Package ‘universalmotif”’

January 30, 2026

Title Import, Modify, and Export Motifs with R
Version 1.28.0

URL https://bioconductor.org/packages/universalmotif/

BugReports https://github.com/bjmt/universalmotif/issues

Description Allows for importing most common motif types into R for use by
functions provided by other Bioconductor motif-related packages. Motifs can
be exported into most major motif formats from various classes as defined
by other Bioconductor packages. A suite of motif and sequence manipulation
and analysis functions are included, including enrichment, comparison,
P-value calculation, shuffling, trimming, higher-order motifs, and others.

Depends R (>=3.5.0)
License GPL-3
Encoding UTF-8

Imports methods, stats, utils, MASS, ggplot2, yaml, IRanges, Rcpp,
Biostrings, BiocGenerics, S4Vectors, rlang, grid,
MatrixGenerics

Suggests spelling, knitr, bookdown, TEFBSTools, rmarkdown, MotifDb,
testthat, BiocParallel, seqLogo, motifStack, dplyr, ape,
ggtree, processx, ggseqlogo, cowplot, GenomicRanges, ggbio

Enhances PWMEnrich, -tGADEM

LinkingTo Rcpp, ReppThread

VignetteBuilder knitr

biocViews MotifAnnotation, MotifDiscovery, Datalmport, GeneRegulation
RoxygenNote 7.3.2

Roxygen list(markdown = TRUE, old_usage = TRUE)

Language en-GB

Collate 'RcppExports.R' 'add_multifreq.R' 'compare_motifs.R’
'universalmotif-class.R' 'convert_motifs.R' 'convert_type.R'
'create_motif.R' 'create_sequences.R' 'data.R’
'enrich_motifs.R' 'filter_motifs.R' 'get_bkg.R’
'make_DBscores.R' 'merge_motifs.R' 'merge_similar.R’
'motif_clusters.R' 'motif_finder.R' 'motif_peaks.R'
'motif_pvalue.R' 'motif_rc.R' 'motif_tree.R' 'read_cisbp.R’
'read_homer.R' 'read_jaspar.R' 'read_matrix.R' 'read_meme.R'

1

https://bioconductor.org/packages/universalmotif/
https://github.com/bjmt/universalmotif/issues

'read_motifs.R' 'read_transfac.R' 'read_uniprobe.R'
'run_meme.R' 'sample_sites.R' 'scan_sequences.R’
'sequence_complexity.R' 'shuffle_motifs.R'
'shuffle_sequences.R' 'switch_alph.R' 'trim_motifs.R’
"universalmotif-methods.R' 'universalmotif.R'
"‘universalmotif df.R' 'utils-internal.R' 'utils-motif.R’
'utils-sequence.R' 'view_logo.R' 'view_motifs.R'
'write_homer.R' 'write_jaspar.R' 'write_matrix.R'
'write_meme.R' 'write_motifs.R' 'write_transfac.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/universalmotif
git_branch RELEASE_3_22

git_last_commit 428965b

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Benjamin Jean-Marie Tremblay [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7441-2951>),
Spencer Nystrom [ctb] (ORCID: <https://orcid.org/0000-0003-1000-1579>)

Maintainer Benjamin Jean-Marie Tremblay <benjamin.tremblay@uwaterloo.ca>

Contents

add_multifreq
ArabidopsisMotif
ArabidopsisPromoters. L.
compare_motifs L.
convert_motifS e e
CONVEIL_EYPE . « v v v v e e e et e e e e e e e e e e e
create_mOtif
CrEate_SEQUENCES . . « « v v v v v e v e e e e e e e e e e e e e e
enrich_motifs e
examplemotif
examplemotif2 L
filter_motifs e
fontDFroboto
get_bKE . . . e e
JASPAR2018_CORE_DBSCORES
make_DBscores
merge_motifs
merge_similar L
motif_peaks L.
motif_pvalue
motif IC e e
motif tree e
read_cisbp
read_homer e
read_jaspar e e e e e e e e e e e e
read_MatrixX e e e
read_meme e e e

Contents

https://orcid.org/0000-0002-7441-2951
https://orcid.org/0000-0003-1000-1579

add_multifreq 3

read_motifs L e 48
read_transfac L L e 49
read_uniprobe L e e e e e 50
TEEXPOILS L e e e e 51
TUN_MEIME . . . o o v e e e e e e e e e e e e e e e e e 51
sample_Sites e 54
SCAN_SEQUENICES . « & v v v v v e 54
sequence_complexity e e e e 58
shuffle_motifs e 61
shuffle_sequences L 62
switch_alph 64
tidy-motifs e e e e 64
trim_motifS e e e e 66
universalmotif-class 67
universalmotif-pkg L 70
utilitieso e 71
utils-motif e e 71
ULIS-SEqUENCE o e e e e e e e e 78
view_logo e 81
VIEW_MOtIfS e e e 83
write_homer e 86
WILE_JASPAT .« . . . v v v e e i e e e e e e e e e 87
WIHEE_MALIIX . . . v o o o o e e e e e e e e e e e e e 88
WIIE_IMEIME v v v e o e 89
write_motifs e e e e 90
write_transfac e 91
Index 92
add_multifreq Add multi-letter information to a motif.
Description

If the original sequences are available for a particular motif, then they can be used to generate
higher-order PPM matrices. See the "Motif import, export, and manipulation” vignette for more
information.

Usage

add_multifreq(motif, sequences, add.k = 2:3, RC = FALSE,
threshold = 0.001, threshold.type = "pvalue”, motifs.perseq = 1,
add.bkg = FALSE)

Arguments
motif See convert_motifs() for acceptable formats. If the motif is not a univer-
salmotif motif, then it will be converted.
sequences XStringSet The alphabet must match that of the motif. If these sequences are

all the same length as the motif, then they are all used to generate the multi-freq
matrices. Otherwise scan_sequences() is first run to find the best sequence
stretches within these.

4 add_multifreq

add.k numeric(1) The k-let lengths to add.

RC logical (1) If TRUE, check reverse complement of the input sequences. Only
available for DNA/RNA.

threshold numeric(1) See details.

threshold. type character(1) Oneofc('pvalue', 'qvalue', 'logodds', 'logodds.abs').
See details.

motifs.perseq numeric(1) If scan_sequences() is run, then this indicates how many hits
from each sequence is to be used.

add.bkg logical(1) Indicate whether to add corresponding higher order background
information to the motif. Can sometimes be detrimental when the input consists
of few short sequences, which can increase the likelihood of adding zero or
near-zero probabilities.

Details

See scan_sequences () for more info on scanning parameters.

At each position in the motif, then the probability of each k-let covering from the initial position
to ncol - 1 is calculated. Only positions within the motif are considered: this means that the final
k-let probability matrix will have ncol - 1 fewer columns. Calculating k-let probabilities for the
missing columns would be trivial however, as you would only need the background frequencies.
Since these would not be useful for scan_sequences() though, they are not calculated.

Currently add_multifreq() does not try to stay faithful to the default motif matrix when generating
multifreq matrices. This means that if the sequences used for training are completely different from
the actual motif, the multifreq matrices will be as well. However this is only really a problem
if you supply add_multifreq() with a set of sequences of the same length as the motif. In this
case add_multifreq() is forced to create the multifreq matrices from these sequences. Otherwise
add_multifreq() will scan the input sequences for the motif and use the best matches to construct
the multifreq matrices.

This 'multifreq’ representation is only really useful within the universalmotif environment. Despite
this, if you wish it can be preserved in text using write_motifs().

A note on motif size:

The number of rows for each k-let matrix is n*k, with n being the number of letters in the alphabet
being used. This means that the size of the k-let matrix can become quite large as k increases.
For example, if one were to wish to represent a DNA motif of length 10 as a 10-let, this would
require a matrix with 1,048,576 rows (though at this point if what you want is to search for exact
sequence matches, the motif format itself is not very useful).

Value

A universalmotif object with filled multifreq slot. The bkg slot is also expanded with correspond-
ing higher order probabilities if add. bkg = TRUE.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

scan_sequences(), convert_motifs(),write_motifs()

ArabidopsisMotif 5

Examples

sequences <- create_sequences(seqglen = 10)

motif <- create_motif ()

motif.trained <- add_multifreq(motif, sequences, add.k = 2:4)
peek at the 2-let matrix:

motif.trained["multifreq”]$ 2"

ArabidopsisMotif Arabidopsis motif in universalmotif format.

Description

Arabidopsis motif trained from ArabidopsisPromoters using MEME version 4. This motif was
generated at the command line using the following command: meme promoters.fa -revcomp -nmotifs 3 -mod anr -

Usage

ArabidopsisMotif

Format

universalmotif

ArabidopsisPromoters Arabidopsis promoters as a DNAStringSet.

Description

50 Arabidopsis promoters, each 1000 bases long. See the "Sequence manipulation and scanning"
vignette for an example workflow describing extracting promoter sequences.

Usage

ArabidopsisPromoters

Format

DNAStringSet

6 compare_motifs

compare_motifs Compare motifs.

Description

Compare motifs using one of the several available metrics. See the "Motif comparisons and P-
values" vignette for detailed information.

Usage

compare_motifs(motifs, compare.to, db.scores, use.freq = 1,
use.type = "PPM", method = "PCC", tryRC = TRUE, min.overlap = 6,
min.mean.ic = 0.25, min.position.ic = @, relative_entropy = FALSE,
normalise.scores = FALSE, max.p = 0.01, max.e = 10, nthreads =1,

score.strat = "a.mean”, output.report, output.report.max.print = 10)
Arguments
motifs See convert_motifs() for acceptable motif formats.
compare.to numeric If missing, compares all motifs to all other motifs. Otherwise compares
all motifs to the specified motif(s).
db.scores data.frame or DataFrame. See details.
use.freq numeric(1). For comparing the multifreq slot.
use.type character(1) One of 'PPM' and 'ICM'. The latter allows for taking into ac-

count the background frequencies if relative_entropy = TRUE. Note that ' ICM'
is not allowed when method = c("ALLR", "ALLR_LL").

method character (1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,
MAN, ALLR_LL, WEUCL, WPCC. See details.

tryRC logical(1) Try the reverse complement of the motifs as well, report the best
score.

min.overlap numeric(1) Minimum overlap required when aligning the motifs. Setting this

to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

min.mean.ic numeric(1) Minimum mean information content between the two motifs for
an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.

min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.

relative_entropy
logical (1) Change the ICM calculation affecting min.position.icandmin.mean.ic.
See convert_type().

compare_motifs 7

normalise.scores
logical (1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

max.p numeric(1) Maximum P-value allowed in reporting matches. Only used if
compare. to is set.

max.e numeric(1) Maximum E-value allowed in reporting matches. Only used if
compare.to is set. The E-value is the P-value multiplied by the number of
input motifs times two.

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads. nthreads
= @ uses all available threads.

score.strat character (1) How to handle column scores calculated from motif alignments.

" "

sum": add up all scores. "a.mean": take the arithmetic mean. "g.mean":

non

take the geometric mean. "median": take the median. "wa.mean", "wg.mean":
weighted arithmetic/geometric mean. "fzt": Fisher Z-transform. Weights are the
total information content shared between aligned columns.

output.report character (1) Provide a filename for compare_motifs() to write an html ouput
report to. The top matches are shown alongside figures of the match alignments.
This requires the knitr and rmarkdown packages. (Note: still in development.)

output.report.max.print
numeric(1) Maximum number of top matches to print.

Details

Available metrics:
The following metrics are available:

* Euclidean distance (EUCL) (Choi et al. 2004)

* Weighted Euclidean distance (WEUCL)

» Kullback-Leibler divergence (KL) (Kullback and Leibler 1951; Roepcke et al. 2005)
 Hellinger distance (HELL) (Hellinger 1909)

e Squared Euclidean distance (SEUCL)

¢ Manhattan distance (MAN)

¢ Pearson correlation coefficient (PCC)

» Weighted Pearson correlation coefficient (WPCC)

¢ Sandelin-Wasserman similarity (SW), or sum of squared distances (Sandelin and Wasserman
2004)

* Average log-likelihood ratio (ALLR) (Wang and Stormo 2003)
e Lower limit ALLR (ALLR_LL) (Mahony et al. 2007)
* Bhattacharyya coefficient (BHAT) (Bhattacharyya 1943)
Comparisons are calculated between two motifs at a time. All possible alignments are scored, and

the best score is reported. In an alignment scores are calculated individually between columns.
How those scores are combined to generate the final alignment scores depends on score. strat.

See the "Motif comparisons and P-values" vignette for a description of the various metrics. Note
that PCC, WPCC, SW, ALLR, ALLR_LL and BHAT are similarities; higher values mean more similar
motifs. For the remaining metrics, values closer to zero represent more similar motifs.

Small pseudocounts are automatically added when one of the following methods is used: KL,
ALLR, ALLR_LL, IS. This is avoid zeros in the calculations.

8 compare_motifs

Calculating P-values:

To note regarding p-values: P-values are pre-computed using the make_DBscores() function. If
not given, then uses a set of internal precomputed P-values from the JASPAR2018 CORE motifs.
These precalculated scores are dependent on the length of the motifs being compared. This takes
into account that comparing small motifs with larger motifs leads to higher scores, since the
probability of finding a higher scoring alignment is higher.

The default P-values have been precalculated for regular DNA motifs. They are of little use for
motifs with a different number of alphabet letters (or even the multifreq slot).

Value

matrix if compare. to is missing; DataFrame otherwise. For the latter, function args are stored in
the metadata slot.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Bhattacharyya A (1943). “On a measure of divergence between two statistical populations defined
by their probability distributions.” Bulletin of the Calcutta Mathematical Society, 35, 99-109.

Choi I, Kwon J, Kim S (2004). “Local feature frequency profile: a method to measure structural
similarity in proteins.” PNAS, 101, 3797-3802.

Hellinger E (1909). “Neue Begrundung der Theorie quadratischer Formen von unendlichvielen
Veranderlichen.” Journal fur die reine und angewandte Mathematik, 136, 210-271.

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A,
Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard
B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.” Nucleic Acids
Research, 46, D260-D266.

Kullback S, Leibler RA (1951). “On information and sufficiency.” The Annals of Mathematical
Statistics, 22, 79-86.

Itakura F, Saito S (1968). “Analysis synthesis telephony based on the maximum likelihood method.”
In 6th International Congress on Acoustics, C-17.

Mahony S, Auron PE, Benos PV (2007). “DNA Familial Binding Profiles Made Easy: Comparison
of Various Motif Alignment and Clustering Strategies.” PLoS Computational Biology, 3.

Pietrokovski S (1996). “Searching databases of conserved sequence regions by aligning protein
multiple-alignments.” Nucleic Acids Research, 24, 3836-3845.

Roepcke S, Grossmann S, Rahmann S, Vingron M (2005). “T-Reg Comparator: an analysis tool for
the comparison of position weight matrices.” Nucleic Acids Research, 33, W438-W441.

Sandelin A, Wasserman WW (2004). “Constrained binding site diversity within families of tran-
scription factors enhances pattern discovery bioinformatics.” Journal of Molecular Biology, 338,
207-215.

Wang T, Stormo GD (2003). “Combining phylogenetic data with co-regulated genes to identify
motifs.” Bioinformatics, 19, 2369-2380.

See Also

convert_motifs(), motif_tree(), view_motifs(), make_DBscores()

convert_motifs 9

Examples
motifl <- create_motif(name = "1")
motif2 <- create_motif(name = "2")

motiflvs2 <- compare_motifs(c(motif1, motif2), method = "PCC")
To get a dist object:
as.dist(1 - motiflvs2)

motif3 <- create_motif(name = "3")

motif4 <- create_motif(name = "4")

motifs <- c(motif1, motif2, motif3, motif4)

Compare motif "2" to all the other motifs:

if (R.Version()$arch != "i386") {

compare_motifs(motifs, compare.to = 2, max.p = 1, max.e = Inf)

}

If you are working with a large list of motifs and the mean.min.ic
option is not set to zero, you may get a number of failed comparisons
due to low IC. To filter the list of motifs to avoid these, use

the average_ic() function to remove motifs with low average IC:

Not run:

library(MotifDb)

motifs <- convert_motifs(MotifDb)[1:100]

compare_motifs(motifs)

#> Warning in compare_motifs(motifs) :

#> Some comparisons failed due to low IC

motifs <- motifs[average_ic(motifs) > 0.5]

compare_motifs(motifs)

End(Not run)

convert_motifs Convert motif class.

Description

Allows for easy transfer of motif information between different classes as defined by other Biocon-
ductor packages. This function is also used by nearly all other functions in this package, so any
motifs of a compatible class can be used without needing to be converted beforehand.

