaw" getEIC(object, mzrange, rtrange = NULL, step = 0.1)

object = "xcmsSet" getEIC(object, mzrange, rtrange = 200, groupidx, sampleidx = sampnames(object),
rt = c("corrected", "raw"))

See Also

xcmsRaw-class, xcmsSet-class, xcmsEIC-class, rawEIC

getPeaks-methods Get peak intensities for specified regions

Description

Integrate extracted ion chromatograms in pre-defined defined regions. Return output similar to
findPeaks.

Arguments

object the xcmsSet object

peakrange matrix or data frame with 4 columns: mzmin, mzmax, rtmin, rtmax (they must
be in that order or named)

step step size to use for profile generation

Value

A matrix with columns:

i rank of peak identified in merged EIC (<= max), always NA

mz weighted (by intensity) mean of peak m/z across scans

mzmin m/z of minimum step

mzmax m/z of maximum step

ret retention time of peak midpoint

retmin leading edge of peak retention time

retmax trailing edge of peak retention time

into integrated area of original (raw) peak

intf integrated area of filtered peak, always NA

maxo maximum intensity of original (raw) peak

maxf maximum intensity of filtered peak, always NA

getScan-methods 169

Methods

object = "xcmsRaw" getPeaks(object, peakrange, step = 0.1)

See Also

xcmsRaw-class

getScan-methods Get m/z and intensity values for a single mass scan

Description

Return the data from a single mass scan using the numeric index of the scan as a reference.

Arguments

object the xcmsRaw object

scan integer index of scan. if negative, the index numbered from the end

mzrange limit data points returned to those between in the range, range(mzrange)

Value

A matrix with two columns:

mz m/z values

intensity intensity values

Methods

object = "xcmsRaw" getScan(object, scan, mzrange = numeric()) getMsnScan(object, scan,
mzrange = numeric())

See Also

xcmsRaw-class, getSpec

getSpec-methods Get average m/z and intensity values for multiple mass scans

Description

Return full-resolution averaged data from multiple mass scans.

Arguments

object the xcmsRaw object

... arguments passed to profRange used to sepecify the spectral segments of inter-
est for averaging

170 getXcmsRaw-methods

Details

Based on the mass points from the spectra selected, a master unique list of masses is generated.
Every spectra is interpolated at those masses and then averaged.

Value

A matrix with two columns:

mz m/z values

intensity intensity values

Methods

object = "xcmsRaw" getSpec(object, ...)

See Also

xcmsRaw-class, profRange, getScan

getXcmsRaw-methods Load the raw data for one or more files in the xcmsSet

Description

Reads the raw data applies evential retention time corrections and waters Lock mass correction and
returns it as an xcmsRaw object (or list of xcmsRaw objects) for one or more files of the xcmsSet
object.

Arguments

object the xcmsSet object

sampleidx The index of the sample for which the raw data should be returned. Can be a
single number or a numeric vector with the indices. Alternatively, the file name
can be specified.

profmethod The profile method.

profstep The profile step.

rt Whether corrected or raw retention times should be returned.

... Additional arguments submitted to the xcmsRaw function.

Value

A single xcmsRaw object or a list of xcmsRaw objects.

Methods

object = "xcmsSet" getXcmsRaw(object, sampleidx=1, profmethod=profinfo(object)$method,
profstep=profinfo(object)$step, rt=c("corrected", "raw"), ...)

Author(s)

Johannes Rainer, <johannes.rainer@eurac.edu>

group-methods 171

See Also

xcmsRaw-class,

group-methods Group peaks from different samples together

Description

A number of grouping (or alignment) methods exist in XCMS. group is the generic method.

Arguments

object xcmsSet-class object

method Method to use for grouping. See details.

... Optional arguments to be passed along

Details

Different algorithms can be used by specifying them with the method argument. For example to
use the density-based approach described by Smith et al (2006) one would use: group(object,
method="density"). This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of nicknames for the algorithms available is returned by getOption("BioC")$xcms$group.methods.
If the nickname of a method is called "mzClust", the help page for that specific method can be ac-
cessed with ?group.mzClust.

Value

An xcmsSet object with peak group assignments and statistics.

Methods

object = "xcmsSet" group(object, ...)

See Also

group.density group.mzClust group.nearest xcmsSet-class,

172 group.mzClust

group.density Group peaks from different samples together

Description

Group peaks together across samples using overlapping m/z bins and calculation of smoothed peak
distributions in chromatographic time.

Arguments

object the xcmsSet object

minfrac minimum fraction of samples necessary in at least one of the sample groups for
it to be a valid group

minsamp minimum number of samples necessary in at least one of the sample groups for
it to be a valid group

bw bandwidth (standard deviation or half width at half maximum) of gaussian smooth-
ing kernel to apply to the peak density chromatogram

mzwid width of overlapping m/z slices to use for creating peak density chromatograms
and grouping peaks across samples

max maximum number of groups to identify in a single m/z slice

sleep seconds to pause between plotting successive steps of the peak grouping algo-
rithm. peaks are plotted as points showing relative intensity. identified groups
are flanked by dotted vertical lines.

Value

An xcmsSet object with peak group assignments and statistics.

Methods

object = "xcmsSet" group(object, bw = 30, minfrac = 0.5, minsamp = 1, mzwid = 0.25, max
= 50, sleep = 0)

See Also

do_groupChromPeaks_density for the core API function performing the analysis. xcmsSet-class,
density

group.mzClust Group Peaks via High Resolution Alignment

Description

Runs high resolution alignment on single spectra samples stored in a given xcmsSet.

group.nearest 173

Arguments

object a xcmsSet with peaks
mzppm the relative error used for clustering/grouping in ppm (parts per million)
mzabs the absolute error used for clustering/grouping
minsamp set the minimum number of samples in one bin
minfrac set the minimum fraction of each class in one bin

Value

Returns a xcmsSet with slots groups and groupindex set.

Methods

object = "xcmsSet" group(object, method="mzClust", mzppm = 20, mzabs = 0, minsamp = 1,
minfrac=0)

References

Saira A. Kazmi, Samiran Ghosh, Dong-Guk Shin, Dennis W. Hill and David F. Grant
Alignment of high resolution mass spectra: development of a heuristic approach for metabolomics.
Metabolomics, Vol. 2, No. 2, 75-83 (2006)

See Also

xcmsSet-class,

Examples

Not run:
library(msdata)
mzMLpath <- system.file("fticr-mzML", package = "msdata")
mzMLfiles <- list.files(mzMLpath, recursive = TRUE, full.names = TRUE)

xs <- xcmsSet(method="MSW", files=mzMLfiles, scales=c(1,7),
SNR.method='data.mean' , winSize.noise=500,
peakThr=80000, amp.Th=0.005)

xsg <- group(xs, method="mzClust")

End(Not run)

group.nearest Group peaks from different samples together

Description

Group peaks together across samples by creating a master peak list and assigning corresponding
peaks from all samples. It is inspired by the alignment algorithm of mzMine. For further details
check http://mzmine.sourceforge.net/ and

Katajamaa M, Miettinen J, Oresic M: MZmine: Toolbox for processing and visualization of mass
spectrometry based molecular profile data. Bioinformatics (Oxford, England) 2006, 22:634?636.

Currently, there is no equivalent to minfrac or minsamp.

http://mzmine.sourceforge.net/

174 group.nearest

Arguments

object the xcmsSet object

mzVsRTbalance Multiplicator for mz value before calculating the (euclidean) distance between
two peaks.

mzCheck Maximum tolerated distance for mz.

rtCheck Maximum tolerated distance for RT.

kNN Number of nearest Neighbours to check

Value

An xcmsSet object with peak group assignments and statistics.

Methods

object = "xcmsSet" group(object, mzVsRTbalance=10, mzCheck=0.2, rtCheck=15, kNN=10)

See Also

xcmsSet-class, group.density and group.mzClust

Examples

Not run: library(xcms)
library(faahKO)
These files do not have this problem to correct for
but just for an example
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)

xset<-xcmsSet(cdffiles)

gxset<-group(xset, method="nearest")
nrow(gxset@groups) == 1096 ## the number of features before minFrac

post.minFrac<-function(object, minFrac=0.5){
ix.minFrac<-sapply(1:length(unique(sampclass(object))),

function(x, object, mf){
meta<-groups(object)
minFrac.idx<-numeric(length=nrow(meta))
idx<-which(

meta[,levels(sampclass(object))[x]] >=
mf*length(which(levels(sampclass(object))[x]

== sampclass(object))))
minFrac.idx[idx]<-1
return(minFrac.idx)

}, object, minFrac)
ix.minFrac<-as.logical(apply(ix.minFrac, 1, sum))
ix<-which(ix.minFrac == TRUE)
return(ix)

}

using the above function we can get a post processing minFrac
idx<-post.minFrac(gxset)

groupChromPeaks 175

gxset.post<-gxset ## copy the xcmsSet object
gxset.post@groupidx<-gxset@groupidx[idx]
gxset.post@groups<-gxset@groups[idx,]

nrow(gxset.post@groups) == 465 ## number of features after minFrac

End(Not run)

groupChromPeaks Correspondence: group chromatographic peaks across samples

Description

The groupChromPeaks method performs a correspondence analysis i.e., it groups chromatographic
peaks across samples to define the LC-MS features. The correspondence algorithm can be se-
lected, and configured, using the param argument. See documentation of XcmsExperiment() and
XCMSnExp() for information on how to access and extract correspondence results.

The correspondence analysis can be performed on chromatographic peaks of any MS level (if
present and if chromatographic peak detection has been performed for that MS level) defining fea-
tures combining these peaks. The MS level can be selected with the parameter msLevel. By default,
calling groupChromPeaks will remove any previous correspondence results. This can be disabled
with add = TRUE, which will add newly defined features to already present feature definitions.

Supported param objects are:

• PeakDensityParam: correspondence using the peak density method (Smith 2006) that groups
chromatographic peaks along the retention time axis within slices of (partially overlapping)
m/z ranges. By default, these m/z ranges (bins) have a constant size. By setting ppm to a
value larger than 0, m/z dependent bin sizes can be used instead (better representing the m/z
dependent measurement error of some MS instruments). All peaks (from the same or from
different samples) with their apex position being close on the retention time axis are grouped
into a LC-MS feature. Only samples with non-missing sample group assignment (i.e. for
which the value provided with parameter sampleGroups is different than NA) are considered
and counted for the feature definition. This allows to exclude certain samples or groups (e.g.
blanks) from the feature definition avoiding thus features with only detected peaks in these.
Note that this affects only the definition of new features. Chromatographic peaks in these
samples will still be assigned to features which were defined based on the other samples. See
in addition do_groupChromPeaks_density() for the core API function.

• NearestPeaksParam: performs peak grouping based on the proximity of chromatographic
peaks from different samples in the m/z - rt space similar to the correspondence method
of mzMine (Katajamaa 2006). The method creates first a master peak list consisting of all
chromatographic peaks from the sample with the most detected peaks and iteratively cal-
culates distances to peaks from the sample with the next most number of peaks grouping
peaks together if their distance is smaller than the provided thresholds. See in addition
do_groupChromPeaks_nearest() for the core API function.

• MzClustParam: performs high resolution peak grouping for single spectrum metabolomics
data (Kazmi 2006). This method should only be used for such data as the retention time is not
considered in the correspondence analysis. See in addition do_groupPeaks_mzClust() for
the core API function.

For specific examples and description of the method and settings see the help pages of the individual
parameter classes listed above.

176 groupChromPeaks

Usage

groupChromPeaks(object, param, ...)

S4 method for signature 'XcmsExperiment,Param'
groupChromPeaks(object, param, msLevel = 1L, add = FALSE)

PeakDensityParam(
sampleGroups = numeric(),
bw = 30,
minFraction = 0.5,
minSamples = 1,
binSize = 0.25,
ppm = 0,
maxFeatures = 50

)

MzClustParam(
sampleGroups = numeric(),
ppm = 20,
absMz = 0,
minFraction = 0.5,
minSamples = 1

)

NearestPeaksParam(
sampleGroups = numeric(),
mzVsRtBalance = 10,
absMz = 0.2,
absRt = 15,
kNN = 10

)

S4 method for signature 'PeakDensityParam'
as.list(x, ...)

S4 method for signature 'XCMSnExp,PeakDensityParam'
groupChromPeaks(object, param, msLevel = 1L, add = FALSE)

S4 method for signature 'XCMSnExp,MzClustParam'
groupChromPeaks(object, param, msLevel = 1L)

S4 method for signature 'XCMSnExp,NearestPeaksParam'
groupChromPeaks(object, param, msLevel = 1L, add = FALSE)

Arguments

object The data object on which the correspondence analysis should be performed. Can
be an XCMSnExp(), XcmsExperiment() object.

param The parameter object selecting and configuring the algorithm.
... Optional parameters.
msLevel integer(1) defining the MS level on which the chromatographic peak detection

should be performed.

groupChromPeaks 177

add logical(1) (if object contains already chromatographic peaks, i.e. is either an
XCMSnExp or XcmsExperiment) whether chromatographic peak detection results
should be added to existing results. By default (add = FALSE) any additional
findChromPeaks call on a result object will remove previous results.

sampleGroups For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for PeakDensityParam and has to be defined also
if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group). Samples for which a NA is provided will
not be considered in the feature definitions step. Providing NA for all blanks in
an experiment will for example avoid features to be defined for signals (chrom
peaks) present only in blank samples.

bw For PeakDensityParam: numeric(1) defining the bandwidth (standard devi-
ation ot the smoothing kernel) to be used. This argument is passed to the
[stats::density() method.

minFraction For PeakDensityParam: numeric(1) defining the minimum fraction of sam-
ples in at least one sample group in which the peaks have to be present to be
considered as a peak group (feature).

minSamples For PeakDensityParam: numeric(1) with the minimum number of samples in
at least one sample group in which the peaks have to be detected to be considered
a peak group (feature).

binSize For PeakDensityParam: numeric(1) defining the size of the overlapping slices
in m/z dimension.

ppm For MzClustParam: numeric(1) representing the relative m/z error for the clus-
tering/grouping (in parts per million). For PeakDensityParam: numeric(1) to
define m/z-dependent, increasing m/z bin sizes. If ppm = 0 (the default) m/z
bins are defined by the sequence of values from the smallest to the larges m/z
value with a constant bin size of binSize. For ppm > 0 the size of each bin is
increased in addition by the ppm of the (upper) m/z boundary of the bin. The
maximal bin size (used for the largest m/z values) would then be binSize plus
ppm parts-per-million of the largest m/z value of all peaks in the data set.

maxFeatures For PeakDensityParam: numeric(1) with the maximum number of peak groups
to be identified in a single mz slice.

absMz For NearestPeaksParam and MzClustParam: numeric(1) maximum tolerated
distance for m/z values.

mzVsRtBalance For NearestPeaksParam: numeric(1) representing the factor by which m/z
values are multiplied before calculating the (euclician) distance between two
peaks.

absRt For NearestPeaksParam: numeric(1) maximum tolerated distance for reten-
tion times.

kNN For NearestPeaksParam: integer(1) representing the number of nearest neigh-
bors to check.

x The parameter object.

Value

For groupChromPeaks: either an XcmsExperiment() or XCMSnExp() object with the correspon-
dence result.

178 groupFeatures-abundance-correlation

Author(s)

Colin Smith, Johannes Rainer

References

Smith, C.A., Want E.J., O’Maille G., Abagyan R., and Siuzdak G. (2006) "XCMS: Processing
Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and
Identification" Anal. Chem. 78:779-787. doi: 10.1021/ac051437y

Katajamaa, M., Miettinen, J., Oresic, M. (2006) "MZmine: Toolbox for processing and visual-
ization of mass spectrometry based molecular profile data". Bioinformatics, 22:634-636. doi:
10.1093/bioinformatics/btk039

Kazmi S. A., Ghosh, S., Shin, D., Hill, D.W., and Grant, D.F. (2006) "Alignment of high resolution
mass spectra: development of a heuristic approach for metabolomics. Metabolomics Vol. 2, No. 2,
75-83.

groupFeatures-abundance-correlation

Compounding/feature grouping based on similarity of abundances
across samples

Description

Features from the same originating compound are expected to have similar intensities across sam-
ples. This method thus groups features based on similarity of abundances (i.e. feature values)
across samples in a data set. See also MsFeatures::AbundanceSimilarityParam() for additional
information and details.

This help page lists parameters specific for xcms result objects (i.e. XcmsExperiment() and XCMSnExp()
objects). Documentation of the parameters for the similarity calculation is available in the MsFeatures::AbundanceSimilarityParam()
help page in the MsFeatures package.

Usage

S4 method for signature 'XcmsResult,AbundanceSimilarityParam'
groupFeatures(
object,
param,
msLevel = 1L,
method = c("medret", "maxint", "sum"),
value = "into",
intensity = "into",
filled = TRUE,
...

)

Arguments

object XcmsExperiment() or XCMSnExp() object containing LC-MS pre-processing
results.

param AbudanceSimilarityParam object with the settings for the method. See MsFeatures::AbundanceSimilarityParam()
for details on the grouping method and its parameters.

https://doi.org/10.1021/ac051437y
https://doi.org/10.1093/bioinformatics/btk039

groupFeatures-abundance-correlation 179

msLevel integer(1) defining the MS level on which the features should be grouped.

method character(1) passed to the featureValues() call. See featureValues() for
details. Defaults to method = "medret".

value character(1) passed to the featureValues() call. See featureValues() for
details. Defaults to value = "into".

intensity character(1) passed to the featureValues() call. See featureValues() for
details. Defaults to intensity = "into".

filled logical(1) whether filled-in values should be included in the correlation anal-
ysis. Defaults to filled = TRUE.

... additional parameters passed to the groupFeatures() method for matrix.

Value

input object with feature group definitions added to (or updated in) a column "feature_group" in
its featureDefinitions data frame.

Author(s)

Johannes Rainer

See Also

feature-grouping for a general overview.

Other feature grouping methods: groupFeatures-eic-similarity, groupFeatures-similar-rtime

Examples

library(MsFeatures)
library(MsExperiment)
Load a test data set with detected peaks
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Group chromatographic peaks across samples
xodg <- groupChromPeaks(faahko_sub, param = PeakDensityParam(sampleGroups = rep(1, 3)))

Group features based on correlation of feature values (integrated
peak area) across samples. Note that there are many missing values
in the feature value which influence grouping of features in the present
data set.
xodg_grp <- groupFeatures(xodg,

param = AbundanceSimilarityParam(threshold = 0.8))
table(featureDefinitions(xodg_grp)$feature_group)

Group based on the maximal peak intensity per feature
xodg_grp <- groupFeatures(xodg,

param = AbundanceSimilarityParam(threshold = 0.8, value = "maxo"))
table(featureDefinitions(xodg_grp)$feature_group)

180 groupFeatures-eic-similarity

groupFeatures-eic-similarity

Compounding/feature grouping based on similarity of extracted ion
chromatograms

Description

Features from the same originating compound are expected to share their elution pattern (i.e. chro-
matographic peak shape) with it. Thus, this methods allows to group features based on similarity
of their extracted ion chromatograms (EICs). The similarity calculation is performed separately for
each sample with the similarity score being aggregated across samples for the final generation of
the similarity matrix on which the grouping (considering parameter threshold) will be performed.

The MSnbase::compareChromatograms() function is used for similarity calculation which by de-
fault calculates the Pearson’s correlation coefficient. The settings for compareChromatograms()
can be specified with parameters ALIGNFUN, ALIGNFUNARGS, FUN and FUNARGS. ALIGNFUN defaults
to alignRt and is the function used to align the chromatograms before comparison. For in-
formation and parameters of alignRt() see the documentation for MSnbase::Chromatogram().
ALIGNFUNARGS allows to specify additional arguments for the ALIGNFUN function. It defaults to
ALIGNFUNARGS = list(tolerance = 0, method = "closest") which ensures that data points from
the same spectrum (scan, i.e. with the same retention time) are compared between the EICs from
the same sample. Parameter FUN defines the function to calculate the similarity score and defaults
to FUN = cor and FUNARGS allows to pass additional arguments to this function (defaults to FUNARGS
= list(use = "pairwise.complete.obs"). See also MSnbase::compareChromatograms() for
more information.

The grouping of features based on the EIC similarity matrix is performed with the function specified
with parameter groupFun which defaults to groupFun = groupSimilarityMatrix which groups
all rows (features) in the similarity matrix with a similarity score larger than threshold into
the same cluster. This creates clusters of features in which all features have a similarity score
>= threshold with any other feature in that cluster. See MsFeatures::groupSimilarityMatrix()
for details. Additional parameters to that function can be passed with the ... argument.

This feature grouping should be called after an initial feature grouping by retention time (see
MsFeatures::SimilarRtimeParam()). The feature groups defined in columns "feature_group"
of featureDefinitions(object) (for features matching msLevel) will be used and refined by
this method. Features with a value of NA in featureDefinitions(object)$feature_group will
be skipped/not considered for feature grouping.

Usage

EicSimilarityParam(
threshold = 0.9,
n = 1,
onlyPeak = TRUE,
value = c("maxo", "into"),
groupFun = groupSimilarityMatrix,
ALIGNFUN = alignRt,
ALIGNFUNARGS = list(tolerance = 0, method = "closest"),
FUN = cor,
FUNARGS = list(use = "pairwise.complete.obs"),
...

)

groupFeatures-eic-similarity 181

S4 method for signature 'XcmsResult,EicSimilarityParam'
groupFeatures(object, param, msLevel = 1L)

Arguments

threshold numeric(1) with the minimal required similarity score to group featues. This
is passed to the groupFun function.

n numeric(1) defining the total number of samples per feature group on which
this similarity calculation should be performed. This value is rounded up to the
next larger integer value.

onlyPeak logical(1) whether the correlation should be performed only on the signals
within the identified chromatographic peaks (onlyPeak = TRUE, default) or all
the signal from the extracted ion chromatogram.

value character(1) defining whether samples should be grouped based on the sum
of the maximal peak intensity (value = "maxo", the default) or the integrated
peak area (value = "into") for a feature.

groupFun function defining the function to be used to group rows based on a pairwise
similarity matrix. Defaults to MsFeatures::groupSimilarityMatrix().

ALIGNFUN function defining the function to be used to align chromatograms prior sim-
ilarity calculation. Defaults to ALIGNFUN = alignRt. See documentation of
MSnbase::Chromatogram() and MSnbase::compareChromatograms() for more
information.

ALIGNFUNARGS named list with arguments for ALIGNFUN. Defaults to ALIGNFUNARGS = list(tolerance
= 0, method = "closest").

FUN function defining the function to be used to calculate a similarity between
(aligned) chromatograms. Defaults to FUN = cor. See cor() and MSnbase::compareChromatograms()
for more information.

FUNARGS named list with arguments for FUN. Defaults to FUN = list(use = "pairwise.complete.obs").

... for EicSimilarityParam: additional arguments to be passed to groupFun and
featureChromatograms (such as expandRt to expand the retention time range
of each feature).

object XcmsExperiment() or XCMSnExp() object with LC-MS pre-processing results.

param EicSimilarityParam object with the settings for the method.

msLevel integer(1) defining the MS level on which the features should be grouped.

Value

input object with feature groups added (i.e. in column "feature_group" of its featureDefinitions
data frame.

Note

At present the featureChromatograms() function is used to extract the EICs for each feature,
which does however use one m/z and rt range for each feature and the EICs do thus not exactly
represent the identified chromatographic peaks of each sample (i.e. their specific m/z and retention
time ranges).

While being possible to be performed on the full data set without prior feature grouping, this is not
suggested for the following reasons: I) the selection of the top n samples with the highest signal for

182 groupFeatures-similar-rtime

the feature group will be biased by very abundant compounds as this is performed on the full data
set (i.e. the samples with the highest overall intensities are used for correlation of all features) and
II) it is computationally much more expensive because a pairwise correlation between all features
has to be performed.

It is also suggested to perform the correlation on a subset of samples per feature with the highest
intensities of the peaks (for that feature) although it would also be possible to run the correlation on
all samples by setting n equal to the total number of samples in the data set. EIC correlation should
however be performed ideally on samples in which the original compound is highly abundant to
avoid correlation of missing values or noisy peak shapes as much as possible.

By default also the signal which is outside identified chromatographic peaks is excluded from the
correlation.

Author(s)

Johannes Rainer

See Also

feature-grouping for a general overview.

Other feature grouping methods: groupFeatures-abundance-correlation, groupFeatures-similar-rtime

Examples

library(MsFeatures)
library(MsExperiment)
Load a test data set with detected peaks
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Group chromatographic peaks across samples
xodg <- groupChromPeaks(faahko_sub, param = PeakDensityParam(sampleGroups = rep(1, 3)))

Performing a feature grouping based on EIC similarities on a single
sample
xodg_grp <- groupFeatures(xodg, param = EicSimilarityParam(n = 1))

table(featureDefinitions(xodg_grp)$feature_group)

Usually it is better to perform this correlation on pre-grouped features
e.g. based on similar retention time.
xodg_grp <- groupFeatures(xodg, param = SimilarRtimeParam(diffRt = 4))
xodg_grp <- groupFeatures(xodg_grp, param = EicSimilarityParam(n = 1))

table(featureDefinitions(xodg_grp)$feature_group)

groupFeatures-similar-rtime

Compounding/feature grouping based on similar retention times

groupFeatures-similar-rtime 183

Description

Group features based on similar retention time. This method is supposed to be used as an initial
crude grouping of features based on the median retention time of all their chromatographic peaks.
All features with a difference in their retention time which is <= parameter diffRt of the parameter
object are grouped together. If a column "feature_group" is found in featureDefinitions()
this is further sub-grouped by this method.

See MsFeatures::SimilarRtimeParam() in MsFeatures for more details.

Usage

S4 method for signature 'XcmsResult,SimilarRtimeParam'
groupFeatures(object, param, msLevel = 1L, ...)

Arguments

object XcmsExperiment() or XCMSnExp() object containing also correspondence re-
sults.

param SimilarRtimeParam object with the settings for the method. See MsFeatures::SimilarRtimeParam()
for details and options.

msLevel integer(1) defining the MS level on which the features should be grouped.

... passed to the groupFeatures() function on numeric values.

Value

the input object with feature groups added (i.e. in column "feature_group" of its featureDefinitions
data frame.

Author(s)

Johannes Rainer

See Also

Other feature grouping methods: groupFeatures-abundance-correlation, groupFeatures-eic-similarity

Examples

library(MsFeatures)
library(MsExperiment)
Load a test data set with detected peaks
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Group chromatographic peaks across samples
xodg <- groupChromPeaks(faahko_sub, param = PeakDensityParam(sampleGroups = rep(1, 3)))

Group features based on similar retention time (i.e. difference <= 2 seconds)
xodg_grp <- groupFeatures(xodg, param = SimilarRtimeParam(diffRt = 2))

Feature grouping get added to the featureDefinitions in column "feature_group"
head(featureDefinitions(xodg_grp)$feature_group)

184 groupnames,XCMSnExp-method

table(featureDefinitions(xodg_grp)$feature_group)
length(unique(featureDefinitions(xodg_grp)$feature_group))

Using an alternative groupiing method that creates larger groups
xodg_grp <- groupFeatures(xodg,

param = SimilarRtimeParam(diffRt = 2, groupFun = MsCoreUtils::group))

length(unique(featureDefinitions(xodg_grp)$feature_group))

groupnames,XCMSnExp-method

Generate unique group (feature) names based on mass and retention
time

Description

groupnames generates names for the identified features from the correspondence analysis based in
their mass and retention time. This generates feature names that are equivalent to the group names
of the old user interface (aka xcms1).

Usage

S4 method for signature 'XCMSnExp'
groupnames(object, mzdec = 0, rtdec = 0, template = NULL)

Arguments

object XCMSnExp object containing correspondence results.

mzdec integer(1) with the number of decimal places to use for m/z (defaults to 0).

rtdec integer(1) with the number of decimal places to use for the retention time
(defaults to 0).

template character with existing group names whose format should be emulated.

Value

character with unique names for each feature in object. The format is M(m/z)T(time in seconds).

See Also

XCMSnExp.

groupnames-methods 185

groupnames-methods Generate unque names for peak groups

Description

Allow linking of peak group data between classes using unique group names that remain the same
as long as no re-grouping occurs.

Arguments

object the xcmsSet or xcmsEIC object

mzdec number of decimal places to use for m/z

rtdec number of decimal places to use for retention time

template a character vector with existing group names whose format should be emulated

Value

A character vector with unique names for each peak group in the object. The format is M[m/z]T[time
in seconds].

Methods

object = "xcmsSet" (object, mzdec = 0, rtdec = 0, template = NULL)

object = "xcmsEIC" (object)

See Also

xcmsSet-class, xcmsEIC-class

groupOverlaps Group overlapping ranges

Description

groupOverlaps identifies overlapping ranges in the input data and groups them by returning their
indices in xmin xmax.

Usage

groupOverlaps(xmin, xmax)

Arguments

xmin numeric (same length than xmax) with the lower boundary of the range.

xmax numeric (same length than xmin) with the upper boundary of the range.

Value

list with the indices of grouped elements.

186 groupval-methods

Author(s)

Johannes Rainer

Examples

x <- c(2, 12, 34.2, 12.4)
y <- c(3, 16, 35, 36)

groupOverlaps(x, y)

groupval-methods Extract a matrix of peak values for each group

Description

Generate a matrix of peak values with rows for every group and columns for every sample. The
value included in the matrix can be any of the columns from the xcmsSet peaks slot matrix. Colli-
sions where more than one peak from a single sample are in the same group get resolved with one
of several user-selectable methods.

Arguments

object the xcmsSet object

method conflict resolution method, "medret" to use the peak closest to the median re-
tention time or "maxint" to use the peak with the highest intensity

value name of peak column to enter into returned matrix, or "index" for index to the
corresponding row in the peaks slot matrix

intensity if method == "maxint", name of peak column to use for intensity

Value

A matrix with with rows for every group and columns for every sample. Missing peaks have NA
values.

Methods

object = "xcmsSet" groupval(object, method = c("medret", "maxint"), value = "index",
intensity = "into")

See Also

xcmsSet-class

highlightChromPeaks 187

highlightChromPeaks Add definition of chromatographic peaks to an extracted chro-
matogram plot

Description

The highlightChromPeaks() function adds chromatographic peak definitions to an existing plot,
such as one created by the plot() method on a MSnbase::Chromatogram() or MSnbase::MChromatograms()
object.

Usage

highlightChromPeaks(
x,
rt,
mz,
peakIds = character(),
border = rep("00000040", length(fileNames(x))),
lwd = 1,
col = NA,
type = c("rect", "point", "polygon"),
whichPeaks = c("any", "within", "apex_within"),
...

)

Arguments

x For highlightChromPeaks(): XCMSnExp object with the detected peaks.

rt For highlightChromPeaks(): numeric(2) with the retention time range from
which peaks should be extracted and plotted.

mz numeric(2) with the mz range from which the peaks should be extracted and
plotted.

peakIds character defining the IDs (i.e. rownames of the peak in the chromPeaks table)
of the chromatographic peaks to be highlighted in a plot.

border colors to be used to color the border of the rectangles/peaks. Has to be equal to
the number of samples in x.

lwd numeric(1) defining the width of the line/border.

col For highlightChromPeaks(): color to be used to fill the rectangle (if type =
"rect") or the peak (for type = "polygon").

type the plotting type. See plot() in base grapics for more details. For highlightChromPeaks():
character(1) defining how the peak should be highlighted: type = "rect"
draws a rectangle representing the peak definition, type = "point" indicates
a chromatographic peak with a single point at the position of the peak’s "rt"
and "maxo" and type = "polygon" will highlight the peak shape. For type
= "polygon" the color of the border and area can be defined with parameters
"border" and "col", respectively.

188 image-methods

whichPeaks character(1) specifying how peaks are called to be located within the region
defined by mz and rt. Can be one of "any", "within", and "apex_within"
for all peaks that are even partially overlapping the region, peaks that are com-
pletely within the region, and peaks for which the apex is within the region. This
parameter is passed to the type argument of the chromPeaks() function. See
related documentation for more information and examples.

... additional parameters to the matplot() or plot() function.

Author(s)

Johannes Rainer

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

Extract the ion chromatogram for one chromatographic peak in the data.
chrs <- chromatogram(faahko_sub, rt = c(2700, 2900), mz = 335)

plot(chrs)

Extract chromatographic peaks for the mz/rt range (if any).
chromPeaks(faahko_sub, rt = c(2700, 2900), mz = 335)

Highlight the chromatographic peaks in the area
Show the peak definition with a rectangle
highlightChromPeaks(faahko_sub, rt = c(2700, 2900), mz = 335)

Color the actual peak
highlightChromPeaks(faahko_sub, rt = c(2700, 2900), mz = 335,

col = c("#ff000020", "#00ff0020"), type = "polygon")

image-methods Plot log intensity image of a xcmsRaw object

Description

Create log intensity false-color image of a xcmsRaw object plotted with m/z and retention time axes

Arguments

x xcmsRaw object

col vector of colors to use for for the image

... arguments for profRange

imputeLinInterpol 189

Methods

x = "xcmsRaw" image(x, col = rainbow(256), ...)

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsRaw-class

imputeLinInterpol Impute values for empty elements in a vector using linear interpolation

Description

This function provides missing value imputation based on linear interpolation and resembles some
of the functionality of the profBinLin() and profBinLinBase() functions deprecated from ver-
sion 1.51 on.

Usage

imputeLinInterpol(
x,
baseValue,
method = "lin",
distance = 1L,
noInterpolAtEnds = FALSE

)

Arguments

x A numeric vector with eventual missing (NA) values.

baseValue The base value to which empty elements should be set. This is only con-
sidered for method = "linbase" and corresponds to the profBinLinBase()’s
baselevel argument.

method One of "none", "lin" or "linbase".

distance For method = "linbase": number of non-empty neighboring element of an
empty element that should be considered for linear interpolation. See details
section for more information.

noInterpolAtEnds

For method = "lin": Logical indicating whether linear interpolation should also
be performed at the ends of the data vector (i.e. if missing values are present at
the beginning or the end of the vector).

190 imputeLinInterpol

Details

Values for NAs in input vector x can be imputed using methods "lin" and "linbase":

`impute = "lin"` uses simple linear imputation to derive a value
for an empty element in input vector `x` from its neighboring
non-empty elements. This method is equivalent to the linear
interpolation in the `profBinLin` method. Whether interpolation is
performed if missing values are present at the beginning and end of
`x` can be set with argument `noInterpolAtEnds`. By default
interpolation is also performed at the ends interpolating from `0`
at the beginning and towards `0` at the end. For
`noInterpolAtEnds = TRUE` no interpolation is performed at both
ends replacing the missing values at the beginning and/or the end of
`x` with `0`.

`impute = "linbase"` uses linear interpolation to impute values for
empty elements within a user-definable proximity to non-empty elements
and setting the element's value to the `baseValue` otherwise. The
default for the `baseValue` is half of the smallest value in
`x` (`NA`s being removed). Whether linear interpolation based
imputation is performed for a missing value depends on the
`distance` argument. Interpolation is only performed if one of the
next `distance` closest neighbors to the current empty element has
a value other than `NA`. No interpolation takes place for
`distance = 0`, while `distance = 1` means that the value for
an empty element is interpolated from directly adjacent non-empty
elements while, if the next neighbors of the current empty element are
also `NA`, it's vale is set to `baseValue`.
This corresponds to the linear interpolation performed by the
`profBinLinBase` method. For more details see examples below.

Value

A numeric vector with empty values imputed based on the selected method.

Author(s)

Johannes Rainer

Examples

#######
Impute missing values by linearly interpolating from neighboring
non-empty elements
x <- c(3, NA, 1, 2, NA, NA, 4, NA, NA, NA, 3, NA, NA, NA, NA, 2)
imputeLinInterpol(x, method = "lin")
visualize the interpolation:
plot(x = 1:length(x), y = x)
points(x = 1:length(x), y = imputeLinInterpol(x, method = "lin"), type = "l", col = "grey")

If the first or last elements are NA, interpolation is performed from 0
to the first non-empty element.
x <- c(NA, 2, 1, 4, NA)
imputeLinInterpol(x, method = "lin")

imputeRowMin 191

visualize the interpolation:
plot(x = 1:length(x), y = x)
points(x = 1:length(x), y = imputeLinInterpol(x, method = "lin"), type = "l", col = "grey")

If noInterpolAtEnds is TRUE no interpolation is performed at both ends
imputeLinInterpol(x, method = "lin", noInterpolAtEnds = TRUE)

######
method = "linbase"
"linbase" performs imputation by interpolation for empty elements based on
'distance' adjacent non-empty elements, setting all remaining empty elements
to the baseValue
x <- c(3, NA, 1, 2, NA, NA, 4, NA, NA, NA, 3, NA, NA, NA, NA, 2)
Setting distance = 0 skips imputation by linear interpolation
imputeLinInterpol(x, method = "linbase", distance = 0)

With distance = 1 for all empty elements next to a non-empty element the value
is imputed by linear interpolation.
xInt <- imputeLinInterpol(x, method = "linbase", distance = 1L)
xInt

plot(x = 1:length(x), y = x, ylim = c(0, max(x, na.rm = TRUE)))
points(x = 1:length(x), y = xInt, type = "l", col = "grey")

Setting distance = 2L would cause that for all empty elements for which the
distance to the next non-empty element is <= 2 the value is imputed by
linear interpolation:
xInt <- imputeLinInterpol(x, method = "linbase", distance = 2L)
xInt

plot(x = 1:length(x), y = x, ylim = c(0, max(x, na.rm = TRUE)))
points(x = 1:length(x), y = xInt, type = "l", col = "grey")

imputeRowMin Replace missing values with a proportion of the row minimum

Description

imputeRowMin imputes missing values in x by replacing NAs in each row with a proportion of the
minimal value for that row (i.e. min_fraction * min(x[i,])).

Usage

imputeRowMin(x, min_fraction = 1/2)

Arguments

x matrix with abundances, rows being features/metabolites and columns samples.

min_fraction numeric(1) with the fraction of the row minimum that should be used to replace
NA values in that row.

Author(s)

Johannes Rainer

192 imputeRowMinRand

See Also

imputeLCMD package for more left censored imputation functions.

Other imputation functions: imputeRowMinRand()

Examples

library(MSnbase)
library(faahKO)
data("faahko")

xset <- group(faahko)
mat <- groupval(xset, value = "into")

mat_imp <- imputeRowMin(mat)

head(mat)
head(mat_imp)

Replace with 1/8 of the row mimimum
head(imputeRowMin(mat, min_fraction = 1/8))

imputeRowMinRand Impute missing values with random numbers based on the row mini-
mum

Description

Replace missing values with random numbers. When using the method = "mean_sd", random num-
bers will be generated from a normal distribution based on (a fraction of) the row min and a standard
deviation estimated from the linear relationship between row standard deviation and mean of the
full data set. Parameter sd_fraction allows to further reduce the estimated standard deviation.
When using the method method = "from_to", random numbers between 2 specific values will be
generated.

Usage

imputeRowMinRand(
x,
method = c("mean_sd", "from_to"),
min_fraction = 1/2,
min_fraction_from = 1/1000,
sd_fraction = 1,
abs = TRUE

)

Arguments

x matrix with abundances, rows being features/metabolites and columns samples.

method method character(1) defining the imputation method. See description for de-
tails. Defaults to method = "mean_sd".

imputeRowMinRand 193

min_fraction numeric(1) with the fraction of the row minimum that should be used to replace
NA values in that row in case that mean_sd method is specified. When using
from_to method, this value will be the one used to calculate the maximum value
for replace NA values in that row.

min_fraction_from

numeric(1) with the fraction of the row minimum that should be used to calcu-
late the minimum value for replace NA values in that row. This parameter is used
only in case that from_to method is specified.

sd_fraction numeric(1) factor to reduce the estimated standard deviation. This parameter
is used only in case that mean_sd method is specified.

abs logical(1) to force imputed values to be strictly positive.

Details

For method mean_sd, imputed values are taken from a normal distribution with mean being a user
defined fraction of the row minimum and the standard deviation estimated for that mean based on
the linear relationship between row standard deviations and row means in the full matrix x.

To largely avoid imputed values being negative or larger than the real values, the standard deviation
for the random number generation is estimated ignoring the intercept of the linear model estimating
the relationship between standard deviation and mean. If abs = TRUE NA values are replaced with
the absolute value of the random values.

For method from_to, imputed values are taken between 2 user defined fractions of the row mini-
mum.

Author(s)

Johannes Rainer, Mar Garcia-Aloy

See Also

imputeLCMD package for more left censored imputation functions.