Usage

convert_motifs(motifs, class = "universalmotif-universalmotif")

S4 method for signature 'AsIs'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'list'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

10

S4 method for signature 'universalmotif'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'Motiflist'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'TFFMFirst'
convert_motifs(motifs,
class = "universalmotif-universalmotif™")

S4 method for signature 'PFMatrix'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'PWMatrix'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'ICMatrix'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'XMatrixList'
convert_motifs(motifs,
class = "universalmotif-universalmotif™")

S4 method for signature 'pwm'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'pcm'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'pfm'
convert_motifs(motifs,
class = "universalmotif-universalmotif™")

S4 method for signature 'PWM'
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'Motif’
convert_motifs(motifs,
class = "universalmotif-universalmotif")

S4 method for signature 'matrix’
convert_motifs(motifs,
class = "universalmotif-universalmotif")

convert_motifs

convert_motifs 11

Arguments
motifs Single motif object or list. See details.
class character (1) Desired motif class. Input as ’package-class’. If left empty,
defaults to "universalmotif-universalmotif’. (See details.)
Details
Input:

The following packge-class combinations can be used as input:

MotifDb-MotifList
TFBSTools-PFMatrix
TFBSTools-PWMatrix
TFBSTools-ICMatrix
TFBSTools-PFMatrixList
TFBSTools-PWMatrixList
TFBSTools-ICMatrixList
TFBSTools-TFFMFirst
seqLogo-pwm
motifStack-pcm
motifStack-pfm
PWMEnrich-PWM
motifRG-Motif
universalmotif-universalmotif
matrix

Output:
The following package-class combinations can be output:

MotifDb-MotifList
TFBSTools-PFMatrix
TFBSTools-PWMatrix
TFBSTools-ICMatrix
TFBSTools-TFFMFirst

seqLogo-pwm

motifStack-pcm

motifStack-pfm

PWMEnrich-PWM

Biostrings-PWM (type = 'log2prob')
rGADEM-motif
universalmotif-universalmotif (the default, no need to specify this)

Note: MotifDb-MotifList output was a later addition to convert_motifs(). As a result, to stay
consistent with previous behaviour most functions will always convert MotifDb-MotifList objects
to a list of universalmotif motifs, even if other formats would be simply returned as is (e.g.
for other formats, filter_motifs() will return the input format; for MotifDb-MotifList, a list of
universalmotif objects will be returned).

Value

Single motif object or list.

12 convert_motifs

Methods (by class)

* convert_motifs(AsIs): Generate an error to remind users to run to_list () instead of using
the column from to_df () directly.

e convert_motifs(list): Convert a list of motifs.

* convert_motifs(universalmotif): Convert a universalmotif object.

e convert_motifs(MotifList): Convert MotifList motifs. (MotifDb)

e convert_motifs(TFFMFirst): Convert TFEMFirst motifs. (TFBSTools)
e convert_motifs(PFMatrix): Convert PFMatrix motifs. (TFBSTools)

e convert_motifs(PWMatrix): Convert PWMatrix motifs. (TFBSTools)

e convert_motifs(ICMatrix): Convert ICMatrix motifs. (TFBSTools)

e convert_motifs(XMatrixList): Convert XMatrixList motifs. (TFBSTools)
e convert_motifs(pwm): Convert pwm motifs. (seql.ogo)

e convert_motifs(pcm): Convert pcm motifs. (motifStack)

e convert_motifs(pfm): Convert pfm motifs. (motifStack)

e convert_motifs(PWM): Convert PWM motifs. (PWMEnrich)

e convert_motifs(Motif): Convert Motif motifs. (motifRG)

e convert_motifs(matrix): Create motif from matrices.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Bembom O (2018). seqLogo: Sequence logos for DNA sequence alignments. R package version
1.46.0.

Droit A, Gottardo R, Robertson G, Li L (2014). rGADEM: de novo motif discovery. R package
version 2.28.0.

Mercier E, Gottardo R (2014). MotlV: Motif Identification and Validation. R package version
1.36.0.

Ou J, Wolfe SA, Brodsky MH, Zhu LJ (2018). “motifStack for the analysis of transcription factor
binding site evolution.” Nature Methods, 15, 8-9. doi: 10.1038/nmeth.4555.

Shannon P, Richards M (2018). MotifDb: An Annotated Collection of Protein-DNA Binding Se-
quence Motifs. R package version 1.22.0.

Stojnic R, Diez D (2015). PWMEnrich: PWM enrichment analysis. R package version 4.16.0.

Tan G, Lenhard B (2016). “TFBSTools: an R/Bioconductor package for transcription factor binding
site analysis.” Bioinformatics, 32, 1555-1556. doi: 10.1093/bioinformatics/btw024.

Yao Z (2012). motifRG: A package for discriminative motif discovery, designed for high throughput
sequencing dataset. R package version 1.24.0.

convert_type 13

Examples

Convert from universalmotif:
jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt”,
package = "universalmotif"))
if (requireNamespace("motifStack”, quietly = TRUE)) {
jaspar.motifstack.pfm <- convert_motifs(jaspar, "motifStack-pfm")

}

Convert from another class to universalmotif:

if (requireNamespace("TFBSTools"”, quietly = TRUE)) {
library(TFBSTools)

data(MAQ@03.2)

motif <- convert_motifs(MAQQQ@3.2)

Convert from another class to another class

if (requireNamespace("PWMEnrich”, quietly = TRUE)) {
motif <- convert_motifs(MA@0@3.2, "PWMEnrich-PWM")

3

The 'convert_motifs' function is embedded in the rest of the universalmotif
functions: non-universalmotif class motifs can be used

MAQQ®@3.2.trimmed <- trim_motifs(MAQQ@3.2)

Note: if the motif object going in has information that the

'universalmotif' class can't hold, it will be lost

}

convert_type Convert universalmotif type.

Description

Switch between position count matrix (PCM), position probability matrix (PPM), position weight
matrix (PWM), and information count matrix (ICM) types. See the "Introduction to sequence mo-
tifs" vignette for details. Please also note that type conversion occurs implicitly throughout the
universalmotif package, so there is generally no need to perform this manual conversion. Also
please be aware that the message concerning pseudocount-adjusting motifs can be disabled via
options(pseudocount.warning=FALSE).

Usage

convert_type(motifs, type, pseudocount, nsize_correction = FALSE,
relative_entropy = FALSE)

Arguments
motifs See convert_motifs() for acceptable formats.
type character(1) One of c('PCM', 'PPM', 'PWM', 'ICM').
pseudocount numeric(1) Correction to be applied to prevent -Inf from appearing in PWM

matrices. If missing, the pseudocount stored in the universalmotif *pseudocount’
slot will be used.

14 convert_type

nsize_correction
logical (1) If true, the ICM at each position will be corrected to account for
small sample sizes. Only used if relative_entropy = FALSE.
relative_entropy
logical (1) If true, the ICM will be calculated as relative entropy. See details.

Details

PCM:

Position count matrix (PCM), also known as position frequency matrix (PFM). For n sequences
from which the motif was built, each position is represented by the numbers of each letter at
that position. In theory all positions should have sums equal to n, but not all databases are this
consistent. If converting from another type to PCM, column sums will be equal to the ’nsites’
slot. If empty, 100 is used.

PPM:

Position probability matrix (PPM), also known as position frequency matrix (PFM). At each po-
sition, the probability of individual letters is calculated by dividing the count for that letter by
the total sum of counts at that position (letter_count / position_total). As a result, each
position will sum to 1. Letters with counts of 0 will thus have a probability of 0, which can be
undesirable when searching for motifs in a set of sequences. To avoid this a pseudocount can be
added ((letter_count + pseudocount) / (position_total + pseudocount)).

PWM:

Position weight matrix (PWM; Stormo et al. (1982)), also known as position-specific weight ma-
trix (PSWM), position-specific scoring matrix (PSSM), or log-odds matrix. At each position, each
letter is represented by it’s log-likelihood (log2 (letter_probability / background_probility)),
which is normalized using the background letter frequencies. A PWM matrix is constructed from

a PPM. If any position has O-probability letters to which pseudocounts were not added, then the
final log-likelihood of these letters will be -Inf.

ICM:

Information content matrix (ICM; Schneider and Stephens 1990). An ICM is a PPM where each
letter probability is multiplied by the total information content at that position. The information
content of each position is determined as: totalIC - Hi, where the total information totallC
totalIC <- log2(alphabet_length), and the Shannon entropy (Shannon 1948) for a specific
position (Hi)

Hi <- -sum(sapply(alphabet_frequencies, function(x) x * log(2)).

As a result, the total sum or height of each position is representative of it’s sequence conser-
vation, measured in the unit ’bits’, which is a unit of energy (Schneider 1991; see https://
fr-s-schneider.ncifcrf.gov/logorecommendations.html for more information). However
not all programs will calculate information content the same. Some will ’correct’ the total infor-
mation content at each position using a correction factor as described by Schneider et al. (1986).
This correction can applied by setting nsize_correction = TRUE, however it will only be applied
if the ’nsites’ slot is not empty. This is done using TFBSTools: : : schneider_correction (Tan
and Lenhard 2016). As such, converting from an ICM to which some form of correction has been
applied will result in a PCM/PPM/PWM with slight inaccuracies.

Another method of calculating information content is calculating the relative entropy, also known
as Kullback-Leibler divergence (Kullback and Leibler 1951). This accounts for background fre-
quencies, which can be useful for genomes with a heavy imbalance in letter frequencies. For each
position, the individual letter frequencies are calculated as letter_freq * log2(letter_freq/
bkg_freq). When calculating information content using Shannon entropy, the maximum content

https://fr-s-schneider.ncifcrf.gov/logorecommendations.html
https://fr-s-schneider.ncifcrf.gov/logorecommendations.html

convert_type 15

for each position will always be log2(alphabet_length). This does not hold for information
content calculated as relative entropy. Please note that conversion from ICM assumes the infor-
mation content was not calculated as relative entropy.

Value

See convert_motifs() for possible output motif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Kullback S, Leibler RA (1951). “On information and sufficiency.” The Annals of Mathematical
Statistics, 22, 79-86.

Nishida K, Frith MC, Nakai K (2009). “Pseudocounts for transcription factor binding sites.” Nucleic
Acids Research, 37, 939-944.

Schneider TD, Stormo GD, Gold L, Ehrenfeucht A (1986). “Information content of binding sites
on nucleotide sequences.” Journal of Molecular Biology, 188, 415-431.

Schneider TD, Stephens RM (1990). “Sequence Logos: A New Way to Display Consensus Se-
quences.” Nucleic Acids Research, 18, 6097-6100.

Schneider TD (1991). “Theory of Molecular Machines. II. Energy Dissipation from Molecular
Machines.” Journal of Theoretical Biology, 148, 125-137.

Shannon CE (1948). “A Mathematical Theory of Communication.” Bell System Technical Journal,
27, 379-423.

Stormo GD, Schneider TD, Gold L, Ehrenfeucht A (1982). “Use of the Perceptron algorithm to
distinguish translational initiation sites in E. coli.” Nucleic Acids Research, 10, 2997-3011.

Tan G, Lenhard B (2016). “TFBSTools: an R/Bioconductor package for transcription factor binding
site analysis.” Bioinformatics, 32, 1555-1556. doi: 10.1093/bioinformatics/btw024.

See Also

convert_motifs()

Examples

jaspar.pcm <- read_jaspar(system.file("extdata”, "jaspar.txt”,
package = "universalmotif"))

The motifs pseudocounts are 1: these will be used in the PCM->PPM
calculation
jaspar.pwm <- convert_type(jaspar.pcm, type = "PPM")

Setting pseudocount to @ will prevent any correction from being
applied to PPM/PWM matrices, overriding the motifs own pseudocounts
jaspar.pwm <- convert_type(jaspar.pcm, type = "PWM"”, pseudocount = @)

16 create_motif

create_motif Create a motif.

Description

Create a motif from a set of sequences, a matrix, or generate a random motif. See the "Motif import,
export and manipulation” vignette for details.

Usage

create_motif(input, alphabet, type = "PPM", name = "motif",
pseudocount = @, bkg, nsites, altname, family, organism, bkgsites, strand,
pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'missing'’

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, gval, eval, extrainfo, add.multifreq)

S4 method for signature 'numeric'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'character'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'matrix'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'DNAStringSet'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'RNAStringSet'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'AAStringSet'

create_motif(input, alphabet, type = "PPM",
name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

S4 method for signature 'BStringSet'
create_motif(input, alphabet, type = "PPM",

create_motif

17

name = "motif"”, pseudocount = @, bkg, nsites, altname, family, organism,
bkgsites, strand, pval, qval, eval, extrainfo, add.multifreq)

Arguments
input

alphabet

type
name

pseudocount

bkg

nsites

altname
family
organism
bkgsites

strand

pval
gval
eval

extrainfo

add.multifreq

Details

character, numeric, matrix, XStringSet, or missing.

character(1) Oneof c('DNA', 'RNA', '"AA"), or a combined string represent-
ing the letters. If no alphabet is provided then it will try and guess the alphabet
from the input.

character(1) One of c('PCM', 'PPM', 'PWM', 'ICM').
character (1) Motif name.

numeric(1) Correction to be applied to prevent -Inf from appearing in PWM
matrices. Defaults to 0.

numeric A vector of probabilities, each between 0 and 1. If higher order back-
grounds are provided, then the elements of the vector must be named. If un-
named, then the order of probabilities must be in the same order as the alphabet-
ically sorted sequence alphabet.

numeric(1) Number of sites the motif was constructed from. If blank, then
create_motif () will guess the appropriate number if possible. To prevent this,
provide nsites = numeric().

character (1) Alternate motif name.

character (1) Transcription factor family.
character (1) Species of origin.

numeric (1) Total number of sites used to find the motif.

character (1) Whether the motif is specific to a certain strand. Acceptable
strands are ’+’, ’-’, and ’+-’ (to represent both strands). Note that -+’ and
’*> can also be provided to represent both strands, but the final strand in the
universalmotif object will be set to *+-.

numeric(1) P-value associated with motif.
numeric(1) Adjusted P-value associated with motif.
numeric(1) E-value associated with motif.

character Any other extra information, represented as a named character vec-
tor.

numeric If the motif is created from a set of sequences, then the add_multifreq()
function can be run at the same time (with RC = FALSE).

The aim of this function is provide an easy interface to creating universalmotif motifs, as an alter-
native to the default class constructor (i.e. new('universalmotif', name=...)). See examples
for potential use cases.

Note: when generating random motifs, the nsites slot is also given a random value.

See the examples section for more info on motif creation.

Value

universalmotif object.

18 create_motif

Methods (by class)

* create_motif(missing): Create a random motif of length 10.

* create_motif(numeric): Create a random motif with a specified length.
* create_motif(character): Create motif from a consensus string.

e create_motif(matrix): Create motif from a matrix.

e create_motif (DNAStringSet): Create motif from a DNAStringSet.

e create_motif (RNAStringSet): Create motif from a RNAStringSet.

e create_motif (AAStringSet): Create motif from a AAStringSet.

e create_motif(BStringSet): Create motif from a BStringSet.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

convert_type(), add_multifreq(), create_sequences(), shuffle_motifs().

Examples

#i##HH# create motifs from a single string

Motif is by default generated as a PPM: change final type as desired
DNA.motif <- create_motif ("TATAWAW")
DNA.motif <- create_motif ("TATAWAW", type = "PCM")

Nsites will be set to the number of input sequences unless specified or
a single string is used as input
DNA.motif <- create_motif ("TTTTTTT", nsites = 10)

Ambiguity letters can be used:
DNA.motif <- create_motif ("TATAWAW")
DNA.motif <- create_motif ("NNVVWWAAWWDDN")

Be careful about setting nsites when using ambiguity letters!
DNA.motif <- create_motif ("NNVVWWAAWWDDN", nsites = 1)

RNA.motif <- create_motif ("UUUCCG")

'create_motif' will try to detect the alphabet type; this can be

unreliable for AA and custom alphabets as DNA and RNA alphabets are
detected first

AA.motif <- create_motif ("AVLK", alphabet = "AA")

custom.motif <- create_motif ("QWER", alphabet = "QWER")
Specify custom alphabet
custom.motif <- create_motif("QWER"”, alphabet = "QWERASDF")

#iH#H#HH Create motifs from multiple strings of equal length
DNA.motif <- create_motif(c("TTTT", "AAAA", "AACC", "TTGG"), type = "PPM")

DNA.motif <- create_motif(c("TTTT", "AAAA", "AACC", "TTGG"), nsites = 20)
RNA.motif <- create_motif(c("”UUUU", "AAAA", "AACC", "UUGG"), type = "PWM")

create_motif

AA.motif <- create_motif(c("ARNDCQ", "EGHILK", "ARNDCQ"), alphabet = "AA")
custom.motif <- create_motif(c("POIU", "LKJH", "POIU", "CVBN"),
alphabet = "POIULKJHCVBN")

Ambiguity letters are only allowed for single consensus strings: the
following fails

Not run:

create_motif (c("WWTT", "CCGG"))

create_motif (c("XXXX", "XXXX"), alphabet = "AA")

End(Not run)
#i#### Create motifs from XStringSet objects
library(Biostrings)

DNA.set <- DNAStringSet(c("TTTT", "AAAA", "AACC", "TTGG"))
DNA.motif <- create_motif(DNA.set)

RNA.set <- RNAStringSet(c("UUUU", "AACC", "UUCC"))
RNA.motif <- create_motif(RNA.set)

AA.set <- AAStringSet(c("VVVLLL", "AAAIII"))

AA.motif <- create_motif(AA.set)

Custom motifs can be created from BStringSet objects
B.set <- BStringSet(c("QWER", "ASDF", "ZXCV", "TYUI"))
custom.motif <- create_motif(B.set)

#i#H### Create motifs with filled 'multifreq' slot
DNA.motif.k2 <- create_motif(DNA.set, add.multifreq = 2)
#i##H## Create motifs from matrices

mat <- matrix(c(1, 1, 1, 1
2,0, 2, 0,
0, 2, 0, 2,
0, 9, 0, 0),

nrow = 4, byrow = TRUE)
DNA.motif <- create_motif(mat, alphabet = "DNA")
RNA.motif <- create_motif(mat, alphabet = "RNA", nsites = 20)

custom.motif <- create_motif(mat, alphabet = "QWER")

’ ’

Specify custom alphabet
custom.motif <- create_motif(mat, alphabet = "QWER")

Alphabet can be detected from rownames
rownames(mat) <- DNA_BASES

DNA.motif <- create_motif(mat)
rownames(mat) <- c("Q", "W", "E", "R")
custom.motif <- create_motif(mat)

Matrices can also be used as input

mat.ppm <- matrix(c(0.1, 0.1, 0.1, 0.1,
0.5, 0.5, 0.5, 0.5,
0.1, 0.1, 0.1, 0.1,
9.3, 0.3, 0.3, 0.3),
nrow = 4, byrow = TRUE)

19

20

DNA.motif <- create_motif(mat.ppm, alphabet = "DNA", type = "PPM")
#it##t# Create random motifs

These are generated as PPMs with 10 positions

DNA.motif <- create_motif()

RNA.motif <- create_motif(alphabet = "RNA")

AA.motif <- create_motif(alphabet = "AA")

custom.motif <- create_motif(alphabet = "QWER")

The number of positions can be specified

DNA.motif <- create_motif(5)

If the background frequencies are not provided, they are generated
using “rpois™; positions are created using “rdirichlet(1, bkg)".
(calling “create_motif()~ creates motifs with an average

positional IC of 1)

DNA.motif <- create_motif(bkg = c(0.3, 0.2, 0.2, 0.3))
DNA.motif <- create_motif (10, bkg = c(0.1, 0.4, 0.4, 0.1))

create_sequences

create_sequences Create random sequences.

Description

Generate random sequences from any set of characters, represented as XStringSet objects.

Usage

Arguments

alphabet character(1) One of c('DNA', 'RNA', 'AA"), or a string of characters to be
used as the alphabet.

segnum numeric(1) Number of sequences to generate.

seglen numeric(1) Length of random sequences.

fregs numeric A named vector of probabilities. The length of the vector must be the
power of the number of letters in the sequence alphabet. Probabilities can only
be provided for a single size k.

nthreads numeric(1) Run create_sequences() in parallel with nthreads threads. nthreads

create_sequences(alphabet = "DNA", seqnum = 100, seqlen = 100, fregs,

nthreads = 1, rng.seed = sample.int(10000, 1))

= @ uses all available threads. Note that no speed up will occur for jobs with

seqnum = 1.

enrich_motifs

rng.seed

Value

21

numeric(1) Set random number generator seed. Since sequence creation can
occur simultaneously in multiple threads using C++, it cannot communicate
with the regular R random number generator state and thus requires an inde-
pendent seed. Each individual sequence creation instance is given the following
seed: rng.seed * index. The default is to pick a random number as chosen by
sample(), which effectively is making create_sequences() dependent on the
R RNG state.

XStringSet The returned sequences are unnamed.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

create_motif (), shuffle_sequences()

Examples

Create DNA sequences with slightly increased AT content:
sequences <- create_sequences(freqs = c(A=0.3, C=0.2, G=0.2, T=0.3))
Create custom sequences:

sequences.QWER <- create_sequences("QWER")

You can include non-alphabet characters are well, even spaces:
sequences.custom <- create_sequences("!@#$ ")

enrich_motifs Enrich for input motifs in a set of sequences.

Description

Given a set of target and background sequences, test if the input motifs are significantly enriched
in the targets sequences relative to the background sequences. See the "Sequence manipulation and
scanning" vignette.

Usage

enrich_motifs(motifs, sequences, bkg.sequences, max.p = 0.001,
max.q = 0.001, max.e = 0.001, gval.method = "fdr"”, threshold = 1e-04,
threshold.type = "pvalue”, verbose = @, RC = TRUE, use.freq = 1,
shuffle.k = 2, shuffle.method = "euler”, return.scan.results = FALSE,

nthreads

=1, rng.seed = sample.int(10000, 1), motif_pvalue.k = 8,

use.gaps = TRUE, allow.nonfinite = FALSE, warn.NA = TRUE,
no.overlaps = TRUE, no.overlaps.by.strand = FALSE,

no.overlaps.strat = "score”, respect.strand = FALSE,
motif_pvalue.method = c("dynamic”, "exhaustive"),
scan_sequences.qgvals.method = c("BH", "fdr", "bonferroni”),

mode = c("total.hits", "seq.hits"), pseudocount = 1)

22 enrich_motifs

Arguments
motifs See convert_motifs() for acceptable motif formats.
sequences XStringSet Sequences to scan. Alphabet should match motif.

bkg.sequences XStringSet Optional. If missing, shuffle_sequences() is used to create
background sequences from the input sequences.

max.p numeric(1) P-value threshold.

max.q numeric(1) Adjusted P-value threshold. This is only useful if multiple motifs
are being enriched for.

max.e numeric(1). The E-value is calculated by multiplying the P-value with the
number of input motifs times two (McLeay and Bailey 2010).

gval.method character (1) See stats::p.adjust().
threshold numeric(1) See details.

threshold. type character(1) Oneofc('pvalue', 'qvalue', 'logodds', 'logodds.abs').
See details.

verbose numeric(1) O for no output, 4 for max verbosity.

RC logical(1) If TRUE, check reverse complement of the input sequences. Only
available for DNA/RNA.

use.freq numeric(1) The default, 1, uses the motif matrix (from the motif['motif']

slot) to search for sequences. If a higher number is used, then the matching k-let
matrix from the motif['multifreq'] slotis used. See add_multifreq().

shuffle.k numeric(1) The k-let size to use when shuffling input sequences. Only used if
no background sequences are input. See shuffle_sequences().

shuffle.method character(1) Oneofc('euler', 'markov', 'linear'). See shuffle_sequences().
return.scan.results
logical(1) Return output from scan_sequences(). For large jobs, leaving
this as FALSE can save a small amount time by preventing construction of the
complete results data. frame from scan_sequences().

nthreads numeric(1) Run scan_sequences() in parallel with nthreads threads. nthreads
= @ uses all available threads. Note that no speed up will occur for jobs with only
a single motif and sequence.

rng.seed numeric(1) Set random number generator seed. Since shuffling can occur si-
multaneously in multiple threads using C++, it cannot communicate with the
regular R random number generator state and thus requires an independent seed.
Each individual sequence in an XStringSet object will be given the following
seed: rng.seed x index. See shuffle_sequences().

motif_pvalue.k numeric(1) Control motif_pvalue() approximation. See motif_pvalue().

use.gaps logical(1) Set this to FALSE to ignore motif gaps, if present.

allow.nonfinite
logical(1) If FALSE, then apply a pseudocount if non-finite values are found
in the PWM. Note that if the motif has a pseudocount greater than zero and
the motif is not currently of type PWM, then this parameter has no effect as
the pseudocount will be applied automatically when the motif is converted to a
PWM internally. This value is set to FALSE by default in order to stay consistent
with pre-version 1.8.0 behaviour. A message will be printed if a pseudocount is
applied. To disable this, set options(pseudocount.warning=FALSE).

warn.NA logical(1) Whether to warn about the presence of non-standard letters in the
input sequence, such as those in masked sequences.

enrich_motifs 23

no.overlaps logical (1) Remove overlapping hits from the same motifs. Overlapping hits
from different motifs are preserved. Please note that the current implementation
of this feature can add significantly to the run time for large inputs.
no.overlaps.by.strand
logical (1) Whether to discard overlapping hits from the opposite strand (TRUE),
or to only discard overlapping hits on the same strand (FALSE).
no.overlaps.strat
character(1) One of c("score”, "order"). The former option keeps the
highest scoring overlapping hit (and the first of these within ties), and the latter
simply keeps the first overlapping hit.

respect.strand logical(1) If motifs are DNA/RNA, then setting this option to TRUE will make
scan_sequences() only scan the strands of the input sequences as indicated in

the motif strand slot.
motif_pvalue.method

character (1) One of c("dynamic”, "exhaustive"). Algorithm used for cal-
culating P-values. The "exhaustive” method involves finding all possible mo-
tif matches at or above the specified score using a branch-and-bound algorithm,
which can be computationally intensive (Hartman et al., 2013). Additionally,
the computation must be repeated for each hit. The "dynamic” method cal-
culates the distribution of possible motif scores using a much faster dynamic
programming algorithm, and can be recycled for multiple scores (Grant et al.,
2011). The only disadvantage is the inability to use allow.nonfinite = TRUE.
See motif_pvalue() for details.
scan_sequences.qvals.method

character (1) One of c("fdr", "BH", "bonferroni”). The method for cal-
culating adjusted P-values for individual motif hits. These are described in depth
in the Sequence Searches vignette.

mode character(1) One of c("total.hits"”, "seq.hits"). The former enriches
for the total count of motif hits across all sequences, whereas the latter only
counts motif hits once per sequence (useful for cases where there are many small
sequences).

pseudocount integer(1) Add a pseudocount to the motif hit counts when performing the
Fisher test.
Details

To find enriched motifs, scan_sequences() is run on both target and background sequences.
stats: :fisher.test() is run to test for enrichment.

See scan_sequences() for more info on scanning parameters.

Value
DataFrame Enrichment results in a DataFrame. Function args and (optionally) scan results are
stored in the metadata slot.

Author(s)

Benjamin Jean-Marie Tremblay <benjamin. tremblay@uwaterloo.ca>

References

McLeay R, Bailey TL (2010). “Motif Enrichment Analysis: A unified framework and method
evaluation.” BMC Bioinformatics, 11.

24 examplemotif2

See Also

scan_sequences (), shuffle_sequences(), add_multifreq(), motif_pvalue()

Examples

data(ArabidopsisPromoters)
data(ArabidopsisMotif)

if (R.Version()$arch != "i386") {
enrich_motifs(ArabidopsisMotif, ArabidopsisPromoters, threshold = 0.01)
3
examplemotif Example motif in universalmotif format.
Description

A simple DNA motif. To recreate this motif: create_motif ("TATAWAW", nsites = numeric())

Usage

examplemotif

Format

universalmotif

examplemotif?2 Another example motif in universalmotif format.

Description

A simple DNA motif with a non-empty multifreqslot. To recreate to this motif: add_multifreq(examplemotif,
DNAStringSet (rep(c(”"CAAAACC", "CTTTTCC"), 3)))

Usage

examplemotif2

Format

universalmotif

filter_motifs 25

filter_motifs Filter a list of motifs.

Description

Filter motifs based on the contents of available universalmotif slots. If the input motifs are not of
universalmotif, then they will be converted for the duration of the filter_motifs() operation.

Usage

filter_motifs(motifs, name, altname, family, organism, width, alphabet, type,
icscore, nsites, strand, pval, gval, eval, extrainfo)

Arguments
motifs list See convert_motifs() for acceptable formats.
name character Keep motifs by names.
altname character Keep motifs by altnames.
family character Keep motifs by family.
organism character Keep motifs by organism.
width numeric(1) Keep motifs with minimum width.
alphabet character Keep motifs by alphabet.
type character Keep motifs by type.
icscore numeric(1) Keep motifs with minimum total IC.
nsites numeric(1) Keep motifs with minimum number of target sites.
strand character Keeps motifs by strand.
pval numeric(1) Keep motifs by max P-value.
gval numeric(1) Keep motifs by max Q-value.
eval numeric(1) Keep motifs by max E-val.
extrainfo character Named character vector of items that must be present in motif extrainfo
slots.
Value

list Motifs. An attempt will be made to preserve the original class, see convert_motifs() for
limitations.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

26 get_bkg
Examples

By minimum IC:

jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt”,

package = "universalmotif"))

jaspar.ic3 <- filter_motifs(jaspar, icscore = 3)

Starting from version 1.10.0 of the universalmotif package, one

could instead make use of the universalmotif_df structure:

jaspar.ic3 <- jaspar |> to_df() |> subset(icscore > 3) |> to_list()

By organism:

Not run:

library(MotifDb)

motifs <- convert_motifs(MotifDb)

motifs <- filter_motifs(motifs, organism = c("Athaliana”, "Mmusculus"),

extrainfo = c("dataSource” = "cisbp_1.02"))
Or:
motifs <- convert_motifs(MotifDb) [> to_df() |>
subset(organism %in% c("Athaliana”, "Mmusculus”) &
dataSource == "cisbp_1.02") |> to_list()
End(Not run)
fontDFroboto Polygon coordinates for plotting letters.

Description

DataFrame of polygon coordinates used by view_motifs() for plotting letters. It was generated

using the createPolygons function from the gglogo package for the font Roboto Medium.
Usage

fontDFroboto
Format

DataFrame

get_bkg Calculate sequence background.

Description

For a set of input sequences, calculate the overall sequence background for any k-let size. For very
large sequences DNA and RNA sequences (in the billions of bases), please be aware of the much
faster and more efficient Biostrings: :oligonucleotideFrequency(). get_bkg() can still be
used in these cases, though it may take several seconds or minutes to calculate the results (depending

on requested k-let sizes).

get_bkg

Usage

27

get_bkg(sequences, k = 1:3, as.prob = NULL, pseudocount = @,

alphabet = NULL, to.meme = NULL, RC = FALSE, list.out

NULL,

nthreads = 1, merge.res = TRUE, window = FALSE, window.size = 0.1,
window.overlap = 0)

Arguments

sequences

k
as.prob

pseudocount

alphabet

to.meme

RC

list.out

nthreads

merge.res

window

window.size

window.overlap

Value

XStringSet Input sequences. Note that if multiple sequences are present, the
results will be combined into one (unless merge.res = FALSE).

integer Size of k-let. Background can be calculated for any k-let size.
Deprecated.

integer(1) Add a count to each possible k-let. Prevents any k-let from having
0 or 1 probabilities.

character (1) Provide a custom alphabet to calculate a background for. If NULL,
then standard letters will be assumed for DNA, RNA and AA sequences, and all
unique letters found will be used for BStringSet type sequences. Note that
letters which are not a part of the standard DNA/RNA/AA alphabets or in the
provided alphabet will not be counted in the totals during probability calcula-
tions.

If not NULL, then get_bkg() will return the sequence background in MEME
Markov Background Model format. Input for this argument will be used for
cat(..., file = to.meme) within get_bkg(). See http://meme-suite.org/
doc/bfile-format.html for a description of the format.

logical(1) Calculate the background of the reverse complement of the input
sequences as well. Only valid for DNA/RNA.

Deprecated.

numeric(1) Run get_bkg() in parallel with nthreads threads. nthreads = @
uses all available threads. Note that no speed up will occur for jobs with only a
single sequence.

logical (1) Whether to merge results from all sequences or return background
data for individual sequences.

logical (1) Determine background in windows.

numeric Window size. If a number between 0 and 1 is provided, the value is
calculated as the number multiplied by the sequence length.

numeric Overlap between windows. If a number between 0 and 1 is provided,
the value is calculated as the number multiplied by the sequence length.

If to.meme = NULL, a DataFrame with columns klet, count, and probability. If merge.res =
FALSE, there will be an additional sequence column. If window = TRUE, there will be an additional
start and stop columns.

If to.meme is not NULL, then NULL is returned, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

http://meme-suite.org/doc/bfile-format.html
http://meme-suite.org/doc/bfile-format.html

28 JASPAR2018_CORE_DBSCORES

References

Bailey TL, Elkan C (1994). “Fitting a mixture model by expectation maximization to discover
motifs in biopolymers.” Proceedings of the Second International Conference on Intelligent Systems
for Molecular Biology, 2, 28-36.

See Also

create_sequences(), scan_sequences(), shuffle_sequences()

Examples

Compare to Biostrings version

library(Biostrings)

seqs.DNA <- create_sequences()

bkg.DNA <- get_bkg(seqs.DNA, k = 3)

bkg.DNA2 <- oligonucleotideFrequency(seqs.DNA, 3, 1, as.prob = FALSE)
bkg.DNA2 <- colSums(bkg.DNA2)

all(bkg.DNA$count == bkg.DNA2)

Create a MEME background file
get_bkg(seqs.DNA, k = 1:3, to.meme = stdout(), pseudocount = 1)

Non-DNA/RNA/AA alphabets
seqs.QWERTY <- create_sequences("QWERTY")
bkg.QWERTY <- get_bkg(seqs.QWERTY, k = 1:2)

JASPAR2018_CORE_DBSCORES
JASPAR2018 CORE database scores

Description

For use with compare_motifs(). The precomputed scores allow for fast P-value estimation. These
scores were generated using make_DBscores () with the JASPAR2018 CORE motif set. The scores
are organized in a DataFrame. In this DataFrame is the location and scale of scores resulting from
a statistical distribution using the the comparisons of JASPAR2018 CORE motifs with randomized
motifs of the specified subject and target motif length. Created using make_DBscores() from
universalmotif v1.4.0. The parameters used can be seen via S4Vectors: :metadata(JASPAR2@18_CORE_DBSCORES).

Usage

JASPAR2018_CORE_DBSCORES

Format

DataFrame with function args in the metadata slot.

make_DBscores 29

make_DBscores Create P-value databases.