Other imputation functions: imputeRowMin()

Examples

library(faahKO)
library(MSnbase)
data("faahko")

xset <- group(faahko)
mat <- groupval(xset, value = "into")

Estimate the relationship between row sd and mean. The standard deviation
of the random distribution is estimated on this relationship.
mns <- rowMeans(mat, na.rm = TRUE)
sds <- apply(mat, MARGIN = 1, sd, na.rm = TRUE)
plot(mns, sds)
abline(lm(sds ~ mns))

mat_imp_meansd <- imputeRowMinRand(mat, method = "mean_sd")
mat_imp_fromto <- imputeRowMinRand(mat, method = "from_to")

head(mat)

194 levelplot-methods

head(mat_imp_meansd)
head(mat_imp_fromto)

isolationWindowTargetMz,OnDiskMSnExp-method

Extract isolation window target m/z definition

Description

isolationWindowTargetMz extracts the isolation window target m/z definition for each spectrum
in object.

Usage

S4 method for signature 'OnDiskMSnExp'
isolationWindowTargetMz(object)

Arguments

object MSnbase::OnDiskMSnExp object.

Value

a numeric of length equal to the number of spectra in object with the isolation window target m/z
or NA if not specified/available.

Author(s)

Johannes Rainer

levelplot-methods Plot log intensity image of a xcmsRaw object

Description

Create an image of the raw (profile) data m/z against retention time, with the intensity color coded.

Arguments

x xcmsRaw object.

log Whether the intensity should be log transformed.

col.regions The color ramp that should be used for encoding of the intensity.

rt wheter the original (rt="raw") or the corrected (rt="corrected") retention
times should be used.

... Arguments for profRange.

loadRaw-methods 195

Methods

x = "xcmsRaw" levelplot(x, log=TRUE, col.regions=colorRampPalette(brewer.pal(9,
"YlOrRd"))(256), ...)

x = "xcmsSet" levelplot(x, log=TRUE, col.regions=colorRampPalette(brewer.pal(9, "YlOrRd"))(256),
rt="raw", ...)

Author(s)

Johannes Rainer, <johannes.rainer@eurac.edu>

See Also

xcmsRaw-class, xcmsSet-class

loadRaw-methods Read binary data from a source

Description

This function extracts the raw data which will be used an xcmsRaw object. Further processing of
data is done in the xcmsRaw constructor.

Arguments

object Specification of a data source (such as a file name or database query)

Details

The implementing methods decide how to gather the data.

Value

A list containing elements describing the data source. The rt, scanindex, tic, and acquisitionNum
components each have one entry per scan. They are parallel in the sense that rt[1], scanindex[1],
and acquisitionNum[1] all refer to the same scan. The list containst the following components:

rt Numeric vector with acquisition time (in seconds) for each scan

tic Numeric vector with Total Ion Count for each scan

scanindex Integer vector with starting positions of each scan in the mz and intensity
components. It is an exclusive offset, so scanindex[i] is the offset in mz
and intensity before the beginning of scan i. This means that the mz (re-
spectively intensity) values for scan i would be from scanindex[i] + 1 to
scanindex[i + 1]

mz Concatenated vector of m/z values for all scans

intensity Concatenated vector of intensity values for all scans

Methods

signature(object = "xcmsSource") Uses loadRaw,xcmsSource-method to extract raw data.
Subclasses of xcmsSource can provide different ways of fetching data.

196 loadXcmsData

Author(s)

Daniel Hackney, <dan@haxney.org>

See Also

xcmsRaw-class, xcmsSource

loadXcmsData LC-MS preprocessing result test data sets

Description

Data sets with xcms preprocessing results are provided within the xcms package and can be loaded
with the loadXcmsData function. The available Test data sets are:

• xdata: an XCMSnExp() object with the results from a xcms-based pre-processing of an LC-MS
untargeted metabolomics data set. The raw data files are provided in the faahKO R package.

• xmse: an XcmsExperiment() object with the results from an xcms-based pre-processing of an
LC-MS untargeted metabolomics data set (same original data set and pre-processing settings
as for the xdata data set). The pre-processing of this data set is described in detail in the xcms
vignette of the xcms package.

• faahko_sub: an XCMSnExp() object with identified chromatographic peaks in 3 samples from
the data files in the faahKO R package.

• faahko_sub2: an XcmsExperiment() object with identified chromatographic peaks in 3 sam-
ples from the data files in the faahKO R package.

Data sets can also be loaded using data, which would however require to update objects to point to
the location of the raw data files. The loadXcmsData loads the data and ensures that all paths are
updated accordingly.

Usage

loadXcmsData(x = c("xmse", "xdata", "faahko_sub", "faahko_sub2"))

Arguments

x For loadXcmsData: character(1) with the name of the data file (object) to
load.

Examples

library(xcms)
xdata <- loadXcmsData()

manualChromPeaks 197

manualChromPeaks Manual peak integration and feature definition

Description

The manualChromPeaks function allows to manually define chromatographic peaks, integrate the
intensities within the specified peak area and add them to the object’s chromPeaks matrix. A peak
is not added for a sample if no signal was found in the respective data file.

Because chromatographic peaks are added to eventually previously identified peaks, it is suggested
to run refineChromPeaks() with the MergeNeighboringPeaksParam() approach to merge poten-
tially overlapping peaks.

The manualFeatures function allows to manually group identified chromatographic peaks into
features by providing their index in the object’s chromPeaks matrix.

Usage

manualChromPeaks(object, ...)

manualFeatures(object, ...)

S4 method for signature 'MsExperiment'
manualChromPeaks(
object,
chromPeaks = matrix(numeric()),
samples = seq_along(object),
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperiment'
manualChromPeaks(
object,
chromPeaks = matrix(numeric()),
samples = seq_along(object),
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperiment'
manualFeatures(object, peakIdx = list(), msLevel = 1L)

S4 method for signature 'OnDiskMSnExp'
manualChromPeaks(
object,
chromPeaks = matrix(),
samples = seq_along(fileNames(object)),
msLevel = 1L,
BPPARAM = bpparam()

198 manualChromPeaks

)

S4 method for signature 'XCMSnExp'
manualChromPeaks(
object,
chromPeaks = matrix(),
samples = seq_along(fileNames(object)),
msLevel = 1L,
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp'
manualFeatures(object, peakIdx = list(), msLevel = 1L)

Arguments

object XcmsExperiment, XCMSnExp or MSnbase::OnDiskMSnExp object.

... ignored.

chromPeaks For manualChromPeaks: matrix defining the boundaries of the chromatographic
peaks with one row per chromatographic peak and columns "mzmin", "mzmax",
"rtmin" and "rtmax" defining the m/z and retention time region of each peak.

samples For manualChromPeaks: optional integer defining individual samples in which
the peak integration should be performed. Defaults to all samples.

msLevel integer(1) defining the MS level in which peak integration should be per-
formed. Only a single MS level at a time is supported. Defaults to msLevel =
1L.

chunkSize integer(1) defining the number of files (samples) that should be loaded into
memory and processed at the same time. Peak integration is then performed in
parallel (per sample) on this subset data. This setting thus allows to balance be-
tween memory demand and speed (due to parallel processing). Because parallel
processing can only performed on the subset of data currently loaded into mem-
ory in each iteration, the value for chunkSize should match the defined parallel
setting setup. Using a parallel processing setup using 4 CPUs (separate pro-
cesses) but using chunkSize = 1will not perform any parallel processing, as only the data from one sample is loaded in memory at a time. On the other hand, settingchunkSize‘
to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM parallel processing settings (see BiocParallel::bpparam() for details).

peakIdx For manualFeatures: list of integer vectors with the indices of chromato-
graphic peaks in the object’s chromPeaks matrix that should be grouped into
features.

Value

XcmsExperiment or XCMSnExp with the manually added chromatographic peaks or features.

Author(s)

Johannes Rainer

medianFilter 199

Examples

Read a test dataset.
fls <- c(system.file("microtofq/MM14.mzML", package = "msdata"),

system.file("microtofq/MM8.mzML", package = "msdata"))

Define a data frame with some sample annotations
ann <- data.frame(

injection_index = 1:2,
sample_id = c("MM14", "MM8"))

Import the data
library(MsExperiment)
mse <- readMsExperiment(fls)

Define some arbitrary peak areas
pks <- cbind(

mzmin = c(512, 234.3), mzmax = c(513, 235),
rtmin = c(10, 33), rtmax = c(19, 50)

)
pks

res <- manualChromPeaks(mse, pks)
chromPeaks(res)

Peaks were only found in the second file.

medianFilter Apply a median filter to a matrix

Description

For each element in a matix, replace it with the median of the values around it.

Usage

medianFilter(x, mrad, nrad)

Arguments

x numeric matrix to median filter

mrad number of rows on either side of the value to use for median calculation

nrad number of rows on either side of the value to use for median calculation

Value

A matrix whose values have been median filtered

Author(s)

Colin A. Smith, <csmith@scripps.edu>

200 msn2xcmsRaw

Examples

mat <- matrix(1:25, nrow=5)
mat
medianFilter(mat, 1, 1)

msn2xcmsRaw Copy MSn data in an xcmsRaw to the MS slots

Description

The MS2 and MSn data is stored in separate slots, and can not directly be used by e.g. findPeaks().
msn2xcmsRaw() will copy the MSn spectra into the "normal" xcmsRaw slots.

Usage

msn2xcmsRaw(xmsn)

Arguments

xmsn an object of class xcmsRaw that contains spectra read with includeMSn=TRUE

Details

The default gap value is determined from the 90th percentile of the pair-wise differences between
adjacent mass values.

Value

An xcmsRaw object

Author(s)

Steffen Neumann <sneumann@ipb-halle.de>

See Also

xcmsRaw,

Examples

msnfile <- system.file("microtofq/MSMSpos20_6.mzML", package = "msdata")
xrmsn <- xcmsRaw(msnfile, includeMSn=TRUE)
xr <- msn2xcmsRaw(xrmsn)
p <- findPeaks(xr, method="centWave")

na.flatfill 201

na.flatfill Fill in NA values at the extremes of a vector

Description

Extend the first and last real values in a vector to fill in any NA values present.

Usage

na.flatfill(x)

Arguments

x numeric vector with NA values

Value

Modified vector.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

overlappingFeatures Identify overlapping features

Description

overlappingFeatures identifies features that are overlapping or close in the m/z - rt space.

Usage

overlappingFeatures(x, expandMz = 0, expandRt = 0, ppm = 0)

Arguments

x XcmsExperiment() or XCMSnExp() object with the features.

expandMz numeric(1) with the value to expand each feature (on each side) in m/z di-
mension before identifying overlapping features. The resulting "mzmin" for the
feature is thus mzmin - expandMz and the "mzmax" mzmax + expandMz.

expandRt numeric(1) with the value to expand each feature (on each side) in retention
time dimension before identifying overlapping features. The resulting "rtmin"
for the feature is thus rtmin - expandRt and the "rtmax" rtmax + expandRt.

ppm numeric(1) to grow the m/z width of the feature by a relative value: mzmin -
mzmin * ppm / 2e6, mzmax + mzmax * ppm / 2e6. Each feature is thus expanded
in m/z dimension by ppm/2 on each side before identifying overlapping features.

Value

list with indices of features (in featureDefinitions()) that are overlapping.

202 panel.cor

Author(s)

Johannes Rainer

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

Correspondence analysis
xdata <- groupChromPeaks(faahko_sub, param = PeakDensityParam(sampleGroups = c(1, 1, 1)))

Identify overlapping features
overlappingFeatures(xdata)

Identify features that are separated on retention time by less than
2 minutes
overlappingFeatures(xdata, expandRt = 60)

panel.cor Correlation coefficient panel for pairs function

Description

Correlation coefficient panel for pairs function.

Usage

panel.cor(x, y, digits = 2, prefix = "", cex.cor)

Arguments

x first data series

y second data series

digits number of digits to plot

prefix text to prefix the coefficients

cex.cor character expansion factor

Author(s)

Colin A. Smith, <csmith@scripps.edu>, based on pairs example code

See Also

pairs

peakPlots-methods 203

peakPlots-methods Plot a grid of a large number of peaks

Description

Plot extracted ion chromatograms for many peaks simultaneously, indicating peak integration start
and end points with vertical grey lines.

Arguments

object the xcmsRaw object

peaks matrix with peak information as produced by findPeaks

figs two-element vector describing the number of rows and the number of columns
of peaks to plot, if missing then an approximately square grid that will fit the
number of peaks supplied

width width of chromatogram retention time to plot for each peak

Details

This function is intended to help graphically analyze the results of peak picking. It can help estimate
the number of false positives and improper integration start and end points. Its output is very
compact and tries to waste as little space as possible. Each plot is labeled with rounded m/z and
retention time separated by a space.

Methods

signature(object = "xcmsSet") plotPeaks(object, peaks, figs, width = 200)

See Also

xcmsRaw-class, findPeaks, split.screen

peaksWithCentWave Identify peaks in chromatographic data using centWave

Description

peaksWithCentWave identifies (chromatographic) peaks in purely chromatographic data, i.e. based
on intensity and retention time values without m/z values.

Usage

peaksWithCentWave(
int,
rt,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
integrate = 1,

204 peaksWithCentWave

fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
firstBaselineCheck = TRUE,
extendLengthMSW = FALSE,
...

)

Arguments

int numeric with intensity values.

rt numeric with the retention time for the intensities. Length has to be equal to
length(int).

peakwidth numeric(2) with the lower and upper bound of the expected peak width.

snthresh numeric(1) defining the signal to noise ratio cutoff. Peaks with a signal to noise
ratio < snthresh are omitted.

prefilter numeric(2) (c(k, I)): only regions of interest with at least k centroids with
signal >= I are returned in the first step.

integrate numeric(1), integration method. For integrate = 1 peak limits are found
through descending on the mexican hat filtered data, for integrate = 2 the de-
scend is done on the real data. The latter method is more accurate but prone to
noise, while the former is more robust, but less exact.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak.

noise numeric(1) defining the minimum required intensity for centroids to be con-
sidered in the first analysis step (definition of the regions of interest).

verboseColumns logical(1): whether additional peak meta data columns should be returned.
firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

extendLengthMSW

logical(1). If TRUE the "open" method of EIC extension is used, rather than
the default "reflect" method.

... currently ignored.

Details

The method uses the same algorithm for the peak detection than centWave, employs however a
different approach to identify the initial regions in which the peak detection is performed (i.e. the
regions of interest ROI). The method first identifies all local maxima in the chromatographic data
and defines the corresponding positions +/- peakwidth[2] as the ROIs. Noise estimation bases also
on these ROIs and can thus be different from centWave resulting in different signal to noise ratios.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

• "rt": retention time of the peak’s midpoint (time of the maximum signal).

• "rtmin": minimum retention time of the peak.

peaksWithCentWave 205

• "rtmax": maximum retention time of the peak.
• "into": integrated (original) intensity of the peak.
• "intb": per-peak baseline corrected integrated peak intensity.
• "maxo": maximum (original) intensity of the peak.
• "sn": signal to noise ratio of the peak defined as (maxo - baseline)/sd with sd being the

standard deviation of the local chromatographic noise.

Additional columns for verboseColumns = TRUE:

• "mu": gaussian parameter mu.
• "sigma": gaussian parameter sigma.
• "h": gaussian parameter h.
• "f": region number of the m/z ROI where the peak was localized.
• "dppm": m/z deviation of mass trace across scans in ppm (always NA).
• "scale": scale on which the peak was localized.
• "scpos": peak position found by wavelet analysis (index in int).
• "scmin": left peak limit found by wavelet analysis (index in int).
• "scmax": right peak limit found by wavelet analysis (index in int).

Author(s)

Johannes Rainer

See Also

centWave for a detailed description of the peak detection method.

Other peak detection functions for chromatographic data: peaksWithMatchedFilter()

Examples

Reading a file
library(MsExperiment)
library(xcms)
od <- readMsExperiment(system.file("cdf/KO/ko15.CDF", package = "faahKO"))

Extract chromatographic data for a small m/z range
mzr <- c(272.1, 272.2)
chr <- chromatogram(od, mz = mzr, rt = c(3000, 3300))[1, 1]

int <- intensity(chr)
rt <- rtime(chr)

Plot the region
plot(chr, type = "h")

Identify peaks in the chromatographic data
pks <- peaksWithCentWave(intensity(chr), rtime(chr))
pks

Highlight the peaks
rect(xleft = pks[, "rtmin"], xright = pks[, "rtmax"],

ybottom = rep(0, nrow(pks)), ytop = pks[, "maxo"], col = "#ff000040",
border = "#00000040")

206 peaksWithMatchedFilter

peaksWithMatchedFilter

Identify peaks in chromatographic data using matchedFilter

Description

The function performs peak detection using the matchedFilter algorithm on chromatographic data
(i.e. with only intensities and retention time).

Usage

peaksWithMatchedFilter(
int,
rt,
fwhm = 30,
sigma = fwhm/2.3548,
max = 20,
snthresh = 10,
...

)

Arguments

int numeric with intensity values.

rt numeric with the retention time for the intensities. Length has to be equal to
length(int).

fwhm numeric(1) specifying the full width at half maximum of matched filtration
gaussian model peak. Only used to calculate the actual sigma, see below.

sigma numeric(1) specifying the standard deviation (width) of the matched filtration
model peak.

max numeric(1) with the maximal number of peaks that are expected/ will bbe de-
tected in the data

snthresh numeric(1) defining the signal to noise cut-off to be used in the peak detection
step.

... currently ignored.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

• "rt": retention time of the peak’s midpoint (time of the maximum signal).

• "rtmin": minimum retention time of the peak.

• "rtmax": maximum retention time of the peak.

• "into": integrated (original) intensity of the peak.

• "intf": integrated intensity of the filtered peak.

• "maxo": maximum (original) intensity of the peak.

• "maxf"" maximum intensity of the filtered peak.

• "sn": signal to noise ratio of the peak.

peakTable-methods 207

Author(s)

Johannes Rainer

See Also

matchedFilter for a detailed description of the peak detection method.

Other peak detection functions for chromatographic data: peaksWithCentWave()

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and drop identified chromatographic peaks
data <- dropChromPeaks(filterFile(faahko_sub, 1))

Extract chromatographic data for a small m/z range
chr <- chromatogram(data, mz = c(272.1, 272.3), rt = c(3000, 3200))[1, 1]

pks <- peaksWithMatchedFilter(intensity(chr), rtime(chr))
pks

Plotting the data
plot(rtime(chr), intensity(chr), type = "h")
rect(xleft = pks[, "rtmin"], xright = pks[, "rtmax"], ybottom = c(0, 0),

ytop = pks[, "maxo"], border = "red")

peakTable-methods Create report of aligned peak intensities

Description

Create a report showing all aligned peaks.

Arguments

object the xcmsSet object

filebase base file name to save report, .tsv file and _eic will be appended to this name
for the tabular report and EIC directory, respectively. if blank nothing will be
saved

... arguments passed down to groupval, which provides the actual intensities.

Details

This method handles creation of summary reports similar to diffreport. It returns a summary
report that can optionally be written out to a tab-separated file.

If a base file name is provided, the report (see Value section) will be saved to a tab separated file.

208 PercentMissingFilter

Value

A data frame with the following columns:

mz median m/z of peaks in the group

mzmin minimum m/z of peaks in the group

mzmax maximum m/z of peaks in the group

rt median retention time of peaks in the group

rtmin minimum retention time of peaks in the group

rtmax maximum retention time of peaks in the group

npeaks number of peaks assigned to the group

Sample Classes number samples from each sample class represented in the group

... one column for every sample class

Sample Names integrated intensity value for every sample

... one column for every sample

Methods

object = "xcmsSet" peakTable(object, filebase = character(), ...)

See Also

xcmsSet-class,

Examples

Not run:
library(faahKO)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xs<-xcmsSet(cdf files)
xs<-group(xs)
peakTable(xs, filebase="peakList")

End(Not run)

PercentMissingFilter Filter features based on the percentage of missing data

Description

The PercentMissingFilter class and method enable users to filter features from an XcmsExperiment
or SummarizedExperiment object based on the percentage (values from 1 to 100) of missing values
for each features in different sample groups and filters them according to a provided threshold.

This filter is part of the possible dispatch of the generic function filterFeatures. Features with
a percentage of missing values higher (>) than the user input threshold in all sample groups will be
removed (i.e. features for which the proportion of missing values is below (<=) the threshold in at
least one sample group will be retained).

PercentMissingFilter 209

Usage

PercentMissingFilter(threshold = 30, f = factor())

S4 method for signature 'XcmsResult,PercentMissingFilter'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,PercentMissingFilter'
filterFeatures(object, filter, assay = 1)

Arguments

threshold numeric percentage (between 0 and 100) of accepted missing values for a fea-
ture in one sample group.

f vector of the same length as the object, specifying the sample type for each
sample in the dataset. The percentage of missing values per feature will be
computed within each of these sample groups. Parameter f, if not already a
factor, will be converted to one using the factor function. Samples with an NA
as their value in f will be excluded from calculation.

object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

... Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

Value

For PercentMissingFilter: a PercentMissingFilter class. filterFeatures return the input
object minus the features that did not met the user input threshold

Author(s)

Philippine Louail

See Also

Other Filter features in xcms: BlankFlag, DratioFilter, RsdFilter

210 plot.xcmsEIC

phenoDataFromPaths Derive experimental design from file paths

Description

The phenoDataFromPaths function builds a data.frame representing the experimental design
from the folder structure in which the files of the experiment are located.

Usage

phenoDataFromPaths(paths)

Arguments

paths character representing the file names (including the full path) of the experi-
ment’s files.

Note

This function is used by the old xcmsSet function to guess the experimental design (i.e. group
assignment of the files) from the folders in which the files of the experiment can be found.

Examples

List the files available in the faahKO package
base_dir <- system.file("cdf", package = "faahKO")
cdf_files <- list.files(base_dir, recursive = TRUE, full.names = TRUE)

plot.xcmsEIC Plot extracted ion chromatograms from multiple files

Description

Batch plot a list of extracted ion chromatograms to the current graphics device.

Arguments

x the xcmsEIC object

y optional xcmsSet object with peak integration data

groupidx either character vector with names or integer vector with indicies of peak groups
for which to plot EICs

sampleidx either character vector with names or integer vector with indicies of samples for
which to plot EICs

rtrange a two column matrix with minimum and maximum retention times between
which to return EIC data points
if it has the same number of rows as the number groups in the xcmsEIC object,
then sampleidx is used to subset it. otherwise, it is repeated over the length of
sampleidx

it may also be a single number specifying the time window around the peak for
which to plot EIC data

plotAdjustedRtime 211

col color to use for plotting extracted ion chromatograms. if missing and y is speci-
fied, colors are taken from unclass(sampclass(y)) and the default palette
if it is the same length as the number groups in the xcmsEIC object, then sampleidx
is used to subset it. otherwise, it is repeated over the length of sampleidx

legtext text to use for legend. if NULL and y is specified, legend text is taken from the
sample class information found in the xcmsSet

peakint logical, plot integrated peak area with darkened lines (requires that y also be
specified)

sleep seconds to pause between plotting EICs

... other graphical parameters

Value

A xcmsSet object.

Methods

x = "xcmsEIC" plot.xcmsEIC(x, y, groupidx = groupnames(x), sampleidx = sampnames(x),
rtrange = x@rtrange, col = rep(1, length(sampleidx)), legtext = NULL, peakint = TRUE,
sleep = 0, ...)

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsEIC-class, png, pdf, postscript,

plotAdjustedRtime Visualization of Alignment Results

Description

The plotAdjustedRtime function plots the difference between the adjusted and raw retention times
on the y-axis against the raw retention times on the x-axis. Each line represents the results for one
sample (file). If alignment was performed using the peak groups method (see adjustRtime() for
more infromation) also the peak groups used in the alignment are visualized.

Usage

plotAdjustedRtime(
object,
col = "#00000080",
lty = 1,
lwd = 1,
type = "l",
adjustedRtime = TRUE,
xlab = ifelse(adjustedRtime, yes = expression(rt[adj]), no = expression(rt[raw])),
ylab = expression(rt[adj] - rt[raw]),

212 plotAdjustedRtime

peakGroupsCol = "#00000060",
peakGroupsPch = 16,
peakGroupsLty = 3,
ylim,
...

)

Arguments

object A XcmsExperiment() or XCMSnExp() object with the alignment results.
col color(s) for the individual lines. Has to be of length 1 or equal to the number of

samples.
lty line type for the lines of the individual samples.
lwd line width for the lines of the individual samples.
type plot type (see par() for options; defaults to type = "l").
adjustedRtime logical(1) whether adjusted or raw retention times should be shown on the

x-axis.
xlab the label for the x-axis.
ylab the label for the y-axis.
peakGroupsCol color to be used for the peak groups (only if alignment was performed using the

peak groups method.
peakGroupsPch point character (pch) to be used for the peak groups (only if alignment was

performed using the peak groups method.
peakGroupsLty line type (lty) to be used to connect points for each peak groups (only if align-

ment was performed using the peak groups method.
ylim optional numeric(2) with the upper and lower limits on the y-axis.b
... Additional arguments to be passed down to the plot function.

Author(s)

Johannes Rainer

Examples

Load a test data set with detected peaks
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Performing the peak grouping using the "peak density" method.
p <- PeakDensityParam(sampleGroups = c(1, 1, 1))
res <- groupChromPeaks(faahko_sub, param = p)

Perform the retention time adjustment using peak groups found in both
files.
fgp <- PeakGroupsParam(minFraction = 1)
res <- adjustRtime(res, param = fgp)

Visualize the impact of the alignment.
plotAdjustedRtime(res, adjusted = FALSE)
grid()

plotChrom-methods 213

plotChrom-methods Plot extracted ion chromatograms from the profile matrix

Description

Uses the pre-generated profile mode matrix to plot averaged or base peak extracted ion chro-
matograms over a specified mass range.

Arguments

object the xcmsRaw object

base logical, plot a base-peak chromatogram

ident logical, use mouse to identify and label peaks

fitgauss logical, fit a gaussian to the largest peak

vline numeric vector with locations of vertical lines

... arguments passed to profRange

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. If fitgauss
== TRUE, a nls model with the fitted gaussian. Otherwise a two-column matrix with the plotted
points.

Methods

object = "xcmsRaw" plotChrom(object, base = FALSE, ident = FALSE, fitgauss = FALSE, vline
= numeric(0), ...)

See Also

xcmsRaw-class

plotChromatogramsOverlay

Plot multiple chromatograms into the same plot

Description

plotOverlay draws chromatographic peak data from multiple (different) extracted ion chromatograms
(EICs) into the same plot. This allows to directly compare the peak shape of these EICs in the same
sample. In contrast to the plot function for MSnbase::MChromatograms() object, which draws the
data from the same EIC across multiple samples in the same plot, this function draws the different
EICs from the same sample into the same plot.

If plotChromatogramsOverlay is called on a XChromatograms object any present chromatographic
peaks will also be highlighted/drawn depending on the parameters peakType, peakCol, peakBg and
peakPch (see also help on the plot function for XChromatogram() object for details).

214 plotChromatogramsOverlay

Usage

S4 method for signature 'MChromatograms'
plotChromatogramsOverlay(
object,
col = "#00000060",
type = "l",
main = NULL,
xlab = "rtime",
ylab = "intensity",
xlim = numeric(),
ylim = numeric(),
stacked = 0,
transform = identity,
...

)

S4 method for signature 'XChromatograms'
plotChromatogramsOverlay(
object,
col = "#00000060",
type = "l",
main = NULL,
xlab = "rtime",
ylab = "intensity",
xlim = numeric(),
ylim = numeric(),
peakType = c("polygon", "point", "rectangle", "none"),
peakBg = NULL,
peakCol = NULL,
peakPch = 1,
stacked = 0,
transform = identity,
...

)

Arguments

object MSnbase::MChromatograms() or XChromatograms() object.
col definition of the color in which the chromatograms should be drawn. Can be of

length 1 or equal to nrow(object) to plot each overlayed chromatogram in a
different color.

type character(1) defing the type of the plot. By default (type = "l") each chro-
matogram is drawn as a line.

main optional title of the plot. If not defined, the range of m/z values is used.
xlab character(1) defining the x-axis label.
ylab character(1) defining the y-axis label.
xlim optional numeric(2) defining the x-axis limits.
ylim optional numeric(2) defining the y-axis limits.
stacked numeric(1) defining the part (proportion) of the y-axis to use to stack EICs

depending on their m/z values. If stacked = 0 (the default) no stacking is per-
formed. With stacked = 1 half of the y-axis is used for stacking and half for the

plotChromatogramsOverlay 215

intensity y-axis (i.e. the ratio between stacking and intensity y-axis is 1:1). Note
that if stacking is different from 0 no y-axis and label are drawn.

transform function to transform the intensity values before plotting. Defaults to transform
= identity which plots the data as it is. With transform = log10 intensity val-
ues would be log10 transformed before plotting.

... optional arguments to be passed to the plotting functions (see help on the base
R plot function.

peakType if object is a XChromatograms object: how chromatographic peaks should be
drawn: peakType = "polygon" (the default): label the full chromatographic
peak area, peakType = "rectangle": indicate the chromatographic peak by a
rectangle and peakType = "point": label the chromatographic peaks’ apex po-
sition with a point.

peakBg if object is a XChromatograms object: definition of background color(s) for
each chromatographic peak. Has to be either of length 1 or equal to the number
of peaks in object. If not specified, the peak will be drawn in the color defined
by col.

peakCol if object is a XChromatograms object: definition of color(s) for each chromato-
graphic peak. Has to be either of length 1 or equal to the number of peaks in
object. If not specified, the peak will be drawn in the color defined by col.

peakPch if object is a XChromatograms object: point character to be used to label the
apex position of the chromatographic peak if peakType = "point".

Value

silently returns a list (length equal to ncol(object) of numeric (length equal to nrow(object))
with the y position of each EIC.

Author(s)

Johannes Rainer

Examples

Load preprocessed data and extract EICs for some features.
library(xcms)
library(MSnbase)
xdata <- loadXcmsData()
data(xdata)
Update the path to the files for the local system
dirname(xdata) <- c(rep(system.file("cdf", "KO", package = "faahKO"), 4),

rep(system.file("cdf", "WT", package = "faahKO"), 4))
Subset to the first 3 files.
xdata <- filterFile(xdata, 1:3, keepFeatures = TRUE)

Define features for which to extract EICs
fts <- c("FT097", "FT163", "FT165")
chrs <- featureChromatograms(xdata, features = fts)

plotChromatogramsOverlay(chrs)

plot the overlay of EICs in the first sample
plotChromatogramsOverlay(chrs[, 1])

216 plotChromPeakDensity,XCMSnExp-method

Define a different color for each feature (row in chrs). By default, also
all chromatographic peaks of a feature is labeled in the same color.
plotChromatogramsOverlay(chrs[, 1],

col = c("#ff000040", "#00ff0040", "#0000ff40"))

Alternatively, we can define a color for each individual chromatographic
peak and provide this with the `peakBg` and `peakCol` parameters.
chromPeaks(chrs[, 1])

Use a color for each of the two identified peaks in that sample
plotChromatogramsOverlay(chrs[, 1],

col = c("#ff000040", "#00ff0040", "#0000ff40"),
peakBg = c("#ffff0020", "#00ffff20"))

Plotting the data in all samples.
plotChromatogramsOverlay(chrs,

col = c("#ff000040", "#00ff0040", "#0000ff40"))

Creating a "stacked" EIC plot: the EICs are placed along the y-axis
relative to their m/z value. With `stacked = 1` the y-axis is split in
half, the lower half being used for the stacking of the EICs, the upper
half being used for the *original* intensity axis.
res <- plotChromatogramsOverlay(chrs[, 1], stacked = 1,

col = c("#ff000040", "#00ff0040", "#0000ff40"))
add horizontal lines for the m/z values of each EIC
abline(h = res[[1]], col = "grey", lty = 2)

Note that this type of visualization is different than the conventional
plot function for chromatographic data, which will draw the EICs for
multiple samples into the same plot
plot(chrs)

Converting the object to a MChromatograms without detected peaks
chrs <- as(chrs, "MChromatograms")

plotChromatogramsOverlay(chrs,
col = c("#ff000040", "#00ff0040", "#0000ff40"))

plotChromPeakDensity,XCMSnExp-method

Plot chromatographic peak density along the retention time axis

Description

Plot the density of chromatographic peaks along the retention time axis and indicate which peaks
would be (or were) grouped into the same feature based using the peak density correspondence
method. Settings for the peak density method can be passed with an PeakDensityParam object
to parameter param. If the object contains correspondence results and the correspondence was
performed with the peak groups method, the results from that correspondence can be visualized
setting simulate = FALSE.

Usage

S4 method for signature 'XCMSnExp'

plotChromPeakDensity,XCMSnExp-method 217

plotChromPeakDensity(
object,
mz,
rt,
param,
simulate = TRUE,
col = "#00000080",
xlab = "retention time",
ylab = "sample",
xlim = range(rt),
main = NULL,
type = c("any", "within", "apex_within"),
...

)

Arguments

object A XCMSnExp object with identified chromatographic peaks.
mz numeric(2) defining an mz range for which the peak density should be plotted.
rt numeric(2) defining an optional rt range for which the peak density should be

plotted. Defaults to the absolute retention time range of object.
param PeakDensityParam from which parameters for the peak density correspondence

algorithm can be extracted. If not provided and if object contains feature def-
initions with the correspondence/ peak grouping being performed by the peak
density method, the corresponding parameter class stored in object is used.

simulate logical(1) defining whether correspondence should be simulated within the
specified m/z / rt region or (with simulate = FALSE) whether the results from
an already performed correspondence should be shown.

col Color to be used for the individual samples. Length has to be 1 or equal to the
number of samples in object.

xlab character(1) with the label for the x-axis.
ylab character(1) with the label for the y-axis.
xlim numeric(2) representing the limits for the x-axis. Defaults to the range of the

rt parameter.
main character(1) defining the title of the plot. By default (for main = NULL) the

mz-range is used.
type character(1) specifying how peaks are called to be located within the region

defined by mz and rt. Can be one of "any", "within", and "apex_within"
for all peaks that are even partially overlapping the region, peaks that are com-
pletely within the region, and peaks for which the apex is within the region. This
parameter is passed to the chromPeaks function. See related documentation for
more information and examples.

... Additional parameters to be passed to the plot function. Data point specific
parameters such as bg or pch have to be of length 1 or equal to the number of
samples.

Details

The plotChromPeakDensity function allows to evaluate different settings for the peak density on
an mz slice of interest (e.g. containing chromatographic peaks corresponding to a known metabo-
lite). The plot shows the individual peaks that were detected within the specified mz slice at their

218 plotChromPeaks

retention time (x-axis) and sample in which they were detected (y-axis). The density function is
plotted as a black line. Parameters for the density function are taken from the param object.
Grey rectangles indicate which chromatographic peaks would be grouped into a feature by the
peak density correspondence method. Parameters for the algorithm are also taken from param.
See groupChromPeaks() for more information about the algorithm and its supported settings.

Value

The function is called for its side effect, i.e. to create a plot.

Author(s)

Johannes Rainer

See Also

groupChromPeaks() for details on the peak density correspondence method and supported settings.

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Plot the chromatographic peak density for a specific mz range to evaluate
different peak density correspondence settings.
mzr <- c(305.05, 305.15)

plotChromPeakDensity(faahko_sub, mz = mzr, pch = 16,
param = PeakDensityParam(sampleGroups = rep(1, length(fileNames(faahko_sub)))))

plotChromPeaks General visualizations of peak detection results

Description

plotChromPeaks plots the identified chromatographic peaks from one file into the plane spanned
by the retention time (x-axis) and m/z (y-axis) dimension. Each chromatographic peak is plotted as
a rectangle representing its width in RT and m/z dimension.

plotChromPeakImage plots the number of detected peaks for each sample along the retention time
axis as an image plot, i.e. with the number of peaks detected in each bin along the retention time
represented with the color of the respective cell.

Usage

plotChromPeaks(
x,
file = 1,
xlim = NULL,
ylim = NULL,

plotChromPeaks 219

add = FALSE,
border = "#00000060",
col = NA,
xlab = "retention time",
ylab = "mz",
main = NULL,
msLevel = 1L,
...

)

plotChromPeakImage(
x,
binSize = 30,
xlim = NULL,
log = FALSE,
xlab = "retention time",
yaxt = par("yaxt"),
main = "Chromatographic peak counts",
msLevel = 1L,
...

)

Arguments

x A XcmsExperiment() or XCMSnExp() object.

file For plotChromPeaks: integer(1) specifying the index of the file within x for
which the plot should be created. Defaults to file = 1.

xlim numeric(2) specifying the x-axis limits (retention time dimension). Defaults to
xlim = NULL in which case the full retention time range of the file is used.

ylim For plotChromPeaks: numeric(2) specifying the y-axis limits (m/z dimen-
sion). Defaults to ylim = NULL in which case the full m/z range of the file is
used.

add For plotChromPeaks: logical(1) whether the plot should be added to an ex-
isting plot or if a new plot should be created.

border For plotChromPeaks: the color for the rectangles’ border.

col For plotChromPeaks: the color to be used to fill the rectangles.

xlab character(1) defining the x-axis label.

ylab For plotChromPeaks: character(1) defining the y-axis label.

main character(1) defining the plot title. By default (i.e. main = NULL) the name of
the file will be used as title.

msLevel integer(1) defining the MS level from which the peaks should be visualized.

... Additional arguments passed to the plot (for plotChromPeaks) and image (for
plotChromPeakImage) functions. Ignored for add = TRUE.

binSize For plotChromPeakImage: numeric(1) defining the size of the bins along the
x-axis (retention time). Defaults to binSize = 30, peaks within each 30 seconds
will thus counted and plotted.

log For plotChromPeakImage: logical(1) whether the peak counts should be log2
transformed before plotting.

220 plotEIC-methods

yaxt For plotChromPeakImage: character(1) defining whether y-axis labels should
be added. To disable the y-axis use yaxt = "n". For any other value of yaxt the
axis will be drawn. See par() help page for more details.

Details

The width and line type of the rectangles indicating the detected chromatographic peaks for the
plotChromPeaks function can be specified using the par function, i.e. with par(lwd = 3) and
par(lty = 2), respectively.

Author(s)

Johannes Rainer

Examples

Load a test data set with detected peaks
faahko_sub <- loadXcmsData("faahko_sub2")

plotChromPeakImage: plot an image for the identified peaks per file
plotChromPeakImage(faahko_sub)

Show all detected chromatographic peaks from the first file
plotChromPeaks(faahko_sub)

Plot all detected peaks from the second file and restrict the plot to a
mz-rt slice
plotChromPeaks(faahko_sub, file = 2, xlim = c(3500, 3600), ylim = c(400, 600))

plotEIC-methods Plot extracted ion chromatograms for specified m/z range

Description

Plot extracted ion chromatogram for m/z values of interest. The raw data is used in contrast to
plotChrom which uses data from the profile matrix.

Arguments

object xcmsRaw object

mzrange m/z range for EIC. Uses the full m/z range by default.

rtrange retention time range for EIC. Uses the full retention time range by default.

scanrange scan range for EIC

mzdec Number of decimal places of title m/z values in the eic plot.

type Speficies how the data should be plotted (by default as a line).

add If the EIC should be added to an existing plot.

... Additional parameters passed to the plotting function (e.g. col etc).

Value

A two-column matrix with the plotted points.

plotFeatureGroups 221

Methods

object = "xcmsRaw" plotEIC(object, mzrange = numeric(), rtrange = numeric(), scanrange
= numeric(), mzdec=2, type="l", add=FALSE, ...)

Author(s)

Ralf Tautenhahn

See Also

rawEIC,xcmsRaw-class

plotFeatureGroups Plot feature groups in the m/z-retention time space

Description

plotFeatureGroups() visualizes defined feature groups in the m/z by retention time space. Fea-
tures are indicated by points with features from the same feature group being connected by a line.
See MsFeatures::featureGroups() for details on and options for feature grouping.

Usage

plotFeatureGroups(
x,
xlim = numeric(),
ylim = numeric(),
xlab = "retention time",
ylab = "m/z",
pch = 4,
col = "#00000060",
type = "o",
main = "Feature groups",
featureGroups = character(),
...

)

Arguments

x XcmsExperiment or XCMSnExp() object with grouped features (i.e. after calling
MsFeatures::groupFeatures().

xlim numeric(2) with the lower and upper limit for the x-axis.

ylim numeric(2) with the lower and upper limit for the y-axis.

xlab character(1) with the label for the x-axis.

ylab character(1) with the label for the y-axis.

pch the plotting character. Defaults to pch = 4 i.e. plotting features as crosses. See
par() for more information.

col color to be used to draw the features. At present only a single color is supported.

222 plotMsData

type plotting type (see par()). Defaults to type = "o" which draws each feature as a
point and connecting the features of the same feature group with a line.

main character(1) with the title of the plot.

featureGroups optional character of feature group IDs to draw only specified feature group(s).
If not provided, all feature groups are drawn.

... additional parameters to be passed to the lines function.

Author(s)

Johannes Rainer

plotMsData DEPRECATED: Create a plot that combines a XIC and a mz/rt 2D
plot for one sample

Description

UPDATE: please use plot() from the MsExperiment or plot(x, type = "XIC") from the MSnbase
package instead. See examples in the vignette for more information.

The plotMsData creates a plot that combines an (base peak) extracted ion chromatogram on top
(rt against intensity) and a plot of rt against m/z values at the bottom.

Usage

plotMsData(
x,
main = "",
cex = 1,
mfrow = c(2, 1),
grid.color = "lightgrey",
colramp = colorRampPalette(rev(brewer.pal(9, "YlGnBu")))

)

Arguments

x data.frame such as returned by the extractMsData() function. Only a single
data.frame is supported.

main character(1) specifying the title.

cex numeric(1) defining the size of points. Passed directly to the plot function.

mfrow numeric(2) defining the plot layout. This will be passed directly to par(mfrow
= mfrow). See par for more information. Setting mfrow = NULL avoids calling
par(mfrow = mfrow) hence allowing to pre-define the plot layout.

grid.color a color definition for the grid line (or NA to skip creating them).

colramp a color ramp palette to be used to color the data points based on their intensity.
See argument col.regions in lattice::level.colors documentation.

Author(s)

Johannes Rainer

plotPeaks-methods 223

plotPeaks-methods Plot a grid of a large number of peaks

Description

Plot extracted ion chromatograms for many peaks simultaneously, indicating peak integration start
and end points with vertical grey lines.

Arguments

object the xcmsRaw object

peaks matrix with peak information as produced by findPeaks

figs two-element vector describing the number of rows and the number of columns
of peaks to plot, if missing then an approximately square grid that will fit the
number of peaks supplied

width width of chromatogram retention time to plot for each peak

Details

This function is intended to help graphically analyze the results of peak picking. It can help estimate
the number of false positives and improper integration start and end points. Its output is very
compact and tries to waste as little space as possible. Each plot is labeled with rounded m/z and
retention time separated by a space.

Methods

object = "xcmsRaw" plotPeaks(object, peaks, figs, width = 200)

See Also

xcmsRaw-class, findPeaks, split.screen

plotPrecursorIons General visualization of precursor ions of LC-MS/MS data

Description

Simple visualization of the position of fragment spectra’s precursor ion in the MS1 retention time
by m/z area.

Usage

plotPrecursorIons(
x,
pch = 21,
col = "#00000080",
bg = "#00000020",
xlab = "retention time",
ylab = "m/z",

224 plotQC

main = character(),
...

)

Arguments

x MsExperiment of LC-MS/MS data.

pch integer(1) defining the symbol/point type to be used to draw points. See
points() for details. Defaults to pch = 21 which allows defining the back-
ground and border color for points.

col the color to be used for all data points. Defines the border color if pch = 21.

bg the background color (if pch = 21).

xlab character(1) defining the x-axis label.

ylab character(1) defining the y-axis label.

main Optional character(1) with the title for every plot. If not provided (the de-
fault) the base file name will be used for each sample.

... additional parameters to be passed to the plot calls.

Author(s)

Johannes Rainer

Examples

Load a test data file with DDA LC-MS/MS data
library(MsExperiment)
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata")
pest_dda <- readMsExperiment(fl)

plotPrecursorIons(pest_dda)
grid()

Subset the data object to plot the data specifically for one or
selected file/sample:
plotPrecursorIons(pest_dda[1L])

plotQC Plot m/z and RT deviations for QC purposes without external reference
data

Description

Use "democracy" to determine the average m/z and RT deviations for a grouped xcmsSet, and
dependency on sample or absolute m/z

plotQC() is a warpper to create a set of diagnostic plots. For the m/z deviations, the median of all
m/z withon one group are assumed.

Usage

plotQC(object, sampNames, sampColors, sampOrder, what)

plotRaw-methods 225

Arguments

object A grouped xcmsSet

sampNames Override sample names (e.g. with simplified names)

sampColors Provide a set of colors (default: monochrome ?)

sampOrder Override the order of samples, e.g. to bring them in order of measurement to
detect time drift

what A vector of which QC plots to generate. "mzdevhist": histogram of mz devia-
tions. Should be gaussian shaped. If it is multimodal, then some peaks seem to
have a systematically higher m/z deviation "rtdevhist": histogram of RT devi-
ations. Should be gaussian shaped. If it is multimodal, then some peaks seem
to have a systematically higher RT deviation "mzdevmass": Shows whether m/z
deviations are absolute m/z dependent, could indicate miscalibration "mzdev-
time": Shows whether m/z deviations are RT dependent, could indicate instru-
ment drift "mzdevsample": median mz deviation for each sample, indicates out-
liers "rtdevsample": median RT deviation for each sample, indicates outliers

Value

List with four matrices, each of dimension features * samples: "mz": median mz deviation for each
sample "mzdev": median mz deviation for each sample "rt": median RT deviation for each sample
"rtdev": median RT deviation for each sample

Author(s)

Michael Wenk, Michael Wenk michael.wenk@student.uni-halle.de

Examples

library(faahKO)
xsg <- group(faahko)

plotQC(xsg, what="mzdevhist")
plotQC(xsg, what="rtdevhist")
plotQC(xsg, what="mzdevmass")
plotQC(xsg, what="mzdevtime")
plotQC(xsg, what="mzdevsample")
plotQC(xsg, what="rtdevsample")

plotRaw-methods Scatterplot of raw data points

Description

Produce a scatterplot showing raw data point location in retention time and m/z. This plot is more
useful for centroided data than continuum data.

mailto:michael.wenk@student.uni-halle.de

226 plotrt-methods

Arguments

object the xcmsRaw object

mzrange numeric vector of length >= 2 whose range will be used to select the masses to
plot

rtrange numeric vector of length >= 2 whose range will be used to select the retention
times to plot

scanrange numeric vector of length >= 2 whose range will be used to select scans to plot

log logical, log transform intensity

title main title of the plot

Value

A matrix with the points plotted.

Methods

object = "xcmsRaw" plotRaw(object, mzrange = numeric(), rtrange = numeric(), scanrange
= numeric(), log=FALSE, title='Raw Data')

See Also

xcmsRaw-class

plotrt-methods Plot retention time deviation profiles

Description

Use corrected retention times for each sample to calculate retention time deviation profiles and plot
each on the same graph.

Arguments

object the xcmsSet object

col vector of colors for plotting each sample

ty vector of line and point types for plotting each sample

leg logical plot legend with sample labels

densplit logical, also plot peak overall peak density

Methods

object = "xcmsSet" plotrt(object, col = NULL, ty = NULL, leg = TRUE, densplit = FALSE)

See Also

xcmsSet-class, retcor

plotScan-methods 227

plotScan-methods Plot a single mass scan

Description

Plot a single mass scan using the impulse representation. Most useful for centroided data.

Arguments

object the xcmsRaw object

scan integer with number of scan to plot

mzrange numeric vector of length >= 2 whose range will be used to select masses to plot

ident logical, use mouse to interactively identify and label individual masses

Methods

object = "xcmsRaw" plotScan(object, scan, mzrange = numeric(), ident = FALSE)

See Also

xcmsRaw-class

plotSpec-methods Plot mass spectra from the profile matrix

Description

Uses the pre-generated profile mode matrix to plot mass spectra over a specified retention time
range.

Arguments

object the xcmsRaw object

ident logical, use mouse to identify and label peaks

vline numeric vector with locations of vertical lines

... arguments passed to profRange

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. Otherwise a
two-column matrix with the plotted points.

Methods

object = "xcmsRaw" plotSpec(object, ident = FALSE, vline = numeric(0), ...)

See Also

xcmsRaw-class

228 plotTIC-methods

plotSurf-methods Plot profile matrix 3D surface using OpenGL

Description

This method uses the rgl package to create interactive three dimensonal representations of the profile
matrix. It uses the terrain color scheme.

Arguments

object the xcmsRaw object

log logical, log transform intensity

aspect numeric vector with aspect ratio of the m/z, retention time and intensity compo-
nents of the plot

... arguments passed to profRange

Details

The rgl package is still in development and imposes some limitations on the output format. A bug
in the axis label code means that the axis labels only go from 0 to the aspect ratio constant of that
axis. Additionally the axes are not labeled with what they are.

It is important to only plot a small portion of the profile matrix. Large portions can quickly over-
whelm your CPU and memory.

Methods

object = "xcmsRaw" plotSurf(object, log = FALSE, aspect = c(1, 1, .5), ...)

See Also

xcmsRaw-class

plotTIC-methods Plot total ion count

Description

Plot chromatogram of total ion count. Optionally allow identification of target peaks and view-
ing/identification of individual spectra.

Arguments

object the xcmsRaw object

ident logical, use mouse to identify and label chromatographic peaks

msident logical, use mouse to identify and label spectral peaks

ProcessHistory-class 229

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. Otherwise a
two-column matrix with the plotted points.

Methods

object = "xcmsRaw" plotTIC(object, ident = FALSE, msident = FALSE)

See Also

xcmsRaw-class

ProcessHistory-class Tracking data processing

Description

Objects of the type ProcessHistory allow to keep track of any data processing step in an metabolomics
experiment. They are created by the data processing methods, such as findChromPeaks() and
added to the corresponding results objects. Thus, usually, users don’t need to create them.

The XProcessHistory extends the ProcessHistory by adding a slot param that allows to store the
actual parameter class of the processing step.

processParam(), processParam<-: get or set the parameter class from an XProcessHistory ob-
ject.

msLevel(): returns the MS level on which a certain analysis has been performed, or NA if not
defined.

The processType() method returns a character specifying the processing step type.

The processDate() extracts the start date of the processing step.

The processInfo() extracts optional additional information on the processing step.

The fileIndex() extracts the indices of the files on which the processing step was applied.

Usage

S4 method for signature 'XProcessHistory'
processParam(object)

S4 method for signature 'XProcessHistory'
msLevel(object)

S4 method for signature 'ProcessHistory'
processType(object)

S4 method for signature 'ProcessHistory'
processDate(object)

S4 method for signature 'ProcessHistory'
processInfo(object)

S4 method for signature 'ProcessHistory'
fileIndex(object)

230 profGenerate

Arguments

object A ProcessHistory or XProcessHistory object.

Value

For processParam: a parameter object extending the Param class.

The processType() method returns a character string with the processing step type.

The processDate() method returns a character string with the time stamp of the processing step
start.

The processInfo() method returns a character string with optional additional informations.

The fileIndex() method returns a integer vector with the index of the files/samples on which the
processing step was applied.

Slots

type character(1): string defining the type of the processing step. This string has to match
predefined values. Use processHistoryTypes() to list them.

date character(1): date time stamp when the processing step was started.

info character(1): optional additional information.

fileIndex integer of length 1 or > 1 to specify on which samples of the object the processing was
performed.

error (ANY): used to store eventual calculation errors.

param (Param): an object of type Param (e.g. CentWaveParam()) specifying the settings of the
processing step.

msLevel: integer definining the MS level(s) on which the analysis was performed.

Author(s)

Johannes Rainer

profGenerate Generation of profile data

Description

Generates profile (binned) data in a given range from an indexed pair of vectors.

Usage

profBin(x, y, num, xstart = min(x), xend = max(x), param = list())
profBinM(x, y, zidx, num, xstart = min(x), xend = max(x), NAOK = FALSE,

param = list())
profBinLin(x, y, num, xstart = min(x), xend = max(x), param = list())
profBinLinM(x, y, zidx, num, xstart = min(x), xend = max(x), NAOK = FALSE,

param = list())
profBinLinBase(x, y, num, xstart = min(x), xend = max(x), param = list())
profBinLinBaseM(x, y, zidx, num, xstart = min(x), xend = max(x), NAOK = FALSE,

param = list())

profGenerate 231

profIntLin(x, y, num, xstart = min(x), xend = max(x), param = list())
profIntLinM(x, y, zidx, num, xstart = min(x), xend = max(x), NAOK = FALSE,

param = list())
profMaxIdx(x, y, num, xstart = min(x), xend = max(x), param = list())
profMaxIdxM(x, y, zidx, num, xstart = min(x), xend = max(x), NAOK = FALSE,

param = list())

Arguments

x numeric vector of value positions

y numeric vector of values to bin

zidx starting position of each new segment

num number of equally spaced x bins

xstart starting x value

xend ending x value

NAOK allow NA values (faster)

param parameters for profile generation

Details

These functions take a vector of unequally spaced y values and transform them into either a vector or
matrix, depending on whether there is an index or not. Each point in the vector or matrix represents
the data for the point centered at its corresponding x value, plus or minus half the x step size
(xend-xstart/(num-1)).

The Bin functions set each matrix or vector value to the maximal point that gets binned into it.

The BinLin functions do the same except that they linearly interpolate values into which nothing
was binned.

The BinLinBase functions do the same except that they populate empty parts of spectra with a base
value. They take to two parameters: 1) baselevel, the intensity level to fill in for empty parts of
the spectra. It defaluts to half of the minimum intensity. 2) basespace, the m/z length after which
the signal will drop to the base level. Linear interpolation will be used between consecuitive data
points falling within 2*basespace of eachother. It defaluts to 0.075.

The IntLin functions set each matrix or vector value to the integral of the linearly interpolated data
from plus to minus half the step size.

The MaxIdx functions work similarly to the Bin functions execpt that the return the integer index of
which x,y pair would be placed in a particular cell.

Value

For prof*, a numeric vector of length num.

For prof*M, a matrix with dimensions num by length(zidx).

For MaxIdx, the data type is integer, for all others it is double.

Note

There are some issues with the profBinLin method, see https://github.com/sneumann/xcms/
issues/46 and https://github.com/sneumann/xcms/issues/49. Thus it is suggested to use
the functions binYonX in combination with imputeLinInterpol instead.

https://github.com/sneumann/xcms/issues/46
https://github.com/sneumann/xcms/issues/46
https://github.com/sneumann/xcms/issues/49

232 profMat,MsExperiment-method

Author(s)

Colin A. Smith, <csmith@scripps.edu>

Examples

Not run:
library(faahKO)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xraw <- xcmsRaw(cdffiles[1])

image(xraw) ## not how with intLin the intensity's blur
profMethod(xraw) <- "bin"
image(xraw) ## now with 'bin' there is no blurring good for centroid data
##try binlinbase for profile data

End(Not run)

profMat,MsExperiment-method

The profile matrix

Description

The profile matrix is an n x m matrix, n (rows) representing equally spaced m/z values (bins) and m
(columns) the retention time of the corresponding scans. Each cell contains the maximum intensity
measured for the specific scan and m/z values falling within the m/z bin.

The `profMat` method creates a new profile matrix or returns the
profile matrix within the object's `@env` slot, if available.
Settings for the profile matrix generation, such as `step` (the bin
size), `method` or additional settings are extracted from the
respective slots of the `xcmsRaw` object.
Alternatively it is possible to specify all of the settings as
additional parameters.

For [MsExperiment()] or [XcmsExperiment()] objects, the method returns
a `list` of profile matrices, one for each sample in `object`. Using
parameter `fileIndex` it is also possible to create a profile matrix only
for selected samples (files).

Usage

S4 method for signature 'MsExperiment'
profMat(
object,
method = "bin",
step = 0.1,
baselevel = NULL,
basespace = NULL,
mzrange. = NULL,

profMat,MsExperiment-method 233

fileIndex = seq_along(object),
chunkSize = 1L,
msLevel = 1L,
BPPARAM = bpparam(),
...

)

S4 method for signature 'xcmsRaw'
profMat(object, method, step, baselevel, basespace, mzrange.)

Arguments

object An xcmsRaw, OnDiskMSnExp, XCMSnExp, MsExperiment or XcmsExperiment
object.

method character(1) defining the profile matrix generation method. Allowed are "bin",
"binlin", "binlinbase" and "intlin". See details section for more informa-
tion.

step numeric(1) representing the m/z bin size.

baselevel numeric(1) representing the base value to which empty elements (i.e. m/z
bins without a measured intensity) should be set. Only considered if method =
"binlinbase". See baseValue parameter of imputeLinInterpol() for more
details.

basespace numeric(1) representing the m/z length after which the signal will drop to the
base level. Linear interpolation will be used between consecutive data points
falling within 2 * basespace to each other. Only considered if method = "binlinbase".
If not specified, it defaults to 0.075. Internally this parameter is translated into
the distance parameter of the imputeLinInterpol() function by distance =
floor(basespace / step). See distance parameter of imputeLinInterpol()
for more details.

mzrange. Optional numeric(2) manually specifying the mz value range to be used for
binnind. If not provided, the whole m/z value range is used.

fileIndex For MsExperiment or XcmsExperiment: integer defining the idex (or indices)
of the sample(s) from which the profile matrix should be created.

chunkSize For MsExperiment or XcmsExperiment: integer(1) defining the number of
files from which data should be loaded and processed in one iteration. By default
one file at a time is processed chunkSize = 1L which requires less memory. For
parallel processing, the chunkSize should be >= than the number of parallel
processes that should be used.

msLevel For MsExperiment or XcmsExperiment: integer(1) defining the MS level
from which the profile matrix should be generated.

BPPARAM For MsExperiment or XcmsExperiment: parallel processing setup. See BiocParallel::bpparam()
for more details. Defaults to BPPARAM = bpparam().

... ignored.

Details

Profile matrix generation methods:

• "bin": The default profile matrix generation method that does a simple binning, i.e. aggre-
gating of intensity values falling within an m/z bin.

234 profMedFilt-methods

• "binlin": Binning followed by linear interpolation to impute missing values. The value for
m/z bins without a measured intensity are inferred by a linear interpolation between neighbor-
ing bins with a measured intensity.

• "binlinbase": Binning followed by a linear interpolation to impute values for empty el-
ements (m/z bins) within a user-definable proximity to non-empty elements while stetting
the element’s value to the baselevel otherwise. See impute = "linbase" parameter of
imputeLinInterpol() for more details.

• "intlin": Set the elements’ values to the integral of the linearly interpolated data from plus
to minus half the step size.

Value

profMat returns the profile matrix (rows representing scans, columns equally spaced m/z values).
For object being a MsExperiment or XcmsExperiment, the method returns a list of profile ma-
trices, one for each file (sample).

Author(s)

Johannes Rainer

Examples

file <- system.file('cdf/KO/ko15.CDF', package = "faahKO")
Load the data without generating the profile matrix (profstep = 0)
xraw <- xcmsRaw(file, profstep = 0)
Extract the profile matrix
profmat <- profMat(xraw, step = 0.3)
dim(profmat)
If not otherwise specified, the settings from the xraw object are used:
profinfo(xraw)
To extract a profile matrix with linear interpolation use
profmat <- profMat(xraw, step = 0.3, method = "binlin")
Alternatively, the profMethod of the xraw objects could be changed
profMethod(xraw) <- "binlin"
profmat_2 <- profMat(xraw, step = 0.3)
all.equal(profmat, profmat_2)

profMedFilt-methods Median filtering of the profile matrix

Description

Apply a median filter of given size to a profile matrix.

Arguments

object the xcmsRaw object

massrad number of m/z grid points on either side to use for median calculation

scanrad number of scan grid points on either side to use for median calculation

profMethod-methods 235

Methods

object = "xcmsRaw" profMedFilt(object, massrad = 0, scanrad = 0)

See Also

xcmsRaw-class, medianFilter

profMethod-methods Get and set method for generating profile data

Description

These methods get and set the method for generating profile (matrix) data from raw mass spectral
data. It can currently be bin, binlin, binlinbase, or intlin.

Methods

object = "xcmsRaw" profMethod(object)

See Also

xcmsRaw-class, profMethod, profBin, plotSpec, plotChrom, findPeaks

profRange-methods Specify a subset of profile mode data

Description

Specify a subset of the profile mode matrix given a mass, time, or scan range. Allow flexible user
entry for other functions.

Arguments

object the xcmsRaw object

mzrange single numeric mass or vector of masses

rtrange single numeric time (in seconds) or vector of times

scanrange single integer scan index or vector of indecies

... arguments to other functions

236 profStep-methods

Details

This function handles selection of mass/time subsets of the profile matrix for other functions. It
allows the user to specify such subsets in a variety of flexible ways with minimal typing.

Because R does partial argument matching, mzrange, scanrange, and rtrange can be specified in
short form using m=, s=, and t=, respectively. If both a scanrange and rtrange are specified, then
the rtrange specification takes precedence.

When specifying ranges, you may either enter a single number or a numeric vector. If a single
number is entered, then the closest single scan or mass value is selected. If a vector is entered,
then the range is set to the range() of the values entered. That allows specification of ranges using
shortened, slightly non-standard syntax. For example, one could specify 400 to 500 seconds using
any of the following: t=c(400,500), t=c(500,400), or t=400:500. Use of the sequence operator
(:) can save several keystrokes when specifying ranges. However, while the sequence operator
works well for specifying integer ranges, fractional ranges do not always work as well.

Value

A list with the folloing items:

mzrange numeric vector with start and end mass

masslab textual label of mass range

massidx integer vector of mass indecies

scanrange integer vector with stat ane end scans

scanlab textual label of scan range

scanidx integer vector of scan range

rtrange numeric vector of start and end times

timelab textual label of time range

Methods

object = "xcmsRaw" profRange(object, mzrange = numeric(), rtrange = numeric(), scanrange
= numeric(), ...)

See Also

xcmsRaw-class

profStep-methods Get and set m/z step for generating profile data

Description

These methods get and set the m/z step for generating profile (matrix) data from raw mass spectral
data. Smaller steps yield more precision at the cost of greater memory usage.

Methods

object = "xcmsRaw" profStep(object)

pval 237

See Also

xcmsRaw-class, profMethod

Examples

Not run:
library(faahKO)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xset <- xcmsRaw(cdffiles[1])

xset
plotSurf(xset, mass=c(200,500))

profStep(xset)<-0.1 ## decrease the bin size to get better resolution
plotSurf(xset, mass=c(200, 500))
##works nicer on high resolution data.

End(Not run)

pval Generate p-values for a vector of t-statistics

Description

Generate p-values for a vector of Welch’s two-sample t-statistics based on the t distribution.

Usage

pval(X, classlabel, teststat)

Arguments

X original data matrix

classlabel integer vector with classlabel

teststat numeric vector with Welch’s two-sample t-statistics

Value

A numeric vector of p-values.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

238 quantify,XCMSnExp-method

quantify,XCMSnExp-method

Accessing mz-rt feature data values

Description
featureValues,XCMSnExp() : extract a matrix for feature values with rows representing features
and columns samples. Parameter value allows to define which column from the chromPeaks()
matrix should be returned. Multiple chromatographic peaks from the same sample can be assigned
to a feature. Parameter method allows to specify the method to be used in such cases to chose from
which of the peaks the value should be returned. Parameter msLevel allows to choose a specific
MS level for which feature values should be returned (given that features have been defined for that
MS level).
quantify,XCMSnExp(): return the preprocessing results as an SummarizedExperiment::SummarizedExperiment()
object containing the feature abundances as assay matrix, the feature definitions (returned by featureDefinitions())
as rowData and the phenotype information as colData. This is an ideal container for further pro-
cessing of the data. Internally, the featureValues() method is used to extract the feature abun-
dances, parameters for that method can be passed to quantify with

Usage

S4 method for signature 'XCMSnExp'
quantify(object, ...)

S4 method for signature 'XCMSnExp'
featureValues(
object,
method = c("medret", "maxint", "sum"),
value = "into",
intensity = "into",
filled = TRUE,
missing = NA,
msLevel = integer()

)

Arguments

object A XCMSnExp() object providing the feature definitions.

... For quantify(): additional parameters to be passed on to the [featureValues()‘
method.

method character specifying the method to resolve multi-peak mappings within the
same sample, i.e. to define the representative peak for a feature in samples
where more than one peak was assigned to the feature. If "medret": select the
peak closest to the median retention time of the feature. If "maxint": select
the peak yielding the largest signal. If "sum": sum the values (only if value is
"into" or "maxo".

value character specifying the name of the column in chromPeaks(object) that
should be returned. Defaults to "into" in which case the integrated peak area is
returned. To get the index of the peak in the chromPeaks(object) matrix use
"index".

rawEIC-methods 239

intensity character specifying the name of the column in the chromPeaks(objects)
matrix containing the intensity value of the peak that should be used for the
conflict resolution if method = "maxint".

filled logical(1) specifying whether values for filled-in peaks should be returned or
not. If filled = FALSE, an NA is returned in the matrix for the respective peak.
See fillChromPeaks() for details on peak filling.

missing how missing values should be reported. Allowed values are NA (the default), a
numeric or missing = "rowmin_half". The latter replaces any NA with half of
the row’s minimal (non-missing) value.

msLevel for featureValues(): integer defining the MS level(s) for which feature val-
ues should be returned. By default, values for features defined for all MS levels
are returned.

Value

For featureValues(): a matrix with feature values, columns representing samples, rows fea-
tures. The order of the features matches the order found in the featureDefinitions(object)
DataFrame. The rownames of the matrix are the same than those of the featureDefinitions
DataFrame. NA is reported for features without corresponding chromatographic peak in the respec-
tive sample(s).

For quantify(): a SummarizedExperiment::SummarizedExperiment() representing the prepro-
cessing results.

Author(s)

Johannes Rainer

See Also

XCMSnExp() for information on the data object.

featureDefinitions() to extract the DataFrame with the feature definitions.

featureChromatograms() to extract ion chromatograms for each feature.

hasFeatures() to evaluate whether the XCMSnExp provides feature definitions.

rawEIC-methods Get extracted ion chromatograms for specified m/z range

Description

Generate extracted ion chromatogram for m/z values of interest. The raw data is used in contrast to
getEIC which uses data from the profile matrix (i.e. values binned along the M/Z dimension).

Arguments

object xcmsRaw object

mzrange m/z range for EIC

rtrange retention time range for EIC

scanrange scan range for EIC

240 rawMat-methods

Value

A list of :

scan scan number

intensity added intensity values

Methods

object = "xcmsRaw" rawEIC(object, mzrange = numeric(), rtrange = numeric(), scanrange
= numeric())

Author(s)

Ralf Tautenhahn

See Also

xcmsRaw-class

rawMat-methods Get a raw data matrix

Description

Returns a matrix with columns for time, m/z, and intensity that represents the raw data from a
chromatography mass spectrometry experiment.

Arguments

object The container of the raw data

mzrange Subset by m/z range

rtrange Subset by retention time range

scanrange Subset by scan index range

log Whether to log transform the intensities

Value

A numeric matrix with three columns: time, mz and intensity.

Methods

object = "xcmsRaw" rawMat(object, mzrange = numeric(), rtrange = numeric(), scanrange
= numeric(), log=FALSE)

Author(s)

Michael Lawrence

See Also

plotRaw for plotting the raw intensities

reconstructChromPeakSpectra 241

reconstructChromPeakSpectra

Data independent acquisition (DIA): reconstruct MS2 spectra

Description

Reconstructs MS2 spectra for each MS1 chromatographic peak (if possible) for data independent
acquisition (DIA) data (such as SWATH). See the LC-MS/MS analysis vignette for more details and
examples.

Usage

reconstructChromPeakSpectra(object, ...)

S4 method for signature 'XcmsExperiment'
reconstructChromPeakSpectra(
object,
expandRt = 0,
diffRt = 2,
minCor = 0.8,
intensity = "maxo",
peakId = rownames(chromPeaks(object, msLevel = 1L)),
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp'
reconstructChromPeakSpectra(
object,
expandRt = 0,
diffRt = 2,
minCor = 0.8,
intensity = "maxo",
peakId = rownames(chromPeaks(object, msLevel = 1L)),
BPPARAM = bpparam(),
return.type = c("Spectra", "MSpectra")

)

Arguments

object XCMSnExp with identified chromatographic peaks.

... ignored.

expandRt numeric(1) allowing to expand the retention time range for extracted ion chro-
matograms by a constant value (for the peak shape correlation). Defaults to
expandRt = 0 hence correlates only the signal included in the identified chro-
matographic peaks.

diffRt numeric(1) defining the maximal allowed difference between the retention time
of the chromatographic peak (apex) and the retention times of MS2 chromato-
graphic peaks (apex) to consider them as representing candidate fragments of
the original ion.

242 reconstructChromPeakSpectra

minCor numeric(1) defining the minimal required correlation coefficient for MS2 chro-
matographic peaks to be considered for MS2 spectrum reconstruction.

intensity character(1) defining the column in the chromPeaks matrix that should be
used for the intensities of the reconstructed spectra’s peaks. The same value
from the MS1 chromatographic peaks will be used as precursorIntensity of
the resulting spectra.

peakId optional character vector with peak IDs (i.e. rownames of chromPeaks) of
MS1 peaks for which MS2 spectra should be reconstructed. By default they are
reconstructed for all MS1 chromatographic peaks.

BPPARAM parallel processing setup. See BiocParallel::bpparam() for more informa-
tion.

return.type character(1) defining the type of the returned object. Only return.type =
"Spectra" is supported, return.type = "MSpectra" is deprecated.

Details

In detail, the function performs for each MS1 chromatographic peak:

• Identify all MS2 chromatographic peaks from the isolation window containing the m/z of the
ion (i.e. the MS1 chromatographic peak) with approximately the same retention time than the
MS1 peak (accepted rt shift can be specified with the diffRt parameter).

• Correlate the peak shapes of the candidate MS2 chromatographic peaks with the peak shape
of the MS1 peak retaining only MS2 chromatographic peaks for which the correlation is
> minCor.

• Reconstruct the MS2 spectrum using the m/z of all above selected MS2 chromatographic
peaks and their intensity (either "maxo" or "into"). Each MS2 chromatographic peak selected
for an MS1 peak will thus represent one mass peak in the reconstructed spectrum.

The resulting Spectra::Spectra() object provides also the peak IDs of the MS2 chromatographic
peaks for each spectrum as well as their correlation value with spectra variables ms2_peak_id and
ms2_peak_cor.

Value

• Spectra::Spectra() object (defined in the Spectra package) with the reconstructed MS2
spectra for all MS1 peaks in object. Contains empty spectra (i.e. without m/z and intensity
values) for MS1 peaks for which reconstruction was not possible (either no MS2 signal was
recorded or the correlation of the MS2 chromatographic peaks with the MS1 chromatographic
peak was below threshold minCor. Spectra variables "ms2_peak_id" and "ms2_peak_cor"
(of type IRanges::CharacterList() and IRanges::NumericList() with length equal to
the number of peaks per reconstructed MS2 spectrum) providing the IDs and the correlation
of the MS2 chromatographic peaks from which the MS2 spectrum was reconstructed. As
retention time the median retention times of all MS2 chromatographic peaks used for the
spectrum reconstruction is reported. The MS1 chromatographic peak intensity is reported as
the reconstructed spectrum’s precursorIntensity value (see parameter intensity above).

Author(s)

Johannes Rainer, Michael Witting

rectUnique 243

See Also

findChromPeaksIsolationWindow() for the function to perform MS2 peak detection in DIA iso-
lation windows and for examples.

rectUnique Determine a subset of rectangles with unique, non-overlapping areas

Description

Given a matrix of rectangular areas, this function determines a subset of those rectangles that do
not overlap. Rectangles are preserved on a first come, first served basis, with user control over the
order in which the rectangles are processed.

Usage

rectUnique(m, order = seq(length = nrow(m)), xdiff = 0, ydiff = 0)

Arguments

m four column matrix defining rectangular areas

order order in which matrix columns should be scanned

xdiff maximum space between overlapping rectangles in x dimension

ydiff maximum space between overlapping rectangles in y dimension

Details

The m matrix must contain four colums defining the position of rectangle sides in the folloing order:
left, right, bottom, top. This function is currently implemented in C using a an algorithm with
quadratic running time.

Value

A logical vector indicating which rows should be kept.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

Examples

m <- rbind(c(0,4,0,3), c(1,3,2,6), c(3,6,4,6))
plot(0, 0, type = "n", xlim=range(m[,1:2]), ylim=range(m[,3:4]))
rect(m[,1], m[,3], m[,2], m[,4])
xcms:::rectUnique(m)
Changing order of processing
xcms:::rectUnique(m, c(2,1,3))
Requiring border spacing
xcms:::rectUnique(m, ydiff = 1)
Allowing adjacent boxes
xcms:::rectUnique(m, c(2,1,3), xdiff = -0.00001)
Allowing interpenetration
xcms:::rectUnique(m, xdiff = -1.00001, ydiff = -1.00001)

244 refineChromPeaks

refineChromPeaks Refine Identified Chromatographic Peaks

Description

The refineChromPeaks method performs a post-processing of the chromatographic peak detection
step to eventually clean and improve the results. The function can be applied to a XcmsExperiment()
or XCMSnExp() object after peak detection with findChromPeaks(). The type of peak refinement
and cleaning can be defined, along with all its settings, using one of the following parameter objects:

• CleanPeaksParam: remove chromatographic peaks with a retention time range larger than the
provided maximal acceptable width (maxPeakwidth).

• FilterIntensityParam: remove chromatographic peaks with intensities below the specified
threshold. By default (with nValues = 1) values in the chromPeaks matrix are evaluated:
all peaks with a value in the column defined with parameter value that are >= a threshold
(defined with parameter threshold) are retained. If nValues is larger than 1, the individual
peak intensities from the raw MS files are evaluated: chromatographic peaks with at least
nValues mass peaks >= threshold are retained.

• MergeNeighboringPeaksParam: peak detection sometimes fails to identify a chromatographic
peak correctly, especially for broad peaks and if the peak shape is irregular (mostly for HILIC
data). In such cases several smaller peaks are reported. Also, peak detection with centWave
can result in partially or completely overlapping peaks. This method aims to reduce such peak
detection artifacts by merging chromatographic peaks that are overlapping or close in RT and
m/z dimension (considering also the measured signal between them). See section Details for
MergeNeighboringPeaksParam for details and a comprehensive description of the approach.

refineChromPeaks methods will always remove feature definitions, because a call to this method
can change or remove identified chromatographic peaks, which may be part of features.

Usage

refineChromPeaks(object, param, ...)

S4 method for signature 'XcmsExperiment,CleanPeaksParam'
refineChromPeaks(object, param = CleanPeaksParam(), msLevel = 1L)

S4 method for signature 'XcmsExperiment,MergeNeighboringPeaksParam'
refineChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperiment,FilterIntensityParam'
refineChromPeaks(
object,
param,
msLevel = 1L,
chunkSize = 2L,

refineChromPeaks 245

BPPARAM = bpparam()
)

S4 method for signature 'XcmsExperimentHdf5,FilterIntensityParam'
refineChromPeaks(object, param, msLevel = 1L, ...)

CleanPeaksParam(maxPeakwidth = 10)

MergeNeighboringPeaksParam(
expandRt = 2,
expandMz = 0,
ppm = 10,
minProp = 0.75

)

FilterIntensityParam(threshold = 0, nValues = 1L, value = "maxo")

S4 method for signature 'XCMSnExp,CleanPeaksParam'
refineChromPeaks(object, param = CleanPeaksParam(), msLevel = 1L)

S4 method for signature 'XCMSnExp,MergeNeighboringPeaksParam'
refineChromPeaks(
object,
param = MergeNeighboringPeaksParam(),
msLevel = 1L,
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp,FilterIntensityParam'
refineChromPeaks(
object,
param = FilterIntensityParam(),
msLevel = 1L,
BPPARAM = bpparam()

)

Arguments

object XCMSnExp or XcmsExperiment object with identified chromatographic peaks.

param Object defining the refinement method and its settings.

... ignored.

msLevel integer defining for which MS level(s) the chromatographic peaks should be
cleaned.

chunkSize For refineChromPeaks if object is either an XcmsExperiment: integer(1)
defining the number of files (samples) that should be loaded into memory and
processed at the same time. Peak refinement is then performed in parallel (per
sample) on this subset data. This setting thus allows to balance between memory
demand and speed (due to parallel processing). Because parallel processing can
only performed on the subset of data currently loaded into memory in each iter-
ation, the value for chunkSize should match the defined parallel setting setup.
Using a parallel processing setup using 4 CPUs (separate processes) but using
chunkSize = 1will not perform any parallel processing, as only the data from one sample is loaded in memory at a time. On the other hand, settingchunkSize‘

246 refineChromPeaks

to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM parameter object to set up parallel processing. Uses the default parallel process-
ing setup returned by bpparam(). See BiocParallel::bpparam() for details
and examples.

maxPeakwidth For CleanPeaksParam: numeric(1) defining the maximal allowed peak width
(in retention time).

expandRt For MergeNeighboringPeaksParam: numeric(1) defining by how many sec-
onds the retention time window is expanded on both sides to check for overlap-
ping peaks.

expandMz For MergeNeighboringPeaksParam: numeric(1) constant value by which the
m/z range of each chromatographic peak is expanded (on both sides!) to check
for overlapping peaks.

ppm For MergeNeighboringPeaksParam: numeric(1) defining a m/z relative value
(in parts per million) by which the m/z range of each chromatographic peak is
expanded (on each side) to check for overlapping peaks.

minProp For MergeNeighboringPeaksParam: numeric(1) between 0 and 1 representing
the proporion of intensity required for peaks to be joined. See description for
more details. With default (minProp = 0.75) only peaks are joined if the signal
half way between them is larger than 75% of the smallest of the two peak’s
"maxo" (maximal intensity at peak apex).

threshold For FilterIntensityParam: numeric(1) defining the threshold below which
peaks are removed.

nValues For FilterIntensityParam: integer(1) defining the number of data points
(for each chromatographic peak) that have to be >= threshold. Defaults to
nValues = 1.

value For FilterIntensityParam: character(1) defining the name of the column
in chromPeaks that contains the values to be used for the filtering.

Value

XCMSnExp or XcmsExperiment object with the refined chomatographic peaks.

Details for MergeNeighboringPeaksParam

For peak refinement using the MergeNeighboringPeaksParam, chromatographic peaks are first
expanded in m/z and retention time dimension (based on parameters expandMz, ppm and expandRt)
and subsequently grouped into sets of merge candidates if they are (after expansion) overlapping
in both m/z and rt (within the same sample). Note that each peak gets expanded by expandRt and
expandMz, thus peaks differing by less than 2 * expandMz (or 2 * expandRt) will be evaluated for
merging. Peak merging is performed along the retention time axis, i.e., the peaks are first ordered
by their "rtmin" and merge candidates are defined iteratively starting with the first peak. Candidate
peaks are merged if the average intensity of the 3 data points in the middle position between them
(i.e., at half the distance between "rtmax" of the first and "rtmin" of the second peak) is larger than
a certain proportion (minProp) of the smaller ("maxo") intensity of both peaks. In cases in which
this calculated mid point is not located between the apexes of the two peaks (e.g., if the peaks are
largely overlapping) the average signal intensity at half way between the apexes is used instead.
Candidate peaks are not merged if all 3 data points between them have NA intensities.

Merged peaks get the "mz", "rt", "sn" and "maxo" values from the peak with the largest sig-
nal ("maxo") as well as its row in the metadata of the peak (chromPeakData). The "rtmin" and

refineChromPeaks 247

"rtmax" of the merged peaks are updated and "into" is recalculated based on all signal between
"rtmin" and "rtmax" and the newly defined "mzmin" and "mzmax" (which is the range of "mzmin"
and "mzmax" of the merged peaks after expanding by expandMz and ppm). The reported "mzmin"
and "mzmax" for the merged peak represents the m/z range of all non-NA intensities used for the
calculation of the peak signal ("into").