Description

Generate data used by compare_motifs() for P-value calculations. By default, compare_motifs()
uses an internal database based on the JASPAR2018 core motifs (Khan et al. 2018). Parameters for
distributions are are estimated for every combination of motif widths.

Usage

make_DBscores(db.motifs, method = c("PCC", "EUCL", "SW", "KL", "WEUCL",
"ALLR", "BHAT", "HELL", "WPCC", "SEUCL", "MAN", "ALLR_LL"),
shuffle.db = TRUE, shuffle.k = 3, shuffle.method = "linear”,
rand.tries = 1000, widths = 5:30, min.position.ic = 0,
normalise.scores = c(FALSE, TRUE), min.overlap = 6, min.mean.ic = 0.25,
progress = TRUE, nthreads = 1, tryRC = TRUE, score.strat = c("sum",

"a.mean"”, "g.mean"”, "median”, "wa.mean”, "wg.mean"”, "fzt"))
Arguments
db.motifs 1list Database motifs.
method character (1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,
MAN, ALLR_LL, WEUCL, WPCC. See details.
shuffle.db logical(1) Deprecated. Does nothing. generate random motifs with create_motif ().
shuffle.k numeric(1) See shuffle_motifs().
shuffle.method character(1) See shuffle_motifs().
rand.tries numeric(1) Approximate number of comparisons to perform for every combi-

nation of widths.
widths numeric Motif widths to use in P-value database calculation.
min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.
normalise.scores
logical(1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

min.overlap numeric(1) Minimum overlap required when aligning the motifs. Setting this
to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

min.mean.ic numeric(1) Minimum mean information content between the two motifs for
an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.

30 make_DBscores

progress logical(1) Show progress.

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads. nthreads
= @ uses all available threads.

tryRC logical(1) Try the reverse complement of the motifs as well, report the best
score.

score.strat character (1) How to handle column scores calculated from motif alignments.

" "

sum": add up all scores. "a.mean": take the arithmetic mean. "g.mean":

non

take the geometric mean. "median": take the median. "wa.mean", "wg.mean":
weighted arithmetic/geometric mean. "fzt": Fisher Z-transform. Weights are the
total information content shared between aligned columns.

Details

See compare_motifs() for more info on comparison parameters.

To replicate the internal universalmotif DB scores, run make_DBscores () with the default settings.
Note that this will be a slow process.

Arguments widths, method, normalise.scores and score.strat are vectorized; all combina-
tions will be attempted.

Value

A DataFrame with score distributions for the input database. If more than one make_DBscores()
run occurs (i.e. args method, normalise.scores or score.strat are longer than 1), then the
function args are included in the metadata slot.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A,
Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard
B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.” Nucleic Acids
Research, 46, D260-D266.

See Also

compare_motifs()

Examples
Not run:
library(MotifDb)
motifs <- convert_motifs(MotifDb[1:100])
scores <- make_DBscores(motifs, method = "PCC")

compare_motifs(motifs, 1:100, db.scores = scores)

End(Not run)

merge_motifs 31

merge_motifs Merge motifs.

Description

Aligns the motifs using compare_motifs(), then averages the motif PPMs. Currently themultifreq
slot, if filled in any of the motifs, will be dropped. Only 0-order background probabilities will be
kept. Motifs are merged one at a time, starting with the first entry in the list.

Usage

merge_motifs(motifs, method = "ALLR", use.type = "PPM", min.overlap = 6,
min.mean.ic = 0.25, tryRC = TRUE, relative_entropy = FALSE,
normalise.scores = FALSE, min.position.ic = @, score.strat = "sum",
new.name = NULL)

Arguments

motifs See convert_motifs() for acceptable motif formats.

method character(1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,
MAN, ALLR_LL, WEUCL, WPCC. See details.

use. type character(1) One of 'PPM' and 'ICM'. The latter allows for taking into ac-
count the background frequencies if relative_entropy = TRUE. Note that ' ICM'
is not allowed when method = c("ALLR", "ALLR_LL").

min.overlap numeric(1) Minimum overlap required when aligning the motifs. Setting this
to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

min.mean.ic numeric(1) Minimum mean information content between the two motifs for
an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.

tryRC logical(1) Try the reverse complement of the motifs as well, report the best
score.

relative_entropy
logical (1) Change the ICM calculation affecting min.position.icandmin.mean.ic.
See convert_type().

normalise.scores
logical (1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.

32

score.strat

new. name

Details

merge_similar

character (1) How to handle column scores calculated from motif alignments.
"sum": add up all scores. "a.mean": take the arithmetic mean. "g.mean":
take the geometric mean. "median": take the median. "wa.mean", "wg.mean":
weighted arithmetic/geometric mean. "fzt": Fisher Z-transform. Weights are the

total information content shared between aligned columns.

character (1), NULL Instead of collapsing existing names (if NULL), assign a
new one manually for the merged motif.

See compare_motifs() for more info on comparison parameters.

If using a comparison metric where Os are not allowed (KL, ALLR, ALLR_LL, IS), then pseudocounts
will be added internally. These pseudocounts are only used for comparison and alignment, and are
not used in the final merging step.

Note: score.strat = "a.mean” is NOT recommended, as merge_motifs() will not discriminate
between two alignments with equal mean scores, even if one alignment is longer than the other.

Value

A single motif object. See convert_motifs() for available formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

compare_motifs()

Examples

Not run:
library(MotifDb)

merged.motif <- merge_motifs(MotifDb[1:5])

End(Not run)

ml <- create_motif ("TTAAACCCC", name = "1")
m2 <- create_motif ("AACC", name = "2")

m3 <- create_motif ("AACCCCGG", name = "3")
view_motifs(merge_motifs(c(ml, m2, m3)))

merge_similar

Identify and merge similar motifs within a collection of motifs (or sim-
ply cluster motifs).

Description

Given a list of motifs, merge_similar () will identify similar motifs with compare_motifs(), and
merge similar ones with merge_motifs().

merge_similar 33

Usage
merge_similar(motifs, threshold = ©.95, threshold.type = "score.abs”,
method = "PCC", use.type = "PPM", min.overlap = 6, min.mean.ic = 0,
tryRC = TRUE, relative_entropy = FALSE, normalise.scores = FALSE,
min.position.ic = @, score.strat.compare = "a.mean",
score.strat.merge = "sum”, nthreads = 1, return.clusters = FALSE)
Arguments
motifs See convert_motifs() for acceptable motif formats.
threshold numeric(1) The minimum (for similarity metrics) or maximum (for distance

metrics) threshold score for merging.
threshold. type character(1) Type of score used for thresholding. Currently unused.

method character(1) One of PCC, EUCL, SW, KL, BHAT, HELL, SEUCL, MAN,
WEUCL, WPCC. See compare_motifs(). (The ALLR and ALLR_LL meth-
ods cannot be used for distance matrix construction.)

use.type character(1) One of 'PPM' and 'ICM'. The latter allows for taking into ac-
count the background frequencies if relative_entropy = TRUE. Note that ' ICM'
is not allowed when method = c("ALLR", "ALLR_LL").

min.overlap numeric(1) Minimum overlap required when aligning the motifs. Setting this
to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

min.mean.ic numeric(1) Minimum mean information content between the two motifs for
an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.

tryRC logical(1) Try the reverse complement of the motifs as well, report the best

score.
relative_entropy

logical(1) Change the ICM calculation affectingmin.position.icandmin.mean.ic.
See convert_type().

normalise.scores
logical (1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.

score.strat.compare
character(1) The score.strat parameter used by compare_motifs(). For
clustering purposes, the "sum” option cannot be used.

score.strat.merge
character(1) The score.strat parameter used by merge_motifs(). As dis-
cussed in merge_motifs(), the "sum” option is recommended over "a.mean”
to maximize the overlap between motifs.

34 motif_peaks

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads. nthreads
= 0 uses all available threads.

return.clusters
logical (1) Return the clusters instead of merging.

Details
See compare_motifs() for more info on comparison parameters, and merge_motifs() for more
info on motif merging.

Value

See convert_motifs() for available output formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

compare_motifs(), merge_motifs()

Examples

Not run:

library(MotifDb)

motifs <- filter_motifs(MotifDb, family = "bHLH")[1:50]
length(motifs)

motifs <- merge_similar(motifs)

length(motifs)

End(Not run)

motif_peaks Look for overrepresented motif position peaks in a set of sequences.

Description
Using the motif position data from scan_sequences() (or elsewhere), test whether certain posi-
tions in the sequences have significantly higher motif density.

Usage

motif_peaks(hits, seq.length, seq.count, bandwidth, max.p = 1e-06,
peak.width = 3, nrand = 100, plot = TRUE, BP = FALSE)

motif_peaks

Arguments

hits

seq.length

seq.count

bandwidth

max.p

peak.width

nrand

plot
BP

Details

35

numeric A vector of sequence positions indicating motif sites.

numeric(1) Length of sequences. Only one number is allowed, as all sequences
must be of identical length. If missing, then the largest number from hits is
used.

numeric(1) Number of sequences with motif sites. If missing, then the number
of unique values in hits is used.

numeric(1) Peak smoothing parameter. Smaller numbers will result in skinnier
peaks, larger numbers will result in wider peaks. Leaving this empty will cause
motif_peaks() to generate one by itself (see ’details’).

numeric(1) Maximum P-value allowed for finding significant motif site peaks.

numeric(1) Minimum peak width. A peak is defined as as the highest point
within the value set by peak.width.

numeric(1) Number of random permutations for generating a null distribution.
In order to calculate P-values, a set of random motif site positions are generated
nrand times.

logical (1) Will create a ggplot2 object displaying motif peaks.

logical (1) Allows for the use of BiocParallel within motif_peaks(). See
BiocParallel::register() to change the default backend. Setting BP = TRUE
is only recommended for exceptionally large jobs. Keep in mind that this func-
tion will not attempt to limit its memory usage.

Kernel smoothing is used to calculate motif position density. The implementation for this process
is based on code from the KernSmooth R package (Wand 2015). These density estimates are used
to determine peak locations and heights. To calculate the P-values of these peaks, a null distribution
is calculated from peak heights of randomly generated motif positions.

If the bandwidth option is not supplied, then the following code is used (from KernSmooth):
delo<- (1/ (4*pi))*(1/10)
bandwidth <- del@ * (243 / (35 * length(hits)))* (1 /5) * sqrt(var(hits))

Value

A DataFrame with peak positions and P-values. If plot = TRUE, then a list is returned with the
DataFrame as the first item and the ggplot2 object as the second item.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Wand M (2015). KernSmooth: Functions for Kernel Smoothing Supporting Wand and Jones (1995).
R package version 2.23-15, <URL: https://CRAN.R-project.org/package=KernSmooth>.

See Also

scan_sequences()

36 motif_pvalue

Examples

data(ArabidopsisMotif)

data(ArabidopsisPromoters)

if (R.Version()$arch != "i386") {

hits <- scan_sequences(ArabidopsisMotif, ArabidopsisPromoters, RC = FALSE)
res <- motif_peaks(as.vector(hits$start), 1000, 50)

View plot:

res$Plot

The raw plot data can be found in:
res$Plot$data
3

motif_pvalue Motif P-value and scoring utility

Description

For calculating P-values and logodds scores from P-values for any number of motifs.

Usage

motif_pvalue(motifs, score, pvalue, bkg.probs, use.freq =1, k = 8,
nthreads = 1, rand.tries = 10, rng.seed = sample.int(10000, 1),

allow.nonfinite = FALSE, method = c("dynamic”, "exhaustive"))
Arguments
motifs See convert_motifs() for acceptable motif formats.
score numeric, list Get a P-value for a motif from a logodds score. See details for

an explanation of how to vectorize the calculation for method = "dynamic”.

pvalue numeric, list Get a logodds score for a motif from a P-value. See details for
an explanation of how to vectorize the calculation for method = "dynamic”.

bkg.probs numeric, list A vector background probabilities. If supplying individual back-
ground probabilities for each motif, a list of such vectors. If missing, retrieves
the background from the motif bkg slot. Note that this option is only used
when method = "dynamic”, or when method = "exhaustive” and providing a
P-value and returning a score; for the inverse, the motifs are first converted to
PWMs via convert_type(), which uses the motif bkg slot for background ad-
justment.

use.freq numeric(1) By default uses the regular motif matrix; otherwise uses the corre-
sponding multifreq matrix. Max is 3 when method = "exhaustive”.

k numeric(1) For speed, scores/P-values can be approximated after subsetting
the motif every k columns when method = "exhaustive". If k is a value equal
or higher to the size of input motif(s), then the calculations are exact. The de-
fault, 8, is recommended to those looking for a good tradeoff between speed and
accuracy for jobs requiring repeated calculations. Note that this is ignored when
method = "dynamic”, as subsetting is not required.

motif_pvalue 37

nthreads numeric(1) Runmotif_pvalue() in parallel with nthreads threads. nthreads
= @ uses all available threads. Currently only applied when method = "exhaustive”.

rand.tries numeric(1) When ncol(motif) <k and method = "exhaustive”, an approx-
imation is used. This involves randomly approximating the overall motif score
distribution. To increase accuracy, the distribution is approximated rand. tries
times and the final scores averaged. Note that this is ignored when method =
"dynamic", as subsetting is not required.

rng.seed numeric(1) In order to allow motif_pvalue() to perform C++ level paralleli-
sation, it must work independently from R. This means it cannot communicate
with R to get/set the R RNG state. To get around this, the RNG seed used by
the C++ function can be set with rng.seed. To make sure each thread gets a
different seed however, the seed is multiplied with the iteration count. For ex-
ample: when working with two motifs, the second motif gets the following seed:
rng.seed * 2. The default is to pick a random number as chosen by sample(),
which effectively makes motif_pvalue() dependent on the R RNG state. Note
that this is ignored when method = "dynamic”, as the random subsetting is only
used for method = "exhaustive”.

allow.nonfinite
logical (1) If FALSE, then apply a pseudocount if non-finite values are found in
the PWM. Note that if the motif has a pseudocount greater than zero and the mo-
tif is not currently of type PWM, then this parameter has no effect as the pseu-
docount will be applied automatically when the motif is converted to a PWM
internally. Note that this option is incompatible with method = "dynamic”.
A message will be printed if a pseudocount is applied. To disable this, set
options(pseudocount.warning=FALSE).

method character (1) One of c("dynamic”, "exhaustive"). Algorithm used for cal-
culating P-values. The "exhaustive” method involves finding all possible mo-
tif matches at or above the specified score using a branch-and-bound algorithm,
which can be computationally intensive (Hartman et al., 2013). Additionally, the
computation must be repeated for each hit. The "dynamic” method calculates
the distribution of possible motif scores using a much faster dynamic program-
ming algorithm, and can be recycled for multiple scores (Grant et al., 2011).
The only disadvantage is the inability to use allow.nonfinite = TRUE.

Details

Regarding vectorization:

A note regarding vectorizing the calculation when method = "dynamic” (no vectorization is pos-
sible with method = "exhaustive"): to avoid performing the P-value/score calculation repeat-
edly for individual motifs, provide the score/pvalue arguments as a list, with each entry corre-
sponding to the scores/P-values to be calculated for the respective motifs provided to motifs. If
you simply provide a list of repeating motifs and a single numeric vector of corresponding input
scores/P-values, then motif_pvalue() will not vectorize. See the Examples section.

The dynamic method:

One of the algorithms available to motif_pvalue() to calculate scores or P-values is the dy-
namic programming algorithm used by FIMO (Grant et al., 2011). In this method, a small range
of possible scores from the possible miminum and maximum is created and the cumulative prob-
ability of each score in this distribution is incrementally calculated using the logodds scores and
the background probabilities. This distribution of scores and associated P-values can be used to
calculate P-values or scores for any input, any number of times. This method scales well with
large motifs, and multifreq representations. The only downside is that it is incompatible with

38 motif_pvalue

allow.nonfinite = TRUE, as this would not allow for the creation of the initial range of scores.
Although described for a different purpose, the basic premise of the dynamic programming algo-
rithm is also described in Gupta et al. (2007).

The exhaustive method:

Calculating P-values exhaustively for motifs can be very computationally intensive. This is due
to how P-values must be calculated: for a given score, all possible sequences which score equal
or higher must be found, and the probability for each of these sequences (based on background
probabilities) summed. For a DNA motif of length 10, the number of possible unique sequences is
4710 = 1,048,576. Finding all possible sequences higher than a given score can be done very effi-
ciently and quickly with a branch-and-bound algorithm, but as the motif length increases even this
calculation becomes impractical. To get around this, the P-value calculation can be approximated.

In order to calculate P-values for longer motifs, this function uses the approximation proposed by
Hartmann et al. (2013), where the motif is subset, P-values calculated for the subsets, and finally
combined for a total P-value. The smaller the size of the subsets, the faster the calculation; but
also, the bigger the approximation. This can be controlled by setting k. In fact, for smaller motifs
(< 13 positions) calculating exact P-values can be done individually in reasonable time by setting
k=12

To calculate a score from a P-value, all possible scores are calculated and the (1 - pvalue) *
100 nth percentile score returned. When k < ncol(motif), the complete set of scores is instead
approximated by randomly adding up all possible scores from each subset. Note that this approxi-
mation can actually be potentially quite expensive at times and even slower than the exact version;
for jobs requiring lots of repeat calculations, a bit of benchmarking beforehand can be useful to
find the optimal settings.