Author(s)

Johannes Rainer, Mar Garcia-Aloy

Examples

Load a test data set with detected peaks
library(xcms)
library(MsExperiment)
faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

####
CleanPeaksParam:

Distribution of chromatographic peak widths
quantile(chromPeaks(faahko_sub)[, "rtmax"] - chromPeaks(faahko_sub)[, "rtmin"])

Remove all chromatographic peaks with a width larger 60 seconds
data <- refineChromPeaks(faahko_sub, param = CleanPeaksParam(60))

quantile(chromPeaks(data)[, "rtmax"] - chromPeaks(data)[, "rtmin"])

####
FilterIntensityParam:

Remove all peaks with a maximal intensity below 50000
res <- refineChromPeaks(faahko_sub,

param = FilterIntensityParam(threshold = 50000))

nrow(chromPeaks(faahko_sub))
nrow(chromPeaks(res))

####
MergeNeighboringPeaksParam:

Subset to a single file
xd <- filterFile(faahko_sub, file = 1)

Example of a split peak that will be merged
mzr <- 305.1 + c(-0.01, 0.01)
chr <- chromatogram(xd, mz = mzr, rt = c(2700, 3700))
plot(chr)

Combine the peaks
res <- refineChromPeaks(xd, param = MergeNeighboringPeaksParam(expandRt = 4))
chr_res <- chromatogram(res, mz = mzr, rt = c(2700, 3700))
plot(chr_res)

248 removeIntensity,Chromatogram-method

Example of a peak that was not merged, because the signal between them
is lower than the cut-off minProp
mzr <- 496.2 + c(-0.01, 0.01)
chr <- chromatogram(xd, mz = mzr, rt = c(3200, 3500))
plot(chr)
chr_res <- chromatogram(res, mz = mzr, rt = c(3200, 3500))
plot(chr_res)

removeIntensity,Chromatogram-method

Remove intensities from chromatographic data

Description

removeIntensities allows to remove intensities from chromatographic data matching certain
conditions (depending on parameter which). The intensities are actually not removed but re-
placed with NA_real_. To actually remove the intensities (and the associated retention times) use
MSnbase::clean() afterwards.

Parameter which allows to specify which intensities should be replaced by NA_real_. By default
(which = "below_threshod" intensities below threshold are removed. If x is a XChromatogram
or XChromatograms object (and hence provides also chromatographic peak definitions within the
object) which = "outside_chromPeak" can be selected which removes any intensity which is out-
side the boundaries of identified chromatographic peak(s) in the chromatographic data.

Note that filterIntensity() might be a better approach to subset/filter chromatographic data.

Usage

S4 method for signature 'Chromatogram'
removeIntensity(object, which = "below_threshold", threshold = 0)

S4 method for signature 'MChromatograms'
removeIntensity(object, which = "below_threshold", threshold = 0)

S4 method for signature 'XChromatogram'
removeIntensity(
object,
which = c("below_threshold", "outside_chromPeak"),
threshold = 0

)

Arguments

object an object representing chromatographic data. Can be a MSnbase::Chromatogram(),
MSnbase::MChromatograms(), XChromatogram() or XChromatograms() ob-
ject.

which character(1) defining the condition to remove intensities. See description for
details and options.

threshold numeric(1) defining the threshold below which intensities are removed (if which
= "below_threshold").

retcor-methods 249

Value

the input object with matching intensities being replaced by NA.

Author(s)

Johannes Rainer

Examples

library(MSnbase)
chr <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),

intensity = c(5, 29, 50, NA, 100, 12, 3, 4, 1, 3))

Remove all intensities below 20
res <- removeIntensity(chr, threshold = 20)
intensity(res)

retcor-methods Correct retention time from different samples

Description

To correct differences between retention times between different samples, a number of of methods
exist in XCMS. retcor is the generic method.

Arguments

object xcmsSet-class object
method Method to use for retention time correction. See details.
... Optional arguments to be passed along

Details

Different algorithms can be used by specifying them with the method argument. For example to use
the approach described by Smith et al (2006) one would use: retcor(object, method="loess").
This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of nicknames for the algorithms available is returned by getOption("BioC")$xcms$retcor.methods.
If the nickname of a method is called "loess", the help page for that specific method can be accessed
with ?retcor.loess.

Value

An xcmsSet object with corrected retntion times.

Methods

object = "xcmsSet" retcor(object, ...)

See Also

retcor.loess retcor.obiwarp xcmsSet-class,

250 retcor.obiwarp

retcor.obiwarp Align retention times across samples with Obiwarp

Description

Calculate retention time deviations for each sample. It is based on the code at http://obi-warp.
sourceforge.net/. However, this function is able to align multiple samples, by a center-star
strategy.
For the original publication see
Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpo-
lated Warping John T. Prince and, Edward M. Marcotte Analytical Chemistry 2006 78 (17), 6140-
6152

Arguments

object the xcmsSet object
plottype if deviation plot retention time deviation
profStep step size (in m/z) to use for profile generation from the raw data files
center the index of the sample all others will be aligned to. If center==NULL, the

sample with the most peaks is chosen as default.
col vector of colors for plotting each sample
ty vector of line and point types for plotting each sample
response Responsiveness of warping. 0 will give a linear warp based on start and end

points. 100 will use all bijective anchors
distFunc DistFunc function: cor (Pearson’s R) or cor_opt (default, calculate only 10% di-

agonal band of distance matrix, better runtime), cov (covariance), prd (product),
euc (Euclidean distance)

gapInit Penalty for Gap opening, see below
gapExtend Penalty for Gap enlargement, see below
factorDiag Local weighting applied to diagonal moves in alignment.
factorGap Local weighting applied to gap moves in alignment.
localAlignment Local rather than global alignment
initPenalty Penalty for initiating alignment (for local alignment only) Default: 0
Default gap penalties: (gapInit, gapExtend) [by distFunc type]: ’cor’ = ’0.3,2.4’ ’cov’ = ’0,11.7’
’prd’ = ’0,7.8’ ’euc’ = ’0.9,1.8’

Value

An xcmsSet object

Methods

object = "xcmsSet" retcor(object, method="obiwarp", plottype = c("none", "deviation"), prof-
Step=1, center=NULL, col = NULL, ty = NULL, response=1, distFunc="cor_opt", gapInit=NULL,
gapExtend=NULL, factorDiag=2, factorGap=1, localAlignment=0, initPenalty=0)

See Also

xcmsSet-class,

http://obi-warp.sourceforge.net/
http://obi-warp.sourceforge.net/

retcor.peakgroups-methods 251

retcor.peakgroups-methods

Align retention times across samples

Description

These two methods use “well behaved” peak groups to calculate retention time deviations for every
time point of each sample. Use smoothed deviations to align retention times.

Arguments

object the xcmsSet object

missing number of missing samples to allow in retention time correction groups

extra number of extra peaks to allow in retention time correction correction groups

smooth either "loess" for non-linear alignment or "linear" for linear alignment

span degree of smoothing for local polynomial regression fitting

family if gaussian fitting is by least-squares with no outlier removal, and if symmetric
a re-descending M estimator is used with Tukey’s biweight function, allowing
outlier removal

plottype if deviation plot retention time deviation points and regression fit, and if mdevden
also plot peak overall peak density and retention time correction peak density

col vector of colors for plotting each sample

ty vector of line and point types for plotting each sample

Value

An xcmsSet object

Methods

object = "xcmsSet" retcor(object, missing = 1, extra = 1, smooth = c("loess", "linear"),
span = .2, family = c("gaussian", "symmetric"), plottype = c("none", "deviation",
"mdevden"), col = NULL, ty = NULL)

See Also

xcmsSet-class, loess retcor.obiwarp

252 rla

retexp Set retention time window to a specified width

Description

Expands (or contracts) the retention time window in each row of a matrix as defined by the retmin
and retmax columns.

Usage

retexp(peakrange, width = 200)

Arguments

peakrange maxtrix with columns retmin and retmax

width new width for the window

Value

The altered matrix.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

getEIC

rla Calculate relative log abundances

Description

rla calculates the relative log abundances (RLA, see reference) on a numeric vector.

Usage

rla(x, group, log.transform = TRUE)

rowRla(x, group, log.transform = TRUE)

Arguments

x numeric (for rla) or matrix (for rowRla) with the abundances (in natural scale)
on which the RLA should be calculated.

group factor, numeric or character with the same length than x that groups values
in x. If omitted all values are considered to be from the same group.

log.transform logical(1) whether x should be log2 transformed. Set to log.transform =
FALSE if x is already in log scale.

RsdFilter 253

Details

The RLA is defines as the (log) abundance of an analyte relative to the median across all abundances
of the same group.

Value

numeric of the same length than x (for rla) or matrix with the same dimensions than x (for
rowRla).

Author(s)

Johannes Rainer

References

De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M,
Speed TP. Normalizing and integrating metabolomics data. Anal Chem 2012 Dec 18;84(24):10768-
76. doi: 10.1021/ac302748b

Examples

x <- c(3, 4, 5, 1, 2, 3, 7, 8, 9)

grp <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

rla(x, grp)

RsdFilter Filter features based on their coefficient of variation

Description

The RsdFilter class and methods enable users to filter features from an XcmsExperiment or
SummarizedExperiment object based on their relative standard deviation (coefficient of variation)
for a specified threshold.

This filter is part of the possible dispatch of the generic function filterFeatures. Features
above (>) the user-input threshold will be removed from the entire dataset.

Usage

RsdFilter(threshold = 0.3, qcIndex = integer(), na.rm = TRUE, mad = FALSE)

S4 method for signature 'XcmsResult,RsdFilter'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,RsdFilter'
filterFeatures(object, filter, assay = 1)

https://doi.org/10.1021/ac302748b

254 sampnames-methods

Arguments

threshold numeric value representing the threshold. Features with a coefficient of varia-
tion strictly higher (>) than this will be removed from the entire dataset.

qcIndex integer (or logical) vector corresponding to the indices of QC samples.

na.rm logical indicates whether missing values (NA) should be removed prior to the
calculations.

mad logical indicates whether the Median Absolute Deviation (MAD) should be
used instead of the standard deviation. This is suggested for non-gaussian dis-
tributed data.

object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

... Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

Value

For RsdFilter: a RsdFilter class. filterFeatures return the input object minus the features
that did not met the user input threshold.

Note

It is assumed that the abundance values are in natural scale. Abundances in log scale should be first
transformed to natural scale before calculating the RSD.

Author(s)

Philippine Louail

See Also

Other Filter features in xcms: BlankFlag, DratioFilter, PercentMissingFilter

sampnames-methods Get sample names

Description

Return sample names for an object

Value

A character vector with sample names.

showError,xcmsSet-method 255

Methods

object = "xcmsEIC" sampnames(object)

object = "xcmsSet" sampnames(object)

See Also

xcmsSet-class, xcmsEIC-class

showError,xcmsSet-method

Extract processing errors

Description

If peak detection is performed with findPeaks setting argument stopOnError = FALSE eventual
errors during the process do not cause to stop the processing but are recorded inside of the resulting
xcmsSet object. These errors can be accessed with the showError method.

Usage

S4 method for signature 'xcmsSet'
showError(object, message. = TRUE, ...)

Arguments

object An xcmsSet object.

message. Logical indicating whether only the error message, or the error itself should be
returned.

... Additional arguments.

Value

A list of error messages (if message. = TRUE) or errors or an empty list if no errors are present.

Author(s)

Johannes Rainer

256 specDist-methods

specDist-methods Distance methods for xcmsSet, xcmsRaw and xsAnnotate

Description

There are several methods for calculating a distance between two sets of peaks in xcms. specDist
is the generic method.

Arguments

object a xcmsSet or xcmsRaw.

method Method to use for distance calculation. See details.

... mzabs, mzppm and parameters for the distance function.

Details

Different algorithms can be used by specifying them with the method argument. For example to
use the "meanMZmatch" approach with xcmsSet one would use: specDist(object, peakIDs1,
peakIDs2, method="meanMZmatch"). This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of nicknames for the algorithms available is returned by getOption("BioC")$xcms$specDist.methods.
If the nickname of a method is called "meanMZmatch", the help page for that specific method can
be accessed with ?specDist.meanMZmatch.

Value

mzabs maximum absolute deviation for two matching peaks

mzppm relative deviations in ppm for two matching peaks

symmetric use symmetric pairwise m/z-matches only, or each match

Methods

object = "xcmsSet" specDist(object, peakIDs1, peakIDs2,...)

object = "xsAnnotate" specDist(object, PSpec1, PSpec2,...)

Author(s)

Joachim Kutzera, <jkutzer@ipb-halle.de>

specDist.cosine 257

specDist.cosine a Distance function based on matching peaks

Description

This method calculates the distance of two sets of peaks using the cosine-distance.

Usage

specDist.cosine(peakTable1, peakTable2, mzabs=0.001, mzppm=10, mzExp=0.6,
intExp=3, nPdiff=2, nPmin=8, symmetric=FALSE)

Arguments

peakTable1 a Matrix containing at least m/z-values, row must be called "mz"

peakTable2 the matrix for the other mz-values

mzabs maximum absolute deviation for two matching peaks

mzppm relative deviations in ppm for two matching peaks

symmetric use symmetric pairwise m/z-matches only, or each match

mzExp the exponent used for mz

intExp the exponent used for intensity

nPdiff the maximum nrow-difference of the two peaktables

nPmin the minimum absolute sum of peaks from both praktables

Details

The result is the cosine-distance of the product from weighted factors of mz and intensity from
matching peaks in the two peaktables. The factors are calculated as wFact = mz^mzExp * int^intExp.
if no distance is calculated (for example because no matching peaks were found) the return-value is
NA.

Methods

peakTable1 = "matrix", peakTable2 = "matrix" specDist.cosine(peakTable1, peakTable2,
mzabs = 0.001, mzppm = 10, mzExp = 0.6, intExp = 3, nPdiff = 2, nPmin = 8, symmetric
= FALSE)

Author(s)

Joachim Kutzera, <jkutzer@ipb-halle.de>

258 specDist.meanMZmatch

specDist.meanMZmatch a Distance function based on matching peaks

Description

This method calculates the distance of two sets of peaks.

Usage

specDist.meanMZmatch(peakTable1, peakTable2, matchdist=1, matchrate=1,
mzabs=0.001, mzppm=10, symmetric=TRUE)

Arguments

peakTable1 a Matrix containing at least m/z-values, row must be called "mz"

peakTable2 the matrix for the other mz-values

mzabs maximum absolute deviation for two matching peaks

mzppm relative deviations in ppm for two matching peaks

symmetric use symmetric pairwise m/z-matches only, or each match

matchdist the weight for value one (see details)

matchrate the weight for value two

Details

The result of the calculation is a weighted sum of two values. Value one is the mean absolute
difference of the matching peaks, value two is the relation of matching peaks and non matching
peaks. if no distance is calculated (for example because no matching peaks were found) the return-
value is NA.

Methods

peakTable1 = "matrix", peakTable2 = "matrix" specDist.meanMZmatch(peakTable1, peakTable2,
matchdist=1, matchrate=1, mzabs=0.001, mzppm=10, symmetric=TRUE)

Author(s)

Joachim Kutzera, <jkutzer@ipb-halle.de>

specDist.peakCount-methods 259

specDist.peakCount-methods

a Distance function based on matching peaks

Description

This method calculates the distance of two sets of peaks by just returning the number of matching
peaks (m/z-values).

Usage

specDist.peakCount(peakTable1, peakTable2, mzabs=0.001, mzppm=10, symmetric=FALSE)

Arguments

peakTable1 a Matrix containing at least m/z-values, row must be called "mz"

peakTable2 the matrix for the other mz-values

mzabs maximum absolute deviation for two matching peaks

mzppm relative deviations in ppm for two matching peaks

symmetric use symmetric pairwise m/z-matches only, or each match

Methods

peakTable1 = "matrix", peakTable2 = "matrix" specDist.peakCount(peakTable1, peakTable2,
mzppm=10,symmetric=FALSE)

Author(s)

Joachim Kutzera, <jkutzer@ipb-halle.de>

specNoise Calculate noise for a sparse continuum mass spectrum

Description

Given a sparse continuum mass spectrum, determine regions where no signal is present, substituting
half of the minimum intensity for those regions. Calculate the noise level as the weighted mean of
the regions with signal and the regions without signal. If there is only one raw peak, return zero.

Usage

specNoise(spec, gap = quantile(diff(spec[, "mz"]), 0.9))

Arguments

spec matrix with named columns mz and intensity

gap threshold above which to data points are considerd to be separated by a blank
region and not bridged by an interpolating line

260 specPeaks

Details

The default gap value is determined from the 90th percentile of the pair-wise differences between
adjacent mass values.

Value

A numeric noise level

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

getSpec, specPeaks

specPeaks Identify peaks in a sparse continuum mode spectrum

Description

Given a spectrum, identify and list significant peaks as determined by several criteria.

Usage

specPeaks(spec, sn = 20, mzgap = 0.2)

Arguments

spec matrix with named columns mz and intensity

sn minimum signal to noise ratio
mzgap minimal distance between adjacent peaks, with smaller peaks being excluded

Details

Peaks must meet two criteria to be considered peaks: 1) Their s/n ratio must exceed a certain
threshold. 2) They must not be within a given distance of any greater intensity peaks.

Value

A matrix with columns:

mz m/z at maximum peak intensity
intensity maximum intensity of the peak
fwhm full width at half max of the peak

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

getSpec, specNoise

split.xcmsRaw 261

split.xcmsRaw Divide an xcmsRaw object

Description

Divides the scans from a xcmsRaw object into a list of multiple objects. MSn data is discarded.

Arguments

x xcmsRaw object

f factor such that factor(f) defines the scans which go into the new xcmsRaw
objects

drop logical indicating if levels that do not occur should be dropped (if ’f’ is a ’factor’
or a list).

... further potential arguments passed to methods.

Value

A list of xcmsRaw objects.

Methods

xr = "xcmsRaw" split(x, f, drop = TRUE, ...)

Author(s)

Steffen Neumann, <sneumann@ipb-halle.de>

See Also

xcmsRaw-class

split.xcmsSet Divide an xcmsSet object

Description

Divides the samples and peaks from a xcmsSet object into a list of multiple objects. Group data is
discarded.

Arguments

xs xcmsSet object

f factor such that factor(f) defines the grouping

drop logical indicating if levels that do not occur should be dropped (if ’f’ is a ’factor’
or a list).

... further potential arguments passed to methods.

262 SSgauss

Value

A list of xcmsSet objects.

Methods

xs = "xcmsSet" split(x, f, drop = TRUE, ...)

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsSet-class

SSgauss Gaussian Model

Description

This selfStart model evalueates the Gaussian model and its gradient. It has an initial attribute
that will evalueate the inital estimates of the parameters mu, sigma, and h.

Usage

SSgauss(x, mu, sigma, h)

Arguments

x a numeric vector of values at which to evaluate the model
mu mean of the distribution function
sigma standard deviation of the distribution fuction
h height of the distribution function

Details

Initial values for mu and h are chosen from the maximal value of x. The initial value for sigma is
determined from the area under x divided by h*sqrt(2*pi).

Value

A numeric vector of the same length as x. It is the value of the expression h*exp(-(x-mu)^2/(2*sigma^2),
which is a modified gaussian function where the maximum height is treated as a separate parameter
not dependent on sigma. If arguments mu, sigma, and h are names of objects, the gradient matrix
with respect to these names is attached as an attribute named gradient.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

nls, selfStart

stitch-methods 263

stitch-methods Correct gaps in data

Description

Fixes gaps in data due to calibration scans or lock mass. Automatically detects file type and calls
the relevant method. The mzXML file keeps the data the same length in time but overwrites the lock
mass scans. The netCDF version adds the scans back into the data thereby increasing the length of
the data and correcting for the unseen gap.

Arguments

object An xcmsRaw-class object

lockMass A dataframe of locations of the gaps

freq The intervals of the lock mass scans

start The starting lock mass scan location, default is 1

Details

makeacqNum takes locates the gap using the starting lock mass scan and it’s intervals. This data
frame is then used in stitch to correct for the gap caused by the lock mass. Correction works by
using scans from either side of the gap to fill it in.

Value

stitch A corrected xcmsRaw-class object makeacqNum A numeric vector of scan locations corre-
sponding to lock Mass scans

Methods

object = "xcmsRaw" stitch(object, lockMass=numeric())

object = "xcmsRaw" makeacqNum(object, freq=numeric(), start=1)

Author(s)

Paul Benton, <hpaul.benton08@imperial.ac.uk>

Examples

Not run: library(xcms)
library(faahKO)
These files do not have this problem to correct for but just
for an example
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xr<-xcmsRaw(cdffiles[1])
xr
##Lets assume that the lockmass starts at 1 and is every 100 scans
lockMass<-xcms:::makeacqNum(xr, freq=100, start=1)
these are equcal
lockmass<-AutoLockMass(xr)

264 toXcmsExperimentHdf5

ob<-stitch(xr, lockMass)
ob

plot the old data before correction
foo<-rawEIC(xr, m=c(200,210), scan=c(80,140))
plot(foo$scan, foo$intensity, type="h")

plot the new corrected data to see what changed
foo<-rawEIC(ob, m=c(200,210), scan=c(80,140))
plot(foo$scan, foo$intensity, type="h")

End(Not run)

toXcmsExperimentHdf5 xcms result object for very large data sets

Description

The xcms result objects XcmsExperiment() and XCMSnExp() keep all preprocessing results in mem-
ory and can thus (depending on the size of the data set) require a large amount of memory. In
contrast, the XcmsExperimentHdf5 class, by using an on-disk data storage mechanism, has a much
lower memory footprint allowing also to analyze very large data sets on regular computer systems
such as desktop or laptop computers. With some exceptions, including additional parameters, the
functionality and usability of this object is identical to the default XcmsExperiment object.

This help page lists functions that have additional or different parameters or properties than the re-
spective methods for XcmsExperiment() objects. For all other functions not listed here the usability
is identical to those for the XcmsExperiment() object (see the respective help page for information).

Usage

toXcmsExperimentHdf5(object, hdf5File = tempfile())

toXcmsExperiment(object, ...)

S4 method for signature 'XcmsExperimentHdf5'
chromPeakData(
object,
msLevel = integer(),
peaks = character(),
columns = character(),
return.type = c("DataFrame", "data.frame"),
bySample = FALSE

)

S4 method for signature 'XcmsExperimentHdf5'
filterChromPeaks(
object,
keep = rep(TRUE, nrow(chromPeaks(object))),
method = "keep",
...

)

toXcmsExperimentHdf5 265

S4 method for signature 'XcmsExperimentHdf5,PeakGroupsParam'
adjustRtimePeakGroups(object, param = PeakGroupsParam(), msLevel = 1L)

S4 method for signature 'XcmsExperimentHdf5'
filterFeatureDefinitions(object, features = integer())

Arguments

object XcmsExperimentHdf5 object.

hdf5File For toXcmsExperimentHdf5(): character(1) with the path and name of the
(not yet existing) file where the preprocessing results should be stored to.

... additional parameters eventually passed to downstream functions.

msLevel For chromPeaks() and chromPeakData(): optional integer with the MS level(s)
from which the data should be returned. By default msLevel = integer() re-
sults from all MS levels are returned (if present). For refineChromPeaks():
integer(1) with the MS level from which chromatographic peaks should be
refined.

peaks For chromPeakData(): optional character with the ID of chromatographic
peaks (row name in chromPeaks()) for which the data should be returned. By
default (peaks = character()) the data for all chromatographic peaks is re-
turned.

columns For chromPeakData()~: optional character allowing to define a subset of columns that should be included in the returned data frame. By default (columns
= character()‘) the full data is returned.

return.type For chromPeakData(): character(1) specifying the type of object that should
be returned. Can be either return.type = "DataFrame" (the default) to re-
turn a DataFrame, or return.type = "data.frame" to return the results as a
data.frame.

bySample For chromPeaks() and chromPeakData(): logical(1) whether the data should
be returned by sample, i.e. as a list of matrix or data.frame objects, one for
each sample.

keep For filterChromPeaks(): defining the chromatographic peaks to keep: either
a logical with the same length than the number of chromatographic peaks, an
integer with the indices or a character with the IDs of the chromatographic
peaks to keep.

method For filterChromPeaks(): character(1); currently only method = "keep" is
supported.

param parameter object defining and configuring the algorithm to be used.

features For filterFeatureDefinitions(): defining the features to keep: either a
logical with the same length than the number of features, an integer with
the indices or a character with the ID of the features to keep.

Details

The XcmsExperimentHdf5 object stores all preprocessing results (except adjusted retention times,
which are stored as an additional spectra variable in the object’s Spectra::Spectra() object), in
a file in HDF5 format.

XcmsExperimentHdf5 uses a different naming scheme for chromatographic peaks: for efficiency
reasons, chromatographic peak data is organized by sample and MS level. The chrom peak IDs are
hence in the format CPS with being the MS level in which the chromatographic peaks were detected

266 toXcmsExperimentHdf5

and the ID of the sample (usually related to the index in the original MsExperiment object) and the
the index of the chromatographic peak in the chrom peak matrix of that sample and MS level.

HDF5 files do not support parallel processing, thus preprocessing results need to be stored or loaded
sequentially.

All functionality for XcmsExperimentHdf5 objects is optimized to reduce memory demand at the
cost of eventually lower performance.

Value

See description of the individual methods for information.

Conversion between XcmsExperiment and XcmsExperimentHdf5

To use the XcmsExperimentHdf5 class for preprocessing results, the hdf5File parameter of the
findChromPeaks() function needs to be defined, specifying the path and name of the HDF5 file to
store the results. In addition it is possible to convert a XcmsExperiment object to a XcmsExperimentHdf5
object with the toXcmsExperimentHdf5() function. All present preprocessing results will be stored
to the specified HDF5 file. To load all preprocessing results into memory and hence change from
a XcmsExperimentHdf5 to a XcmsExperiment object, the toXcmsExperument() function can be
used.

Using the HDF5 file-based on-disk data storage

Calling findChromPeaks() on an MsExperiment using the parameter hdf5File will return an
instance of the XcmsExperimentHdf5 class and hence use the on-disk data storage mode described
on this page. The results are stored in the file specified with parameter hdf5File.

Subset

• [: subset the XcmsExperimentHdf5 object to the specified samples. Parameters keepChromPeaks
(default TRUE), keepAdjustedRtime (default TRUE) and keepFeatures (default FALSE) allow
to configure whether present chromatographic peaks, alignment or correspondence results
should be retained. This will only change information in the object (i.e., the reference to
the respective entries in the HDF5 file), but will not change the content of the HDF5 file.
Thus, reverting the retention times of detected chromatographic peaks is not supported and
keepChromPeaks = TRUE with keepAdjustedRtime = FALSE will throw an error. Note that
with keepChromPeaks = FALSE also keepFeatures is set to FALSE.

• filterChromPeaks() and filterFeatureDefinitions() to filter the chromatographic peak
and correspondence results, respectively. See documentation below for details. Subset using
unsorted or duplicated indices is not supported.

Functionality related to chromatographic peaks

• chromPeaks() gains parameter bySample = FALSE that, if set to TRUE returns a list of chromPeaks
matrices, one for each sample. Due to the way data is organized in XcmsExperimentHdf5 ob-
jects this is more efficient than bySample = FALSE. Thus, in cases where chrom peak data is
subsequently evaluated or processed by sample, it is suggested to use bySample = TRUE.

• chromPeakData() gains a new parameter peaks = character() which allows to specify from
which chromatographic peaks data should be returned. For these chromatographic peaks the
ID (row name in chromPeaks()) should be provided with the peaks parameter. This can re-
duce the memory requirement for cases in which only data of some selected chromatographic

toXcmsExperimentHdf5 267

peaks needs to be extracted. Also, chromPeakData() supports the bySample parameter de-
scribed for chromPeaks() above. All other parameters present also for chromPeakData() of
XcmsExperiment objects, such as columns are supported.

• filterChromPeaks() allows to filter the chromatographic peaks specifying which should be
retainend using the keep parameter. This can be either a logical, character or integer
vector. Duplicated or unsorted indices are not supported. Eventually present feature defini-
tions will be updated as well. The function returns the object with the filtered chromatographic
peaks.

Retention time alignment

• adjustRtimePeakGroups() and adjustRtime() with PeakGroupsParam: parameter extraPeaks
of PeakGroupsParam is ignored. Anchor peaks are thus only defined using the minFraction
and the optional subset parameter.

Correspondence analysis results

• featureDefinitions(): similarly to featureDefinitions() for XcmsExperiment objects,
this method returns a data.frame with the characteristics for the defined LC-MS features. The
function for XcmsExperimentHdf5 does however not return the "peakidx" column with the
indices of the chromatographic peaks per feature. Also, the columns are returned in alphabetic
order.

• featureValues(): for parameter value, the option value = "index" (i.e. returning the index
of the chromatographic peaks within the chromPeaks() matrix per feature) is not supported.

• filterFeatureDefinitions(): filter the feature definitions keeping only the specified fea-
tures. Parameter features can be used to define the features to retain. It supports a logical,
integer indices or character with the IDs of the features (i.e., their row names in featureDefinitions()).
The function returns the input XcmsExperimentHdf5 with the filtered content.

Author(s)

Johannes Rainerr, Philippine Louail

Examples

Create a MsExperiment object representing the data from an LC-MS
experiment.
library(MsExperiment)

Define the raw data files
fls <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),

system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))

Define a data frame with the sample characterization
df <- data.frame(mzML_file = basename(fls),

sample = c("ko15", "ko16", "ko18"))
Importe the data. This will initialize a `Spectra` object representing
the raw data and assign these to the individual samples.
mse <- readMsExperiment(spectraFiles = fls, sampleData = df)

Perform chromatographic peak detection storing the data in an HDF5 file
Parameter `hdf5File` has to be provided and needs to be the path and
name of a (not yet existing) file to which results are going to be

268 updateObject,xcmsSet-method

stored. For the example below we use a temporary file.
xmse <- findChromPeaks(mse, param = CentWaveParam(prefilter = c(4, 100000)),

hdf5File = tempfile())
xmse

Extract selected columnds from the chromatographic peak detection
results
chromPeaks(xmse, columns = c("rt", "mz", "into")) |> head()

Extract the results per sample
res <- chromPeaks(xmse, columns = c("rt", "mz", "into"), bySample = TRUE)

The chromatographic peaks of the second sample:
res[[2]] |> head()

Convert the result object to the in-memory representation:
xmse_mem <- toXcmsExperiment(xmse)
xmse_mem

updateObject,xcmsSet-method

Update an xcmsSet object

Description

This method updates an old xcmsSet object to the latest definition.

Usage

S4 method for signature 'xcmsSet'
updateObject(object, ..., verbose = FALSE)

Arguments

object The xcmsSet object to update.

... Optional additional arguments. Currently ignored.

verbose Currently ignored.

Value

An updated xcmsSet containing all data from the input object.

Author(s)

Johannes Rainer

useOriginalCode 269

useOriginalCode Enable usage of old xcms code

Description

This function allows to enable the usage of old, partially deprecated code from xcms by setting a
corresponding global option. See details for functions affected.

Usage

useOriginalCode(x)

Arguments

x logical(1) to specify whether or not original old code should be used in corre-
sponding functions. If not provided the function simply returns the value of the
global option.

Details

The functions/methods that are affected by this option are:

• do_findChromPeaks_matchedFilter: use the original code that iteratively creates a subset of
the binned (profile) matrix. This is helpful for computers with limited memory or matched-
Filter settings with a very small bin size.

• getPeaks

Value

logical(1) indicating whether old code is being used.

Note

For parallel processing using the SOCKS method (e.g. by BiocParallel::SnowParam() on Win-
dows computers) this option might not be passed to the individual R processes performing the cal-
culations. In such cases it is suggested to specify the option manually and system-wide by adding
the line options(XCMSuseOriginalCode = TRUE) in a file called .Rprofile in the folder in which
new R processes are started (usually the user’s home directory; to ensure that the option is correctly
read add a new line to the file too). See also Startup from the base R documentation on how to
specify system-wide options for R.

Usage of old code is strongly dicouraged. This function is thought to be used mainly in the transition
phase from xcms to xcms version 3.

Author(s)

Johannes Rainer

270 write.cdf-methods

verify.mzQuantM Verify an mzQuantML file

Description

Export in XML data formats: verify the written data

Usage

verify.mzQuantML(filename, xsdfilename)

Arguments

filename filename (may include full path) for the output file. Pipes or URLs are not
allowed.

xsdfilename Filename of the XSD to verify against (may include full path)

Details

The verify.mzQuantML() function will verify an PSI standard format mzQuantML document against
the XSD schemda, see http://www.psidev.info/mzquantml

Value

None.

See Also

write.mzQuantML

write.cdf-methods Save an xcmsRaw object to file

Description

Write the raw data to a (simple) CDF file.

Arguments

object the xcmsRaw object

filename filename (may include full path) for the CDF file. Pipes or URLs are not allowed.

Details

Currently the only application known to read the resulting file is XCMS. Others, especially those
which build on the AndiMS library, will refuse to load the output.

Value

None.

http://www.psidev.info/mzquantml

write.mzdata-methods 271

Methods

object = "xcmsRaw" write.cdf(object, filename)

See Also

xcmsRaw-class, xcmsRaw,

write.mzdata-methods Save an xcmsRaw object to a file

Description

Write the raw data to a (simple) mzData file.

Arguments

object the xcmsRaw object

filename filename (may include full path) for the mzData file. Pipes or URLs are not
allowed.

Details

This function will export a given xcmsRaw object to an mzData file. The mzData file will contain
a <spectrumList> containing the <spectrum> with mass and intensity values in 32 bit precision.
Other formats are currently not supported. Any header information (e.g. additional <software>
information or <cvParams>) will be lost. Currently, also any MSn information will not be stored.

Value

None.

Methods

object = "xcmsRaw" write.mzdata(object, filename)

See Also

xcmsRaw-class, xcmsRaw,

272 writeMSData,XCMSnExp,character-method

write.mzQuantML-methods

Save an xcmsSet object to an PSI mzQuantML file

Description

Export in XML data formats: Write the processed data in an xcmsSet to mzQuantML.

Arguments

object the xcmsRaw or xcmsSet object
filename filename (may include full path) for the output file. Pipes or URLs are not

allowed.

Details

The write.mzQuantML() function will write a (grouped) xcmsSet into the PSI standard format
mzQuantML, see http://www.psidev.info/mzquantml

Value

None.

Methods

object = "xcmsSet" write.mzQuantML(object, filename)

See Also

xcmsSet-class, xcmsSet, verify.mzQuantML,

writeMSData,XCMSnExp,character-method

Export MS data to mzML/mzXML files

Description

writeMSData exports mass spectrometry data in mzML or mzXML format. If adjusted retention
times are present, these are used as retention time of the exported spectra.

Usage

S4 method for signature 'XCMSnExp,character'
writeMSData(
object,
file,
outformat = c("mzml", "mzxml"),
copy = FALSE,
software_processing = NULL,
...

)

http://www.psidev.info/mzquantml

writeMzTab 273

Arguments

object XCMSnExp object with the mass spectrometry data.

file character with the file name(s). The length of this parameter has to match the
number of files/samples of object.

outformat character(1) defining the format of the output files (either "mzml" or "mzxml").

copy logical(1) if metadata (data processing, software used, original file names etc)
should be copied from the original files.

software_processing

optionally provide specific data processing steps. See documentation of the
software_processing parameter of MSnbase::writeMSData().

... Additional parameters to pass down to the MSnbase::writeMSData() func-
tion in the MSnbase package, such as outformat to specify the output format
("mzml" or "mzxml") or copy to specify whether general information from the
original MS data files (such as data processing, software etc) should be copied
to the new files.

Author(s)

Johannes Rainer

See Also

MSnbase::writeMSData() function in the MSnbase package.

writeMzTab Save a grouped xcmsSet object in mzTab-1.1 format file

Description

Write the grouped xcmsSet to an mzTab file.

Arguments

object the xcmsSet object

filename filename (may include full path) for the mzTab file. Pipes or URLs are not
allowed.

Details

The mzTab file format for MS-based metabolomics (and proteomics) is a lightweight supplement
to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a
comprehensive summary, similar in concept to the supplemental material of a scientific publication.
mzTab files from xcms contain small molecule sections together with experimental metadata and
basic quantitative information. The format is intended to store a simple summary of the final results.

Value

None.

274 XChromatograms

Usage

object = "xcmsSet" writeMzTab(object, filename)

See Also

xcmsSet-class, xcmsSet,

Examples

library(faahKO)
xs <- group(faahko)

mzt <- data.frame(character(0))
mzt <- xcms:::mzTabHeader(mzt,

version="1.1.0", mode="Complete", type="Quantification",
description="faahKO",
xset=xs)

mzt <- xcms:::mzTabAddSME(mzt, xs)

xcms:::writeMzTab(mzt, "faahKO.mzTab")

XChromatograms Containers for chromatographic and peak detection data

Description

The XChromatogram object allows to store chromatographic data (e.g. an extracted ion chro-
matogram) along with identified chromatographic peaks within that data. The object inherits all
functions from the MSnbase::Chromatogram() object in the MSnbase package.

Multiple XChromatogram objects can be stored in a XChromatograms object. This class extends
MSnbase::MChromatograms() from the MSnbase package and allows thus to arrange chromatograms
in a matrix-like structure, columns representing samples and rows m/z-retention time ranges.

All functions are described (grouped into topic-related sections) after the Arguments section.

Usage

XChromatograms(data, phenoData, featureData, chromPeaks, chromPeakData, ...)

XChromatogram(
rtime = numeric(),
intensity = numeric(),
mz = c(NA_real_, NA_real_),
filterMz = c(NA_real_, NA_real_),
precursorMz = c(NA_real_, NA_real_),
productMz = c(NA_real_, NA_real_),
fromFile = integer(),
aggregationFun = character(),
msLevel = 1L,
chromPeaks,
chromPeakData

)

XChromatograms 275

S4 method for signature 'XChromatogram'
chromPeaks(
object,
rt = numeric(),
mz = numeric(),
ppm = 0,
type = c("any", "within", "apex_within"),
msLevel

)

S4 replacement method for signature 'XChromatogram'
chromPeaks(object) <- value

S4 method for signature 'XChromatogram,ANY'
plot(
x,
col = "#00000060",
lty = 1,
type = "l",
xlab = "retention time",
ylab = "intensity",
main = NULL,
peakType = c("polygon", "point", "rectangle", "none"),
peakCol = "#00000060",
peakBg = "#00000020",
peakPch = 1,
...

)

S4 method for signature 'XChromatogram'
filterMz(object, mz, ...)

S4 method for signature 'XChromatogram'
filterRt(object, rt, ...)

S4 method for signature 'XChromatogram'
hasChromPeaks(object)

S4 method for signature 'XChromatogram'
dropFilledChromPeaks(object)

S4 method for signature 'XChromatogram'
chromPeakData(object)

S4 replacement method for signature 'XChromatogram'
chromPeakData(object) <- value

S4 method for signature 'XChromatogram,MergeNeighboringPeaksParam'
refineChromPeaks(object, param = MergeNeighboringPeaksParam())

S4 method for signature 'XChromatogram'

276 XChromatograms

filterChromPeaks(object, method = c("keepTop"), ...)

S4 method for signature 'XChromatogram'
transformIntensity(object, FUN = identity)

S4 method for signature 'XChromatograms'
hasChromPeaks(object)

S4 method for signature 'XChromatograms'
hasFilledChromPeaks(object)

S4 method for signature 'XChromatograms'
chromPeaks(
object,
rt = numeric(),
mz = numeric(),
ppm = 0,
type = c("any", "within", "apex_within"),
msLevel

)

S4 method for signature 'XChromatograms'
chromPeakData(object)

S4 method for signature 'XChromatograms'
filterMz(object, mz, ...)

S4 method for signature 'XChromatograms'
filterRt(object, rt, ...)

S4 method for signature 'XChromatograms,ANY'
plot(
x,
col = "#00000060",
lty = 1,
type = "l",
xlab = "retention time",
ylab = "intensity",
main = NULL,
peakType = c("polygon", "point", "rectangle", "none"),
peakCol = "#00000060",
peakBg = "#00000020",
peakPch = 1,
...

)

S4 method for signature 'XChromatograms'
processHistory(object, fileIndex, type)

S4 method for signature 'XChromatograms'
hasFeatures(object, ...)

XChromatograms 277

S4 method for signature 'XChromatograms'
dropFeatureDefinitions(object, ...)

S4 method for signature 'XChromatograms,PeakDensityParam'
groupChromPeaks(object, param)

S4 method for signature 'XChromatograms'
featureDefinitions(
object,
mz = numeric(),
rt = numeric(),
ppm = 0,
type = c("any", "within", "apex_within")

)

S4 method for signature 'XChromatograms,ANY,ANY,ANY'
x[i, j, drop = TRUE]

S4 method for signature 'XChromatograms'
featureValues(
object,
method = c("medret", "maxint", "sum"),
value = "into",
intensity = "into",
missing = NA,
...

)

S4 method for signature 'XChromatograms'
plotChromPeakDensity(
object,
param,
col = "#00000060",
xlab = "retention time",
main = NULL,
peakType = c("polygon", "point", "rectangle", "none"),
peakCol = "#00000060",
peakBg = "#00000020",
peakPch = 1,
simulate = TRUE,
...

)

S4 method for signature 'XChromatograms'
dropFilledChromPeaks(object)

S4 method for signature 'XChromatograms,MergeNeighboringPeaksParam'
refineChromPeaks(object, param = MergeNeighboringPeaksParam())

S4 method for signature 'XChromatograms'
filterChromPeaks(object, method = c("keepTop"), ...)

278 XChromatograms

S4 method for signature 'XChromatograms'
transformIntensity(object, FUN = identity)

Arguments

data For XChromatograms: list of Chromatogram or XChromatogram objects.

phenoData For XChromatograms: either a data.frame, AnnotatedDataFrame describing
the phenotypical information of the samples.

featureData For XChromatograms: either a data.frame or AnnotatedDataFrame with ad-
ditional information for each row of chromatograms.

chromPeaks For XChromatogram: matrix with required columns "rt", "rtmin", "rtmax",
"into", "maxo" and "sn". For XChromatograms: list, same length than data,
with the chromatographic peaks for each chromatogram. Each element has to
be a matrix, the ordering has to match the order of the chromatograms in data.

chromPeakData For XChromatogram: DataFrame with optional additional annotations for each
chromatographic peak. The number of rows has to match the number of chro-
matographic peaks.

... For filterChromPeaks: additional parameters defining how to filter chromato-
graphic peaks. See function description below for details.

rtime For XChromatogram: numeric with the retention times (length has to be equal
to the length of intensity).

intensity For XChromatogram: numeric with the intensity values (length has to be equal
to the length of rtime).

For `featureValues`: `character(1)` specifying the name
of the column in `chromPeaks(object)` containing the intensity value
of the peak that should be used for the `method = "maxint"` conflict
resolution if.

mz For XChromatogram: numeric(2) representing the m/z value range (min, max)
on which the chromatogram was created. This is supposed to contain the real
range of m/z values in contrast to the filterMz below. For chromPeaks and
featureDefinitions: numeric(2) defining the m/z range for which chro-
matographic peaks or features should be returned. For filterMz: numeric(2)
defining the m/z range for which chromatographic peaks should be retained.#’

filterMz For XChromatogram: numeric(2) representing the m/z value range (min, max)
that was used to filter the original object on m/z dimension. If not applicable use
filterMz = c(0, 0).

precursorMz For XChromatogram: numeric(2) for SRM/MRM transitions. Represents the
mz of the precursor ion. See details for more information.

productMz For XChromatogram: numeric(2) for SRM/MRM transitions. Represents the
mz of the product. See details for more information.

fromFile For XChromatogram: integer(1) the index of the file within the OnDiskMSnExp
or MSnExp object from which the chromatogram was extracted.

aggregationFun For XChromatogram: character(1) specifying the function that was used to
aggregate intensity values for the same retention time across the m/z range.

msLevel For XChromatogram: integer with the MS level from which the chromatogram
was extracted. For chromPeaks and chromPeakData: extract chromatographic
peaks of a certain MS level.

XChromatograms 279

object An XChromatogram or XChromatograms object.

rt For chromPeaks and featureDefinitions: numeric(2) defining the retention
time range for which chromatographic peaks or features should be returned. For
filterRt: numeric(2) defining the retention time range to reduce object to.

ppm For chromPeaks and featureDefinitions: numeric(1) defining a ppm to ex-
pand the provided m/z range.

type For chromPeaks and featureDefinitions: character(1) defining which peaks
or features to return if rt or mz is provided: "any" (default) return all peaks that
are even partially overlapping with rt, "within" return peaks that are com-
pletely within rt and "apex_within" return peaks which apex is within rt.

For `plot`: what type of plot should be used for the
chromatogram (such as `"l"` for lines, `"p"` for points etc), see help
of [plot()] in the `graphics` package for more details.
For `processHistory`: restrict returned processing steps to specific
types. Use [processHistoryTypes()] to list all supported values.

value For chromPeaks<-: a numeric matrix with required columns "rt", "rtmin",
"rtmax", "into" and "maxo".

For `featureValues`: `character(1)` specifying the name of the column in
`chromPeaks(object)` that should be returned or `"index"` (default) to
return the index of the peak associated with the feature in each sample.
To return the integrated peak area instead of the index use
`value = "into"`.

x For plot: an XChromatogram or XChromatograms object.

col For plot: the color to be used to draw the chromatogram.

lty For plot and plotChromPeakDensity: the line type.

xlab For plot and plotChromPeakDensity: the x axis label.

ylab For plot: the y axis label.

main For plot and plotChromPeakDensity: an optional title for the plot.

peakType For plot and plotChromPeakDensity: character(1) defining how (and if)
identified chromatographic peak within the chromatogram should be plotted.
Options are "polygon" (default): draw the peak borders with the peakCol color
and fill the peak area with the peakBg color, "point": indicate the peak’s apex
with a point, "rectangle": draw a rectangle around the identified peak and
"none": don’t draw peaks.

peakCol For plot and plotChromPeakDensity: the foreground color for the peaks. For
peakType = "polygon" and peakType = "rectangle" this is the color for the
border. Use NA to not use a foreground color. This should either be a single color
or a vector of colors with the same length than chromPeaks(x) has rows.

peakBg For plot and plotChromPeakDensity: the background color for the peaks. For
peakType = "polygon" and peakType = "rectangle" the peak are or rectangle
will be filled with this color. Use NA to skip. This should be either a single color
or a vector of colors with the same length than chromPeaks(x) has rows.

peakPch For plot and plotChromPeakDensity: the point character to be used for peakType
= "point". See plot() in the graphics package for more details.

param For groupChromPeaks and plotChromPeakDensity: a PeakDensityParam()
object with the settings for the peak density correspondence analysis algorithm.

280 XChromatograms

method For featureValues: character(1) specifying the method to resolve multi-
peak mappings within the sample sample, i.e. to select the representative peak
for a feature for which more than one peak was assigned in one sample. Options
are "medret" (default): select the peak closest to the median retention time of
the feature, "maxint": select the peak with the largest signal and "sum": sum the
values of all peaks (only if value is "into" or "maxo"). For filterChromPeaks:
character(1) defining the method that should be used to filter chromatographic
peaks. See help on filterChromPeaks below for details.

FUN For transformIntensity: a function to transform the intensity values of object.

fileIndex For processHistory: optional integer specifying the index of the files/samples
for which the ProcessHistory objects should be returned.

i For [: integer with the row indices to subset the XChromatograms object.

j For [: integer with the column indices to subset the XChromatograms object.

drop For [: logical(1) whether the dimensionality should be dropped (if possible).
Defaults to drop = TRUE, thus, if length of i and j is 1 a XChromatogram is
returned. Note that drop is ignored if length of i or j is larger than 1, thus a
XChromatograms is returned.

missing For featureValues: how missing values should be reported. Allowed val-
ues are NA (default), a numeric(1) to replace NAs with that value or missing
= "rowmin_half" to replace NAs with half of the row’s minimal (non-missing)
value.

simulate For plotChromPeakDensity: logical(1) whether a correspondence analysis
should be simulated based on the available data and the provided PeakDensityParam()
param argument. See section Correspondence analysis for details.

Value

See help of the individual functions.

Creation of objects

Objects can be created with the contructor function XChromatogram and XChromatograms, respec-
tively. Also, they can be coerced from MSnbase::Chromatogram() or MSnbase::MChromatograms()
objects using as(object, "XChromatogram") or as(object, "XChromatograms").

Filtering and subsetting

Besides classical subsetting with [specific filter operations on MSnbase::MChromatograms() and
XChromatograms objects are available. See filterColumnsIntensityAbove() for more details.

• [allows to subset a XChromatograms object by row (i) and column (j), with i and j being of
type integer. The featureDefinitions will also be subsetted accordingly and the peakidx
column updated.

• filterMz filters the chromatographic peaks within an XChromatogram or XChromatograms, if
a column "mz" is present in the chromPeaks matrix. This would be the case if the XChromatogram
was extracted from an XCMSnExp() object with the chromatogram() function. All chromato-
graphic peaks with their m/z within the m/z range defined by mz will be retained. Also
feature definitions (if present) will be subset accordingly. The function returns a filtered
XChromatogram or XChromatograms object.

XChromatograms 281

• filterRt filters chromatogram(s) by the provided retention time range. All eventually present
chromatographic peaks with their apex within the retention time range specified with rt will
be retained. Also feature definitions, if present, will be filtered accordingly. The function
returns a filtered XChromatogram or XChromatograms object.

Accessing data

See also help of MSnbase::Chromatogram() in the MSnbase package for general information and
data access. The methods listed here are specific for XChromatogram and XChromatograms objects.

• chromPeaks, chromPeaks<-: extract or set the matrix with the chromatographic peak def-
initions. Parameter rt allows to specify a retention time range for which peaks should be
returned along with parameter type that defines how overlapping is defined (parameter de-
scription for details). For XChromatogram objects the function returns a matrix with columns
"mz" (mean m/z value), "mzmin" (minimal m/z value) and "mzmax" (maximal m/z value),
"rt" (retention time of the peak apex), "rtmin" (the lower peak boundary in retention time
dimension), "rtmax" (the upper peak boundary in retention time dimension), "into" (the
integrated peak signal/area of the peak), "maxo" (the maximum instensity of the peak and
"sn" (the signal to noise ratio). Note that, depending on the peak detection algorithm, the
matrix may contain additional columns. For XChromatograms objects the matrix contains
also columns "row" and "column" specifying in which chromatogram of object the peak
was identified. Chromatographic peaks are ordered by row.

• chromPeakData, chromPeakData<-: extract or set the S4Vectors::DataFrame() with op-
tional chromatographic peak annotations.

• hasChromPeaks: infer whether a XChromatogram (or XChromatograms) has chromatographic
peaks. For XChromatogram: returns a logical(1), for XChromatograms: returns a matrix,
same dimensions than object with either TRUE or FALSE if chromatographic peaks are avail-
able in the chromatogram at the respective position.

• hasFilledChromPeaks: whether a XChromatogram (or a XChromatogram in a XChromatograms)
has filled-in chromatographic peaks. For XChromatogram: returns a logical(1), for XChromatograms:
returns a matrix, same dimensions than object with either TRUE or FALSE if chromatographic
peaks are available in the chromatogram at the respective position.

• dropFilledChromPeaks: removes filled-in chromatographic peaks. See dropFilledChromPeaks()
help for XCMSnExp() objects for more information.

• hasFeatures: for XChromatograms objects only: if correspondence analysis has been per-
formed and m/z-rt feature definitions are present. Returns a logical(1).

• dropFeatureDefinitions: for XChrmomatograms objects only: delete any correspondence
analysis results (and related process history).

• featureDefinitions: for XChromatograms objects only. Extract the results from the cor-
respondence analysis (performed with groupChromPeaks). Returns a DataFrame with the
properties of the defined m/z-rt features: their m/z and retention time range. Column peakidx
contains the index of the chromatographic peaks in the chromPeaks matrix associated with the
feature. Column "row" contains the row in the XChromatograms object in which the feature
was defined. Similar to the chromPeaks method it is possible to filter the returned feature
matrix with the mz, rt and ppm parameters.

• featureValues: for XChromatograms objects only. Extract the abundance estimates for the
individuals features. Note that by default (with parameter value = "index" a matrix of in-
dices of the peaks in the chromPeaks matrix associated to the feature is returned. To extract
the integrated peak area use value = "into". The function returns a matrix with one row per
feature (in featureDefinitions) and each column being a sample (i.e. column of object).
For features without a peak associated in a certain sample NA is returned. This can be changed
with the missing argument of the function.

282 XChromatograms

• filterChromPeaks: filters chromatographic peaks in object depending on parameter method
and method-specific parameters passed as additional arguments with Available methods
are:

– method = "keepTop": keep top n (default n = 1L) peaks in each chromatogram ordered by
column order (defaults to order = "maxo"). Parameter decreasing (default decreasing
= TRUE) can be used to order peaks in descending (decreasing = TRUE) or ascending (
decreasing = FALSE) order to keep the top n peaks with largest or smallest values, re-
spectively.

• processHistory: returns a list of ProcessHistory objects representing the individual per-
formed processing steps. Optional parameters type and fileIndex allow to further specify
which processing steps to return.

Manipulating data

• transformIntensity: transforms the intensity values of the chromatograms with provided
function FUN. See MSnbase::transformIntensity() in the MSnbase package for details.
For XChromatogram and XChromatograms in addition to the intensity values also columns
"into" and "maxo" in the object’s chromPeaks matrix are transformed by the same function.

Plotting and visualizing

• plot draws the chromatogram and highlights in addition any chromatographic peaks present
in the XChromatogram or XChromatograms (unless peakType = "none" was specified). To
draw peaks in different colors a vector of color definitions with length equal to nrow(chromPeaks(x))
has to be submitted with peakCol and/or peakBg defining one color for each peak (in the order
as peaks are in chromPeaks(x)). For base peak chromatograms or total ion chromatograms
it might be better to set peakType = "none" to avoid generating busy plots.

• plotChromPeakDensity: visualize peak density-based correspondence analysis results. See
section Correspondence analysis for more details.

Chromatographic peak detection

See findChromPeaks-Chromatogram-CentWaveParam for information.

After chromatographic peak detection it is also possible to refine identified chromatographic peaks
with the refineChromPeaks method (e.g. to reduce peak detection artifacts). Currently, only peak
refinement using the merge neighboring peaks method is available (see MergeNeighboringPeaksParam()
for a detailed description of the approach.

Correspondence analysis

Identified chromatographic peaks in an XChromatograms object can be grouped into features with
the groupChromPeaks function. Currently, such a correspondence analysis can be performed with
the peak density method (see groupChromPeaks for more details) specifying the algorithm settings
with a PeakDensityParam() object. A correspondence analysis is performed separately for each
row in the XChromatograms object grouping chromatographic peaks across samples (columns).

The analysis results are stored in the returned XChromatograms object and can be accessed with the
featureDefinitions method which returns a DataFrame with one row for each feature. Column
"row" specifies in which row of the XChromatograms object the feature was identified.

The plotChromPeakDensity method can be used to visualize peak density correspondence results,
or to simulate a peak density correspondence analysis on chromatographic data. The resulting plot
consists of two panels, the upper panel showing the chromatographic data as well as the iden-
tified chromatographic peaks, the lower panel the distribution of peaks (the peak density) along

XChromatograms 283

the retention time axis. This plot shows each peak as a point with it’s peak’s retention time on
the x-axis, and the sample in which it was found on the y-axis. The distribution of peaks along
the retention time axis is visualized with a density estimate. Grouped chromatographic peaks are
indicated with grey shaded rectangles. Parameter simulate allows to define whether the correspon-
dence analysis should be simulated (simulate=TRUE, based on the available data and the provided
PeakDensityParam() parameter class) or not (simulate=FALSE). For the latter it is assumed that
a correspondence analysis has been performed with the peak density method on the object. See
examples below.

Abundance estimates for each feature can be extracted with the featureValues function using
parameter value = "into" to extract the integrated peak area for each feature. The result is a
matrix, columns being samples and rows features.

Note

Highlighting the peak area(s) in an XChromatogram or XChromatograms object (plot with peakType
= "polygon") draws a polygon representing the displayed chromatogram from the peak’s mini-
mal retention time to the maximal retention time. If the XChromatograms was extracted from an
XCMSnExp() object with the chromatogram() function this might not represent the actual identified
peak area if the m/z range that was used to extract the chromatogram was larger than the peak’s m/z.

Author(s)

Johannes Rainer

See Also

findChromPeaks-centWave for peak detection on MSnbase::MChromatograms() objects.

Examples

---- Creation of XChromatograms ----
##
Create a XChromatograms from Chromatogram objects
library(MSnbase)
dta <- list(Chromatogram(rtime = 1:7, c(3, 4, 6, 12, 8, 3, 2)),

Chromatogram(1:10, c(4, 6, 3, 4, 7, 13, 43, 34, 23, 9)))

Create an XChromatograms without peak data
xchrs <- XChromatograms(dta)

Create an XChromatograms with peaks data
pks <- list(matrix(c(4, 2, 5, 30, 12, NA), nrow = 1,

dimnames = list(NULL, c("rt", "rtmin", "rtmax", "into", "maxo", "sn"))),
NULL)

xchrs <- XChromatograms(dta, chromPeaks = pks)

Create an XChromatograms from XChromatogram objects
dta <- lapply(dta, as, "XChromatogram")
chromPeaks(dta[[1]]) <- pks[[1]]

xchrs <- XChromatograms(dta, nrow = 1)

hasChromPeaks(xchrs)

Loading a test data set with identified chromatographic peaks

284 XChromatograms

faahko_sub <- loadXcmsData("faahko_sub2")

Subset the dataset to the first and third file.
xod_sub <- filterFile(faahko_sub, file = c(1, 3))

od <- as(xod_sub, "MsExperiment")

Extract chromatograms for a m/z - retention time slice
chrs <- chromatogram(od, mz = 344, rt = c(2500, 3500))
chrs

Chromatographic peak detection

Perform peak detection using CentWave
xchrs <- findChromPeaks(chrs, param = CentWaveParam())
xchrs

Do we have chromatographic peaks?
hasChromPeaks(xchrs)

Process history
processHistory(xchrs)

The chromatographic peaks, columns "row" and "column" provide information
in which sample the peak was identified.
chromPeaks(xchrs)

Spectifically extract chromatographic peaks for one sample/chromatogram
chromPeaks(xchrs[1, 2])

Plot the results
plot(xchrs)

Plot the results using a different color for each sample
sample_colors <- c("#ff000040", "#00ff0040", "#0000ff40")
cols <- sample_colors[chromPeaks(xchrs)[, "column"]]
plot(xchrs, col = sample_colors, peakBg = cols)

Indicate the peaks with a rectangle
plot(xchrs, col = sample_colors, peakCol = cols, peakType = "rectangle",

peakBg = NA)

Correspondence analysis

Group chromatographic peaks across samples
prm <- PeakDensityParam(sampleGroup = rep(1, 2))
res <- groupChromPeaks(xchrs, param = prm)

hasFeatures(res)
featureDefinitions(res)

Plot the correspondence results. Use simulate = FALSE to show the
actual results. Grouped chromatographic peaks are indicated with
grey shaded rectangles.
plotChromPeakDensity(res, simulate = FALSE)

XChromatograms 285

Simulate a correspondence analysis based on different settings. Larger
bw will increase the smoothing of the density estimate hence grouping
chromatographic peaks that are more apart on the retention time axis.
prm <- PeakDensityParam(sampleGroup = rep(1, 3), bw = 60)
plotChromPeakDensity(res, param = prm)

Delete the identified feature definitions
res <- dropFeatureDefinitions(res)
hasFeatures(res)

library(MSnbase)
Create a XChromatogram object
pks <- matrix(nrow = 1, ncol = 6)
colnames(pks) <- c("rt", "rtmin", "rtmax", "into", "maxo", "sn")
pks[, "rtmin"] <- 2
pks[, "rtmax"] <- 9
pks[, "rt"] <- 4
pks[, "maxo"] <- 19
pks[, "into"] <- 93

xchr <- XChromatogram(rtime = 1:10,
intensity = c(4, 8, 14, 19, 18, 12, 9, 8, 5, 2),
chromPeaks = pks)

xchr

Add arbitrary peak annotations
df <- DataFrame(peak_id = c("a"))
xchr <- XChromatogram(rtime = 1:10,

intensity = c(4, 8, 14, 19, 18, 12, 9, 8, 5, 2),
chromPeaks = pks, chromPeakData = df)

xchr
chromPeakData(xchr)

Extract the chromatographic peaks
chromPeaks(xchr)

Plotting of a single XChromatogram object
o Don't highlight chromatographic peaks
plot(xchr, peakType = "none")

o Indicate peaks with a polygon
plot(xchr)

Add a second peak to the data.
pks <- rbind(chromPeaks(xchr), c(7, 7, 10, NA, 15, NA))
chromPeaks(xchr) <- pks

Plot the peaks in different colors
plot(xchr, peakCol = c("#ff000080", "#0000ff80"),

peakBg = c("#ff000020", "#0000ff20"))

Indicate the peaks as rectangles
plot(xchr, peakCol = c("#ff000060", "#0000ff60"), peakBg = NA,

peakType = "rectangle")

Filter the XChromatogram by retention time

286 xcmsEIC-class

xchr_sub <- filterRt(xchr, rt = c(4, 6))
xchr_sub
plot(xchr_sub)

xcms-deprecated Deprecated functions in package ‘xcms’

Description

These functions are provided for compatibility with older versions of ‘xcms’ only, and will be
defunct at the next release.

Details

The following functions/methods are deprecated.

• profBin, profBinM, profBinLin, profBinLinM, profBinLinBase, profBinLinBaseM have
been deprecated and binYonX in combination with imputeLinInterpol should be used in-
stead.

• extractMsData: replaced by as(x, "data.frame").

• plotMsData: replaced by plot(x, type = "XIC").

xcmsEIC-class Class xcmsEIC, a class for multi-sample extracted ion chromatograms

Description

This class is used to store and plot parallel extracted ion chromatograms from multiple sample files.
It integrates with the xcmsSet class to display peak area integrated during peak identification or
fill-in.

Objects from the Class

Objects can be created with the getEIC method of the xcmsSet class. Objects can also be created
by calls of the form new("xcmsEIC", ...).

Slots

eic: list containing named entries for every sample. for each entry, a list of two column EIC
matricies with retention time and intensity

mzrange: two column matrix containing starting and ending m/z for each EIC

rtrange: two column matrix containing starting and ending time for each EIC

rt: either "raw" or "corrected" to specify retention times contained in the object

groupnames: group names from xcmsSet object used to generate EICs

xcmsFileSource-class 287

Methods

groupnames signature(object = "xcmsEIC"): get groupnames slot

mzrange signature(object = "xcmsEIC"): get mzrange slot

plot signature(x = "xcmsEIC"): plot the extracted ion chromatograms

rtrange signature(object = "xcmsEIC"): get rtrange slot

sampnames signature(object = "xcmsEIC"): get sample names

Note

No notes yet.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

getEIC

xcmsFileSource-class Base class for loading raw data from a file

Description

Data sources which read data from a file should inherit from this class. The xcms package provides
classes to read from netCDF, mzData, mzXML, and mzML files using xcmsFileSource.

This class should be considered virtual and will not work if passed to loadRaw-methods. The
reason it is not explicitly virtual is that there does not appear to be a way for a class to be both
virtual and have a data part (which lets functions treat objects as if they were character strings).

This class validates that a file exists at the path given.

Objects from the Class

xcmsFileSource objects should not be instantiated directly. Instead, create subclasses and instan-
tiate those.

Slots

.Data: Object of class "character". File path of a file from which to read raw data as the object’s
data part

Extends

Class "character", from data part. Class "xcmsSource", directly.

Methods

xcmsSource signature(object = "character"): Create an xcmsFileSource object referencing
the given file name.

288 xcmsFragments

Author(s)

Daniel Hackney <dan@haxney.org>

See Also

xcmsSource

xcmsFragments Constructor for xcmsFragments objects which holds Tandem MS peaks

Description

EXPERIMANTAL FEATURE

xcmsFragments is an object similar to xcmsSet, which holds peaks picked (or collected) from one
or several xcmsRaw objects.

There are still discussions going on about the exact API for MSn data, so this is likely to change
in the future. The code is not yet pipeline-ified.

Usage

xcmsFragments(xs, ...)

Arguments

xs A xcmsSet-class object which contains picked ms1-peaks from one or several
experiments

... further arguments to the collect method

Details

After running collect(xFragments,xSet) The peaktable of the xcmsFragments includes the ms1Peaks
from all experinemts stored in a xcmsSet-object. Further it contains the relevant MSn-peaks from
the xcmsRaw-objects, which were created temporarily with the paths in xcmsSet.

Value

An xcmsFragments object.

Author(s)

Joachim Kutzera, Steffen Neumann, <sneumann@ipb-halle.de>

See Also

xcmsFragments-class, collect

xcmsFragments-class 289

xcmsFragments-class Class xcmsFragments, a class for handling Tandem MS and MSn
data

Description

This class is similar to xcmsSet because it stores peaks from a number of individual files. However,
xcmsFragments keeps Tandem MS and e.g. Ion Trap or Orbitrap MSn peaks, including the
parent ion relationships.

Objects from the Class

Objects can be created with the xcmsFragments constructor and filled with peaks using the collect
method.

Slots

peaks: matrix with colmns peakID (MS1 parent in corresponding xcmsSet), MSnParentPeakID
(parent peak within this xcmsFragments), msLevel (e.g. 2 for Tandem MS), rt (retention time
in case of LC data), mz (fragment mass-to-charge), intensity (peak intensity extracted from
the original xcmsSet), sample (the index of the rawData-file).

MS2spec: This is a list of matrixes. Each matrix in the list is a single collected spectra from
collect. The column ID’s are mz, intensity, and full width half maximum(fwhm). The
fwhm column is only relevant if the spectra came from profile data.

specinfo: This is a matrix with reference data for the spectra in MS2spec. The column id’s are
preMZ, AccMZ, rtmin, rtmax, ref, CollisionEnergy. The preMZ is precursor mass from the
MS1 scan. This mass is given by the XML file. With some instruments this mass is only
given as nominal mass, therefore a AccMZ is given which is a weighted average mass from
the MS1 scan of the collected spectra. The retention time is given by rtmin and rtmax. The
ref column is a pointer to the MS2spec matrix spectra. The collisionEnergy column is the
collision Energy for the spectra.

Methods

collect signature(object = "xcmsFragments"): gets a xcmsSet-object, collects ms1-peaks from
it and the msn-peaks from the corresponding xcmsRaw-files.

plotTree signature(object = "xcmsFragments"): prints a (text based) pseudo-tree of the peak-
table to display the dependencies of the peaks among each other.

show signature(object = "xcmsFragments"): print a human-readable description of this object
to the console.

Author(s)

S. Neumann, J. Kutzera

See Also

xcmsRaw

290 XCMSnExp-class

XCMSnExp-class Data container storing xcms preprocessing results

Description

The XCMSnExp object is a container for the results of a G/LC-MS data preprocessing that comprises
chromatographic peak detection, alignment and correspondence. These results can be accessed with
the chromPeaks(), adjustedRtime() and featureDefinitions() functions; see below (after the
Usage, Arguments, Value and Slots sections) for more details). Along with the results, the object
contains the processing history that allows to track each processing step along with the used set-
tings. This can be extracted with the processHistory() function. XCMSnExp objects, by directly
extending the MSnbase::OnDiskMSnExp object from the MSnbase package, inherit all of its func-
tionality and allows thus an easy access to the full raw data at any stage of an analysis. To support
interaction with packages requiring the old objects, XCMSnExp objects can be coerced into xcmsSet
objects using the as() method (see examples below). All preprocessing results will be passed along
to the resulting object.

General functions for XCMSnExp objects are (see further below for specific function to handle chro-
matographic peak data, alignment and correspondence results):

processHistoryTypes() returns the available types of process histories. These can be passed with
argument type to the processHistory method to extract specific process step(s).

hasFilledChromPeaks(): whether filled-in peaks are present or not.

profMat(): creates a profile matrix, which is a n x m matrix, n (rows) representing equally spaced
m/z values (bins) and m (columns) the retention time of the corresponding scans. Each cell contains
the maximum intensity measured for the specific scan and m/z values. See profMat() for more
details and description of the various binning methods.

hasAdjustedRtime(): whether the object provides adjusted retention times.

hasFeatures(): whether the object contains correspondence results (i.e. features).

hasChromPeaks(): whether the object contains peak detection results.

hasFilledChromPeaks(): whether the object contains any filled-in chromatographic peaks.

adjustedRtime(),adjustedRtime<-: extract/set adjusted retention times. adjustedRtime<- should
not be called manually, it is called internally by the adjustRtime() methods. For XCMSnExp ob-
jects, adjustedRtime<- does also apply retention time adjustments to eventually present chro-
matographic peaks. The bySample parameter allows to specify whether the adjusted retention time
should be grouped by sample (file).

featureDefinitions(), featureDefinitions<-: extract or set the correspondence results, i.e.
the mz-rt features (peak groups). Similar to the chromPeaks() it is possible to extract features for
specified m/z and/or rt ranges. The function supports also the parameter type that allows to specify
which features to be returned if any of rt or mz is specified. For details see help of chromPeaks().
See also featureSummary() for a function to calculate simple feature summaries.

chromPeaks(), chromPeaks<-: extract or set the matrix containing the information on identified
chromatographic peaks. Rownames of the matrix represent unique IDs of the respective peaks
within the experiment. Parameter bySample allows to specify whether peaks should be returned un-
grouped (default bySample = FALSE) or grouped by sample (bySample = TRUE). The chromPeaks<-
method for XCMSnExp objects removes also all correspondence (peak grouping) and retention time
correction (alignment) results. The optional arguments rt, mz, ppm and type allow to extract only
chromatographic peaks overlapping the defined retention time and/or m/z ranges. Argument type
allows to define how overlapping is determined: for type == "any" (the default), all peaks that

XCMSnExp-class 291

are even partially overlapping the region are returned (i.e. for which either "mzmin" or "mzmax"
of the chromPeaks or featureDefinitions matrix are within the provided m/z range), for type
== "within" the full peak has to be within the region (i.e. both "mzmin" and "mzmax" have to be
within the m/z range) and for type == "apex_within" the peak’s apex position (highest signal of
the peak) has to be within the region (i.e. the peak’s or features m/z has to be within the m/z range).
See description of the return value for details on the returned matrix. Users usually don’t have to use
the chromPeaks<- method directly as detected chromatographic peaks are added to the object by
the findChromPeaks() method. Also, chromPeaks<- will replace any existing chromPeakData.

chromPeakData() and chromPeakData<- allow to get or set arbitrary chromatographic peak an-
notations. These are returned or ar returned as a DataFrame. Note that the number of rows and
the rownames of the DataFrame have to match those of chromPeaks. Parameter columns allows to
extract only selected columns from the chromPeakData. By default (columns = character()) all
columns are returned.

rtime(): extracts the retention time for each scan. The bySample parameter allows to return
the values grouped by sample/file and adjusted whether adjusted or raw retention times should
be returned. By default the method returns adjusted retention times, if they are available (i.e. if
retention times were adjusted using the adjustRtime() method).

mz(): extracts the mz values from each scan of all files within an XCMSnExp object. These val-
ues are extracted from the original data files and eventual processing steps are applied on the fly.
Using the bySample parameter it is possible to switch from the default grouping of mz values by
spectrum/scan to a grouping by sample/file.

intensity(): extracts the intensity values from each scan of all files within an XCMSnExp object.
These values are extracted from the original data files and eventual processing steps are applied on
the fly. Using the bySample parameter it is possible to switch from the default grouping of intensity
values by spectrum/scan to a grouping by sample/file.

spectra(): extracts the Spectrum objects containing all data from object. The values are ex-
tracted from the original data files and eventual processing steps are applied on the fly. By setting
bySample = TRUE, the spectra are returned grouped by sample/file. If the XCMSnExp object contains
adjusted retention times, these are returned by default in the Spectrum objects (can be overwritten
by setting adjusted = FALSE).

processHistory(): returns a list of ProcessHistory() objects (or objects inheriting from this
base class) representing the individual processing steps that have been performed, eventually along
with their settings (Param parameter class). Optional arguments fileIndex, type and msLevel
allow to restrict to process steps of a certain type or performed on a certain file or MS level.

dropChromPeaks(): drops any identified chromatographic peaks and returns the object without
that information. Note that for XCMSnExp objects the method drops by default also results from a
correspondence (peak grouping) analysis. Adjusted retention times are removed if the alignment
has been performed after peak detection. This can be overruled with keepAdjustedRtime = TRUE.

dropFeatureDefinitions(): drops the results from a correspondence (peak grouping) analysis,
i.e. the definition of the mz-rt features and returns the object without that information. Note that for
XCMSnExp objects the method will also by default drop retention time adjustment results, if these
were performed after the last peak grouping (i.e. which base on the results from the peak grouping
that are going to be removed). All related process history steps are removed too as well as eventually
filled in peaks (by fillChromPeaks()). The parameter keepAdjustedRtime can be used to avoid
removal of adjusted retention times.

dropAdjustedRtime(): drops any retention time adjustment information and returns the object
without adjusted retention time. For XCMSnExp objects, this also reverts the retention times reported
for the chromatographic peaks in the peak matrix to the original, raw, ones (after chromatographic
peak detection). Note that for XCMSnExp objects the method drops also all peak grouping results

292 XCMSnExp-class

if these were performed after the retention time adjustment. All related process history steps are
removed too.

findChromPeaks() performs chromatographic peak detection on the provided XCMSnExp objects.
For more details see the method for XCMSnExp(). Note that by default (with parameter add = FALSE)
previous peak detection results are removed. Use add = TRUE to perform a second round of peak
detection and add the newly identified peaks to the previous peak detection results. Correspon-
dence results (features) are always removed prior to peak detection. Previous alignment (retention
time adjustment) results are kept, i.e. chromatographic peak detection is performed using adjusted
retention times if the data was first aligned using e.g. obiwarp (adjustRtime()).

dropFilledChromPeaks(): drops any filled-in chromatographic peaks (filled in by the fillChromPeaks()
method) and all related process history steps.

spectrapply() applies the provided function to each Spectrum in the object and returns its results.
If no function is specified the function simply returns the list of Spectrum objects.

XCMSnExp objects can be combined with the c() function. This combines identified chromato-
graphic peaks and the objects’ pheno data but discards alignment results or feature definitions.

plot() plots the spectrum data (see MSnbase::plot() for MSnExp objects in the MSnbase package
for more details. For type = "XIC", identified chromatographic peaks will be indicated as rectangles
with border color peakCol.

Usage

processHistoryTypes()

S4 method for signature 'XCMSnExp'
hasFilledChromPeaks(object)

S4 method for signature 'OnDiskMSnExp'
profMat(
object,
method = "bin",
step = 0.1,
baselevel = NULL,
basespace = NULL,
mzrange. = NULL,
fileIndex,
...

)

S4 method for signature 'XCMSnExp'
hasAdjustedRtime(object)

S4 method for signature 'XCMSnExp'
hasFeatures(object, msLevel = integer())

S4 method for signature 'XCMSnExp'
hasChromPeaks(object, msLevel = integer())

S4 method for signature 'XCMSnExp'
hasFilledChromPeaks(object)

S4 method for signature 'XCMSnExp'

XCMSnExp-class 293

adjustedRtime(object, bySample = FALSE)

S4 replacement method for signature 'XCMSnExp'
adjustedRtime(object) <- value

S4 method for signature 'XCMSnExp'
featureDefinitions(
object,
mz = numeric(),
rt = numeric(),
ppm = 0,
type = c("any", "within", "apex_within"),
msLevel = integer()

)

S4 replacement method for signature 'XCMSnExp'
featureDefinitions(object) <- value

S4 method for signature 'XCMSnExp'
chromPeaks(
object,
bySample = FALSE,
rt = numeric(),
mz = numeric(),
ppm = 0,
msLevel = integer(),
type = c("any", "within", "apex_within"),
isFilledColumn = FALSE

)

S4 replacement method for signature 'XCMSnExp'
chromPeaks(object) <- value

S4 method for signature 'XCMSnExp'
rtime(object, bySample = FALSE, adjusted = hasAdjustedRtime(object))

S4 method for signature 'XCMSnExp'
mz(object, bySample = FALSE, BPPARAM = bpparam())

S4 method for signature 'XCMSnExp'
intensity(object, bySample = FALSE, BPPARAM = bpparam())

S4 method for signature 'XCMSnExp'
spectra(
object,
bySample = FALSE,
adjusted = hasAdjustedRtime(object),
BPPARAM = bpparam()

)

S4 method for signature 'XCMSnExp'
processHistory(object, fileIndex, type, msLevel)

294 XCMSnExp-class

S4 method for signature 'XCMSnExp'
dropChromPeaks(object, keepAdjustedRtime = FALSE)

S4 method for signature 'XCMSnExp'
dropFeatureDefinitions(object, keepAdjustedRtime = FALSE, dropLastN = -1)

S4 method for signature 'XCMSnExp'
dropAdjustedRtime(object)

S4 method for signature 'XCMSnExp'
profMat(
object,
method = "bin",
step = 0.1,
baselevel = NULL,
basespace = NULL,
mzrange. = NULL,
fileIndex,
...

)

S4 method for signature 'XCMSnExp,Param'
findChromPeaks(
object,
param,
BPPARAM = bpparam(),
return.type = "XCMSnExp",
msLevel = 1L,
add = FALSE

)

S4 method for signature 'XCMSnExp'
dropFilledChromPeaks(object)

S4 method for signature 'XCMSnExp'
spectrapply(object, FUN = NULL, BPPARAM = bpparam(), ...)

S3 method for class 'XCMSnExp'
c(...)

S4 method for signature 'XCMSnExp'
chromPeakData(object, columns = character(), ...)

S4 replacement method for signature 'XCMSnExp'
chromPeakData(object) <- value

S4 method for signature 'XCMSnExp,missing'
plot(x, y, type = c("spectra", "XIC"), peakCol = "#ff000060", ...)

Arguments

object either a MsFeatureData or a XCMSnExp object.

XCMSnExp-class 295

method character(1) defining the profile matrix generation method. Allowed are "bin",
"binlin", "binlinbase" and "intlin". See details section for more informa-
tion.

step numeric(1) representing the m/z bin size.

baselevel numeric(1) representing the base value to which empty elements (i.e. m/z
bins without a measured intensity) should be set. Only considered if method =
"binlinbase". See baseValue parameter of imputeLinInterpol() for more
details.

basespace numeric(1) representing the m/z length after which the signal will drop to the
base level. Linear interpolation will be used between consecutive data points
falling within 2 * basespace to each other. Only considered if method = "binlinbase".
If not specified, it defaults to 0.075. Internally this parameter is translated into
the distance parameter of the imputeLinInterpol() function by distance =
floor(basespace / step). See distance parameter of imputeLinInterpol()
for more details.

mzrange. Optional numeric(2) manually specifying the mz value range to be used for
binnind. If not provided, the whole m/z value range is used.

fileIndex For processHistory(): optional integer specifying the index of the files/samples
for which the ProcessHistory() objects should be retrieved.

... Additional parameters.

msLevel integer specifying the MS level(s) for which identified chromatographic peaks
should be returned.

bySample logical(1) specifying whether results should be grouped by sample.

value For adjustedRtime<-: a list (length equal to the number of samples) with
numeric vectors representing the adjusted retention times per scan.

For `featureDefinitions<-`: a `DataFrame` with peak
grouping information. See return value for the `featureDefinitions`
method for the expected format.

For `chromPeaks<-`: a `matrix` with information on
detected peaks. See return value for the `chromPeaks` method for the
expected format.

mz optional numeric(2) defining the mz range for which chromatographic peaks
should be returned.

rt optional numeric(2) defining the retention time range for which chromato-
graphic peaks should be returned.

ppm optional numeric(1) specifying the ppm by which the mz range should be ex-
tended. For a value of ppm = 10, all peaks within mz[1] - ppm / 1e6 and mz[2]
+ ppm / 1e6 are returned.

type For processHistory(): restrict returned ProcessHistory() objects to analy-
sis steps of a certain type. Use the processHistoryTypes() to list all supported
values. For chromPeaks()]: characterspecifying which peaks to return ifrtormzare defined. Fortype
= "any"all chromatographic peaks partially overlapping the range defined bymzand/orrtare returned,type
= "within"returns only peaks completely within the region andtype
= "apex_within"‘ peaks for which the peak’s apex is within the region.

isFilledColumn logical(1) whether a column "is_filled" is included in the returned "ma-
trix"providing the information if a peak was filled in. Alternatively, this information would be provided by thechromPeakData()‘
data frame.

296 XCMSnExp-class

adjusted logical(1) whether adjusted or raw (i.e. the original retention times reported
in the files) should be returned.

BPPARAM Parameter class for parallel processing. See BiocParallel::bpparam().
keepAdjustedRtime

For dropFeatureDefinitions,XCMSnExp(): logical(1) defining whether even-
tually present retention time adjustment should not be dropped. By default drop-
ping feature definitions drops retention time adjustment results too.

dropLastN For dropFeatureDefinitions,XCMSnExp(): numeric(1) defining the number
of peak grouping related process history steps to remove. By default dropLastN
= -1, dropping the chromatographic peaks removes all process history steps re-
lated to peak grouping. Setting e.g. dropLastN = 1 will only remove the most
recent peak grouping related process history step.

param A CentWaveParam(), MatchedFilterParam(), MassifquantParam(), MSWParam()
or CentWavePredIsoParam() object with the settings for the chromatographic
peak detection algorithm.

return.type Character specifying what type of object the method should return. Can be either
"XCMSnExp" (default), "list" or "xcmsSet".

add For findChromPeaks(): if newly identified chromatographic peaks should be
added to the peak matrix with the already identified chromatographic peaks. By
default (add = FALSE) previous peak detection results will be removed.