Please note that bugs are more likely to occur when using the exhaustive method, as the algorithm
contains several times more code compared to the dynamic method. Unless you have a strong
need to use allow.nonfinite = TRUE then avoid using this method.

Value

numeric, list A vector or list of vectors of scores/P-values.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Grant CE, Bailey TL, Noble WS (2011). "FIMO: scanning for occurrences of a given motif."
Bioinformatics, 27, 1017-1018.

Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007). "Quantifying similarity between
motifs." Genome Biology, 8, R24.

Hartmann H, Guthohrlein EW, Siebert M, Soding SLJ (2013). “P-value-based regulatory motif
discovery using positional weight matrices.” Genome Research, 23, 181-194.
See Also

get_matches(), get_scores(), motif_range(),motif_score(), prob_match(), prob_match_bkg(),
score_match()

motif_rc 39

Examples

if (R.Version()$arch != "i386") {

P-value/score calculations are performed using the PWM version of the
motif
data(examplemotif’)

Get a minimum score based on a P-value
motif_pvalue(examplemotif, pvalue = 0.001)

Get the probability of a particular sequence hit
motif_pvalue(examplemotif, score = @)

The calculations can be performed for multiple motifs
motif_pvalue(c(examplemotif, examplemotif), pvalue = c(0.001, 0.0001))

Compare score thresholds and P-value:
scores <- motif_score(examplemotif, c(0.6, 0.7, 0.8, 0.9))
motif_pvalue(examplemotif, scores)

Calculate the probability of getting a certain match or better:
TATATAT <- score_match(examplemotif, "TATATAT")

TATATAG <- score_match(examplemotif, "TATATAG")
motif_pvalue(examplemotif, TATATAT)

motif_pvalue(examplemotif, TATATAG)

Get all possible matches by P-value:
get_matches(examplemotif, motif_pvalue(examplemotif, pvalue = 0.0001))

Vectorize the calculation for multiple motifs and scores/P-values:
m <- create_motif()
motif_pvalue(c(examplemotif, m), list(1:5, 2:3))
The non-vectorized equivalent:
motif_pvalue(
c(rep(list(examplemotif), 5), rep(list(m), 2)), c(1:5, 2:3)
)
3

motif_rc Get the reverse complement of a DNA or RNA motif.

Description

For any motif, change the motif slot to it’s reverse complement. If the multifreq slot is filled,
then it is also applied. No other slots are affected.

Usage

motif_rc(motifs, ignore.alphabet = FALSE)

40 motif_tree

Arguments

motifs See convert_motifs() for acceptable formats
ignore.alphabet

logical (1) If TRUE, then motif_rc() throws an error when it detects a non-
DNA/RNA motif. If FALSE, it will proceed regardless.
Value

See convert_motifs() for available output formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

Examples
jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt",
package = "universalmotif"))
jaspar.rc <- motif_rc(jaspar)
motif_tree Generate ggplot2 motif trees with ggtree.

Description

For more powerful motif tree functions, see the motifStack package. The motif_tree() function
compares motifs with compare_motifs() to create a distance matrix, which is used to generate a
phylogeny. This can be plotted with ggtree: :ggtree(). The purpose of this function is simply to
combine the compare_motifs() and ggtree: :ggtree() steps into one. For more control over tree
creation, it is recommend to do these steps separately. See the "Motif comparisons and P-values"
vignette for such a workthrough. This function requires the ape and ggtree packages to be installed

separately.
Usage
motif_tree(motifs, layout = "circular”, linecol = "family"”,
labels = "none”, tipsize = "none"”, legend = TRUE,

branch.length = "none”, db.scores, method = "EUCL", use.type = "PPM",
min.overlap = 6, min.position.ic = @, tryRC = TRUE, min.mean.ic = 0,
relative_entropy = FALSE, progress = FALSE, nthreads = 1,

score.strat = "a.mean”", ...)
Arguments
motifs list, dist See convert_motifs() for available formats. Alternatively, the

resulting comparison matrix from compare_motifs() (run as.dist(results)
beforehand; if the comparison was performed with a similarity metric, make
sure to convert to distances first).

layout character(1) One of c('rectangular', 'slanted', 'fan', 'circular',
'radial’', 'equal_angle', 'daylight'). See ggtree: :ggtree().

motif tree 41

linecol character (1) universalmotif slot to use to colour lines (e.g. ’family’). Not
available for dist input (see examples for how to add it manually). See ggtree: :ggtree().

labels character (1) universalmotif slot to use to label tips (e.g. 'name’). For dist
input, only 'name’ is available. See ggtree: :ggtree().

tipsize character (1) universalmotif slot to use to control tip size (e.g. ’icscore’).
Not available for dist input (see examples for how to add it manually). See
ggtree::ggtree().

legend logical(1) Show legend for line colour and tip size. See ggtree: :ggtree().

branch.length character(1) If 'none’, draw a cladogram. See ggtree: :ggtree().

db.scores data.frame See compare_motifs().
method character (1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,
MAN, ALLR_LL, WEUCL, WPCC. See details.
use.type character(1)cCPPM’,’ICM’). The latter allows for taking into account the backgrounc

ative_entropy = TRUE®). See compare_motifs().

min.overlap numeric(1) Minimum overlap required when aligning the motifs. Setting this
to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.

tryRC logical(1) Try the reverse complement of the motifs as well, report the best
score.
min.mean.ic numeric(1) Minimum mean information content between the two motifs for

an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.
relative_entropy
logical(1) Change the ICM calculation affectingmin.position.icandmin.mean.ic.
See convert_type().

progress logical (1) Show message regarding current step.

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads. nthreads
= 0 uses all available threads.

score.strat character (1) How to handle column scores calculated from motif alignments.
"sum": add up all scores. "a.mean": take the arithmetic mean. "g.mean":
take the geometric mean. "median": take the median. "wa.mean", "wg.mean":
weighted arithmetic/geometric mean. "fzt": Fisher Z-transform. Weights are the

total information content shared between aligned columns.

ggtree params. See ggtree: :ggtree().

Details

See compare_motifs() for more info on comparison parameters.

42 motif tree

Value

ggplot object.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Wickham H (2009). ggplor2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-0-387-98140-6, <URL.: http://ggplot2.org>.

Yu G, Smith D, Zhu H, Guan Y, Lam TT (2017). “ggtree: an R package for visualization and an-
notation of phylogenetic trees with their covariates and other associated data.” Methods in Ecology
and Evolution, 8, 28-36. doi: 10.1111/2041-210X.12628.

See Also

motifStack: :motifStack(), compare_motifs(), ggtree::ggtree(), ggplot2::ggplot()

Examples
jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt”,
package = "universalmotif"))
if (requireNamespace("ggtree”, quietly = TRUE)) {
jaspar.tree <- motif_tree(jaspar, linecol = "none”, labels = "name”,
layout = "rectangular”)
3
Not run:

When inputting a dist object, the linecol and tipsize options are
not available. To add these manually:

library(MotifDb)
library(ggtree)
library(ggplot2)

motifs <- filter_motifs(MotifDb, organism = "Athaliana")[1:50]

comparison <- compare_motifs(motifs, method = "PCC"”, score.strat = "a.mean")
comparison <- as.dist(1 - comparison)

mot.names <- attr(comparison, "Labels")

tree <- motif_tree(comparison)

annotations <- data.frame(label = mot.names,
icscore = sapply(motifs, function(x) x["icscore"]),
family = sapply(motifs, function(x) x["family"”1))

tree <- tree %<+% annotations +
geom_tippoint(aes(size = icscore)) +
aes(colour = family) +
theme(legend.position = "right”,

legend.title = element_blank())

End(Not run)

read_cisbp 43

read_cisbp Import CIS-BP motifs.

Description
Import CIS-BP formatted motifs. See http://cisbp.ccbr.utoronto.ca/index.php. Assumed
to be DNA motifs.

Usage
read_cisbp(file, skip = 0)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
Details

CIS-BP motifs can be formatted with or without additional header metadata. Motifs without any
header start at instances of the word "Pos", whereas motifs with a header start at instances of the
word "TF".

Value

list universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lam-
bert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang
E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJ, Bouget FY,
Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014). “Determination and inference of eukaryotic
transcription factor sequence specificity.” Cell, 158, 1431-1443.

See Also
Other read_motifs: read_homer (), read_jaspar (), read_matrix(), read_meme(), read_motifs(),

read_transfac(), read_uniprobe()

Examples

cisbp <- read_cisbp(system.file("extdata”, "cisbp.txt",
package = "universalmotif”))

http://cisbp.ccbr.utoronto.ca/index.php

44 read_homer

read_homer Import HOMER motifs.

Description

Import HOMER formatted motifs. See http://homer.ucsd.edu/homer/motif/. Assumed to be
DNA motifs. Note that HOMER motifs come with a pre-determined logodds threshold; if you wish
to re-create HOMER’s motif scanning, then use it in scan_sequences() (see examples).

Usage

read_homer(file, skip = 0)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
Value

list universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass
CK (2010). “Simple combinations of lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and B cell identities.” Molecular Cell, 38, 576-589.

See Also

Other read_motifs: read_cisbp(), read_jaspar(), read_matrix(), read_meme(), read_motifs(),
read_transfac(), read_uniprobe()

Examples

data(ArabidopsisPromoters)
homer <- read_homer(system.file("extdata”, "homer.txt",
package = "universalmotif”))
thresholds <- homer |> to_df() |> with(logodds.threshold) |> as.numeric()
scan_sequences(homer, ArabidopsisPromoters,
threshold = thresholds, threshold.type = "logodds.abs")

http://homer.ucsd.edu/homer/motif/

read_jaspar 45

read_jaspar Import JASPAR motifs.

Description

Import JASPAR formatted motifs. See http://jaspar.genereg.net/. Can be either DNA, RNA,
or AA motifs.

Usage

read_jaspar(file, skip = 0)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
Value

1ist universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A,
Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard
B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.” Nucleic Acids
Research, 46, D260-D266.

See Also

Other read_motifs: read_cisbp(), read_homer (), read_matrix(), read_meme(), read_motifs(),
read_transfac(), read_uniprobe()

Examples

jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt",
package = "universalmotif"))

http://jaspar.genereg.net/

46 read_matrix

read_matrix Import motifs from raw matrices.

Description

Import simply formatted motifs.

Usage

read_matrix(file, skip = @, type, positions = "columns",
alphabet = "DNA", sep = "", headers = TRUE, rownames = FALSE,
comment = NULL)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
type character(1) One of c('PCM', "PPM', '"PWM', 'ICM'). If missing will try
and guess which one.
positions character(1) One of c('columns', 'rows'). Partial matching allowed. In-
dicate whether each position within a motif is represented as a row or a column
in the file.
alphabet character(1) One of c('DNA', 'RNA', "AA'), or a string of letters.
sep character (1) Indicates how individual motifs are separated. Set as NULL if
there are no seperating lines between motifs (the default is to assume a blank
line).
headers logical(1), character (1) Indicating if and how to read names.
rownames logical(1) Are there alphabet letters present as rownames?
comment NULL, character (1) Character denoting lines to be considered comments.
Value

1ist universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also
Other read_motifs: read_cisbp(), read_homer (), read_jaspar(), read_meme(), read_motifs(),
read_transfac(), read_uniprobe()

Examples

hocomoco <- system.file("extdata”, "hocomoco.txt"”, package = "universalmotif™”)
hocomoco <- read_matrix(hocomoco, headers = ">", positions = "rows")

read_meme 47

read_meme Import MEME motifs.

Description

Import MEME formatted motifs, as well as original motif sequences. See http://meme-suite.
org/doc/meme-format.html. Both ’full’ and *minimal’ formats are supported. DREME and
STREME motifs can also be imported, but note that readsites and readsites.meta arguments
do nothing.

Usage

read_meme(file, skip = @, readsites = FALSE, readsites.meta = FALSE,
readsites.meta.tidy = FALSE)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
readsites logical (1) If TRUE, the motif sites will be read as well.

readsites.meta logical(1) If readsites = TRUE, then additionally read site positions and P-
values.

readsites.meta.tidy
logical (1) If readsites.meta = TRUE, merge the position site information for
all motifs into a single tidy data. frame.

Details

Please note that the typical number precision limit in R is around le-308. This means that motif
P-values in MEME files below this limit are rounded automatically to 0. To get around this, the
E-value is also stored as a string in the extrainfo slot. If you require a numeric value for analysis,
use the log_string_pval() function to get the log of the string-formatted p-value.

Value

list universalmotif objects. If readsites = TRUE, a list comprising of a sub-list of motif ob-
jects and a sub-list of motif sites will be returned. If readsites.meta =TRUE, then two addi-
tional list items will be present, one containing site positions and P-values, and another contain-
ing combined sequence p-values. If readsites.meta. tidy = TRUE, an additional list entry named
sites.meta.tidy will be added containing a data. frame.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009).
“MEME SUITE: tools for motif discovery and searching.” Nucleic Acids Research, 37, W202-
W208.

http://meme-suite.org/doc/meme-format.html
http://meme-suite.org/doc/meme-format.html

48 read_motifs

See Also

Other read_motifs: read_cisbp(), read_homer(), read_jaspar(), read_matrix(), read_motifs(),
read_transfac(), read_uniprobe()

Examples
meme.minimal <- read_meme(system.file("extdata”, "meme_minimal.txt",
package = "universalmotif"))
meme.full <- read_meme(system.file("extdata”, "meme_full.txt",
package = "universalmotif"))

Get numeric p-value:
log_string_pval(meme.minimal[[1]]["extrainfo”]["eval.string"])

read_motifs Import universalmotif formatted motifs.

Description

Import motifs created from write_motifs(). For optimal storage of universalmotif class motifs,
consider using saveRDS() and readRDS (). Currently the universalmotif formatis YAML-based,
but this is subject to change.

Usage

read_motifs(file, skip = @, progress = FALSE, BP = FALSE)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
progress logical (1) Show progress.
BP logical (1) Allows for the use of BiocParallel within read_motifs(). See
BiocParallel::register() to change the default backend.
Value

list universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

Other read_motifs: read_cisbp(), read_homer(), read_jaspar (), read_matrix(), read_meme(),
read_transfac(), read_uniprobe()

read_transfac 49

read_transfac Import TRANSFAC motifs.

Description

Import TRANSFAC formatted motifs. Assumed to be DNA motifs, type PCM. See system.file("extdata”,
"transfac.txt"”, pacakge="universalmotif"”) for an example motif.

Usage

read_transfac(file, skip = 0)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
Details

A few TRANSFAC tags are recognized, including AC, ID, NA, HC and OS. HC will be set to the
family slot and OS to the organism slot. If AC, ID and NA are present, then AC will be set as the
motif name and NA as the alternate name. If AC is absent, then ID is set as the name. If ID is also
absent, then NA is set as the motif name.

Value

list universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Wingender E, Dietze P, Karas H, Knuppel R (1996). “TRANSFAC: A Database on Transcription
Factors and Their DNA Binding Sites.” Nucleic Acids Research, 24, 238-241.

See Also
Other read_motifs: read_cisbp(), read_homer(), read_jaspar (), read_matrix(), read_meme(),

read_motifs(), read_uniprobe()

Examples

transfac <- read_transfac(system.file("extdata”, "transfac.txt"”,
package = "universalmotif”))

50 read_uniprobe

read_uniprobe Import UNIPROBE motifs.

Description

Import UNIPROBE formatted motifs. Assumed DNA.

Usage

read_uniprobe(file, skip = 0)

Arguments
file character (1) File name.
skip numeric(1) If not zero, will skip however many desired lines in the file before
starting to read.
Value

1ist universalmotif objects.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML (2015). “UniPROBE, update 2015: new tools
and content for the online database of protein-binding microarray data on protein-DNA interac-
tions.” Nucleic Acids Research, 43, D117-D122.

See Also

Other read_motifs: read_cisbp(), read_homer(), read_jaspar(), read_matrix(), read_meme(),
read_motifs(), read_transfac()

Examples
uniprobe.minimal <- read_uniprobe(system.file("extdata”, "uniprobe_minimal.txt",
package = "universalmotif"))
uniprobe.full <- read_uniprobe(system.file("extdata”, "uniprobe_full.txt",

package = "universalmotif"))

reexports 51

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

BiocGenerics as.data.frame, cbind, colnames, ncol, normalize, nrow, rownames, subset

MatrixGenerics colMeans, colSums, rowMeans, rowSums

run_meme Run MEME from within R.

Description

De novo motif discovery via MEME. For a detailed description of the command, see http://
meme-suite.org/doc/meme.html. For a brief description of the command parameters, call run_meme ()
without any arguments. Parameters in run_meme () which are directly taken from the MEME pro-
gram are tagged with [MEME]. This function requires that the processx package be installed sepa-
rately.