FUN For spectrapply: a function that should be applied to each spectrum in the
object.

columns For chromPeakData(): optional character with the names of the columns to
include in the returned data frame. By default (columns = character()) all
columns are reported.

x For plot(): XCMSnExp object.
y For plot(): not used.
peakCol For plot(): the color that should be used to indicate identified chromatographic

peaks (only in combination with type = "XIC" and if chromatographic peaks are
present).

Value

For profMat(): a list with a the profile matrix matrix (or matrices if fileIndex was not specified
or if ‘length(fileIndex) > 1). See profile-matrix for general help and information about the profile
matrix.

For adjustedRtime(): if bySample = FALSE a numeric vector with the adjusted retention for each
spectrum of all files/samples within the object. If bySample = TRUE a list (length equal to the
number of samples) with adjusted retention times grouped by sample. Returns NULL if no adjusted
retention times are present.

For featureDefinitions(): a DataFrame with peak grouping information, each row correspond-
ing to one mz-rt feature (grouped peaks within and across samples) and columns "mzmed" (median
mz value), "mzmin" (minimal mz value), "mzmax" (maximum mz value), "rtmed" (median reten-
tion time), "rtmin" (minimal retention time), "rtmax" (maximal retention time) and "peakidx".
Column "peakidx" contains a list with indices of chromatographic peaks (rows) in the matrix
returned by the chromPeaks() method that belong to that feature group. The method returns NULL
if no feature definitions are present. featureDefinitions() supports also parameters mz, rt, ppm
and type to return only features within certain ranges (see description of chromPeaks() for details).

For chromPeaks: if bySample = FALSE a matrix (each row being a chromatographic peak, row-
names representing unique IDs of the peaks) with at least the following columns:

XCMSnExp-class 297

• "mz" (intensity-weighted mean of mz values of the peak across scans/retention times),
• "mzmin" (minimal mz value),
• "mzmax" (maximal mz value),
• "rt" (retention time of the peak apex),
• "rtmin" (minimal retention time),
• "rtmax" (maximal retention time),
• "into" (integrated, original, intensity of the peak),
• "maxo" (maximum intentity of the peak),
• "sample" (sample index in which the peak was identified) and

Depending on the employed peak detection algorithm and the verboseColumns parameter of it,
additional columns might be returned. If parameter isFilledColumn was set to TRUE a column
named "is_filled" is also returned. For bySample = TRUE the chromatographic peaks are returned
as a list of matrices, each containing the chromatographic peaks of a specific sample. For samples
in which no peaks were detected a matrix with 0 rows is returned.

For rtime(): if bySample = FALSE a numeric vector with the retention times of each scan, if
bySample = TRUE a list of numeric vectors with the retention times per sample.

For mz(): if bySample = FALSE a list with the mz values (numeric vectors) of each scan. If
bySample = TRUE a list with the mz values per sample.

For intensity(): if bySample = FALSE a list with the intensity values (numeric vectors) of each
scan. If bySample = TRUE a list with the intensity values per sample.

For spectra(): if bySample = FALSE a list with Spectrum objects. If bySample = TRUE the result
is grouped by sample, i.e. as a list of lists, each element in the outer list being the list of
spectra of the specific file.

For processHistory(): a list of ProcessHistory() objects providing the details of the individ-
ual data processing steps that have been performed.

Slots

.processHistory list with XProcessHistory objects tracking all individual analysis steps that
have been performed.

msFeatureData MsFeatureData class extending environment and containing the results from a
chromatographic peak detection (element "chromPeaks"), peak grouping (element "featureDefinitions")
and retention time correction (element "adjustedRtime") steps. This object should not be
manipulated directly.

Chromatographic peak data

Chromatographic peak data is added to an XCMSnExp object by the findChromPeaks() function.
Functions to access chromatographic peak data are:

• hasChromPeaks() whether chromatographic peak data is available, see below for help of the
function.

• chromPeaks() access chromatographic peaks (see below for help).
• dropChromPeaks() remove chromatographic peaks (see below for help).
• dropFilledChromPeaks() remove filled-in peaks (see below for help).
• [fillChromPeaks()] fill-in missing peaks (see respective help page).
• [plotChromPeaks()] plot identified peaks for a file (see respective help page).
• [plotChromPeakImage()] plot distribution of peaks along the retention time axis (see re-

spective help page).

298 XCMSnExp-class

Adjusted retention times

Adjusted retention times are stored in an XCMSnExp object besides the original, raw, retention times,
allowing to switch between raw and adjusted times. It is also possible to replace the raw retention
times with the adjusted ones with the applyAdjustedRtime() function. The adjusted retention
times are added to an XCMSnExp by the adjustRtime() function. All functions related to the access
of adjusted retention times are:

• hasAdjustedRtime() whether adjusted retention times are available (see below for help).

• dropAdjustedRtime() remove adjusted retention times (see below for help).

• applyAdjustedRtime() replace the raw retention times with the adjusted ones (see respective
help page).

• plotAdjustedRtime() plot differences between adjusted and raw retention times (see respec-
tive help page).

Correspondence results, features

The correspondence analysis groupChromPeaks() adds the definition of LC-MS features to an
XCMSnExp object. All functions related to these are listed below:

• hasFeatures() whether correspondence results are available (see below for help).

• featureDefinitions() access the definitions of the features (see below for help).

• dropFeatureDefinitions() remove correspondence results (see below for help).

• featureValues() access values for features (see respective help page).

• featureSummary() perform a simple summary of the defined features (see respective help
page).

• overlappingFeatures() identify features that are overlapping or close in the m/z - rt space
(see respective help page).

• quantify(): extract feature intensities and put them, along with feature definitions and phen-
odata information, into a SummarizedExperiment::SummarizedExperiment(). See help
page for details.

Note

The "chromPeaks" element in the msFeatureData slot is equivalent to the @peaks slot of the
xcmsSet object, the "featureDefinitions" contains information from the @groups and @groupidx
slots from an xcmsSet object.

Author(s)

Johannes Rainer

See Also

MSnbase::OnDiskMSnExp, and MSnbase::pSet for a complete list of inherited methods.

[findChromPeaks()] for available peak detection methods
returning a `XCMSnExp` object as a result.

[groupChromPeaks()] for available peak grouping
methods and `featureDefinitions` for the method to extract
the feature definitions representing the peak grouping results.

XCMSnExp-class 299

[adjustRtime()] for retention time adjustment methods.

[chromatogram()] to extract chromatographic MS data.

[featureChromatograms()] to extract chromatograms for each
feature.

[chromPeakSpectra()] to extract MS1 or MS2 spectra for each
chromatographic peak.

[featureSpectra()] to extract MS1 or MS2 spectra for features.

fillChromPeaks() for the method to fill-in eventually missing chromatographic peaks for a feature
in some samples.

Examples

Load a test data set with detected peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

The results from the peak detection are now stored in the XCMSnExp
object
faahko_sub

The detected peaks can be accessed with the chromPeaks method.
head(chromPeaks(faahko_sub))

The settings of the chromatographic peak detection can be accessed with
the processHistory method
processHistory(faahko_sub)

Also the parameter class for the peak detection can be accessed
processParam(processHistory(faahko_sub)[[1]])

The XCMSnExp inherits all methods from the pSet and OnDiskMSnExp classes
defined in Bioconductor's MSnbase package. To access the (raw) retention
time for each spectrum we can use the rtime method. Setting bySample = TRUE
would cause the retention times to be grouped by sample
head(rtime(faahko_sub))

Similarly it is possible to extract the mz values or the intensity values
using the mz and intensity method, respectively, also with the option to
return the results grouped by sample instead of the default, which is
grouped by spectrum. Finally, to extract all of the data we can use the
spectra method which returns Spectrum objects containing all raw data.
Note that all these methods read the information from the original input
files and subsequently apply eventual data processing steps to them.
mzs <- mz(faahko_sub, bySample = TRUE)
length(mzs)
lengths(mzs)

300 xcmsPeaks-class

The full data could also be read using the spectra data, which returns
a list of Spectrum object containing the mz, intensity and rt values.
spctr <- spectra(faahko_sub)
To get all spectra of the first file we can split them by file
head(split(spctr, fromFile(faahko_sub))[[1]])

############
Filtering
##
XCMSnExp objects can be filtered by file, retention time, mz values or
MS level. For some of these filter preprocessing results (mostly
retention time correction and peak grouping results) will be dropped.
Below we filter the XCMSnExp object by file to extract the results for
only the second file.
xod_2 <- filterFile(faahko_sub, file = 2)
xod_2

Now the objects contains only the idenfified peaks for the second file
head(chromPeaks(xod_2))

##########
Coercing to an xcmsSet object
##
We can also coerce the XCMSnExp object into an xcmsSet object:
xs <- as(faahko_sub, "xcmsSet")
head(peaks(xs))

xcmsPeaks-class A matrix of peaks

Description

A matrix of peak information. The actual columns depend on how it is generated (i.e. the findPeaks
method).

Objects from the Class

Objects can be created by calls of the form new("xcmsPeaks", ...).

Slots

.Data: The matrix holding the peak information

Extends

Class "matrix", from data part. Class "array", by class "matrix", distance 2. Class "structure",
by class "matrix", distance 3. Class "vector", by class "matrix", distance 4, with explicit coerce.

Methods

None yet. Some utilities for working with peak data would be nice.

xcmsRaw 301

Author(s)

Michael Lawrence

See Also

findPeaks for detecting peaks in an xcmsRaw.

xcmsRaw Constructor for xcmsRaw objects which reads NetCDF/mzXML files

Description

This function handles the task of reading a NetCDF/mzXML file containing LC/MS or GC/MS
data into a new xcmsRaw object. It also transforms the data into profile (maxrix) mode for efficient
plotting and data exploration.

Usage

xcmsRaw(filename, profstep = 1, profmethod = "bin", profparam =
list(), includeMSn=FALSE, mslevel=NULL, scanrange=NULL)

deepCopy(object)

Arguments

filename path name of the NetCDF or mzXML file to read

profstep step size (in m/z) to use for profile generation

profmethod method to use for profile generation. See profile-matrix for details and sup-
ported values.

profparam extra parameters to use for profile generation

includeMSn only for XML file formats: also read MSn (Tandem-MS of Ion-/Orbi- Trap
spectra)

mslevel move data from mslevel into normal MS1 slots, e.g. for peak picking and visu-
alisation

scanrange scan range to read

object An xcmsRaw object

Details

See profile-matrix for details on profile matrix generation methods and settings.

The scanrange to import can be restricted, otherwise all MS1 data is read. If profstep is set to
0, no profile matrix is generated. Unless includeMSn = TRUE only first level MS data is read, not
MS/MS, etc.

deepCopy(xraw) will create a copy of the xcmsRaw object with its own copy of mz and intensity
data in xraw@env.

Value

A xcmsRaw object.

302 xcmsRaw

Author(s)

Colin A. Smith, <csmith@scripps.edu>

References

NetCDF file format: https://www.unidata.ucar.edu/software/netcdf/ http://www.astm.
org/Standards/E2077.htm http://www.astm.org/Standards/E2078.htm

mzXML file format: http://sashimi.sourceforge.net/software_glossolalia.html

PSI-MS working group who developed mzData and mzML file formats: http://www.psidev.
info/index.php?q=node/80

Parser used for XML file formats: http://tools.proteomecenter.org/wiki/index.php?title=
Software:RAMP

See Also

xcmsRaw-class, profStep, profMethod xcmsFragments

Examples

Not run:
library(xcms)
library(faahKO)
cdfpath <- system.file("cdf", package = "faahKO")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xr<-xcmsRaw(cdffiles[1])
xr
##This gives some information about the file
names(attributes(xr))
Lets have a look at the structure of the object

str(xr)
##same but with a preview of each slot in the object
##SO... lets have a look at how this works
head(xr@scanindex)
##[1] 0 429 860 1291 1718 2140
xr@env$mz[425:430]
##[1] 596.3 597.0 597.3 598.1 599.3 200.1
##We can see that the 429 index is the last mz of scan 1 therefore...

mz.scan1<-xr@env$mz[(1+xr@scanindex[1]):xr@scanindex[2]]
intensity.scan1<-xr@env$intensity[(1+xr@scanindex[1]):xr@scanindex[2]]
plot(mz.scan1, intensity.scan1, type="h",

main=paste("Scan 1 of file", basename(cdffiles[1]), sep=""))
##the easier way :p
scan1<-getScan(xr, 1)
head(scan1)
plotScan(xr, 1)

End(Not run)

https://www.unidata.ucar.edu/software/netcdf/
http://www.astm.org/Standards/E2077.htm
http://www.astm.org/Standards/E2077.htm
http://www.astm.org/Standards/E2078.htm
http://sashimi.sourceforge.net/software_glossolalia.html
http://www.psidev.info/index.php?q=node/80
http://www.psidev.info/index.php?q=node/80
http://tools.proteomecenter.org/wiki/index.php?title=Software:RAMP
http://tools.proteomecenter.org/wiki/index.php?title=Software:RAMP

xcmsRaw-class 303

xcmsRaw-class Class xcmsRaw, a class for handling raw data

Description

This class handles processing and visualization of the raw data from a single LC/MS or GS/MS run.
It includes methods for producing a standard suite of plots including individual spectra, multi-scan
average spectra, TIC, and EIC. It will also produce a feature list of significant peaks using matched
filtration.

Objects from the Class

Objects can be created with the xcmsRaw constructor which reads data from a NetCDF file into a
new object.

Slots

acquisitionNum: Numeric representing the acquisition number of the individual scans/spectra.
Length of acquisitionNum is equal to the number of spectra/scans in the object and hence
equal to the scantime slot. Note however that this information is only available in mzML
files.

env: environment with three variables: mz - concatenated m/z values for all scans, intensity -
corresponding signal intensity for each m/z value, and profile - matrix represention of the
intensity values with columns representing scans and rows representing equally spaced m/z
values. The profile matrix should be extracted with the profMat method.

filepath: Path to the raw data file

gradient: matrix with first row, time, containing the time point for interpolation and successive
columns representing solvent fractions at each point

msnAcquisitionNum: for each scan a unique acquisition number as reported via "spectrum id"
(mzData) or "<scan num=...>" and "<scanOrigin num=...>" (mzXML)

msnCollisionEnergy: "CollisionEnergy" (mzData) or "collisionEnergy" (mzXML)

msnLevel: for each scan the "msLevel" (both mzData and mzXML)

msnPrecursorCharge: "ChargeState" (mzData) and "precursorCharge" (mzXML)

msnPrecursorIntensity: "Intensity" (mzData) or "precursorIntensity" (mzXML)

msnPrecursorMz: "MassToChargeRatio" (mzData) or "precursorMz" (mzXML)

msnPrecursorScan: "spectrumRef" (both mzData and mzXML)

msnRt: Retention time of the scan

msnScanindex: msnScanindex

mzrange: numeric vector of length 2 with minimum and maximum m/z values represented in the
profile matrix

polarity: polarity

profmethod: characer value with name of method used for generating the profile matrix.

profparam: list to store additional profile matrix generation settings. Use the profinfo method to
extract all profile matrix creation relevant information.

scanindex: integer vector with starting positions of each scan in the mz and intensity variables
(note that index values are based off a 0 initial position instead of 1).

304 xcmsRaw-class

scantime: numeric vector with acquisition time (in seconds) for each scan.

tic: numeric vector with total ion count (intensity) for each scan

mslevel: Numeric representing the MS level that is present in MS1 slot. This slot should be
accessed through its getter method mslevel.

scanrange: Numeric of length 2 specifying the scan range (or NULL for the full range). This
slot should be accessed through its getter method scanrange. Note that the scanrange will
always be 1 to the number of scans within the xcmsRaw object, which does not necessarily
have to match to the scan index in the original mzML file (e.g. if the original data was sub-
setted). The acquisitionNum information can be used to track the original position of each
scan in the mzML file.

Methods

findPeaks signature(object = "xcmsRaw"): feature detection using matched filtration in the
chromatographic time domain

getEIC signature(object = "xcmsRaw"): get extracted ion chromatograms in specified m/z ranges.
This will return the total ion chromatogram (TIC) if the m/z range corresponds to the full m/z
range (i.e. sum of all signals per retention time across all m/z).

getPeaks signature(object = "xcmsRaw"): get data for peaks in specified m/z and time ranges

getScan signature(object = "xcmsRaw"): get m/z and intensity values for a single mass scan

getSpec signature(object = "xcmsRaw"): get average m/z and intensity values for multiple
mass scans

image signature(x = "xcmsRaw"): get data for peaks in specified m/z and time ranges

levelplot Create an image of the raw (profile) data m/z against retention time, with the intensity
color coded.

mslevel Getter method for the mslevel slot.

plotChrom signature(object = "xcmsRaw"): plot a chromatogram from profile data

plotRaw signature(object = "xcmsRaw"): plot locations of raw intensity data points

plotScan signature(object = "xcmsRaw"): plot a mass spectrum of an individual scan from the
raw data

plotSpec signature(object = "xcmsRaw"): plot a mass spectrum from profile data

plotSurf signature(object = "xcmsRaw"): experimental method for plotting 3D surface of pro-
file data with rgl.

plotTIC signature(object = "xcmsRaw"): plot total ion count chromatogram

profinfo signature(object = "xcmsRaw"): returns a list containing the profile generation method
and step (profile m/z step size) and eventual additional parameters to the profile function.

profMedFilt signature(object = "xcmsRaw"): median filter profile data in time and m/z dimen-
sions

profMethod<- signature(object = "xcmsRaw"): change the method of generating the profile
matrix

profMethod signature(object = "xcmsRaw"): get the method of generating the profile matrix

profMz signature(object = "xcmsRaw"): get vector of m/z values for each row of the profile
matrix

profRange signature(object = "xcmsRaw"): interpret flexible ways of specifying subsets of the
profile matrix

xcmsSet 305

profStep<- signature(object = "xcmsRaw"): change the m/z step used for generating the profile
matrix

profStep signature(object = "xcmsRaw"): get the m/z step used for generating the profile
matrix

revMz signature(object = "xcmsRaw"): reverse the order of the data points for each scan

scanrange Getter method for the scanrange slot. See slot description above for more information.

sortMz signature(object = "xcmsRaw"): sort the data points by increasing m/z for each scan

stitch signature(object = "xcmsRaw"): Raw data correction for lock mass calibration gaps.

findmzROI signature(object = "xcmsRaw"): internal function to identify regions of interest in
the raw data as part of the first step of centWave-based peak detection.

Author(s)

Colin A. Smith, <csmith@scripps.edu>, Johannes Rainer <johannes.rainer@eurac.edu>

See Also

xcmsRaw, subset-xcmsRaw for subsetting by spectra.

xcmsSet Constructor for xcmsSet objects which finds peaks in NetCDF/mzXML
files

Description

This function handles the construction of xcmsSet objects. It finds peaks in batch mode and pre-
sorts files from subdirectories into different classes suitable for grouping.

Usage

xcmsSet(files = NULL, snames = NULL, sclass = NULL, phenoData = NULL,
profmethod = "bin", profparam = list(),
polarity = NULL, lockMassFreq=FALSE,

mslevel=NULL, nSlaves=0, progressCallback=NULL,
scanrange = NULL, BPPARAM = bpparam(),
stopOnError = TRUE, ...)

Arguments

files path names of the NetCDF/mzXML files to read

snames sample names. By default the file name without extension is used.

sclass sample classes.

phenoData data.frame or AnnotatedDataFrame defining the sample names and classes
and other sample related properties. If not provided, the argument sclass or
the subdirectories in which the samples are stored will be used to specify sample
grouping.

306 xcmsSet

profmethod Method to use for profile generation. Supported values are "bin", "binlin",
"binlinbase" and "intlin" (for methods profBin, profBinLin, profBinLinBase
and profIntLin, respectively). See help on profBin for a complete list of avail-
able methods and their supported parameters.

profparam parameters to use for profile generation.

polarity filter raw data for positive/negative scans

lockMassFreq Performs correction for Waters LockMass function

mslevel perform peak picking on data of given mslevel

nSlaves DEPRECATED, use BPPARAM argument instead.
progressCallback

function to be called, when progressInfo changes (useful for GUIs)

scanrange scan range to read

BPPARAM a BiocParallel parameter object to control how and if parallel processing
should be performed. Such objects can be created by the SerialParam, MulticoreParam
or SnowParam functions.

stopOnError Logical specifying whether the feature detection call should stop on the first
encountered error (the default), or whether feature detection is performed in all
files regardless eventual failures for individual files in which case all errors are
reported as warnings.

... further arguments to the findPeaks method of the xcmsRaw class

Details

The default values of the files, snames, sclass, and phenoData arguments cause the function to
recursively search for readable files. The filename without extention is used for the sample name.
The subdirectory path is used for the sample class. If the files contain both positive and negative
spectra, the polarity can be selected explicitly. The default (NULL) is to read all scans.

If phenoData is provided, it is stored to the phenoData slot of the returned xcmsSet class. If
that data.frame contains a column named “class”, its content will be returned by the sampclass
method and thus be used for the group/class assignment of the individual files (e.g. for peak group-
ing etc.). For more details see the help of the xcmsSet-class.

The step size (in m/z) to use for profile generation can be submitted either using the profparam
argument (e.g. profparam=list(step=0.1)) or by submitting step=0.1. By specifying a value
of 0 the profile matrix generation can be skipped.

The feature/peak detection algorithm can be specified with the method argument which defaults
to the "matchFilter" method (findPeaks.matchedFilter). Possible values are returned by
getOption("BioC")$xcms$findPeaks.methods.

The lock mass correction allows for the lock mass scan to be added back in with the last working
scan. This correction gives better reproducibility between sample sets.

Value

A xcmsSet object.

Note

The arguments profmethod and profparam have no influence on the feature/peak detection. The
step size parameter step for the profile generation in the findPeaks.matchedFilter peak detec-
tion algorithm can be passed using the

xcmsSet-class 307

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsSet-class, findPeaks, profStep, profMethod, profBin

xcmsSet-class Class xcmsSet, a class for preprocessing peak data

Description

This class transforms a set of peaks from multiple LC/MS or GC/MS samples into a matrix of
preprocessed data. It groups the peaks and does nonlinear retention time correction without in-
ternal standards. It fills in missing peak values from raw data. Lastly, it generates extracted ion
chromatograms for ions of interest.

Details

The phenoData slot (and phenoData parameter in the xcmsSet function) is intended to contain a
data.frame describing all experimental factors, i.e. the samples along with their properties. If this
data.frame contains a column named “class”, this will be returned by the sampclass method and
will thus be used by all methods to determine the sample grouping/class assignment (e.g. to define
the colors in various plots or for the group method).

The sampclass<- method adds or replaces the “class” column in the phenoData slot. If a data.frame
is submitted to this method, the interaction of its columns will be stored into the “class” column.

Also, similar to other classes in Bioconductor, the $ method can be used to directly access all
columns in the phenoData slot (e.g. use xset$name on a xcmsSet object called “xset” to extract
the values from a column named “name” in the phenoData slot).

Objects from the Class

Objects can be created with the xcmsSet constructor which gathers peaks from a set NetCDF files.
Objects can also be created by calls of the form new("xcmsSet", ...).

Slots

peaks matrix containing peak data.

filled A vector with peak indices of peaks which have been added by a fillPeaks method.

groups Matrix containing statistics about peak groups.

groupidx List containing indices of peaks in each group.

phenoData A data.frame containing the experimental design factors.

rt list containing two lists, raw and corrected, each containing retention times for every scan of
every sample.

filepaths Character vector with absolute path name of each NetCDF file.

profinfo list containing the values method - profile generation method, and step - profile m/z
step size and eventual additional parameters to the profile function.

dataCorrection logical vector filled if the waters Lock mass correction parameter is used.

308 xcmsSet-class

polarity A string ("positive" or "negative" or NULL) describing whether only positive or negative
scans have been used reading the raw data.

progressInfo Progress informations for some xcms functions (for GUI).

progressCallback Function to be called, when progressInfo changes (for GUI).

mslevel Numeric representing the MS level on which the peak picking was performed (by default
on MS1). This slot should be accessed through its getter method mslevel.

scanrange Numeric of length 2 specifying the scan range (or NULL for the full range). This slot
should be accessed through its getter method scanrange. The scan range provided in this slot
represents the scans to which the whole raw data is subsetted.

.processHistory Internal slot to be used to keep track of performed processing steps. This slot
should not be directly accessed by the user.

Methods

c signature("xcmsSet"): combine objects together

filepaths<- signature(object = "xcmsSet"): set filepaths slot

filepaths signature(object = "xcmsSet"): get filepaths slot

diffreport signature(object = "xcmsSet"): create report of differentially regulated ions includ-
ing EICs

fillPeaks signature(object = "xcmsSet"): fill in peak data for groups with missing peaks

getEIC signature(object = "xcmsSet"): get list of EICs for each sample in the set

getXcmsRaw signature(object = "xcmsSet", sampleidx = 1,profmethod = profMethod(object),
profstep = profStep(object),profparam=profinfo(object), mslevel = NULL, scanrange
= NULL,rt=c("corrected", "raw"), BPPARAM = bpparam()): read the raw data for one or
more files in the xcmsSet and return it. The default parameters will apply all settings used in
the original xcmsSet call to generate the xcmsSet object to be applied also to the raw data. Pa-
rameter sampleidx allows to specify which raw file(s) should be loaded. Argument BPPARAM
allows to setup parallel processing.

groupidx<- signature(object = "xcmsSet"): set groupidx slot

groupidx signature(object = "xcmsSet"): get groupidx slot

groupnames signature(object = "xcmsSet"): get textual names for peak groups

groups<- signature(object = "xcmsSet"): set groups slot

groups signature(object = "xcmsSet"): get groups slot

groupval signature(object = "xcmsSet"): get matrix of values from peak data with a row for
each peak group

group signature(object = "xcmsSet"): find groups of peaks across samples that share similar
m/z and retention times

mslevel Getter method for the mslevel slot.

peaks<- signature(object = "xcmsSet"): set peaks slot

peaks signature(object = "xcmsSet"): get peaks slot

plotrt signature(object = "xcmsSet"): plot retention time deviation profiles

profinfo<- signature(object = "xcmsSet"): set profinfo slot

profinfo signature(object = "xcmsSet"): get profinfo slot

profMethod signature(object = "xcmsSet"): extract the method used to generate the profile
matrix.

xcmsSource-class 309

profStep signature(object = "xcmsSet"): extract the profile step used for the generation of the
profile matrix.

retcor signature(object = "xcmsSet"): use initial grouping of peaks to do nonlinear loess re-
tention time correction

sampclass<- signature(object = "xcmsSet"): Replaces the column “class” in the phenoData
slot. See details for more information.

sampclass signature(object = "xcmsSet"): Returns the content of the column “class” from the
phenoData slot or, if not present, the interaction of the experimental design factors (i.e. of the
phenoData data.frame). See details for more information.

phenoData<- signature(object = "xcmsSet"): set the phenoData slot

phenoData signature(object = "xcmsSet"): get the phenoData slot

progressCallback<- signature(object = "xcmsSet"): set the progressCallback slot

progressCallback signature(object = "xcmsSet"): get the progressCallback slot

scanrange Getter method for the scanrange slot. See scanrange slot description above for more
details.

sampnames<- signature(object = "xcmsSet"): set rownames in the phenoData slot

sampnames signature(object = "xcmsSet"): get rownames in the phenoData slot

split signature("xcmsSet"): divide the xcmsSet into a list of xcmsSet objects depending on
the provided factor. Note that only peak data will be preserved, i.e. eventual peak grouping
information will be lost.

object$name, object$name<-value Access and set name column in phenoData

object[, i] Conducts subsetting of a xcmsSet instance. Only subsetting on columns, i.e. sam-
ples, is supported. Subsetting is performed on all slots, also on groups and groupidx. Pa-
rameter i can be an integer vector, a logical vector or a character vector of sample names
(matching sampnames).

Author(s)

Colin A. Smith, <csmith@scripps.edu>, Johannes Rainer <johannes.rainer@eurac.edu>

See Also

xcmsSet

xcmsSource-class Virtual class for raw data sources

Description

This virtual class provides an implementation-independent way to load mass spectrometer data from
various sources for use in an xcmsRaw object. Subclasses can be defined to enable data to be loaded
from user-specified sources. The virtual class xcmsFileSource is included out of the box which
contains a file name as a character string.

When implementing child classes of xcmsSource, a corresponding loadRaw-methods method must
be provided which accepts the xcmsSource child class and returns a list in the format described in
loadRaw-methods.

310 [,XCMSnExp,ANY,ANY,ANY-method

Objects from the Class

A virtual Class: No objects may be created from it.

Author(s)

Daniel Hackney, <dan@haxney.org>

See Also

xcmsSource-methods for creating xcmsSource objects in various ways.

xcmsSource-methods Create an xcmsSource object in a flexible way

Description

Users can define alternate means of reading data for xcmsRaw objects by creating new implementa-
tions of this method.

Methods

signature(object = "xcmsSource") Pass the object through unmodified.

Author(s)

Daniel Hackney, <dan@haxney.org>

See Also

xcmsSource

[,XCMSnExp,ANY,ANY,ANY-method

XCMSnExp filtering and subsetting

Description

The methods listed on this page allow to filter and subset XCMSnExp objects. Most of them are
inherited from the MSnbase::OnDiskMSnExp object defined in the MSnbase package and have
been adapted for XCMSnExp to enable correct subsetting of preprocessing results.

• [: subset a XCMSnExp object by spectra. Be aware that this removes all preprocessing results,
except adjusted retention times if keepAdjustedRtime = TRUE is passed to the method.

• [[: extracts a single Spectrum object (defined in MSnbase). The reported retention time is the
adjusted retention time if alignment has been performed.

• filterChromPeaks: subset the chromPeaks matrix in object. Parameter method allows to
specify how the chromatographic peaks should be filtered. Currently, only method = "keep"
is supported which allows to specify chromatographic peaks to keep with parameter keep (i.e.
provide a logical, integer or character defining which chromatographic peaks to keep).
Feature definitions (if present) are updated correspondingly.

[,XCMSnExp,ANY,ANY,ANY-method 311

• filterFeatureDefinitions: allows to subset the feature definitions of an XCMSnExp object.
Parameter features allow to define which features to keep. It can be a logical, integer
(index of features to keep) or character (feature IDs) vector.

• filterFile: allows to reduce the XCMSnExp to data from only selected files. Identified chro-
matographic peaks for these files are retained while correspondence results (feature defini-
tions) are removed by default. To force keeping feature definitions use keepFeatures = TRUE.
Adjusted retention times (if present) are retained by default if present. Use keepAdjustedRtime
= FALSE to drop them.

• filterMsLevel: reduces the XCMSnExp object to spectra of the specified MS level(s). Chro-
matographic peaks and identified features are also subsetted to the respective MS level. See
also the filterMsLevel documentation in MSnbase for details and examples.

• filterMz: filters the data set based on the provided m/z value range. All chromatographic
peaks and features (grouped peaks) with their apex falling within the provided mz value range
are retained (i.e. if chromPeaks(object)[, "mz"] is >= mz[1] and <= mz[2]). Adjusted
retention times, if present, are kept.

• filterRt: filters the data set based on the provided retention time range. All chromatographic
peaks and features (grouped peaks) within the specified retention time window are retained
(i.e. if the retention time corresponding to the peak’s apex is within the specified rt range). If
retention time correction has been performed, the method will by default filter the object by
adjusted retention times. The argument adjusted allows to specify manually whether filtering
should be performed on raw or adjusted retention times. Filtering by retention time does not
drop any preprocessing results nor does it remove or change alignment results (i.e. adjusted
retention times). The method returns an empty object if no spectrum or feature is within the
specified retention time range.

• split: splits an XCMSnExp object into a list of XCMSnExp objects based on the provided
parameter f. Note that by default all pre-processing results are removed by the splitting, except
adjusted retention times, if the optional argument keepAdjustedRtime = TRUE is provided.

Usage

S4 method for signature 'XCMSnExp,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'XCMSnExp,ANY,ANY'
x[[i, j, drop = FALSE]]

S4 method for signature 'XCMSnExp'
filterMsLevel(object, msLevel., keepAdjustedRtime = hasAdjustedRtime(object))

S4 method for signature 'XCMSnExp'
filterFile(
object,
file,
keepAdjustedRtime = hasAdjustedRtime(object),
keepFeatures = FALSE

)

S4 method for signature 'XCMSnExp'
filterMz(object, mz, msLevel., ...)

S4 method for signature 'XCMSnExp'

312 [,XCMSnExp,ANY,ANY,ANY-method

filterRt(object, rt, msLevel., adjusted = hasAdjustedRtime(object))

S4 method for signature 'XCMSnExp,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'XCMSnExp'
filterChromPeaks(
object,
keep = rep(TRUE, nrow(chromPeaks(object))),
method = "keep",
...

)

S4 method for signature 'XCMSnExp'
filterFeatureDefinitions(object, features = integer())

Arguments

x For [and [[: an XCMSnExp object.

i For [: numeric or logical vector specifying to which spectra the data set
should be reduced. For [[: a single integer or character.

j For [and [[: not supported.

... Optional additional arguments.

drop For [and [[: not supported.

object A XCMSnExp object.

msLevel. For filterMz, filterRt: numeric defining the MS level(s) to which operations
should be applied or to which the object should be subsetted.

keepAdjustedRtime

For filterFile, filterMsLevel, [, split: logical(1) defining whether the
adjusted retention times should be kept, even if e.g. features are being removed
(and the retention time correction was performed on these features).

file For filterFile: integer defining the file index within the object to subset the
object by file or character specifying the file names to sub set. The indices are
expected to be increasingly ordered, if not they are ordered internally.

keepFeatures For filterFile: logical(1) whether correspondence results (feature defini-
tions) should be kept or dropped. Defaults to keepFeatures = FALSE hence
feature definitions are removed from the returned object by default.

mz For filterMz: numeric(2) defining the lower and upper mz value for the fil-
tering.

rt For filterRt: numeric(2) defining the retention time window (lower and up-
per bound) for the filtering.

adjusted For filterRt: logical indicating whether the object should be filtered by
original (adjusted = FALSE) or adjusted retention times (adjusted = TRUE). For
spectra: whether the retention times in the individual Spectrum objects should
be the adjusted or raw retention times.

f For split a vector of length equal to the length of x defining how x should be
splitted. It is converted internally to a factor.

keep For filterChromPeaks: logical, integer or character defining which chro-
matographic peaks should be retained.

[,XCMSnExp,ANY,ANY,ANY-method 313

method For filterChromPeaks: character(1) allowing to specify the method by which
chromatographic peaks should be filtered. Currently only method = "keep"
is supported (i.e. specify with parameter keep which chromatographic peaks
should be retained).

features For filterFeatureDefinitions: either a integer specifying the indices of
the features (rows) to keep, a logical with a length matching the number of
rows of featureDefinitions or a character with the feature (row) names.

Details

All subsetting methods try to ensure that the returned data is consistent. Correspondence results
for example are removed by default if the data set is sub-setted by file, since the correspondence
results are dependent on the files on which correspondence was performed. This can be changed by
setting keepFeatures = TRUE. For adjusted retention times, most subsetting methods support the
argument keepAdjustedRtime (even the [method) that forces the adjusted retention times to be
retained even if the default would be to drop them.

Value

All methods return an XCMSnExp object.

Note

The filterFile method removes also process history steps not related to the files to which the
object should be sub-setted and updates the fileIndex attribute accordingly. Also, the method
does not allow arbitrary ordering of the files or re-ordering of the files within the object.

Note also that most of the filtering methods, and also the subsetting operations [drop all or selected
preprocessing results. To consolidate the alignment results, i.e. ensure that adjusted retention times
are always preserved, use the applyAdjustedRtime() function on the object that contains the
alignment results. This replaces the raw retention times with the adjusted ones.

Author(s)

Johannes Rainer

See Also

XCMSnExp for base class documentation.

XChromatograms() for similar filter functions on XChromatograms objects.

Examples

Loading a test data set with identified chromatographic peaks
library(MSnbase)
data(faahko_sub)
Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")

Disable parallel processing for this example
register(SerialParam())

Subset the dataset to the first and third file.
xod_sub <- filterFile(faahko_sub, file = c(1, 3))

314 [,xcmsRaw,logicalOrNumeric,missing,missing-method

The number of chromatographic peaks per file for the full object
table(chromPeaks(faahko_sub)[, "sample"])

The number of chromatographic peaks per file for the subset
table(chromPeaks(xod_sub)[, "sample"])

basename(fileNames(faahko_sub))
basename(fileNames(xod_sub))

Filter on mz values; chromatographic peaks and features within the
mz range are retained (as well as adjusted retention times).
xod_sub <- filterMz(faahko_sub, mz = c(300, 400))
head(chromPeaks(xod_sub))
nrow(chromPeaks(xod_sub))
nrow(chromPeaks(faahko_sub))

Filter on rt values. All chromatographic peaks and features within the
retention time range are retained. Filtering is performed by default on
adjusted retention times, if present.
xod_sub <- filterRt(faahko_sub, rt = c(2700, 2900))

range(rtime(xod_sub))
head(chromPeaks(xod_sub))
range(chromPeaks(xod_sub)[, "rt"])

nrow(chromPeaks(faahko_sub))
nrow(chromPeaks(xod_sub))

Extract a single Spectrum
faahko_sub[[4]]

Subsetting using [removes all preprocessing results - using
keepAdjustedRtime = TRUE would keep adjusted retention times, if present.
xod_sub <- faahko_sub[fromFile(faahko_sub) == 1]
xod_sub

Using split does also remove preprocessing results, but it supports the
optional parameter keepAdjustedRtime.
Split the object into a list of XCMSnExp objects, one per file
xod_list <- split(faahko_sub, f = fromFile(faahko_sub))
xod_list

[,xcmsRaw,logicalOrNumeric,missing,missing-method

Subset an xcmsRaw object by scans

Description

Subset an xcmsRaw object by scans. The returned xcmsRaw object contains values for all scans
specified with argument i. Note that the scanrange slot of the returned xcmsRaw will be c(1,
length(object@scantime)) and hence not range(i).

[,xcmsRaw,logicalOrNumeric,missing,missing-method 315

Usage

S4 method for signature 'xcmsRaw,logicalOrNumeric,missing,missing'
x[i, j, drop]

Arguments

x The xcmsRaw object that should be sub-setted.

i Integer or logical vector specifying the scans/spectra to which x should be sub-
setted.

j Not supported.

drop Not supported.

Details

Only subsetting by scan index in increasing order or by a logical vector are supported. If not
ordered, argument i is sorted automatically. Indices which are larger than the total number of scans
are discarded.

Value

The sub-setted xcmsRaw object.

Author(s)

Johannes Rainer

Examples

Load a test file
file <- system.file('cdf/KO/ko15.CDF', package = "faahKO")
xraw <- xcmsRaw(file, profstep = 0)
The number of scans/spectra:
length(xraw@scantime)

Subset the object to scans with a scan time from 3500 to 4000.
xsub <- xraw[xraw@scantime >= 3500 & xraw@scantime <= 4000]
range(xsub@scantime)
The number of scans:
length(xsub@scantime)
The number of values of the subset:
length(xsub@env$mz)

Index

∗ Filter features in xcms
BlankFlag, 22
DratioFilter, 86
PercentMissingFilter, 208
RsdFilter, 253

∗ NA
na.flatfill, 201

∗ Old peak detection methods
findPeaks.matchedFilter,xcmsRaw-method,

163
∗ aplot

panel.cor, 202
∗ array

colMax, 56
rectUnique, 243

∗ chromatographic peak refinement
methods

refineChromPeaks, 244
∗ classes

xcmsEIC-class, 286
xcmsFileSource-class, 287
xcmsFragments-class, 289
xcmsPeaks-class, 300
xcmsRaw-class, 303
xcmsSet-class, 307
xcmsSource-class, 309

∗ core peak detection functions
do_findChromPeaks_centWave, 65
do_findChromPeaks_centWaveWithPredIsoROIs,

69
do_findChromPeaks_massifquant, 73
do_findChromPeaks_matchedFilter,

76
do_findPeaks_MSW, 79

∗ core peak grouping algorithms
do_groupChromPeaks_density, 80
do_groupChromPeaks_nearest, 83
do_groupPeaks_mzClust, 84

∗ core retention time correction algorithms
do_adjustRtime_peakGroups, 63

∗ feature grouping methods
groupFeatures-abundance-correlation,

178

groupFeatures-eic-similarity, 180
groupFeatures-similar-rtime, 182

∗ file
calibrate-methods, 28
diffreport-methods, 60
fillPeaks-methods, 104
fillPeaks.chrom-methods, 105
fillPeaks.MSW-methods, 106
getEIC-methods, 167
getXcmsRaw-methods, 170
group.density, 172
group.mzClust, 172
group.nearest, 173
groupnames-methods, 185
peakTable-methods, 207
retcor.peakgroups-methods, 251
sampnames-methods, 254
verify.mzQuantM, 270
write.cdf-methods, 270
write.mzdata-methods, 271
write.mzQuantML-methods, 272
writeMzTab, 273
xcmsFileSource-class, 287
xcmsFragments, 288
xcmsRaw, 301
xcmsSet, 305

∗ functions to define bins
breaks_on_binSize, 24
breaks_on_nBins, 25

∗ hplot
image-methods, 188
levelplot-methods, 194
plot.xcmsEIC, 210
plotChrom-methods, 213
plotPeaks-methods, 223
plotRaw-methods, 225
plotrt-methods, 226
plotScan-methods, 227
plotSpec-methods, 227
plotSurf-methods, 228
plotTIC-methods, 228

∗ imputation functions
imputeRowMin, 191

316

INDEX 317

imputeRowMinRand, 192
∗ internal

CentWaveParam-class, 29
colMax, 56
descendZero, 59
doubleMatrix, 62
filtfft, 126
findEqualGreater, 147
na.flatfill, 201
panel.cor, 202
profGenerate, 230
pval, 237
rectUnique, 243

∗ iplot
plotChrom-methods, 213
plotSpec-methods, 227
plotSurf-methods, 228
plotTIC-methods, 228

∗ iteration
descendZero, 59

∗ lockmass
AutoLockMass-methods, 16

∗ manip
AutoLockMass-methods, 16
c-methods, 26
colMax, 56
getPeaks-methods, 168
getScan-methods, 169
getSpec-methods, 169
groupval-methods, 186
medianFilter, 199
msn2xcmsRaw, 200
profGenerate, 230
profMedFilt-methods, 234
profMethod-methods, 235
profRange-methods, 235
profStep-methods, 236
retexp, 252
specNoise, 259
specPeaks, 260
split.xcmsRaw, 261
split.xcmsSet, 261
stitch-methods, 263

∗ math
filtfft, 126

∗ methods
absent-methods, 6
AutoLockMass-methods, 16
calibrate-methods, 28
collect-methods, 55
diffreport-methods, 60
fillPeaks-methods, 104

fillPeaks.chrom-methods, 105
fillPeaks.MSW-methods, 106
findMZ, 148
findneutral, 149
findPeaks-methods, 150
findPeaks.addPredictedIsotopeFeatures-methods,

154
findPeaks.centWave-methods, 156
findPeaks.centWaveWithPredictedIsotopeROIs-methods,

158
findPeaks.massifquant-methods, 161
findPeaks.MS1-methods, 164
getEIC-methods, 167
getPeaks-methods, 168
getScan-methods, 169
getSpec-methods, 169
getXcmsRaw-methods, 170
group-methods, 171
group.density, 172
group.mzClust, 172
group.nearest, 173
groupnames-methods, 185
groupval-methods, 186
loadRaw-methods, 195
peakPlots-methods, 203
peakTable-methods, 207
plot.xcmsEIC, 210
plotChrom-methods, 213
plotEIC-methods, 220
plotPeaks-methods, 223
plotRaw-methods, 225
plotrt-methods, 226
plotScan-methods, 227
plotSpec-methods, 227
plotSurf-methods, 228
plotTIC-methods, 228
profMedFilt-methods, 234
profMethod-methods, 235
profRange-methods, 235
profStep-methods, 236
rawEIC-methods, 239
rawMat-methods, 240
retcor-methods, 249
retcor.obiwarp, 250
retcor.peakgroups-methods, 251
sampnames-methods, 254
specDist-methods, 256
specDist.cosine, 257
specDist.meanMZmatch, 258
specDist.peakCount-methods, 259
stitch-methods, 263
write.cdf-methods, 270

318 INDEX

write.mzdata-methods, 271
write.mzQuantML-methods, 272
xcmsSource-methods, 310

∗ models
etg, 89

∗ nonlinear
SSgauss, 262

∗ peak detection functions for
chromatographic data

peaksWithCentWave, 203
peaksWithMatchedFilter, 206

∗ peak detection methods
findChromPeaks, 127
findChromPeaks-centWave, 132
findChromPeaks-centWaveWithPredIsoROIs,

135
findChromPeaks-massifquant, 139
findChromPeaks-matchedFilter, 142
findPeaks-MSW, 151

∗ peak grouping methods
groupChromPeaks, 175

∗ programming
doubleMatrix, 62

∗ retention time correction methods
adjustRtime, 7

∗ univar
pval, 237

∗ utilities
findEqualGreater, 147

[,XCMSnExp,ANY,ANY,ANY-method, 310
[,XChromatograms,ANY,ANY,ANY-method

(XChromatograms), 274
[,XcmsExperiment,ANY,ANY,ANY-method

(filterFeatureDefinitions), 109
[,XcmsExperimentHdf5,ANY,ANY,ANY-method

(CentWaveParam-class), 29
[,xcmsRaw,logicalOrNumeric,missing,missing-method,

314
[,xcmsSet,ANY,ANY,ANY-method

(xcmsSet-class), 307
[,xcmsSet-method (xcmsSet-class), 307
[[,XCMSnExp,ANY,ANY-method

([,XCMSnExp,ANY,ANY,ANY-method),
310

$,xcmsSet-method (xcmsSet-class), 307
$<-,xcmsSet-method (xcmsSet-class), 307

absent (absent-methods), 6
absent,xcmsSet-method (absent-methods),

6
absent-methods, 6
absMz,MzClustParam-method

(CentWaveParam-class), 29

absMz,NearestPeaksParam-method
(CentWaveParam-class), 29

absMz<-,MzClustParam-method
(CentWaveParam-class), 29

absMz<-,NearestPeaksParam-method
(CentWaveParam-class), 29

absRt,NearestPeaksParam-method
(CentWaveParam-class), 29

absRt<-,NearestPeaksParam-method
(CentWaveParam-class), 29

addParams,MSWParam-method
(CentWaveParam-class), 29

addParams<-,MSWParam-method
(CentWaveParam-class), 29

adjustedRtime (XCMSnExp-class), 290
adjustedRtime(), 290
adjustedRtime,MsFeatureData-method

(CentWaveParam-class), 29
adjustedRtime,XcmsExperiment-method

(filterFeatureDefinitions), 109
adjustedRtime,XCMSnExp-method

(XCMSnExp-class), 290
adjustedRtime<- (XCMSnExp-class), 290
adjustedRtime<-,MsFeatureData-method

(CentWaveParam-class), 29
adjustedRtime<-,XCMSnExp-method

(XCMSnExp-class), 290
adjustRtime, 7
adjustRtime(), 11, 13–15, 110, 119, 211,

290–292, 298
adjustRtime,MsExperiment,ObiwarpParam-method

(adjustRtime), 7
adjustRtime,MsExperiment,PeakGroupsParam-method

(adjustRtime), 7
adjustRtime,OnDiskMSnExp,ObiwarpParam-method

(adjustRtime), 7
adjustRtime,XcmsExperiment,LamaParama-method,

11
adjustRtime,XCMSnExp,ObiwarpParam-method

(adjustRtime), 7
adjustRtime,XCMSnExp,PeakGroupsParam-method

(adjustRtime), 7
adjustRtimePeakGroups (adjustRtime), 7
adjustRtimePeakGroups,XcmsExperimentHdf5,PeakGroupsParam-method

(toXcmsExperimentHdf5), 264
adjustRtimePeakGroups,XcmsResult,PeakGroupsParam-method

(CentWaveParam-class), 29
ampTh,MSWParam-method

(CentWaveParam-class), 29
ampTh<-,MSWParam-method

(CentWaveParam-class), 29
applyAdjustedRtime, 15

INDEX 319

applyAdjustedRtime(), 7, 91, 119, 298, 313
array, 300
as.list,CentWaveParam-method

(findChromPeaks-centWave), 132
as.list,PeakDensityParam-method

(groupChromPeaks), 175
AutoLockMass (AutoLockMass-methods), 16
AutoLockMass,xcmsRaw-method

(AutoLockMass-methods), 16
AutoLockMass-methods, 16

baseValue,MatchedFilterParam-method
(CentWaveParam-class), 29

baseValue<-,MatchedFilterParam-method
(CentWaveParam-class), 29

BetaDistributionParam
(chromPeakSummary), 54

bin,XCMSnExp-method, 17
binSize,MatchedFilterParam-method

(CentWaveParam-class), 29
binSize,ObiwarpParam-method

(CentWaveParam-class), 29
binSize,PeakDensityParam-method

(CentWaveParam-class), 29
binSize<-,MatchedFilterParam-method

(CentWaveParam-class), 29
binSize<-,ObiwarpParam-method

(adjustRtime), 7
binSize<-,PeakDensityParam-method

(CentWaveParam-class), 29
binYonX, 19, 231, 286
binYonX(), 24, 26, 78
BiocParallel::bpparam(), 9, 13, 53, 55, 88,

95, 115, 128, 129, 134, 138, 141,
144, 146, 152, 198, 233, 242, 246,
296

BiocParallel::register(), 134, 138, 141,
144, 153

BiocParallel::SnowParam(), 269
BlankFlag, 22, 23, 87, 125, 209, 254
breaks_on_binSize, 24, 26
breaks_on_nBins, 24, 25
bw,PeakDensityParam-method

(CentWaveParam-class), 29
bw<-,PeakDensityParam-method

(CentWaveParam-class), 29

c, 308
c, c-methods (c-methods), 26
c-methods, 26
c.XcmsExperiment

(filterFeatureDefinitions), 109
c.XCMSnExp (XCMSnExp-class), 290

c.xcmsSet (c-methods), 26
CalibrantMassParam

(CalibrantMassParam-class), 27
CalibrantMassParam-class, 27
calibrate (calibrate-methods), 28
calibrate,XCMSnExp-method

(CalibrantMassParam-class), 27
calibrate,xcmsSet-method

(calibrate-methods), 28
calibrate-methods, 28
centerSample,ObiwarpParam-method

(CentWaveParam-class), 29
centerSample<-,ObiwarpParam-method

(CentWaveParam-class), 29
centWave, 129, 158, 163, 204, 205
centWave (findChromPeaks-centWave), 132
centWave(), 72, 138
CentWaveParam, 129, 146
CentWaveParam

(findChromPeaks-centWave), 132
CentWaveParam(), 127, 166, 230, 296
CentWaveParam-class, 29
CentWavePredIsoParam

(findChromPeaks-centWaveWithPredIsoROIs),
135

CentWavePredIsoParam(), 127, 296
CentWavePredIsoParam-class

(CentWaveParam-class), 29
centWaveWithPredIsoROIs

(findChromPeaks-centWaveWithPredIsoROIs),
135

character, 287
checkBack,MassifquantParam-method

(CentWaveParam-class), 29
checkBack<-,MassifquantParam-method

(CentWaveParam-class), 29
chromatogram

(chromatogram,XCMSnExp-method),
46

chromatogram(), 94, 280, 283
chromatogram,MsExperiment-method

(filterFeatureDefinitions), 109
chromatogram,XcmsExperiment-method

(filterFeatureDefinitions), 109
chromatogram,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
chromatogram,XCMSnExp-method, 46
ChromPeakAreaParam (fillChromPeaks), 100
ChromPeakAreaParam-class

(CentWaveParam-class), 29
chromPeakChromatograms, 49
chromPeakChromatograms(), 95

320 INDEX

chromPeakChromatograms,XcmsExperiment-method
(chromPeakChromatograms), 49

chromPeakData (XCMSnExp-class), 290
chromPeakData(), 100, 145, 147
chromPeakData,MsFeatureData-method

(CentWaveParam-class), 29
chromPeakData,XChromatogram-method

(XChromatograms), 274
chromPeakData,XChromatograms-method

(XChromatograms), 274
chromPeakData,XcmsExperiment-method

(filterFeatureDefinitions), 109
chromPeakData,XcmsExperimentHdf5-method

(toXcmsExperimentHdf5), 264
chromPeakData,XCMSnExp-method

(XCMSnExp-class), 290
chromPeakData<- (XCMSnExp-class), 290
chromPeakData<-,MsFeatureData-method

(CentWaveParam-class), 29
chromPeakData<-,XChromatogram-method

(XChromatograms), 274
chromPeakData<-,XcmsExperiment-method

(filterFeatureDefinitions), 109
chromPeakData<-,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
chromPeakData<-,XCMSnExp-method

(XCMSnExp-class), 290
chromPeaks, 217
chromPeaks (XCMSnExp-class), 290
chromPeaks(), 53, 100, 103, 145, 146, 188,

238, 290, 296
chromPeaks,MsFeatureData-method

(CentWaveParam-class), 29
chromPeaks,XChromatogram-method

(XChromatograms), 274
chromPeaks,XChromatograms-method

(XChromatograms), 274
chromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
chromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
chromPeaks,XCMSnExp-method

(XCMSnExp-class), 290
chromPeaks<- (XCMSnExp-class), 290
chromPeaks<-,MsFeatureData-method

(CentWaveParam-class), 29
chromPeaks<-,XChromatogram-method

(XChromatograms), 274
chromPeaks<-,XcmsExperiment-method

(filterFeatureDefinitions), 109
chromPeaks<-,XcmsExperimentHdf5-method

(CentWaveParam-class), 29

chromPeaks<-,XCMSnExp-method
(XCMSnExp-class), 290

chromPeakSpectra, 51
chromPeakSpectra(), 97, 98, 119
chromPeakSpectra,XcmsExperiment-method

(chromPeakSpectra), 51
chromPeakSpectra,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
chromPeakSpectra,XCMSnExp-method

(chromPeakSpectra), 51
chromPeakSummary, 54
chromPeakSummary,XcmsExperiment,BetaDistributionParam-method

(chromPeakSummary), 54
chromPeakSummary,XcmsExperimentHdf5,BetaDistributionParam-method

(CentWaveParam-class), 29
class:Param (CentWaveParam-class), 29
clean,XCMSnExp-method

(bin,XCMSnExp-method), 17
CleanPeaksParam (refineChromPeaks), 244
CleanPeaksParam-class

(CentWaveParam-class), 29
coerce,MChromatograms,XChromatograms-method

(XChromatograms), 274
collect, 288, 289
collect (collect-methods), 55
collect,xcmsFragments-method

(collect-methods), 55
collect,xcmsRaw-method

(collect-methods), 55
collect-methods, 55
colMax, 56
colSums, 57
consecMissedLimit,MassifquantParam-method

(CentWaveParam-class), 29
consecMissedLimit<-,MassifquantParam-method

(CentWaveParam-class), 29
cor(), 58, 181
correlate

(correlate,Chromatogram,Chromatogram-method),
57

correlate,Chromatogram,Chromatogram-method,
57

correlate,MChromatograms,MChromatograms-method
(correlate,Chromatogram,Chromatogram-method),
57

correlate,MChromatograms,missing-method
(correlate,Chromatogram,Chromatogram-method),
57

criticalValue,MassifquantParam-method
(CentWaveParam-class), 29

criticalValue<-,MassifquantParam-method
(CentWaveParam-class), 29

INDEX 321

deepCopy (xcmsRaw), 301
deepCopy,xcmsRaw-method (xcmsRaw), 301
density, 172
descendMin (descendZero), 59
descendValue, 59
descendValue (descendZero), 59
descendZero, 59
diffreport, 7, 207, 308
diffreport (diffreport-methods), 60
diffreport,xcmsSet-method

(diffreport-methods), 60
diffreport-methods, 60
dirname, 62
dirname,OnDiskMSnExp-method (dirname),

62
dirname<-,OnDiskMSnExp-method

(dirname), 62
distance,MatchedFilterParam-method

(CentWaveParam-class), 29
distance<-,MatchedFilterParam-method

(CentWaveParam-class), 29
distFun,ObiwarpParam-method

(CentWaveParam-class), 29
distFun<-,ObiwarpParam-method

(CentWaveParam-class), 29
do_adjustRtime_peakGroups, 63
do_adjustRtime_peakGroups(), 7
do_findChromPeaks_addPredIsoROIs

(do_findChromPeaks_centWaveWithPredIsoROIs),
69

do_findChromPeaks_centWave, 65, 72, 75,
78, 80

do_findChromPeaks_centWave(), 71, 73, 75,
135, 140

do_findChromPeaks_centWaveWithPredIsoROIs,
68, 69, 75, 78, 80, 160

do_findChromPeaks_centWaveWithPredIsoROIs(),
138

do_findChromPeaks_massifquant, 68, 72,
73, 78, 80

do_findChromPeaks_massifquant(), 142
do_findChromPeaks_matchedFilter, 68, 72,

75, 76, 80, 269
do_findChromPeaks_matchedFilter(), 145,

163
do_findPeaks_MSW, 68, 72, 75, 78, 79
do_findPeaks_MSW(), 153
do_groupChromPeaks_density, 80, 84, 86,

172
do_groupChromPeaks_density(), 175
do_groupChromPeaks_nearest, 82, 83, 86
do_groupChromPeaks_nearest(), 175

do_groupPeaks_mzClust, 82, 84, 84
do_groupPeaks_mzClust(), 175
doubleMatrix, 62
DratioFilter, 23, 24, 86, 87, 124, 125, 209,

254
dropAdjustedRtime (XCMSnExp-class), 290
dropAdjustedRtime(), 15
dropAdjustedRtime,MsFeatureData-method

(CentWaveParam-class), 29
dropAdjustedRtime,XcmsExperiment-method

(filterFeatureDefinitions), 109
dropAdjustedRtime,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
dropAdjustedRtime,XCMSnExp-method

(XCMSnExp-class), 290
dropChromPeaks (XCMSnExp-class), 290
dropChromPeaks,MsFeatureData-method

(CentWaveParam-class), 29
dropChromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
dropChromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
dropChromPeaks,XCMSnExp-method

(XCMSnExp-class), 290
dropFeatureDefinitions

(XCMSnExp-class), 290
dropFeatureDefinitions,MsFeatureData-method

(CentWaveParam-class), 29
dropFeatureDefinitions,XChromatograms-method

(XChromatograms), 274
dropFeatureDefinitions,XcmsExperiment-method

(filterFeatureDefinitions), 109
dropFeatureDefinitions,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
dropFeatureDefinitions,XCMSnExp-method

(XCMSnExp-class), 290
dropFilledChromPeaks (XCMSnExp-class),

290
dropFilledChromPeaks(), 281
dropFilledChromPeaks,XChromatogram-method

(XChromatograms), 274
dropFilledChromPeaks,XChromatograms-method

(XChromatograms), 274
dropFilledChromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
dropFilledChromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
dropFilledChromPeaks,XCMSnExp-method

(XCMSnExp-class), 290

EicSimilarityParam
(groupFeatures-eic-similarity),
180

322 INDEX

EicSimilarityParam(), 92
EicSimilarityParam-class

(groupFeatures-eic-similarity),
180

estimatePrecursorIntensity,MsExperiment-method,
88

estimatePrecursorIntensity,OnDiskMSnExp-method
(estimatePrecursorIntensity,MsExperiment-method),
88

etg, 89
expandMz,FillChromPeaksParam-method

(CentWaveParam-class), 29
expandMz<-,FillChromPeaksParam-method

(CentWaveParam-class), 29
expandRt,FillChromPeaksParam-method

(CentWaveParam-class), 29
expandRt<-,FillChromPeaksParam-method

(CentWaveParam-class), 29
exportMetaboAnalyst, 90
extractMsData

(extractMsData,OnDiskMSnExp-method),
91

extractMsData(), 222
extractMsData,OnDiskMSnExp-method, 91
extractMsData,XCMSnExp-method

(extractMsData,OnDiskMSnExp-method),
91

extraPeaks,PeakGroupsParam-method
(CentWaveParam-class), 29

extraPeaks<-,PeakGroupsParam-method
(CentWaveParam-class), 29

faahko_sub (loadXcmsData), 196
faahko_sub2 (loadXcmsData), 196
factorDiag,ObiwarpParam-method

(CentWaveParam-class), 29
factorDiag<-,ObiwarpParam-method

(CentWaveParam-class), 29
factorGap,ObiwarpParam-method

(CentWaveParam-class), 29
factorGap<-,ObiwarpParam-method

(CentWaveParam-class), 29
family,PeakGroupsParam-method

(CentWaveParam-class), 29
family<-,PeakGroupsParam-method

(CentWaveParam-class), 29
feature-grouping, 92
featureArea, 103
featureArea (filterFeatureDefinitions),

109
featureArea,XcmsExperimentHdf5-method

(CentWaveParam-class), 29

featureArea,XcmsResult-method
(filterFeatureDefinitions), 109

featureChromatograms, 93
featureChromatograms(), 50, 120, 181, 239
featureChromatograms,XcmsExperiment-method

(featureChromatograms), 93
featureChromatograms,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
featureChromatograms,XCMSnExp-method

(featureChromatograms), 93
featureDefinitions (XCMSnExp-class), 290
featureDefinitions(), 100, 183, 201, 238,

239, 290
featureDefinitions,MsFeatureData-method

(CentWaveParam-class), 29
featureDefinitions,XChromatograms-method

(XChromatograms), 274
featureDefinitions,XcmsExperiment-method

(filterFeatureDefinitions), 109
featureDefinitions,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
featureDefinitions,XCMSnExp-method

(XCMSnExp-class), 290
featureDefinitions<- (XCMSnExp-class),

290
featureDefinitions<-,MsFeatureData-method

(CentWaveParam-class), 29
featureDefinitions<-,XcmsExperiment-method

(filterFeatureDefinitions), 109
featureDefinitions<-,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
featureDefinitions<-,XCMSnExp-method

(XCMSnExp-class), 290
featureGroups,XcmsResult-method

(feature-grouping), 92
featureGroups<-,XcmsResult-method

(feature-grouping), 92
featureSpectra, 96
featureSpectra(), 120
featureSpectra,XcmsExperiment-method

(featureSpectra), 96
featureSpectra,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
featureSpectra,XCMSnExp-method

(featureSpectra), 96
featureSummary, 98
featureSummary(), 120, 290, 298
featureValues

(quantify,XCMSnExp-method), 238
featureValues(), 23, 87, 90, 99, 103, 125,

179, 209, 238, 254, 298
featureValues,XChromatograms-method

INDEX 323

(XChromatograms), 274
featureValues,XcmsExperiment-method

(filterFeatureDefinitions), 109
featureValues,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
featureValues,XCMSnExp-method

(quantify,XCMSnExp-method), 238
fileIndex (ProcessHistory-class), 229
fileIndex,ProcessHistory-method

(ProcessHistory-class), 229
fileNames,MsExperiment-method

(filterFeatureDefinitions), 109
filepaths (xcmsSet-class), 307
filepaths,xcmsSet-method

(xcmsSet-class), 307
filepaths<- (xcmsSet-class), 307
filepaths<-,xcmsSet-method

(xcmsSet-class), 307
fillChromPeaks, 100
fillChromPeaks(), 110, 119, 239, 291, 292,

299
fillChromPeaks,XcmsExperiment,ChromPeakAreaParam-method

(fillChromPeaks), 100
fillChromPeaks,XcmsExperimentHdf5,ChromPeakAreaParam-method

(CentWaveParam-class), 29
fillChromPeaks,XCMSnExp,ChromPeakAreaParam-method

(fillChromPeaks), 100
fillChromPeaks,XCMSnExp,FillChromPeaksParam-method

(fillChromPeaks), 100
fillChromPeaks,XCMSnExp,missing-method

(fillChromPeaks), 100
FillChromPeaksParam (fillChromPeaks),

100
FillChromPeaksParam-class

(CentWaveParam-class), 29
fillPeaks, 6, 60, 106, 307, 308
fillPeaks (fillPeaks-methods), 104
fillPeaks,xcmsSet-method

(fillPeaks-methods), 104
fillPeaks-methods, 104
fillPeaks.chrom, 106
fillPeaks.chrom

(fillPeaks.chrom-methods), 105
fillPeaks.chrom,xcmsSet-method

(fillPeaks.chrom-methods), 105
fillPeaks.chrom-methods, 105
fillPeaks.MSW (fillPeaks.MSW-methods),

106
fillPeaks.MSW,xcmsSet-method

(fillPeaks.MSW-methods), 106
fillPeaks.MSW-methods, 106
filterAcquisitionNum,XCMSnExp-method

(bin,XCMSnExp-method), 17
filterChromPeaks

(filterFeatureDefinitions), 109
filterChromPeaks,XChromatogram-method

(XChromatograms), 274
filterChromPeaks,XChromatograms-method

(XChromatograms), 274
filterChromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
filterChromPeaks,XcmsExperimentHdf5-method

(toXcmsExperimentHdf5), 264
filterChromPeaks,XCMSnExp-method

([,XCMSnExp,ANY,ANY,ANY-method),
310

filterColumnsIntensityAbove
(filterColumnsIntensityAbove,MChromatograms-method),
107

filterColumnsIntensityAbove(), 280
filterColumnsIntensityAbove,MChromatograms-method,

107
filterColumnsIntensityAbove,XChromatograms-method

(filterColumnsIntensityAbove,MChromatograms-method),
107

filterColumnsKeepTop
(filterColumnsIntensityAbove,MChromatograms-method),
107

filterColumnsKeepTop(), 95
filterColumnsKeepTop,MChromatograms-method

(filterColumnsIntensityAbove,MChromatograms-method),
107

filterColumnsKeepTop,XChromatograms-method
(filterColumnsIntensityAbove,MChromatograms-method),
107

filterFeatureDefinitions, 109
filterFeatureDefinitions,XcmsExperiment-method

(filterFeatureDefinitions), 109
filterFeatureDefinitions,XcmsExperimentHdf5-method

(toXcmsExperimentHdf5), 264
filterFeatureDefinitions,XCMSnExp-method

([,XCMSnExp,ANY,ANY,ANY-method),
310

filterFeatures, 124
filterFeatures,SummarizedExperiment,BlankFlag-method

(BlankFlag), 22
filterFeatures,SummarizedExperiment,DratioFilter-method

(DratioFilter), 86
filterFeatures,SummarizedExperiment,PercentMissingFilter-method

(PercentMissingFilter), 208
filterFeatures,SummarizedExperiment,RsdFilter-method

(RsdFilter), 253
filterFeatures,XcmsResult,BlankFlag-method

(BlankFlag), 22

324 INDEX

filterFeatures,XcmsResult,DratioFilter-method
(DratioFilter), 86

filterFeatures,XcmsResult,PercentMissingFilter-method
(PercentMissingFilter), 208

filterFeatures,XcmsResult,RsdFilter-method
(RsdFilter), 253

filterFile,MsExperiment-method
(filterFeatureDefinitions), 109

filterFile,XcmsExperiment-method
(filterFeatureDefinitions), 109

filterFile,XCMSnExp-method
([,XCMSnExp,ANY,ANY,ANY-method),
310

FilterIntensityParam
(refineChromPeaks), 244

FilterIntensityParam-class
(CentWaveParam-class), 29

filterIsolationWindow,MsExperiment-method
(filterFeatureDefinitions), 109

filterIsolationWindow,XcmsExperiment-method
(filterFeatureDefinitions), 109

filterIsolationWindow,XcmsExperimentHdf5-method
(CentWaveParam-class), 29

filterMsLevel,MsExperiment-method
(filterFeatureDefinitions), 109

filterMsLevel,XcmsExperiment-method
(filterFeatureDefinitions), 109

filterMsLevel,XcmsExperimentHdf5-method
(CentWaveParam-class), 29

filterMsLevel,XCMSnExp-method
([,XCMSnExp,ANY,ANY,ANY-method),
310

filterMz,MsExperiment-method
(filterFeatureDefinitions), 109

filterMz,XChromatogram-method
(XChromatograms), 274

filterMz,XChromatograms-method
(XChromatograms), 274

filterMz,XCMSnExp-method
([,XCMSnExp,ANY,ANY,ANY-method),
310

filterMzRange,MsExperiment-method
(filterFeatureDefinitions), 109

filterMzRange,XcmsExperiment-method
(filterFeatureDefinitions), 109

filterMzRange,XcmsExperimentHdf5-method
(CentWaveParam-class), 29

filterRt,MsExperiment-method
(filterFeatureDefinitions), 109

filterRt,XChromatogram-method
(XChromatograms), 274

filterRt,XChromatograms-method

(XChromatograms), 274
filterRt,XcmsExperiment-method

(filterFeatureDefinitions), 109
filterRt,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
filterRt,XCMSnExp-method

([,XCMSnExp,ANY,ANY,ANY-method),
310

filtfft, 126
findChromPeaks, 127, 135, 138, 142, 145, 153
findChromPeaks(), 110, 118, 119, 146, 229,

244, 266, 291, 296, 297
findChromPeaks,Chromatogram,CentWaveParam-method,

129
findChromPeaks,Chromatogram,MatchedFilterParam-method,

130
findChromPeaks,MChromatograms,CentWaveParam-method

(findChromPeaks,Chromatogram,CentWaveParam-method),
129

findChromPeaks,MChromatograms,MatchedFilterParam-method
(findChromPeaks,Chromatogram,CentWaveParam-method),
129

findChromPeaks,MsExperiment,Param-method
(findChromPeaks), 127

findChromPeaks,OnDiskMSnExp,CentWaveParam-method
(findChromPeaks-centWave), 132

findChromPeaks,OnDiskMSnExp,CentWavePredIsoParam-method
(findChromPeaks-centWaveWithPredIsoROIs),
135

findChromPeaks,OnDiskMSnExp,MassifquantParam-method
(findChromPeaks-massifquant),
139

findChromPeaks,OnDiskMSnExp,MatchedFilterParam-method
(findChromPeaks-matchedFilter),
142

findChromPeaks,OnDiskMSnExp,MSWParam-method
(findPeaks-MSW), 151

findChromPeaks,XcmsExperiment,Param-method
(findChromPeaks), 127

findChromPeaks,XcmsExperimentHdf5,Param-method
(CentWaveParam-class), 29

findChromPeaks,XCMSnExp,Param-method
(XCMSnExp-class), 290

findChromPeaks-centWave, 132, 283
findChromPeaks-centWaveWithPredIsoROIs,

135
findChromPeaks-Chromatogram-CentWaveParam,

282
findChromPeaks-Chromatogram-CentWaveParam

(findChromPeaks,Chromatogram,CentWaveParam-method),
129

findChromPeaks-massifquant, 139

INDEX 325

findChromPeaks-matchedFilter, 142
findChromPeaksIsolationWindow, 145
findChromPeaksIsolationWindow(), 243
findChromPeaksIsolationWindow,MsExperiment-method

(findChromPeaksIsolationWindow),
145

findChromPeaksIsolationWindow,OnDiskMSnExp-method
(findChromPeaksIsolationWindow),
145

findEqualGreater, 147
findEqualGreaterM (findEqualGreater),

147
findEqualLess (findEqualGreater), 147
findMZ, 148, 150
findMZ,xcmsFragments-method (findMZ),

148
findmzROI (xcmsRaw-class), 303
findmzROI,xcmsRaw-method

(xcmsRaw-class), 303
findneutral, 148, 149
findneutral,xcmsFragments-method

(findneutral), 149
findPeaks, 168, 203, 223, 235, 300, 301, 304,

307
findPeaks (findPeaks-methods), 150
findPeaks(), 134
findPeaks,xcmsRaw-method

(findPeaks-methods), 150
findPeaks-methods, 150
findPeaks-MSW, 151
findPeaks.addPredictedIsotopeFeatures,

151, 160
findPeaks.addPredictedIsotopeFeatures

(findPeaks.addPredictedIsotopeFeatures-methods),
154

findPeaks.addPredictedIsotopeFeatures,xcmsRaw-method
(findPeaks.addPredictedIsotopeFeatures-methods),
154

findPeaks.addPredictedIsotopeFeatures-methods,
154

findPeaks.centWave, 60, 151, 156, 160
findPeaks.centWave

(findPeaks.centWave-methods),
156

findPeaks.centWave(), 135
findPeaks.centWave,xcmsRaw-method

(findPeaks.centWave-methods),
156

findPeaks.centWave-methods, 156
findPeaks.centWaveWithPredictedIsotopeROIs,

151
findPeaks.centWaveWithPredictedIsotopeROIs

(findPeaks.centWaveWithPredictedIsotopeROIs-methods),
158

findPeaks.centWaveWithPredictedIsotopeROIs,xcmsRaw-method
(findPeaks.centWaveWithPredictedIsotopeROIs-methods),
158

findPeaks.centWaveWithPredictedIsotopeROIs-methods,
158

findPeaks.massifquant
(findPeaks.massifquant-methods),
161

findPeaks.massifquant(), 142
findPeaks.massifquant,xcmsRaw-method

(findPeaks.massifquant-methods),
161

findPeaks.massifquant-methods, 161
findPeaks.matchedFilter, 151, 306
findPeaks.matchedFilter

(findPeaks.matchedFilter,xcmsRaw-method),
163

findPeaks.matchedFilter(), 145
findPeaks.matchedFilter,xcmsRaw-method,

163
findPeaks.MS1 (findPeaks.MS1-methods),

164
findPeaks.MS1,xcmsRaw-method

(findPeaks.MS1-methods), 164
findPeaks.MS1-methods, 164
findPeaks.MSW

(findPeaks.MSW,xcmsRaw-method),
165

findPeaks.MSW(), 153
findPeaks.MSW,xcmsRaw-method, 165
findRange (findEqualGreater), 147
firstBaselineCheck,CentWaveParam-method

(CentWaveParam-class), 29
firstBaselineCheck<-,CentWaveParam-method

(CentWaveParam-class), 29
fitgauss,CentWaveParam-method

(CentWaveParam-class), 29
fitgauss,MassifquantParam-method

(CentWaveParam-class), 29
fitgauss<-,CentWaveParam-method

(CentWaveParam-class), 29
fitgauss<-,MassifquantParam-method

(CentWaveParam-class), 29
fixedMz (CentWaveParam-class), 29
fixedRt (CentWaveParam-class), 29
format(), 90
fromFile,MsExperiment-method

(filterFeatureDefinitions), 109
fwhm,MatchedFilterParam-method

(CentWaveParam-class), 29

326 INDEX

fwhm<-,MatchedFilterParam-method
(CentWaveParam-class), 29

gapExtend,ObiwarpParam-method
(CentWaveParam-class), 29

gapExtend<-,ObiwarpParam-method
(CentWaveParam-class), 29

gapInit,ObiwarpParam-method
(CentWaveParam-class), 29

gapInit<-,ObiwarpParam-method
(CentWaveParam-class), 29

GenericParam (GenericParam-class), 166
GenericParam-class, 166
getEIC, 239, 252, 286, 287, 304, 308
getEIC (getEIC-methods), 167
getEIC,xcmsRaw-method (getEIC-methods),

167
getEIC,xcmsSet-method (getEIC-methods),

167
getEIC-methods, 167
getMsnScan (getScan-methods), 169
getMsnScan,xcmsRaw-method

(getScan-methods), 169
getPeaks, 105, 106, 269, 304
getPeaks (getPeaks-methods), 168
getPeaks,xcmsRaw-method

(getPeaks-methods), 168
getPeaks-methods, 168
getScan, 170, 304
getScan (getScan-methods), 169
getScan,xcmsRaw-method

(getScan-methods), 169
getScan-methods, 169
getSpec, 169, 260, 304
getSpec (getSpec-methods), 169
getSpec,xcmsRaw-method

(getSpec-methods), 169
getSpec-methods, 169
getXcmsRaw, 308
getXcmsRaw (getXcmsRaw-methods), 170
getXcmsRaw,xcmsSet-method

(getXcmsRaw-methods), 170
getXcmsRaw-methods, 170
group, 7, 307, 308
group (group-methods), 171
group,xcmsSet-method (group-methods),

171
group-methods, 171
group.density, 171, 172, 174
group.density,xcmsSet-method

(group.density), 172
group.mzClust, 171, 172, 174

group.mzClust,xcmsSet-method
(group.mzClust), 172

group.nearest, 171, 173
group.nearest,xcmsSet-method

(group.nearest), 173
groupChromPeaks, 175, 282
groupChromPeaks(), 7, 92, 103, 110, 120,

218, 298
groupChromPeaks,XChromatograms,PeakDensityParam-method

(XChromatograms), 274
groupChromPeaks,XcmsExperiment,Param-method

(groupChromPeaks), 175
groupChromPeaks,XcmsExperimentHdf5,Param-method

(CentWaveParam-class), 29
groupChromPeaks,XCMSnExp,MzClustParam-method

(groupChromPeaks), 175
groupChromPeaks,XCMSnExp,NearestPeaksParam-method

(groupChromPeaks), 175
groupChromPeaks,XCMSnExp,PeakDensityParam-method

(groupChromPeaks), 175
groupFeatures,XcmsResult,AbundanceSimilarityParam-method

(groupFeatures-abundance-correlation),
178

groupFeatures,XcmsResult,EicSimilarityParam-method
(groupFeatures-eic-similarity),
180

groupFeatures,XcmsResult,SimilarRtimeParam-method
(groupFeatures-similar-rtime),
182

groupFeatures-abundance-correlation,
178

groupFeatures-eic-similarity, 180
groupFeatures-similar-rtime, 182
groupidx (xcmsSet-class), 307
groupidx,xcmsSet-method

(xcmsSet-class), 307
groupidx<- (xcmsSet-class), 307
groupidx<-,xcmsSet-method

(xcmsSet-class), 307
groupnames, 90, 287, 308
groupnames (groupnames-methods), 185
groupnames,xcmsEIC-method

(groupnames-methods), 185
groupnames,XCMSnExp-method, 184
groupnames,xcmsSet-method

(groupnames-methods), 185
groupnames-methods, 185
groupOverlaps, 185
groups (xcmsSet-class), 307
groups,xcmsSet-method (xcmsSet-class),

307
groups<- (xcmsSet-class), 307

INDEX 327

groups<-,xcmsSet-method
(xcmsSet-class), 307

groupval, 207, 308
groupval (groupval-methods), 186
groupval,xcmsSet-method

(groupval-methods), 186
groupval-methods, 186

hasAdjustedRtime (XCMSnExp-class), 290
hasAdjustedRtime,MsExperiment-method

(filterFeatureDefinitions), 109
hasAdjustedRtime,MsFeatureData-method

(CentWaveParam-class), 29
hasAdjustedRtime,OnDiskMSnExp-method

(CentWaveParam-class), 29
hasAdjustedRtime,XCMSnExp-method

(XCMSnExp-class), 290
hasChromPeaks (XCMSnExp-class), 290
hasChromPeaks,MsFeatureData-method

(CentWaveParam-class), 29
hasChromPeaks,XChromatogram-method

(XChromatograms), 274
hasChromPeaks,XChromatograms-method

(XChromatograms), 274
hasChromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
hasChromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
hasChromPeaks,XCMSnExp-method

(XCMSnExp-class), 290
hasFeatures (XCMSnExp-class), 290
hasFeatures(), 239
hasFeatures,MsFeatureData-method

(CentWaveParam-class), 29
hasFeatures,XChromatograms-method

(XChromatograms), 274
hasFeatures,XcmsExperiment-method

(filterFeatureDefinitions), 109
hasFeatures,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
hasFeatures,XCMSnExp-method

(XCMSnExp-class), 290
hasFilledChromPeaks (XCMSnExp-class),

290
hasFilledChromPeaks,XChromatograms-method

(XChromatograms), 274
hasFilledChromPeaks,XcmsExperiment-method

(filterFeatureDefinitions), 109
hasFilledChromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
hasFilledChromPeaks,XCMSnExp-method

(XCMSnExp-class), 290
hidden_aliases (CentWaveParam-class), 29

highlightChromPeaks, 187

image,xcmsRaw-method (image-methods),
188

image-methods, 188
impute,MatchedFilterParam-method

(CentWaveParam-class), 29
impute<-,MatchedFilterParam-method

(CentWaveParam-class), 29
imputeLinInterpol, 189, 231, 286
imputeLinInterpol(), 21, 77, 78, 143, 233,