Usage

run_meme (target.sequences, output = NULL, overwrite.dir = FALSE,
control.sequences = NULL, weights = NULL, text = FALSE, brief = 1000,
objfun = "classic"”, test = NULL, use_llr = FALSE, shuf = 2,
hsfrac = NULL, cefrac = NULL, searchsize = NULL, norand = FALSE,
csites = 1000, seed = @, alph = NULL, revcomp = FALSE, pal = FALSE,
mod = "zoops"”, nmotifs = 3, evt = NULL, nsites = NULL,
minsites = NULL, maxsites = NULL, wnsites = 0.8, w = NULL,
minw = 8, maxw = 50, allw = NULL, nomatrim = FALSE, wg = 11,
ws = 1, noendgaps = FALSE, bfile = NULL, markov_order = 0,
psp = NULL, maxiter = 5@, distance = 0.001, prior = NULL, b = NULL,
plib = NULL, spfuzz = NULL, spmap = NULL, cons = NULL, p = NULL,
maxsize = NULL, maxtime = NULL, wd = getwd(), logfile = paste@(wd,
"/memerun.log"), readsites = TRUE, echo = FALSE, verbose = 1,
timeout = Inf, bin = getOption("meme.bin"))

Arguments

target.sequences
XStringSet List of sequences to get motifs from.

output character(1) Name of the output folder. If NULL, MEME output will be
deleted.

overwrite.dir logical(1) If output is set but already exists, allow over-writing.
control.sequences
XStringSet List of negative sequences. Only used if objfun =c("de", "se").

weights numeric Vector of numbers between 0 and 1, representing sequence weights.

http://meme-suite.org/doc/meme.html
http://meme-suite.org/doc/meme.html

52

text
brief
objfun
test
use_l1lr
shuf
hsfrac
cefrac
searchsize
norand
csites
seed
alph

revcomp
pal

mod
nmotifs
evt
nsites
minsites
maxsites
wnsites

w

minw

maxw

allw
nomatrim
Wg

ws
noendgaps
bfile
markov_order
psp
maxiter
distance
prior

b

plib

spfuzz

logical (1) [MEME]
numeric(1) [MEME]

character (1) [MEME]
character(1) [MEME]

logical(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
logical(1) [MEME]
numeric(1) [MEME)]
numeric(1) [MEME]

character (1) [MEME] Note: custom alphabet definition files can be created

using meme_alph().
logical (1) [MEME]
logical(1) [MEME]

character (1) [MEME]

numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
logical(1) [MEME]
numeric(1) [MEME]
numeric(1) [MEME]
logical(1) [MEME]

character (1) [MEME]

numeric(1) [MEME]

character (1) [MEME]

numeric(1) [MEME]
numeric(1) [MEME]

character (1) [MEME]

numeric(1) [MEME]

character (1) [MEME]

numeric(1) [MEME]

run_meme 53

spmap character(1) [MEME]

cons character (1) [MEME]

p numeric(1) [MEME]

maxsize numeric(1) [MEME]

maxtime numeric(1) [MEME]

wd character (1) Working directory to run MEME in.

logfile character (1) File to dump MEME stderr. If NULL, no logs will be saved.
readsites logical (1) Read sites from MEME output (from read_meme()).

echo logical (1) Dump MEME output to console.

verbose numeric(1) Set verbose = @ to quiet run_meme ().

timeout numeric(1) Stop MEME program past timeout (seconds). See processx: :run().
bin character (1) Location of MEME binary. Alternatively, set this via options(meme.bin

= '/path/to/meme/bin').

Value

list The output file is read with read_meme ().

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

References

Bailey TL, Elkan C (1994). “Fitting a mixture model by expectation maximization to discover
motifs in biopolymers.” Proceedings of the Second International Conference on Intelligent Systems
for Molecular Biology, 2, 28-36.

See Also

read_meme (), create_sequences(), shuffle_sequences(), processx: :run()

Examples

Not run:
To check that you are properly linking to the binary:
run_meme ()

End(Not run)

54 scan_sequences

sample_sites Generate binding sites from a motif.

Description
Given probabilities for a sequence as represented by a motif, generate random sequences with the
same length as the motif.

Usage

sample_sites(motif, n = 100, use.freq = 1)

Arguments
motif See convert_motifs() for acceptable formats.
n numeric(1) Number of sites to generate.
use.freq numeric(1) If one, use regular motif matrix. Otherwise, use respective multifreq
matrix.
Value

XStringSet object.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

See Also

create_sequences(), create_motif (), add_multifreq()

Examples

motif <- create_motif()
sites <- sample_sites(motif)

scan_sequences Scan sequences for matches to input motifs.

Description

For sequences of any alphabet, scan them using the PWM matrices of a set of input motifs.

scan_sequences

Usage

55

scan_sequences(motifs, sequences, threshold = 1e-04,
threshold.type = c("pvalue”, "qvalue”, "logodds”, "logodds.abs"),
RC = FALSE, use.freq = 1, verbose = @, nthreads = 1,
motif_pvalue.k = 8, use.gaps = TRUE, allow.nonfinite = FALSE,
warn.NA = TRUE, calc.pvals = TRUE, return.granges = FALSE,

no.overlaps =

FALSE, no.overlaps.by.strand = FALSE,

no.overlaps.strat = c("score”, "order"), respect.strand = FALSE,
motif_pvalue.method = c("dynamic”, "exhaustive"),
calc.qvals = calc.pvals, calc.qvals.method = c("fdr", "BH",

"bonferroni"))

Arguments

motifs
sequences
threshold
threshold. type

RC

use.freq

verbose

nthreads

motif_pvalue.k

use.gaps
allow.nonfinite

warn.NA

calc.pvals

See convert_motifs() for acceptable motif formats.
XStringSet Sequences to scan. Alphabet should match motif.
numeric(1) See details.

character (1) Oneof c('pvalue', 'qvalue', 'logodds', 'logodds.abs').
See details.

logical (1) If TRUE, check reverse complement of the input sequences. Only
available for DNA/RNA.

numeric(1) The default, 1, uses the motif matrix (from the motif['motif']
slot) to search for sequences. If a higher number is used, then the matching k-let
matrix from the motif['multifreq'] slotis used. See add_multifreq().

numeric(1) Describe progress, from none (@) to verbose (3).

numeric(1) Run scan_sequences() in parallel with nthreads threads. nthreads
= @ uses all available threads. Note that no speed up will occur for jobs with only
a single motif and sequence.

numeric(1) Control motif_pvalue() approximation. See motif_pvalue().
Only used if motif_pvalue.method = "exhaustive”.

logical(1) Set this to FALSE to ignore motif gaps, if present.

logical (1) If FALSE, then apply a pseudocount if non-finite values are found in
the PWM. Note that if the motif has a pseudocount greater than zero and the mo-
tif is not currently of type PWM, then this parameter has no effect as the pseu-
docount will be applied automatically when the motif is converted to a PWM
internally. This value is set to FALSE by default in order to stay consistent with
pre-version 1.8.0 behaviour. Also note that this parameter is not compatible with
motif_pvalue.method = "dynamic”. A message will be printed if a pseudo-
count is applied. To disable this, set options(pseudocount.warning=FALSE).

logical (1) Whether to warn about the presence of non-standard letters in the
input sequence, such as those in masked sequences.

logical (1) Calculate P-values for each hit. This is a convenience option which
simply gives motif_pvalue() the input motifs and the scores of each hit. Be
careful about setting this to TRUE if you anticipate getting thousands of hits and
are using motif_pvalue.method = "exhaustive”: expect to wait a few sec-
onds or minutes for the calculations to finish. Increasing the nthreads value
can help greatly here. See Details for more information on P-value calculation.
If motif_pvalue.method = "dynamic”, then this is usually not an issue.

56 scan_sequences

return.granges logical(1) Return the results as a GRanges object. Requires the GenomicRanges
package to be installed.

no.overlaps logical(1) Remove overlapping hits from the same motifs. Overlapping hits
from different motifs are preserved. Please note that the current implementation
of this feature can add significantly to the run time for large inputs.

no.overlaps.by.strand
logical (1) Whether to discard overlapping hits from the opposite strand (TRUE),
or to only discard overlapping hits on the same strand (FALSE).

no.overlaps.strat
character(1) One of c("score”, "order”). The former option keeps the
highest scoring overlapping hit (and the first of these within ties), and the latter
simply keeps the first overlapping hit.

respect.strand logical(1) If motifs are DNA/RNA, then setting this option to TRUE will make
scan_sequences() only scan the strands of the input sequences as indicated in
the motif strand slot.

motif_pvalue.method
character (1) One of c("dynamic”, "exhaustive"). Algorithm used for cal-
culating P-values. The "exhaustive” method involves finding all possible mo-
tif matches at or above the specified score using a branch-and-bound algorithm,
which can be computationally intensive (Hartman et al., 2013). Additionally,
the computation must be repeated for each hit. The "dynamic” method cal-
culates the distribution of possible motif scores using a much faster dynamic
programming algorithm, and can be recycled for multiple scores (Grant et al.,
2011). The only disadvantage is the inability to use allow.nonfinite = TRUE.
See motif_pvalue() for details.

calc.qvals logical (1) Whether to also calculate adjusted P-values. Only valid if calc.pvals
= TRUE.

calc.qgvals.method
character(1) One of c("fdr", "BH", "bonferroni”). The method for cal-
culating adjusted P-values. These are described in depth in the Sequence Searches
vignette. Also see Noble (2009).

Details

Logodds scoring:

Similar to Biostrings: :matchPWM(), the scanning method uses logodds scoring. (To see the
scoring matrix for any motif, simply run convert_type(motif, "PWM"). For amultifreq scor-
ing matrix: apply(motif["multifreq”][["2"1], 2, ppm_to_pwm)). In order to score a se-
quence, at each position within a sequence of length equal to the length of the motif, the scores
for each base are summed. If the score sum is above the desired threshold, it is kept.

Thresholds:

If threshold. type = 'logodds’, then the threshold value is multiplied by the maximum pos-
sible motif scores. To calculate the maximum possible scores a motif (of type PWM) manually,
run motif_score(motif, 1). If threshold.type = 'pvalue’, then threshold logodds scores
are generated using motif_pvalue(). Finally, if threshold.type = 'logodds.abs"', then the
exact values provided will be used as thresholds. Finally, if threshold.type = 'qvalue’, then
the threshold is calculated as if threshold. type = 'pvalue' and the final set of hits are filtered
based on their calculated Q-value. (Note: this means that the thresh. score column will be in-
correct!) This is done since most Q-values cannot be calculated prior to scanning. If you are

scan_sequences 57

running a very large job, it may be wise to use a P-value threshold followed by manually fil-
tering by Q-value; this will avoid the scanning have to parse the larger number of hits from the
internally-lowered threshold.

Non-standard letters:

Non-standard letters (such as "N", "+", "-", ".", etc in DNAString objects) will be safely ignored,
resulting only in a warning and a very minor performance cost. This can used to scan masked
sequences. See Biostrings::mask() for masking sequences (generating MaskedXString ob-
jects), and Biostrings::injectHardMask() to recover masked XStringSet objects for use
with scan_sequences(). There is also a provided wrapper function which performs both steps:
mask_seqs().

Value

DataFrame, GRanges with each row representing one hit. If the input sequences are DNAStringSet
or RNAStringSet, then an additional column with the strand is included. Function args are stored
in the metadata slot. If return. granges = TRUE then a GRanges object is returned.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Grant CE, Bailey TL, Noble WS (2011). "FIMO: scanning for occurrences of a given motif."
Bioinformatics, 27, 1017-1018.

Hartmann H, Guthohrlein EW, Siebert M, Soding SLJ (2013). “P-value-based regulatory motif
discovery using positional weight matrices.” Genome Research, 23, 181-194.

Noble WS (2009). "How does multiple testing work?" Nature Biotechnology, 27, 1135-1137.

See Also

add_multifreq(), Biostrings: :matchPWM(), enrich_motifs(), motif_pvalue()

Examples

any alphabet can be used

Not run:

set.seed(1)

alphabet <- paste(c(letters), collapse = "")

motif <- create_motif("hello”, alphabet = alphabet)

sequences <- create_sequences(alphabet, segnum = 1000, seqlen = 100000)
scan_sequences(motif, sequences)

End(Not run)

Sequence masking:

if (R.Version()$arch != "i386") {

library(Biostrings)

data(ArabidopsisMotif)

data(ArabidopsisPromoters)

seq <- mask_seqs(ArabidopsisPromoters, "AAAAA")
scan_sequences(ArabidopsisMotif, seq)

A warning regarding the presence of non-standard letters will be given,
but can be safely ignored in this case.

58 sequence_complexity

sequence_complexity Calculate sequence complexity.

Description

Calculate sequence complexity using either the Wootton-Federhen, Trifonov, or DUST algorithms.

Usage

sequence_complexity(seqs, window.size = 20,
window.overlap = round(window.size/2), method = c("WoottonFederhen”,
"WoottonFederhenFast"”, "Trifonov"”, "TrifonovFast"”, "DUST"),
trifonov.max.word.size = 7, nthreads = 1, return.granges = FALSE)

Arguments
seqgs XStringSet Input sequences.
window.size numeric Window size. If a number between O and 1 is provided, the value is

calculated as the number multiplied by the sequence length.

window.overlap numeric Overlap between windows. If a number between 0 and 1 is provided,
the value is calculated as the number multiplied by the sequence length.

method character (1) Choose one of the available methods for calculating sequence
complexity. See details.

trifonov.max.word.size
numeric(1) The maximum word size within each window used to calculate
complexity using method = c("Trifonov"”, "TrifonovFast"). In other words,
the Trifonov method involves counting the number of possible different sub-
words in a window at different sizes up to the values provided by this option.
It also involves calculating the product of ever increasing sequences of num-
bers and so in order to reduce the computations involed this can be limited to a
specific maximum sub-word size.

nthreads numeric(1) Run sequence_complexity() in parallel with nthreads threads.
nthreads = @ uses all available threads.

return.granges logical(1) Return the results as a GRanges object. Requires the GenomicRanges
package to be installed.

Details

The Wootton-Federhen (Wootton and Federhen, 1993) and Trifonov (Trifonov, 1990) algorithms as

well as their faster approximations are well described within Orlov and Potapov (2004). These algo-

rithms score less complex sequences closer to 0, and more complex ones closer to 1. Please note that

the *fast” approximation versions of the two methods are not actually faster within sequence_complexity(),
and so speed should not be a major consideration when choosing which method to use within the
universalmotif package. The DUST algorithm implementation is described in Morgulis et al.

(2006). In this case, less complex sequences score higher, and more complex ones closer to 0.

Briefly, the Wootton-Federhen complexity score is a reflection of the numbers of each unique letter
found in the window (e.g. for DNA, the more of all four letters can be found in the window the

sequence_complexity 59

higher the score). An increasing Trifonov score is a relection of the numbers of increasingly larger
k-mers (e.g. the count of possible 1-mers, 2-mers, 3-mers, ..., until trifonov.max.word.size).
Finally, the DUST score approaches O as the count of unique 3-mers increases. (See the final
section in the examples to see how different types of sequence compositions affect the methods.)

Please note that the authors of the different methods recommend various window sizes and com-
plexity thresholds. The authors of DUST for example, suggest using a window size of 64 and a
threshold of 2 for low complexity. Wootton and Federhen suggest a window size of 40, though
show that 10 and 20 can be appropriate as well (for amino acid sequences). Keep in mind however
that these algorithms were implemented at a time when computers were much slower; perhaps the
authors would suggest different window sizes today. One thing to note is that the Wootton-Federhen
algorithm has a hard limit due to the need to caculate the product from 1:window.size. This can
end up calculating values which are greater than what a double can hold (e.g. try prod(1:500)).
Its approximation does not suffer from this though, as it skips calculating the product.

In terms of speed, the Wootton-Federhen algorithms are fastest, with DUST being 1-3 times slower
and the Trifonov algorithms being several times slower (though the exact amount depends on the
max word size).

Value

DataFrame, GRanges with each row getting a complexity score for each window in each input
sequence.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Morgulis A, Gertz EM, Schaffer AA, Agarwala R (2006). "A fast and symmetric DUST implemen-
tation to mask low-complexity DNA sequences." Journal of Computational Biology, 13, 1028-1040.

Orlov YL, Potapov VN (2004). "Complexity: an internet resource for analysis of DNA sequence
complexity." Nucleic Acids Research, 32, W628-W633.

Trifonov EN (1990). "Making sense of the human genome." In Sarma RH, Sarma MH (Eds),
Structure & Methods Adenine Press, Albany, 1, 69-77.

Wootton JC, Federhen S (1993). "Statistics of local complexity in amino acid sequences and se-
quence databases." Computers & Chemistry, 17, 149-163.