234, 295
imputeRowMin, 191, 193
imputeRowMinRand, 192, 192
index,MatchedFilterParam-method

(CentWaveParam-class), 29
index<-,MatchedFilterParam-method

(CentWaveParam-class), 29
initPenalty,ObiwarpParam-method

(CentWaveParam-class), 29
initPenalty<-,ObiwarpParam-method

(CentWaveParam-class), 29
integerMatrix (doubleMatrix), 62
integrate,CentWaveParam-method

(CentWaveParam-class), 29
integrate,MassifquantParam-method

(CentWaveParam-class), 29
integrate<-,CentWaveParam-method

(CentWaveParam-class), 29
integrate<-,MassifquantParam-method

(CentWaveParam-class), 29
intensity,XCMSnExp-method

(XCMSnExp-class), 290
IRanges::CharacterList(), 242
IRanges::NumericList(), 242
isCalibrated

(CalibrantMassParam-class), 27
isolationWindowTargetMz

(isolationWindowTargetMz,OnDiskMSnExp-method),
194

isolationWindowTargetMz(), 146
isolationWindowTargetMz,OnDiskMSnExp-method,

194

kNN,NearestPeaksParam-method
(CentWaveParam-class), 29

kNN<-,NearestPeaksParam-method
(CentWaveParam-class), 29

LamaParama
(adjustRtime,XcmsExperiment,LamaParama-method),
11

LamaParama(), 7

328 INDEX

LamaParama-class
(adjustRtime,XcmsExperiment,LamaParama-method),
11

lattice::level.colors, 222
levelplot (xcmsRaw-class), 303
levelplot,xcmsRaw-method

(levelplot-methods), 194
levelplot,xcmsSet-method

(levelplot-methods), 194
levelplot-methods, 194
loadRaw (loadRaw-methods), 195
loadRaw,xcmsFileSource-method

(loadRaw-methods), 195
loadRaw,xcmsSource-method

(loadRaw-methods), 195
loadRaw-methods, 195
loadXcmsData, 196
localAlignment,ObiwarpParam-method

(CentWaveParam-class), 29
localAlignment<-,ObiwarpParam-method

(CentWaveParam-class), 29
loess, 251
loess(), 13
logicalMatrix (doubleMatrix), 62

makeacqNum (stitch-methods), 263
makeacqNum, xcmsRaw-method

(stitch-methods), 263
manualChromPeaks, 197
manualChromPeaks(), 119, 128
manualChromPeaks,MsExperiment-method

(manualChromPeaks), 197
manualChromPeaks,OnDiskMSnExp-method

(manualChromPeaks), 197
manualChromPeaks,XcmsExperiment-method

(manualChromPeaks), 197
manualChromPeaks,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
manualChromPeaks,XCMSnExp-method

(manualChromPeaks), 197
manualFeatures (manualChromPeaks), 197
manualFeatures,XcmsExperiment-method

(manualChromPeaks), 197
manualFeatures,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
manualFeatures,XCMSnExp-method

(manualChromPeaks), 197
massifquant

(findChromPeaks-massifquant),
139

MassifquantParam
(findChromPeaks-massifquant),
139

MassifquantParam(), 127, 296
MassifquantParam-class

(CentWaveParam-class), 29
matchedFilter, 130, 131, 206, 207
matchedFilter

(findChromPeaks-matchedFilter),
142

matchedFilter(), 103
MatchedFilterParam, 130, 131
MatchedFilterParam

(findChromPeaks-matchedFilter),
142

MatchedFilterParam(), 127, 296
MatchedFilterParam-class

(CentWaveParam-class), 29
matchedRtimes

(adjustRtime,XcmsExperiment,LamaParama-method),
11

matchLamasChromPeaks
(adjustRtime,XcmsExperiment,LamaParama-method),
11

matrix, 300
max,MatchedFilterParam-method

(CentWaveParam-class), 29
max<-,MatchedFilterParam-method

(CentWaveParam-class), 29
maxCharge,CentWavePredIsoParam-method

(CentWaveParam-class), 29
maxCharge<-,CentWavePredIsoParam-method

(CentWaveParam-class), 29
maxFeatures,PeakDensityParam-method

(CentWaveParam-class), 29
maxFeatures<-,PeakDensityParam-method

(CentWaveParam-class), 29
maxIso,CentWavePredIsoParam-method

(CentWaveParam-class), 29
maxIso<-,CentWavePredIsoParam-method

(CentWaveParam-class), 29
medianFilter, 199, 235
MergeNeighboringPeaksParam

(refineChromPeaks), 244
MergeNeighboringPeaksParam(), 197, 282
MergeNeighboringPeaksParam-class

(CentWaveParam-class), 29
minFraction,MzClustParam-method

(CentWaveParam-class), 29
minFraction,PeakDensityParam-method

(CentWaveParam-class), 29
minFraction,PeakGroupsParam-method

(CentWaveParam-class), 29
minFraction<-,MzClustParam-method

(CentWaveParam-class), 29

INDEX 329

minFraction<-,PeakDensityParam-method
(CentWaveParam-class), 29

minFraction<-,PeakGroupsParam-method
(CentWaveParam-class), 29

minNoiseLevel,MSWParam-method
(CentWaveParam-class), 29

minNoiseLevel<-,MSWParam-method
(CentWaveParam-class), 29

minSamples,MzClustParam-method
(CentWaveParam-class), 29

minSamples,PeakDensityParam-method
(CentWaveParam-class), 29

minSamples<-,MzClustParam-method
(CentWaveParam-class), 29

minSamples<-,PeakDensityParam-method
(CentWaveParam-class), 29

MsExperiment::MsExperiment(), 8, 128
MsFeatures::AbundanceSimilarityParam(),

92, 178
MsFeatures::featureGroups(), 221
MsFeatures::groupFeatures(), 92, 221
MsFeatures::groupSimilarityMatrix(),

180, 181
MsFeatures::SimilarRtimeParam(), 180,

183
mslevel (xcmsSet-class), 307
mslevel,xcmsRaw-method (xcmsRaw-class),

303
mslevel,xcmsSet-method (xcmsSet-class),

307
msLevel,XProcessHistory-method

(ProcessHistory-class), 229
msn2xcmsRaw, 200
MSnbase::bin(), 17
MSnbase::Chromatogram, 129
MSnbase::Chromatogram(), 48, 57, 58, 107,

130, 131, 180, 181, 187, 248, 274,
280, 281

MSnbase::clean(), 17, 248
MSnbase::compareChromatograms(), 57,

180, 181
MSnbase::filterAcquisitionNum(), 17
MSnbase::MChromatograms, 47, 129
MSnbase::MChromatograms(), 57, 58, 107,

108, 118, 128, 130, 131, 187, 213,
214, 248, 274, 280, 283

MSnbase::MSpectra, 53
MSnbase::normalize(), 17, 18
MSnbase::OnDiskMSnExp, 46, 47, 194, 198,

290, 298, 310
MSnbase::OnDiskMSnExp(), 8, 17–19, 128,

134, 138, 143

MSnbase::plot(), 292
MSnbase::pSet, 298
MSnbase::removePeaks(), 17, 19
MSnbase::smooth(), 17, 18
MSnbase::transformIntensity(), 282
MSnbase::writeMSData(), 273
MSW (findPeaks-MSW), 151
MSWParam (findPeaks-MSW), 151
MSWParam(), 127, 296
MSWParam-class (CentWaveParam-class), 29
mz,CalibrantMassParam

(CalibrantMassParam-class), 27
mz,XCMSnExp-method (XCMSnExp-class), 290
mzCenterFun,CentWaveParam-method

(CentWaveParam-class), 29
mzCenterFun,MassifquantParam-method

(CentWaveParam-class), 29
mzCenterFun<-,CentWaveParam-method

(CentWaveParam-class), 29
mzCenterFun<-,MassifquantParam-method

(CentWaveParam-class), 29
MzClustParam (groupChromPeaks), 175
MzClustParam-class

(CentWaveParam-class), 29
mzdiff,CentWaveParam-method

(CentWaveParam-class), 29
mzdiff,MassifquantParam-method

(CentWaveParam-class), 29
mzdiff,MatchedFilterParam-method

(CentWaveParam-class), 29
mzdiff<-,CentWaveParam-method

(CentWaveParam-class), 29
mzdiff<-,MassifquantParam-method

(CentWaveParam-class), 29
mzdiff<-,MatchedFilterParam-method

(CentWaveParam-class), 29
mzIntervalExtension,CentWavePredIsoParam-method

(CentWaveParam-class), 29
mzIntervalExtension<-,CentWavePredIsoParam-method

(CentWaveParam-class), 29
mzrange (xcmsEIC-class), 286
mzrange,xcmsEIC-method (xcmsEIC-class),

286
mzVsRtBalance,NearestPeaksParam-method

(CentWaveParam-class), 29
mzVsRtBalance<-,NearestPeaksParam-method

(CentWaveParam-class), 29

na.flatfill, 201
nearbyPeak,MSWParam-method

(CentWaveParam-class), 29
nearbyPeak<-,MSWParam-method

(CentWaveParam-class), 29

330 INDEX

NearestPeaksParam (groupChromPeaks), 175
NearestPeaksParam-class

(CentWaveParam-class), 29
nls, 262
noise,CentWaveParam-method

(CentWaveParam-class), 29
noise,MassifquantParam-method

(CentWaveParam-class), 29
noise<-,CentWaveParam-method

(CentWaveParam-class), 29
noise<-,MassifquantParam-method

(CentWaveParam-class), 29
normalize,XCMSnExp-method

(bin,XCMSnExp-method), 17

ObiwarpParam (adjustRtime), 7
ObiwarpParam-class

(CentWaveParam-class), 29
overlappingFeatures, 201
overlappingFeatures(), 120, 298

pairs, 202
palette, 61
panel.cor, 202
par(), 212, 220–222
Param (GenericParam-class), 166
Param-class (CentWaveParam-class), 29
pdf, 211
PeakDensityParam, 216, 217
PeakDensityParam (groupChromPeaks), 175
PeakDensityParam(), 279, 280, 282, 283
PeakDensityParam-class

(CentWaveParam-class), 29
peakGroupsMatrix,PeakGroupsParam-method

(CentWaveParam-class), 29
peakGroupsMatrix<-,PeakGroupsParam-method

(CentWaveParam-class), 29
PeakGroupsParam (adjustRtime), 7
PeakGroupsParam-class

(CentWaveParam-class), 29
peakPlots,xcmsSet-method

(peakPlots-methods), 203
peakPlots-methods, 203
peaks (xcmsSet-class), 307
peaks,xcmsSet-method (xcmsSet-class),

307
peaks<- (xcmsSet-class), 307
peaks<-,xcmsSet-method (xcmsSet-class),

307
peakScaleRange,MSWParam-method

(CentWaveParam-class), 29
peakScaleRange<-,MSWParam-method

(CentWaveParam-class), 29

peaksWithCentWave, 203, 207
peaksWithCentWave(), 129, 135
peaksWithMatchedFilter, 205, 206
peaksWithMatchedFilter(), 131, 145
peakTable (peakTable-methods), 207
peakTable,xcmsSet-method

(peakTable-methods), 207
peakTable-methods, 207
peakThr,MSWParam-method

(CentWaveParam-class), 29
peakThr<-,MSWParam-method

(CentWaveParam-class), 29
peakwidth,CentWaveParam-method

(CentWaveParam-class), 29
peakwidth,MassifquantParam-method

(CentWaveParam-class), 29
peakwidth<-,CentWaveParam-method

(CentWaveParam-class), 29
peakwidth<-,MassifquantParam-method

(CentWaveParam-class), 29
PercentMissingFilter, 23, 24, 87, 124, 125,

208, 209, 254
phenoData (xcmsSet-class), 307
phenoData,xcmsSet-method

(xcmsSet-class), 307
phenoData<- (xcmsSet-class), 307
phenoData<-,xcmsSet,ANY-method

(xcmsSet-class), 307
phenoData<-,xcmsSet-method

(xcmsSet-class), 307
phenoDataFromPaths, 210
pickPeaks,XCMSnExp-method

(bin,XCMSnExp-method), 17
plot, 287
plot(), 279
plot, plot-methods (plot.xcmsEIC), 210
plot,LamaParama,ANY-method

(adjustRtime,XcmsExperiment,LamaParama-method),
11

plot,MsExperiment,missing-method
(filterFeatureDefinitions), 109

plot,XChromatogram,ANY-method
(XChromatograms), 274

plot,XChromatograms,ANY-method
(XChromatograms), 274

plot,XCMSnExp,missing-method
(XCMSnExp-class), 290

plot.xcmsEIC, 210
plotAdjustedRtime, 211
plotAdjustedRtime(), 11, 120, 121, 298
plotChrom, 220, 235, 304
plotChrom (plotChrom-methods), 213

INDEX 331

plotChrom,xcmsRaw-method
(plotChrom-methods), 213

plotChrom-methods, 213
plotChromatogramsOverlay, 213
plotChromatogramsOverlay,MChromatograms-method

(plotChromatogramsOverlay), 213
plotChromatogramsOverlay,XChromatograms-method

(plotChromatogramsOverlay), 213
plotChromPeakDensity

(plotChromPeakDensity,XCMSnExp-method),
216

plotChromPeakDensity,XChromatograms-method
(XChromatograms), 274

plotChromPeakDensity,XCMSnExp-method,
216

plotChromPeakImage (plotChromPeaks), 218
plotChromPeakImage(), 119, 121
plotChromPeaks, 218
plotChromPeaks(), 119, 121, 128
plotEIC (plotEIC-methods), 220
plotEIC,xcmsRaw-method

(plotEIC-methods), 220
plotEIC-methods, 220
plotFeatureGroups, 221
plotFeatureGroups(), 93
plotMsData, 222
plotPeaks (plotPeaks-methods), 223
plotPeaks,xcmsRaw-method

(plotPeaks-methods), 223
plotPeaks-methods, 223
plotPrecursorIons, 223
plotPrecursorIons(), 119
plotQC, 224
plotRaw, 240, 304
plotRaw (plotRaw-methods), 225
plotRaw,xcmsRaw-method

(plotRaw-methods), 225
plotRaw-methods, 225
plotrt, 308
plotrt (plotrt-methods), 226
plotrt,xcmsSet-method (plotrt-methods),

226
plotrt-methods, 226
plotScan, 304
plotScan (plotScan-methods), 227
plotScan,xcmsRaw-method

(plotScan-methods), 227
plotScan-methods, 227
plotSpec, 235, 304
plotSpec (plotSpec-methods), 227
plotSpec,xcmsRaw-method

(plotSpec-methods), 227

plotSpec-methods, 227
plotSurf, 304
plotSurf (plotSurf-methods), 228
plotSurf,xcmsRaw-method

(plotSurf-methods), 228
plotSurf-methods, 228
plotTIC, 304
plotTIC (plotTIC-methods), 228
plotTIC,xcmsRaw-method

(plotTIC-methods), 228
plotTIC-methods, 228
plotTree (xcmsFragments-class), 289
plotTree,xcmsFragments-method

(xcmsFragments-class), 289
png, 211
points(), 224
polarity,CentWavePredIsoParam-method

(CentWaveParam-class), 29
polarity,MsExperiment-method

(filterFeatureDefinitions), 109
polarity<-,CentWavePredIsoParam-method

(CentWaveParam-class), 29
postscript, 211
ppm,CentWaveParam-method

(CentWaveParam-class), 29
ppm,FillChromPeaksParam-method

(CentWaveParam-class), 29
ppm,MassifquantParam-method

(CentWaveParam-class), 29
ppm,MzClustParam-method

(CentWaveParam-class), 29
ppm,PeakDensityParam-method

(CentWaveParam-class), 29
ppm<-,CentWaveParam-method

(CentWaveParam-class), 29
ppm<-,FillChromPeaksParam-method

(CentWaveParam-class), 29
ppm<-,MassifquantParam-method

(CentWaveParam-class), 29
ppm<-,MzClustParam-method

(CentWaveParam-class), 29
prefilter,CentWaveParam-method

(CentWaveParam-class), 29
prefilter,MassifquantParam-method

(CentWaveParam-class), 29
prefilter<-,CentWaveParam-method

(CentWaveParam-class), 29
prefilter<-,MassifquantParam-method

(CentWaveParam-class), 29
present (absent-methods), 6
present,xcmsSet-method

(absent-methods), 6

332 INDEX

processDate (ProcessHistory-class), 229
processDate,ProcessHistory-method

(ProcessHistory-class), 229
ProcessHistory, 122, 229, 280, 282
ProcessHistory (ProcessHistory-class),

229
processHistory (XCMSnExp-class), 290
ProcessHistory(), 291, 295, 297
processHistory(), 15, 167, 290
processHistory,XChromatograms-method

(XChromatograms), 274
processHistory,XcmsExperiment-method

(filterFeatureDefinitions), 109
processHistory,XCMSnExp-method

(XCMSnExp-class), 290
ProcessHistory-class, 229
processHistoryTypes (XCMSnExp-class),

290
processHistoryTypes(), 115, 230
processInfo (ProcessHistory-class), 229
processInfo,ProcessHistory-method

(ProcessHistory-class), 229
processParam (ProcessHistory-class), 229
processParam,XProcessHistory-method

(ProcessHistory-class), 229
processType (ProcessHistory-class), 229
processType,ProcessHistory-method

(ProcessHistory-class), 229
profBin, 235, 306, 307
profBin (profGenerate), 230
profBinLin, 306
profBinLin (profGenerate), 230
profBinLinBase, 306
profBinLinBase (profGenerate), 230
profBinLinBaseM (profGenerate), 230
profBinLinM (profGenerate), 230
profBinM (profGenerate), 230
profGenerate, 230
profile-matrix, 10, 296
profile-matrix

(profMat,MsExperiment-method),
232

profinfo, 303, 304
profinfo (xcmsSet-class), 307
profinfo,xcmsRaw-method

(xcmsRaw-class), 303
profinfo,xcmsSet-method

(xcmsSet-class), 307
profinfo<- (xcmsSet-class), 307
profinfo<-,xcmsSet-method

(xcmsSet-class), 307
profIntLin, 306

profIntLin (profGenerate), 230
profIntLinM (profGenerate), 230
profMat, 303
profMat (profMat,MsExperiment-method),

232
profMat(), 290
profMat,MsExperiment-method, 232
profMat,OnDiskMSnExp-method

(XCMSnExp-class), 290
profMat,XCMSnExp-method

(XCMSnExp-class), 290
profMat,xcmsRaw-method

(profMat,MsExperiment-method),
232

profMat-xcmsSet
(profMat,MsExperiment-method),
232

profMaxIdx (profGenerate), 230
profMaxIdxM (profGenerate), 230
profMedFilt, 304
profMedFilt (profMedFilt-methods), 234
profMedFilt,xcmsRaw-method

(profMedFilt-methods), 234
profMedFilt-methods, 234
profMethod, 235, 237, 302, 304, 307
profMethod (profMethod-methods), 235
profMethod,xcmsRaw-method

(profMethod-methods), 235
profMethod,xcmsSet-method

(xcmsSet-class), 307
profMethod-methods, 235
profMethod<-, 304
profMethod<- (profMethod-methods), 235
profMethod<-,xcmsRaw-method

(profMethod-methods), 235
profMz (xcmsRaw-class), 303
profMz,xcmsRaw-method (xcmsRaw-class),

303
profRange, 169, 170, 213, 227, 228, 304
profRange (profRange-methods), 235
profRange,xcmsRaw-method

(profRange-methods), 235
profRange-methods, 235
profStep, 302, 305, 307
profStep (profStep-methods), 236
profStep,xcmsRaw-method

(profStep-methods), 236
profStep,xcmsSet-method

(xcmsSet-class), 307
profStep-methods, 236
profStep<-, 305
profStep<- (profStep-methods), 236

INDEX 333

profStep<-,xcmsRaw-method
(profStep-methods), 236

progressCallback (xcmsSet-class), 307
progressCallback,xcmsSet-method

(xcmsSet-class), 307
progressCallback<- (xcmsSet-class), 307
progressCallback<-,xcmsSet-method

(xcmsSet-class), 307
pval, 237

quantify (filterFeatureDefinitions), 109
quantify(), 298
quantify,XcmsExperiment-method

(filterFeatureDefinitions), 109
quantify,XCMSnExp-method, 238

rawEIC, 168, 221
rawEIC (rawEIC-methods), 239
rawEIC,xcmsRaw-method (rawEIC-methods),

239
rawEIC-methods, 239
rawMat (rawMat-methods), 240
rawMat,xcmsRaw-method (rawMat-methods),

240
rawMat-methods, 240
reconstructChromPeakSpectra, 241
reconstructChromPeakSpectra(), 147
reconstructChromPeakSpectra,XcmsExperiment-method

(reconstructChromPeakSpectra),
241

reconstructChromPeakSpectra,XCMSnExp-method
(reconstructChromPeakSpectra),
241

rectUnique, 243
refineChromPeaks, 244
refineChromPeaks(), 110, 119, 128, 129,

197
refineChromPeaks,XChromatogram,MergeNeighboringPeaksParam-method

(XChromatograms), 274
refineChromPeaks,XChromatograms,MergeNeighboringPeaksParam-method

(XChromatograms), 274
refineChromPeaks,XcmsExperiment,CleanPeaksParam-method

(refineChromPeaks), 244
refineChromPeaks,XcmsExperiment,FilterIntensityParam-method

(refineChromPeaks), 244
refineChromPeaks,XcmsExperiment,MergeNeighboringPeaksParam-method

(refineChromPeaks), 244
refineChromPeaks,XcmsExperimentHdf5,CleanPeaksParam-method

(CentWaveParam-class), 29
refineChromPeaks,XcmsExperimentHdf5,FilterIntensityParam-method

(refineChromPeaks), 244
refineChromPeaks,XcmsExperimentHdf5,MergeNeighboringPeaksParam-method

(CentWaveParam-class), 29

refineChromPeaks,XCMSnExp,CleanPeaksParam-method
(refineChromPeaks), 244

refineChromPeaks,XCMSnExp,FilterIntensityParam-method
(refineChromPeaks), 244

refineChromPeaks,XCMSnExp,MergeNeighboringPeaksParam-method
(refineChromPeaks), 244

removeIntensity
(removeIntensity,Chromatogram-method),
248

removeIntensity,Chromatogram-method,
248

removeIntensity,MChromatograms-method
(removeIntensity,Chromatogram-method),
248

removeIntensity,XChromatogram-method
(removeIntensity,Chromatogram-method),
248

removePeaks,XCMSnExp-method
(bin,XCMSnExp-method), 17

response,ObiwarpParam-method
(CentWaveParam-class), 29

response<-,ObiwarpParam-method
(CentWaveParam-class), 29

retcor, 226, 309
retcor (retcor-methods), 249
retcor,xcmsSet-method (retcor-methods),

249
retcor-methods, 249
retcor.linear

(retcor.peakgroups-methods),
251

retcor.linear,xcmsSet-method
(retcor.peakgroups-methods),
251

retcor.loess, 249
retcor.loess

(retcor.peakgroups-methods),
251

retcor.loess,xcmsSet-method
(retcor.peakgroups-methods),
251

retcor.obiwarp, 249, 250, 251
retcor.obiwarp,xcmsSet-method

(retcor.obiwarp), 250
retcor.peakgroups

(retcor.peakgroups-methods),
251

retcor.peakgroups,xcmsSet-method
(retcor.peakgroups-methods),
251

retcor.peakgroups-methods, 251
retexp, 252

334 INDEX

revMz (xcmsRaw-class), 303
revMz,xcmsRaw-method (xcmsRaw-class),

303
ridgeLength,MSWParam-method

(CentWaveParam-class), 29
ridgeLength<-,MSWParam-method

(CentWaveParam-class), 29
rla, 252
roiList,CentWaveParam-method

(CentWaveParam-class), 29
roiList<-,CentWaveParam-method

(CentWaveParam-class), 29
roiScales,CentWaveParam-method

(CentWaveParam-class), 29
roiScales<-,CentWaveParam-method

(CentWaveParam-class), 29
rowMax (colMax), 56
rowRla (rla), 252
RsdFilter, 23, 24, 87, 124, 125, 209, 253, 254
rtime,MsExperiment-method

(filterFeatureDefinitions), 109
rtime,XcmsExperiment-method

(filterFeatureDefinitions), 109
rtime,XCMSnExp-method (XCMSnExp-class),

290
rtrange (xcmsEIC-class), 286
rtrange,xcmsEIC-method (xcmsEIC-class),

286

S4Vectors::DataFrame(), 281
sampclass, 6, 306
sampclass (xcmsSet-class), 307
sampclass,xcmsSet-method

(xcmsSet-class), 307
sampclass<- (xcmsSet-class), 307
sampclass<-,xcmsSet-method

(xcmsSet-class), 307
sampleGroups,MzClustParam-method

(CentWaveParam-class), 29
sampleGroups,NearestPeaksParam-method

(CentWaveParam-class), 29
sampleGroups,PeakDensityParam-method

(CentWaveParam-class), 29
sampleGroups<-,MzClustParam-method

(CentWaveParam-class), 29
sampleGroups<-,NearestPeaksParam-method

(CentWaveParam-class), 29
sampleGroups<-,PeakDensityParam-method

(CentWaveParam-class), 29
sampnames, 287, 309
sampnames (sampnames-methods), 254
sampnames,xcmsEIC-method

(sampnames-methods), 254

sampnames,xcmsSet-method
(sampnames-methods), 254

sampnames-methods, 254
sampnames<- (xcmsSet-class), 307
sampnames<-,xcmsSet-method

(xcmsSet-class), 307
scales,MSWParam-method

(CentWaveParam-class), 29
scales<-,MSWParam-method

(CentWaveParam-class), 29
scanrange (xcmsSet-class), 307
scanrange,xcmsRaw-method

(xcmsRaw-class), 303
scanrange,xcmsSet-method

(xcmsSet-class), 307
selfStart, 262
setAs (XCMSnExp-class), 290
show, 289
show,MsFeatureData-method

(CentWaveParam-class), 29
show,ProcessHistory-method

(CentWaveParam-class), 29
show,XChromatogram-method

(CentWaveParam-class), 29
show,XChromatograms-method

(CentWaveParam-class), 29
show,xcmsEIC-method

(CentWaveParam-class), 29
show,XcmsExperiment-method

(CentWaveParam-class), 29
show,XcmsExperimentHdf5-method

(CentWaveParam-class), 29
show,xcmsFragments-method

(CentWaveParam-class), 29
show,XCMSnExp-method

(CentWaveParam-class), 29
show,xcmsPeaks-method

(CentWaveParam-class), 29
show,xcmsRaw-method

(CentWaveParam-class), 29
show,xcmsSet-method

(CentWaveParam-class), 29
show,XProcessHistory-method

(CentWaveParam-class), 29
showError (showError,xcmsSet-method),

255
showError,xcmsSet-method, 255
sigma,MatchedFilterParam-method

(CentWaveParam-class), 29
sigma<-,MatchedFilterParam-method

(CentWaveParam-class), 29
smooth,PeakGroupsParam-method

INDEX 335

(CentWaveParam-class), 29
smooth,XCMSnExp-method

(bin,XCMSnExp-method), 17
smooth<-,PeakGroupsParam-method

(CentWaveParam-class), 29
snthresh,CentWaveParam-method

(CentWaveParam-class), 29
snthresh,MassifquantParam-method

(CentWaveParam-class), 29
snthresh,MatchedFilterParam-method

(CentWaveParam-class), 29
snthresh,MSWParam-method

(CentWaveParam-class), 29
snthresh<-,CentWaveParam-method

(CentWaveParam-class), 29
snthresh<-,MassifquantParam-method

(CentWaveParam-class), 29
snthresh<-,MatchedFilterParam-method

(CentWaveParam-class), 29
snthresh<-,MSWParam-method

(CentWaveParam-class), 29
snthreshIsoROIs,CentWavePredIsoParam-method

(CentWaveParam-class), 29
snthreshIsoROIs<-,CentWavePredIsoParam-method

(CentWaveParam-class), 29
sortMz (xcmsRaw-class), 303
sortMz,xcmsRaw-method (xcmsRaw-class),

303
span,PeakGroupsParam-method

(CentWaveParam-class), 29
span<-,PeakGroupsParam-method

(CentWaveParam-class), 29
specDist (specDist-methods), 256
specDist,xcmsSet-method

(specDist-methods), 256
specDist-methods, 256
specDist.cosine, 257
specDist.cosine,matrix,matrix-method

(specDist.cosine), 257
specDist.meanMZmatch, 258
specDist.meanMZmatch,matrix,matrix-method

(specDist.meanMZmatch), 258
specDist.peakCount

(specDist.peakCount-methods),
259

specDist.peakCount,matrix,matrix-method
(specDist.peakCount-methods),
259

specDist.peakCount-methods, 259
specNoise, 259, 260
specPeaks, 260, 260
spectra,XCMSnExp-method

(XCMSnExp-class), 290
Spectra::Spectra, 51
Spectra::Spectra(), 97, 98, 120, 128, 242,

265
spectrapply,XCMSnExp-method

(XCMSnExp-class), 290
split, 309
split, split-methods (split.xcmsSet),

261
split,XCMSnExp,ANY-method

([,XCMSnExp,ANY,ANY,ANY-method),
310

split.screen, 203, 223
split.xcmsRaw, 261
split.xcmsSet, 261
SSgauss, 262
Startup, 269
stats::cor(), 58
stats::loess(), 9, 64
steps,MatchedFilterParam-method

(CentWaveParam-class), 29
steps<-,MatchedFilterParam-method

(CentWaveParam-class), 29
stitch (stitch-methods), 263
stitch,xcmsRaw-method (stitch-methods),

263
stitch-methods, 263
stitch.netCDF (stitch-methods), 263
stitch.xml (stitch-methods), 263
structure, 300
subset,ObiwarpParam-method

(CentWaveParam-class), 29
subset,PeakGroupsParam-method

(CentWaveParam-class), 29
subset-xcmsRaw

([,xcmsRaw,logicalOrNumeric,missing,missing-method),
314

subset<-,ObiwarpParam-method
(CentWaveParam-class), 29

subset<-,PeakGroupsParam-method
(CentWaveParam-class), 29

subsetAdjust,ObiwarpParam-method
(CentWaveParam-class), 29

subsetAdjust,PeakGroupsParam-method
(CentWaveParam-class), 29

subsetAdjust<-,ObiwarpParam-method
(CentWaveParam-class), 29

subsetAdjust<-,PeakGroupsParam-method
(CentWaveParam-class), 29

SummarizedExperiment::SummarizedExperiment(),
121, 238, 239, 298

summarizeLamaMatch

336 INDEX

(adjustRtime,XcmsExperiment,LamaParama-method),
11

toXcmsExperiment
(toXcmsExperimentHdf5), 264

toXcmsExperimentHdf5, 264
transformIntensity,XChromatogram-method

(XChromatograms), 274
transformIntensity,XChromatograms-method

(XChromatograms), 274
tuneIn,MSWParam-method

(CentWaveParam-class), 29
tuneIn<-,MSWParam-method

(CentWaveParam-class), 29

unions,MassifquantParam-method
(CentWaveParam-class), 29

unions<-,MassifquantParam-method
(CentWaveParam-class), 29

uniqueMsLevels,MsExperiment-method
(filterFeatureDefinitions), 109

updateObject,XCMSnExp-method
(XCMSnExp-class), 290

updateObject,xcmsSet-method, 268
useOriginalCode, 269

vector, 300
verboseColumns,CentWaveParam-method

(CentWaveParam-class), 29
verboseColumns,MassifquantParam-method

(CentWaveParam-class), 29
verboseColumns,MSWParam-method

(CentWaveParam-class), 29
verboseColumns<-,CentWaveParam-method

(CentWaveParam-class), 29
verboseColumns<-,MassifquantParam-method

(CentWaveParam-class), 29
verboseColumns<-,MSWParam-method

(CentWaveParam-class), 29
verify.mzQuantM, 270
verify.mzQuantML, 272
verify.mzQuantML (verify.mzQuantM), 270

which.colMax (colMax), 56
which.rowMax (colMax), 56
withWave,MassifquantParam-method

(CentWaveParam-class), 29
withWave<-,MassifquantParam-method

(CentWaveParam-class), 29
write.cdf (write.cdf-methods), 270
write.cdf,xcmsRaw-method

(write.cdf-methods), 270
write.cdf-methods, 270

write.mzdata (write.mzdata-methods), 271
write.mzdata,xcmsRaw-method

(write.mzdata-methods), 271
write.mzdata-methods, 271
write.mzQuantML, 270
write.mzQuantML

(write.mzQuantML-methods), 272
write.mzQuantML,xcmsSet-method

(write.mzQuantML-methods), 272
write.mzQuantML-methods, 272
writeMSData,XCMSnExp,character-method,

272
writeMzTab, 273

XChromatogram, 129
XChromatogram (XChromatograms), 274
XChromatogram(), 248
XChromatogram-class (XChromatograms),

274
XChromatograms, 48, 93, 274
XChromatograms(), 49, 94, 95, 107, 108, 118,

214, 248, 313
XChromatograms-class (XChromatograms),

274
xcms-deprecated, 286
xcmsEIC-class, 286
XcmsExperiment, 15, 51, 52, 93, 97, 100, 103,

198, 221, 245, 246, 267
XcmsExperiment

(filterFeatureDefinitions), 109
XcmsExperiment(), 8, 49, 54, 92, 93, 99, 128,

175–178, 181, 183, 196, 201, 212,
219, 244, 264

XcmsExperiment-class
(filterFeatureDefinitions), 109

XcmsExperimentHdf5, 128
XcmsExperimentHdf5

(toXcmsExperimentHdf5), 264
XcmsExperimentHdf5(), 9, 64, 110
XcmsExperimentHdf5-class

(toXcmsExperimentHdf5), 264
xcmsFileSource, 309
xcmsFileSource-class, 287
xcmsFragments, 55, 288, 289, 302
xcmsFragments-class, 289
XCMSnExp, 15, 27, 28, 46–48, 51, 52, 62, 90,

92, 93, 97, 109, 166, 167, 184, 198,
217, 245, 273, 310, 312, 313

XCMSnExp (XCMSnExp-class), 290
XCMSnExp(), 8, 17–19, 93, 99, 121, 122, 128,

134, 135, 138, 142, 144, 145, 153,
175–178, 181, 183, 196, 201, 212,

INDEX 337

219, 221, 238, 239, 244, 264, 280,
281, 283, 292

XCMSnExp-class, 290
XCMSnExp-filter, 19
XCMSnExp-filter

([,XCMSnExp,ANY,ANY,ANY-method),
310

xcmsPeaks-class, 300
xcmsRaw, 55, 163, 170, 195, 200, 271, 289,

301, 301, 303, 305, 309, 310
xcmsRaw-class, 303
xcmsSet, 55, 163, 272, 274, 289, 305, 307–309
xcmsSet-class, 307
xcmsSource, 195, 196, 287, 288, 310
xcmsSource (xcmsSource-methods), 310
xcmsSource,character-method

(xcmsFileSource-class), 287
xcmsSource,xcmsSource-method

(xcmsSource-methods), 310
xcmsSource-class, 309
xcmsSource-methods, 310
xdata (loadXcmsData), 196
xmse (loadXcmsData), 196
XProcessHistory (ProcessHistory-class),

229
XProcessHistory-class

(ProcessHistory-class), 229

	absent-methods
	adjustRtime
	adjustRtime,XcmsExperiment,LamaParama-method
	applyAdjustedRtime
	AutoLockMass-methods
	bin,XCMSnExp-method
	binYonX
	BlankFlag
	breaks_on_binSize
	breaks_on_nBins
	c-methods
	CalibrantMassParam-class
	calibrate-methods
	CentWaveParam-class
	chromatogram,XCMSnExp-method
	chromPeakChromatograms
	chromPeakSpectra
	chromPeakSummary
	collect-methods
	colMax
	correlate,Chromatogram,Chromatogram-method
	descendZero
	diffreport-methods
	dirname
	doubleMatrix
	do_adjustRtime_peakGroups
	do_findChromPeaks_centWave
	do_findChromPeaks_centWaveWithPredIsoROIs
	do_findChromPeaks_massifquant
	do_findChromPeaks_matchedFilter
	do_findPeaks_MSW
	do_groupChromPeaks_density
	do_groupChromPeaks_nearest
	do_groupPeaks_mzClust
	DratioFilter
	estimatePrecursorIntensity,MsExperiment-method
	etg
	exportMetaboAnalyst
	extractMsData,OnDiskMSnExp-method
	feature-grouping
	featureChromatograms
	featureSpectra
	featureSummary
	fillChromPeaks
	fillPeaks-methods
	fillPeaks.chrom-methods
	fillPeaks.MSW-methods
	filterColumnsIntensityAbove,MChromatograms-method
	filterFeatureDefinitions
	filterFeatures
	filtfft
	findChromPeaks
	findChromPeaks,Chromatogram,CentWaveParam-method
	findChromPeaks,Chromatogram,MatchedFilterParam-method
	findChromPeaks-centWave
	findChromPeaks-centWaveWithPredIsoROIs
	findChromPeaks-massifquant
	findChromPeaks-matchedFilter
	findChromPeaksIsolationWindow
	findEqualGreater
	findMZ
	findneutral
	findPeaks-methods
	findPeaks-MSW
	findPeaks.addPredictedIsotopeFeatures-methods
	findPeaks.centWave-methods
	findPeaks.centWaveWithPredictedIsotopeROIs-methods
	findPeaks.massifquant-methods
	findPeaks.matchedFilter,xcmsRaw-method
	findPeaks.MS1-methods
	findPeaks.MSW,xcmsRaw-method
	GenericParam-class
	getEIC-methods
	getPeaks-methods
	getScan-methods
	getSpec-methods
	getXcmsRaw-methods
	group-methods
	group.density
	group.mzClust
	group.nearest
	groupChromPeaks
	groupFeatures-abundance-correlation
	groupFeatures-eic-similarity
	groupFeatures-similar-rtime
	groupnames,XCMSnExp-method
	groupnames-methods
	groupOverlaps
	groupval-methods
	highlightChromPeaks
	image-methods
	imputeLinInterpol
	imputeRowMin
	imputeRowMinRand
	isolationWindowTargetMz,OnDiskMSnExp-method
	levelplot-methods
	loadRaw-methods
	loadXcmsData
	manualChromPeaks
	medianFilter
	msn2xcmsRaw
	na.flatfill
	overlappingFeatures
	panel.cor
	peakPlots-methods
	peaksWithCentWave
	peaksWithMatchedFilter
	peakTable-methods
	PercentMissingFilter
	phenoDataFromPaths
	plot.xcmsEIC
	plotAdjustedRtime
	plotChrom-methods
	plotChromatogramsOverlay
	plotChromPeakDensity,XCMSnExp-method
	plotChromPeaks
	plotEIC-methods
	plotFeatureGroups
	plotMsData
	plotPeaks-methods
	plotPrecursorIons
	plotQC
	plotRaw-methods
	plotrt-methods
	plotScan-methods
	plotSpec-methods
	plotSurf-methods
	plotTIC-methods
	ProcessHistory-class
	profGenerate
	profMat,MsExperiment-method
	profMedFilt-methods
	profMethod-methods
	profRange-methods
	profStep-methods
	pval
	quantify,XCMSnExp-method
	rawEIC-methods
	rawMat-methods
	reconstructChromPeakSpectra
	rectUnique
	refineChromPeaks
	removeIntensity,Chromatogram-method
	retcor-methods
	retcor.obiwarp
	retcor.peakgroups-methods
	retexp
	rla
	RsdFilter
	sampnames-methods
	showError,xcmsSet-method
	specDist-methods
	specDist.cosine
	specDist.meanMZmatch
	specDist.peakCount-methods
	specNoise
	specPeaks
	split.xcmsRaw
	split.xcmsSet
	SSgauss
	stitch-methods
	toXcmsExperimentHdf5
	updateObject,xcmsSet-method
	useOriginalCode
	verify.mzQuantM
	write.cdf-methods
	write.mzdata-methods
	write.mzQuantML-methods
	writeMSData,XCMSnExp,character-method
	writeMzTab
	XChromatograms
	xcms-deprecated
	xcmsEIC-class
	xcmsFileSource-class
	xcmsFragments
	xcmsFragments-class
	XCMSnExp-class
	xcmsPeaks-class
	xcmsRaw
	xcmsRaw-class
	xcmsSet
	xcmsSet-class
	xcmsSource-class
	xcmsSource-methods
	[,XCMSnExp,ANY,ANY,ANY-method
	[,xcmsRaw,logicalOrNumeric,missing,missing-method
	Index