See Also

calc_complexity(), count_klets(), get_bkg(), mask_ranges(), mask_seqs()

Examples

Feel free to play around with different toy sequences to get a feel for
how the different methods perform

library(Biostrings)
test.seq <- DNAStringSet(c("AAAAAAAAAAA" , "ATGACTGATGC"))

sequence_complexity(test.seq, method = "WoottonFederhen")
sequence_complexity(test.seq, method = "WoottonFederhenFast")
sequence_complexity(test.seq, method = "Trifonov")

sequence_complexity(test.seq, method = "TrifonovFast")

60

sequence_complexity

sequence_complexity(test.seq, method = "DUST")

You could also use this in conjuction with mask_ranges() to hide
low complexity regions from scanning, de novo motif discovery, etc

if (requireNamespace("GenomicRanges"”, quiet = TRUE)) {
data(ArabidopsisPromoters)

Calculate complexity in 20 bp windows, sliding every 1 bp
to.mask <- sequence_complexity(ArabidopsisPromoters, method = "DUST",
window.size = 20, window.overlap = 19, return.granges = TRUE)

Get the ranges with a complexity score greater than 3.5
to.mask <- to.mask[to.mask$complexity > 3.5]

See what the low complexity regions look like
ArabidopsisPromoters[IRanges: :reduce(to.mask)]

Mask them with the default '-' character:
mask_ranges(ArabidopsisPromoters, to.mask)
3

To demonstrate how the methods work, consider:

(These examples use the calc_complexity() utility which utilizes
the same algorithms and works on character vectors, but lacks
the ability to use sliding windows.)

a <- "ACGT"

For Wootton-Federhen, it can be easily shown it is only dependent
on the counts of individual letters (though do note that the
original paper discusses this method in the context of amino acid
sequences and not DNA):

calc_complexity("AAACCCGGGTTT", alph = a) # 0.7707
calc_complexity("AACCGGTTACGT", alph = a) # 0.7707
calc_complexity("ACGTACGTACGT", alph = a) # 0.7707

#
#
#
#

As letters start to see drops in counts, the scores go down too:
calc_complexity("AAAACCCCGGGG", alph = a) # 0.6284
calc_complexity("AAAAAACCCCCC", alph = a) # 0.4105
calc_complexity("AAAAAAAAAACC", alph = a) # 0.2518

Trifonov on the other hand is greatly affected by the number

of higher order combinations:

calc_complexity("AAACCCGGGTTT", c = "Trifonov"”, alph = a) # 0.6364
calc_complexity("AACCGGTTACGT", ¢ = "Trifonov"”, alph = a) # 0.7273

This next one may seem surprising, but it indeed scores very low.
This is because although it has many of each individual letter,

the number of higher order letter combinations in fact is quite

low due to this particular repeating pattern!
calc_complexity("ACGTACGTACGT", ¢ = "Trifonov"”, alph = a) # 0.01231

By extension, this means it scores sequences with fewer

counts of individual letters lower too.
calc_complexity("AAAACCCCGGGG"”, ¢ = "Trifonov", alph = a) # 0.2386
calc_complexity("AAAAAACCCCCC", ¢ = "Trifonov", alph = a) # 0.0227
calc_complexity ("AAAAAAAAAACC", c = "Trifonov”, alph = a) # 0.0011

shuffle_motifs 61

As for DUST, it considers the number of 3-mers in the sequence.
The higher the numbers of 3-mers, the lower the score.
(0 = the max possible number of DNA 3-mers for the window size)

calc_complexity("AAACCCGGGTTT", c = "DUST", alph = a) # 0@
calc_complexity("AACCGGTTACGT"”, ¢ = "DUST", alph = a) # 0@
calc_complexity("ACGTACGTACGT", ¢ = "DUST", alph = a) # 0.8889
calc_complexity("AAAACCCCGGGG", c = "DUST", alph = a) # 0.333
calc_complexity("ACGACGACGACG", ¢ = "DUST", alph = a) # 1.333
calc_complexity("AAAAAACCCCCC", ¢ = "DUST", alph = a) # 1.333

Similarly to Trifonov, the next one also scores as less complex
compared to the previous one:

calc_complexity("ACACACACACAC", c = "DUST", alph = a) # 2.222
calc_complexity("AAAAAAAAAACC", c = "DUST", alph = a) # 3.111
calc_complexity("AAAAAAAAAAAC", ¢ = "DUST", alph = a) # 4
calc_complexity(”"AAAAAAAAAAAA" | c = "DUST", alph = a) #5

Just to show once more why the seemingly more complex sequences
such as "ACACACACACAC" score as less complex than "AAAAAACCCCCC”
for the Trifonov and DUST methods:

count_klets("ACACACACACAC", k = 3) # Only 2 possible 3-mers
count_klets("AAAAAACCCCCC", k = 3) # Now 4 possible 3-mers!

shuffle_motifs Shuffle motifs by column.

Description

Given a set of motifs, shuffle the columns to create new motifs. Currently does not support keep-
ing the 'multifreq’ slot. Only the 'bkg’, ’nsites’, ’strand’, and "bkgsites’ slots will be preserved.
Uses the same shuffling methods as shuffle_sequences(). When shuffling more than one mo-
tif, all motif columns are merged into a single pool and shuffled together, finally returning them
as motifs of identical lengths as the input motifs. To instead shuffle motifs individually, call
shuffle_motifs() using lapply().

Usage

shuffle_motifs(motifs, k = 2, method = "linear")

Arguments

motifs See convert_motifs() for acceptable formats.

k numeric(1) K-let size.

method character (1) Currently only ’linear’ is accepted.
Value

Motifs. See convert_motifs() for available output formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

62

See Also

shuffle_sequences

shuffle_sequences()

shuffle_sequences Shuffle input sequences.

Description

Given a set of input sequences, shuffle the letters within those sequences with any k-let size.

Usage

shuffle_sequences(sequences, k = 1, method = "euler"”, nthreads =
rng.seed = sample.int(10000, 1), window = FALSE, window.size

1
S -
L

window.overlap = 0.01)

Arguments

sequences
k
method

nthreads

rng.seed

window

window.size

window.overlap

Details

XStringSet Set of sequences to shuffle. Works with any set of characters.
numeric(1) K-let size.

character(1) One of c('euler', 'markov', 'linear'). Only relevant if k
> 1. See details.

numeric(1) Run shuffle_sequences() in parallel with nthreads threads.
nthreads = @ uses all available threads. Note that no speed up will occur for
jobs with only a single sequence.

numeric(1) Set random number generator seed. Since shuffling can occur si-
multaneously in multiple threads using C++, it cannot communicate with the
regular R random number generator state and thus requires an independent seed.
Each individual sequence in an XStringSet object will be given the following
seed: rng.seed * index. The default is to pick a random number as chosen by
sample(), which effectively is making shuffle_sequences() dependent on
the R RNG state.

logical(1) Shuffle sequences iteratively over windows instead of all at once.

numeric(1) Window size. Can be a fraction less than one, or an integer repre-
senting the actual window size.

numeric(1) Overlap between windows. Can be a fraction less than one, or an
integer representing the actual overlap size.

markov method:

If method = "markov', then the Markov model is used to generate sequences which will maintain
(on average) the k-let frequencies. Please note that this method is not a ’true’ shuffling, and for
short sequences (e.g. <100bp) this can result in slightly more dissimilar sequences versus true
shuffling. See Fitch (1983) for a discussion on the topic.

shuffle_sequences 63

euler method:

If method = 'euler’, then the sequence shuffling method proposed by Altschul and Erickson
(1985) is used. As opposed to the *markov’ method, this one preserves exact k-let frequencies.
This is done by creating a k-let edge graph, then following a random Eulerian walk through the
graph. Not all walks will use up all available letters however, so the cycle-popping algorithm
proposed by Propp and Wilson (1998) is used to find a random Eulerian path. A side effect of
using this method is that the starting and ending sequence letters will remain unshuffled.

linear method:

If method = 'linear’, then the input sequences are split linearly every k letters. For example, for
k = 3’ ACAGATAGACCC’ becomes ’ACA GAT AGA CCC’; after which these 3-lets are shuffled
randomly.

Single-letter shuffling:

Do note however, that the method parameter is only relevant for k > 1. For k = 1, a simple shuffling
is performed using the shuffle function from the C++ standard library.

Value

XStringSet The input sequences will be returned with identical names and lengths.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Altschul SF, Erickson BW (1985). “Significance of Nucleotide Sequence Alignments: A Method
for Random Sequence Permutation That Preserves Dinucleotide and Codon Usage.” Molecular Bi-
ology and Evolution, 2, 526-538.

Fitch WM (1983). “Random sequences.” Journal of Molecular Biology, 163, 171-176.

Propp JG, Wilson DW (1998). “How to get a perfectly random sample from a generic markov chain
and generate a random spanning tree of a directed graph.” Journal of Algorithms, 27, 170-217.

See Also

create_sequences(), scan_sequences(), enrich_motifs(), shuffle_motifs()

Examples

if (R.Version()$arch != "i386") {
sequences <- create_sequences()
sequences.shuffled <- shuffle_sequences(sequences, k = 2)

3

64 tidy-motifs

switch_alph Switch between DNA and RNA alphabets.

Description

Convert a motif from DNA to RNA, or RNA to DNA.

Usage

switch_alph(motifs)

Arguments

motifs See convert_motifs() for acceptable formats.

Value

The DNA/RNA version of the motifs. See convert_motifs() for acceptable output formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

create_motif ()

Examples

DNA.motif <- create_motif()
RNA.motif <- switch_alph(DNA.motif)

tidy-motifs Tidy manipulation of motifs.

Description

Tidy manipulation of motifs.
Usage
to_df(motifs, extrainfo = TRUE)
update_motifs(motif_df, extrainfo = TRUE, force = FALSE)
to_list(motif_df, extrainfo = TRUE, force = FALSE)

requires_update(motifs, extrainfo = TRUE)

tidy-motifts 65

Arguments

motifs List of motifs.

extrainfo Use the extrainfo slot in the tidy data.frame. The column names will be
taken from the character vectors themselves, and unnamed elements will be as-
signed a unique name. To add elements to the slot, simply create new columns in
the data. frame. Note that these will be coerced into characters. If extrainfo
is not set to TRUE in to_df (), then the contents of the slot will not be transferred
to the data.frame. If extrainfo is not set to TRUE in update_motifs() or
to_list(), then the extra columns will be discarded.

motif_df Motif data. frame generated by to_df ().

force Whether to coerce non-character data types into characters for inclusion in extrainfo.

If force is FALSE (the default), columns which are not of type "character",
"numeric", or "integer" (for example, list columns, or logical values), will not

be added to the motif extrainfo slot, but will be passed onto the returned
universalmotif_df unchanged. Setting force = TRUE coerces these values

into a character, adding them to the extrainfo slot, and updating the universalmotif_df
columns to reflect this coercion. In other words, forcing inclusion of these data

is destructive and will change the column values. Use with caution.

Details

To turn off the informative messages/warnings when printing the object to the console, set options(universalmotif_df

Value

For to_df (): a data. frame with the exposed slots as columns.
For update_motifs(): the updated data.frame.

For requires_update(): TRUE if the motifs are out of date, FALSE if otherwise. Note that this
function uses identical() to check for this, which can be quite slow for large datasets. It is
usually just as fast to simply run update_motifs() in such cases.

For to_list(): alist of motifs.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

Examples

Not run:
library(universalmotif)
library(dplyr)

m <- c(create_motif(name = "motif A"), create_motif(name = "motif B"))

Change the names of the motifs using the tidy way:
m <-m %>%

to_df () %>%

mutate(name = paste@(name, "-2")) %>%

to_list()

Add your own metadata to be stored in the extrainfo slot:
m_df <- to_df(m)

66 trim_motifs

m_df$MyMetadata <- c("Info_1", "Info_2")
m <- to_list(m_df, extrainfo = TRUE)

End(Not run)

trim_motifs Trim motifs.

Description

Remove edges of motifs with low information content. Currently does not trim multifreq repre-
sentations.

Usage

trim_motifs(motifs, min.ic = 0.25, trim.from = c("both”, "left"”, "right"))

Arguments
motifs See convert_motifs() for acceptable formats.
min.ic numeric(1) Minimum allowed information content. See convert_type() for
a discussion on information content.
trim.from character (1) Control the direction of trimming.
Value

Motifs See convert_motifs() for available output formats.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

create_motif (), convert_type()

Examples

jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt",
package = "universalmotif"))
jaspar.trimmed <- trim_motifs(jaspar)

universalmotif-class

67

universalmotif-class

universalmotif: Motif class.

Description

Container for motif objects. See create_motif () for creating motifs as well as a more detailed
description of the slots. For a brief description of available methods, see examples.

Usage

S4 method for signature 'universalmotif'

x[i]

S4 replacement method for signature 'universalmotif'

x[i] <- value

S4 method for signature 'universalmotif'

initialize(.Object, name, altname, family, organism,
motif, alphabet = "DNA", type, icscore, nsites, pseudocount = 1, bkg,
bkgsites, consensus, strand = "+-", pval, qval, eval, multifreq, extrainfo,

gapinfo)

S4 method for
show(object)

S4 method for
as.data.frame(x)

S4 method for

subset(x, select)

S4 method for

normalize(object)

S4 method for
rowMeans (x)

S4 method for
colMeans(x)

S4 method for
colSums(x)

S4 method for
rowSums (x)

S4 method for
nrow(x)

S4 method for
ncol (x)

signature

signature

signature

signature

signature

signature

signature

signature

signature

signature

"universalmotif’

'universalmotif'

"universalmotif’

"universalmotif'

"universalmotif’

"universalmotif'

'universalmotif’

"universalmotif’

"universalmotif’

"universalmotif'

68

universalmotif-class

S4 method for signature 'universalmotif'

colnames(x)

S4 method for signature 'universalmotif'

rownames (x)

S4 method for signature 'universalmotif'

cbind(..., deparse.level = 0)

Arguments

X universalmotif Motif.

i character Slot.

value Object to replace slot with.

.Object universalmotif Final motif.

name character (1) Motif name.

altname character (1) Alternate motif name.

family character (1) Transcription factor family.

organism character (1) Species of origin.

motif matrix Each column represents a position in the motif.

alphabet character(1) Oneof c('DNA', 'RNA', '"AA"), or a combined string represent-
ing the letters.

type character(1) One of c('PCM', 'PPM', 'PWM' 'ICM").

icscore numeric(1) Total information content. Automatically generated.

nsites numeric (1) Number of sites the motif was constructed from.

pseudocount numeric(1) Correction to be applied to prevent -Inf from appearing in PWM
matrices.

bkg numeric A vector of probabilities, each between 0 and 1. If higher order back-
grounds are provided, then the elements of the vector must be named.

bkgsites numeric (1) Total number of sites used to find the motif.

consensus character (1) Consensus string. Automatically generated for 'DNA’, 'RNA’,
and *AA’ alphabets.

strand character (1) Whether the motif is specific to a certain strand.

pval numeric(1) P-value associated with motif.

gval numeric(1) Adjusted P-value associated with motif.

eval numeric(1) E-value associated with motif.

multifreq list See add_multifreq().

extrainfo character Any other extra information, represented as a named character vec-
tor.

gapinfo universalmotif_gapped(1) Gapped motif information.

object universalmotif Motif.

select numeric Columns to keep.

deparse.level

universalmotif Motifs.

Unused.

universalmotif-class

Value

A motif object of class universalmotif.

Slots

name character(1)

altname character(1)

family character(1)

organism character(1)

motif matrix

alphabet character(1)

type character(1)

icscore numeric(1) Generated automatically.
nsites numeric(1)

pseudocount numeric(1)

bkg numeric 0-order probabilities must be provided for all letters.
bkgsites numeric(1)

consensus character Generated automatically.
strand character(1)

pval numeric(1)

gval numeric(1)

eval numeric(1)

multifreq list

extrainfo character

gapinfo universalmotif_gapped(1)

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin.tremblay@uwaterloo.ca>

Examples

[

Access the slots.

motif <- create_motif()

motif["motif"]

you can also access multiple slots at once, released as a list
motif[c("motif”, "name")]

#H [<-

Replace the slots.

motif[”name”] <- "new name”

some slots are protected

motif["consensus”] <- "AAAA" # not allowed

c
Assemble a list of motifs.
c(motif, motif)

70

as.data.frame

Represent a motif as a data.frame. The actual motif matrix is lost.
Necessary for ~summarise_motifs-.

as.data.frame(motif)

subset

Subset a motif matrix by column.

subset(motif, 3:7) # extract motif core

normalize

Apply the pseudocount slot (or °1

motif matrix.

motif2 <- create_motif ("AAAAA", nsites

normalize(motif2)

rowMeans

Calculate motif rowMeans.

rowMeans (motif)

colMeans

Calculate motif colMeans.

colMeans(motif’)

colSums
Calculate motif colSums
colSums(motif)

rowSums
Calculate motif rowSums.
rowSums (motif’)

nrow
Count motif rows.
nrow(motif)

ncol
Count motif columns.
ncol(motif)

colnames
Get motif colnames.
colnames(motif’)

rownames
Get motif rownames.

rownames(motif)

cbind

= 100, pseudocount = 1)

Bind motifs together to create a new motif.

cbind(motif, motif2)

universalmotif-pkg

, if the slot is set to zero) to the

universalmotif-pkg universalmotif: Import, Modify and Export Motifs with R

utilities 71

Description

A collection of utility functions for working with motifs.

Author(s)
Maintainer: Benjamin Jean-Marie Tremblay <benjamin.tremblay@uwaterloo.ca> (ORCID)

Other contributors:

* Spencer Nystrom (ORCID) [contributor]

See Also

Useful links:

e https://bioconductor.org/packages/universalmotif/

* Report bugs at https://github.com/bjmt/universalmotif/issues

utilities Utility functions.

Description

Utility functions have been split into two categories: those related to motifs ?’utils-motif’, and those
related to sequences ?’utils-sequence’.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

utils-motif, utils-sequence

utils-motif Motif-related utility functions.

Description

Motif-related utility functions.

https://orcid.org/0000-0002-7441-2951
https://orcid.org/0000-0003-1000-1579
https://bioconductor.org/packages/universalmotif/
https://github.com/bjmt/universalmotif/issues

72

Usage

add_gap(motif, gaploc = ncol(motif)%/%2, mingap = 1, maxgap = 5)
average_ic(motifs, average = c("a.mean”, "g.mean"”, "median”, "fzt"))

compare_columns(x, y, method, bkgl = rep(1/length(x), length(x)),
bkg2 = rep(1/length(y), length(y)), nsitesl = 100, nsites2 = 100)

consensus_to_ppm(letter)

consensus_to_ppmAA(letter)

utils-motif

get_consensus(position, alphabet = "DNA", type = "PPM", pseudocount = 1)

get_consensusAA(position, type = "PPM", pseudocount = @)
get_matches(motif, score, allow.nonfinite = FALSE)
get_scores(motif, allow.nonfinite = FALSE)
icm_to_ppm(position)

motif_range(motif, use.freq = 1, allow.nonfinite = FALSE)

motif_score(motif, threshold = c(@, 1), use.freq = 1,
allow.nonfinite = FALSE, threshold.type = c("total”, "fromzero"))

log_string_pval(pval)

pcm_to_ppm(position, pseudocount = @)

position_icscore(position, bkg = numeric(), type = "PPM",
pseudocount = 1, nsites = 100, relative_entropy = FALSE,

schneider_correction = FALSE)

ppm_to_icm(position, bkg = numeric(), schneider_correction = FALSE,
nsites = 100, relative_entropy = FALSE)

ppm_to_pcm(position, nsites = 100)

ppm_to_pwm(position, bkg = numeric(), pseudocount = 1, nsites = 100,
smooth = TRUE)

prob_match(motif, match, allow.zero = TRUE)
prob_match_bkg(bkg, match)
pwm_to_ppm(position, bkg = numeric())
round_motif(motif, pct.tolerance = 0.05)

score_match(motif, match, allow.nonfinite = FALSE)

utils-motif

73

summarise_motifs(motifs, na.rm = TRUE)

ungap(motif, delete = FALSE)

Arguments

motif

gaploc

mingap

maxgap

motifs

average

X

Yy
method

bkg1
bkg2
nsitesi
nsites2
letter
position

alphabet
type
pseudocount

score
allow.nonfinite

use.freq
threshold

Motif object to calculate scores from, or add/remove gap, or round.

numeric Motif gap locations. The gap occurs immediately after every position
value. If missing, uses round(ncol(motif) / 2).

numeric Minimum gap size. Must have one value for every location. If missing,
setto 1.

numeric Maximum gap size. Must have one value for every location. If missing,
setto 5.

list A list of universalmotif motifs.

character (1) One of c("a.mean"”, "g.mean", "median”, "fzt"). How to
calculate the average motif information content.

numeric First column for comparison.
numeric Second column for comparison.
character (1) Column comparison metric. See compare_motifs() for details.

numeric Vector of background probabilities for the first column. Only relevant
if method = "ALLR".

numeric Vector of background probabilities for the second column. Only rele-
vant if method = "ALLR".

numeric(1) Number of sites for the first column. Only relevant if method =
"ALLR".

numeric(1) Number of sites for the second column. Only relevant if method =
"ALLR".

character(1) Any DNA, RNA, or AA TUPAC letter. Ambiguity letters are
accepted.

numeric A numeric vector representing the frequency or probability for each
alphabet letter at a specific position.

character (1) One of c('DNA', 'RNA").
character(1) One of c('PCM', 'PPM', 'PWM' 'ICM').
numeric(1) Used to prevent zeroes in motif matrix.

numeric(1) Logodds motif score.

logical(1) If FALSE, then apply a pseudocount if non-finite values are found
in the PWM. Note that if the motif has a pseudocount greater than zero and
the motif is not currently of type PWM, then this parameter has no effect as
the pseudocount will be applied automatically when the motif is converted to a
PWM internally. This value is set to FALSE by default in order to stay consistent
with pre-version 1.8.0 behaviour. A message will be printed if a pseudocount is
applied. To disable this, set options(pseudocount.warning=FALSE).

numeric(1) Use regular motif or the respective multifreq representation.

numeric(1) Any number of numeric values between 0 and 1 representing score
percentage.

74 utils-motif

threshold.type character For "total”, a threshold of zero represents the minimum possible
score. This means the range of scores that can be extracted is from the minimum
to the maximum possible scores. For "fromzero”, a threshold of zero is a score
of zero. This means the range of scores is from zero to the maximum. The
"total” threshold type can only be used if no non-finite values are present in

the PWM.
pval character (1) String-formatted p-value.
bkg numeric Should be the same length as the alphabet length.
nsites numeric(1) Number of sites motif originated from.

relative_entropy
logical (1) Calculate information content as relative entropy or Kullback-Leibler
divergence.

schneider_correction
logical(1) Apply sample size correction.

smooth logical (1) Apply pseudocount correction.
match character Sequence string to calculate score from.
allow.zero logical(1) If FALSE, apply a pseudocount if zero values are found in the back-

ground frequencies.

pct.tolerance numeric(1) or character(1) The minimum tolerated proportion each letter
must represent per position in order not to be rounded off, either as a numeric
value from O to 1 or a percentage written as a string from "0%" to "100%".

na.rm logical Remove columns where all values are NA.

delete logical (1) Clear gap information from motif. If FALSE, then it can be reacti-
vated simply with add_gap(motif).

Value

For consensus_to_ppm() and consensus_to_ppmAA(): a numeric vector of length 4 and 20, re-
spectively.

For get_consensus() and get_consensusAA(): a character vector of length 1.
For get_matches(): a character vector of motif matches.

For motif_range(): a named numeric vector of motif scores.

For motif_score(): a named numeric vector of motif scores.

For log_string_pval(): a numeric vector of length 1.

For position_icscore(): a numeric vector of length 1.

For ppm_to_icm(), icm_to_ppm(), pcm_to_ppm(), ppm_to_pcm(), ppm_to_pwm(), and pwm_to_ppm():
a numeric vector with length equal to input numeric vector.

For prob_match(): a numeric vector of probabilities.
For round_motif(): the input motif, rounded.
For score_match(): a numeric vector with the match motif score.

For summarise_motifs(): a data. frame with columns representing the universalmotif slots.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

utils-motif

See Also

create_motif ()

Examples

data(examplemotif)
examplemotif@ <- examplemotif
examplemotif@["pseudocount”] <- @

AR AR AR AR
add_gap

Add gap information to a motif.

m <- create_motif ()

Add a gap size 5-8 between positions 4 and 5:

m <- add_gap(m, gaploc = 4, mingap = 5, maxgap = 8)

S I I I I I I
average_ic

Calculate the average information content for a list of motifs.

m <- create_motif ()

average_ic(m, "fzt")

S HEHHRHEHER AR HHEH BRI HEHREEE AR
compare_columns

Compare two numeric vectors using the metrics from compare_motifs()
compare_columns(c(@.5, 0.1, 0.1, 0.2), c(0.7, 0.1, 0.1, @.1), "PCC")

SHEHHHHHHEHEHE AR AR AR
consensus_to_ppm

Do the opposite of get_consensus. Note that loss of information is
inevitable. Generates a sequence matrix.

sapply(c("A", "G", "T", "B"), consensus_to_ppm)

HEHHHHHHHEEE AR AR AR
consensus_to_ppmAA

Do the opposite of get_consensusAA and generate a motif matrix.
sapply(c(”V", "A", "L"), consensus_to_ppmAA)

HHHEHHHEHEE AR AR AR
get_consensus

Get a consensus string from a DNA/RNA motif.

m <- create_motif()["motif"]

apply(m, 2, get_consensus)

HHHEHHHEHEE A A
get_consensusAA

Get a consensus string from an amino acid motif. Unless each position
is clearly dominated by a single amino acid, the resulting string will
likely be useless.

m <- create_motif(alphabet = "AA")["motif"]

apply(m, 2, get_consensusAA, type = "PPM")

HHH R
get_match

Get all possible motif matches above input score
get_matches(examplemotif, @)

76

get_matches(examplemotif@, @, allow.nonfinite = TRUE)

HHHEHHHEHEE AR AR
get_scores

Get all possible scores for a motif

length(get_scores(examplemotif))

get_scores(examplemotif)

get_scores(examplemotif@, allow.nonfinite = TRUE)

HEHHHHHHHEEHE AR R
icm_to_ppm

Do the opposite of ppm_to_icm.

m <- create_motif(type = "ICM")["motif"]

apply(m, 2, icm_to_ppm)

B R e a i i S e s i i i
motif_range

Calculate the range of possible logodds scores for a motif
motif_range(examplemotif)

motif_range(examplemotif, allow.nonfinite = TRUE)

HEHHHHHHEEE AR HHHHREEEEHHHHH R HHHHRHEEHEEHHEE R

motif_score

Calculate motif score from different thresholds

m <- normalize(examplemotif)

motif_score(m, c(@, 0.8, 1))

motif_score(examplemotif@, c(@, 0.8, 1), allow.nonfinite = TRUE,
threshold.type = "fromzero")

HHHEHHHEEEE AR AR AR
log_string_pval

Get the log of a string-formatted p-value

log_string_pval("1e-200")

B S S S S
pcm_to_ppm

Go from a count type motif to a probability type motif.

m <- create_motif(type = "PCM", nsites = 50)["motif"]

apply(m, 2, pcm_to_ppm, pseudocount = 1)

HHHEHHAHEE A A
position_icscore

Similar to ppm_to_icm, except this calculates the position sum.

m <- create_motif()["motif"]

apply(m, 2, position_icscore, type = "PPM", bkg = rep(0.25, 4))

HHHHHHAAHE A
ppm_to_icm

Convert one column from a probability type motif to an information
content type motif.

m <- create_motif(nsites = 100, pseudocount = 0.8)["motif"]

apply(m, 2, ppm_to_icm, nsites = 100, bkg = rep(0.25, 4))

AR AR AR R
ppm_to_pcm

Do the opposite of pcm_to_ppm.

m <- create_motif()["motif"]

utils-motif

utils-motif 77

apply(m, 2, ppm_to_pcm, nsites = 50)

HHHEHHHEHEE AR AR
ppm_to_pwm

Go from a probability type motif to a weight type motif.

m <- create_motif()["motif"]

apply(m, 2, ppm_to_pwm, nsites = 100, bkg = rep(0.25, 4))

HHHEHHHEEEE A A
prob_match, prob_match_bkg

Calculate probability of a particular match based on background

frequencies

prob_match(examplemotif, "TATATAT")

Since this motif has a uniform background, the probability of

finding any motif hit within the sequence is equal
prob_match(examplemotif, "TATATAG")

m <- examplemotif

m["bkg"] <- ¢(0.3, 0.2, 0.2, 0.3)

prob_match(m, "TATATAT")

The prob_match_bkg alternative allows you to simply pass along the
background frequencies

prob_match_bkg(c(A=0.3, C=0.2, G=0.2, T=0.3), c("TATATAT", "TATATAG"))

HHHEHHHEEEEE AR AR AR
pwm_to_ppm

Do the opposite of ppm_to_pwm.

m <- create_motif(type = "PWM")["motif"]

apply(m, 2, pwm_to_ppm, bkg = rep(0.25, 4))

HHHEHHHEEEE AR AR AR
Note that not all type conversions can be done directly; for those
type conversions which are unavailable, universalmotif just chains
together others (i.e. from PCM -> ICM => pcm_to_ppm -> ppm_to_icm)

B S S S S
round_motif

Round down letter scores to @

m <- create_motif()

Remove letters from positions which are less than 5% of the total

position:

round_motif(m, pct.tolerance = 0.05)

B
score_match

Calculate score of a particular match

score_match(examplemotif, "TATATAT")

score_match(examplemotif, "TATATAG")

score_match(examplemotif@, "TATATAT”, allow.nonfinite = TRUE)
score_match(examplemotif@, "TATATAG", allow.nonfinite = TRUE)

AR AR AR R
summarise_motifs

Create a data.frame of information based on a list of motifs.

ml <- create_motif()

m2 <- create_motif ()

m3 <- create_motif ()

summarise_motifs(list(ml, m2, m3))

78

B S S
ungap

Unset motif's gap status. Does not delete actual gap data unless

delete = TRUE.

m <- create_motif ()

m <- add_gap(m, 3, 2, 4)

m <- ungap(m)

Restore gap data:

m <- add_gap(m)

utils-sequence

utils-sequence Sequence-related utility functions.

Description

Sequence-related utility functions.

Usage

calc_complexity(string, complexity.method = c("WoottonFederhen",

"WoottonFederhenFast”, "Trifonov"”, "TrifonovFast”, "DUST"”), alph = NULL,

trifonov.max.word.size = 7)
calc_windows(n, window = 1, overlap = @, return.incomp = TRUE)
count_klets(string, k = 1, alph)
get_klets(lets, k = 1)
mask_ranges(seqs, ranges, letter = "-")

mask_seqs(seqs, pattern, RC = FALSE, letter = "-")

meme_alph(core, file = stdout(), complements = NULL, ambiguity = NULL,
like = NULL, alph.name = NULL, letter.names = NULL, colours = NULL)

shuffle_string(string, k = 1, method = c("euler”, "linear"”, "markov"),

rng.seed = sample.int (10000, 1))

slide_fun(string, FUN, FUN.VALUE, window = 1, overlap = 0,
return.incomp = TRUE)

window_string(string, window = 1, overlap = @, return.incomp = TRUE,
nthreads = 1)

Arguments

string character (1) A character vector containing a single string, with the exception
of calc_complexity() where string can be a length greater than one.

utils-sequence

79

complexity.method

alph

character (1) Complexity algorithm. See sequence_complexity().

character (1) A single character string with the desired sequence alphabet. If
missing, finds the unique letters within each string.

trifonov.max.word.size

n
window
overlap

return.incomp

k
lets

seqgs

ranges

letter
pattern
RC

core

file
complements

ambiguity

like

alph.name
letter.names

colours

method

rng.seed

FUN
FUN.VALUE

nthreads

integer (1) Maximum word size for use in the Trifonov complexity methods.
See sequence_complexity().

integer (1) Total size from which to calculate sliding windows.
integer (1) Window size to slide along.
integer (1) Overlap size between windows.

logical(1) Whether to return the last window if it is smaller then the requested
window size.

integer (1) K-let size.

character A character vector where each element will be considered a single
unit.

XStringSet Sequences to mask. Cannot be BStringSet.

GRanges The ranges to mask. Must be a GRanges object from the GenomicRanges
package.

character (1) Character to use for masking.
character (1) Pattern to mask.
logical(1) Whether to mask the reverse complement of the pattern.

character (1) Core alphabet symbols. If complements are also provided, then
only half of the letters should be provided to this argument.

Output file.
character (1), NULL Complementary letters to the core symbols.

character (1), NULL A named vector providing ambiguity codes for the custom
alphabet.

character (1), NULL How to classify the custom alphabet. If not NULL, then one
of c("DNA", "RNA", "PROTEIN").

character (1), NULL Custom alphabet name.
character, NULL Named vector of core symbol names.

character, NULL Named vector of core symbol colours. MEME requires hex
colours.

character (1) Shuffling method. One of c("euler”, "linear”, "markov").
See shuffle_sequences().

numeric(1) Setrandom number generator seed. Since shuffling in shuffle_sequences()
can occur simultaneously in multiple threads using C++, it cannot communi-
cate with the regular R random number generator state and thus requires an in-
dependent seed. Since shuffle_string() uses the same underlying code as
shuffle_sequences(), it also requires a separate seed even if it is run in serial.

closure The function to apply per window. (See ?vapply.)
The expected return type for FUN. (See ?vapply.)

integer (1) Number of threads to use. Zero uses all available threads.

80 utils-sequence

Value

For calc_complexity(): A vector of numeric values.

For calc_windows(): A data.frame with columns start and stop.
For count_klets(): A data.frame with columns lets and counts.
For get_klets(): A character vector of k-lets.

For mask_ranges(): The masked XStringSet object.

For mask_seqs(): The masked XStringSet object.

For meme_alph(): NULL, invisibly.

For shuffle_string(): A single character string.

For slide_fun(): A vector with type FUN.VALUE.

For window_string(): A character vector.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

create_sequences(), get_bkg(), sequence_complexity(), shuffle_sequences()

Examples

HHHHHHHHHHAHEEHHHHHEHHHHEHEEHHHEHHHEHHR AR
calc_complexity

Calculate complexity for abitrary strings
calc_complexity("GTGCCCCGCGGGAACCCCGC", ¢ = "WoottonFederhen")

calc_complexity("GTGCCCCGCGGGAACCCCGC", ¢ = "WoottonFederhenFast")
calc_complexity("GTGCCCCGCGGGAACCCCGC", ¢ = "Trifonov")
calc_complexity("GTGCCCCGCGGGAACCCCGC", ¢ = "TrifonovFast")
calc_complexity("GTGCCCCGCGGGAACCCCGC”, ¢ = "DUST")

HHHEHHHEHEE AR AR A
calc_windows

Calculate window coordinates for any value 'n'.

calc_windows (100, 10, 5)

B S S
count_klets

Count k-lets for any string of characters
count_klets("GCAAATGTACGCAGGGCCGA", k = 2)

The default 'k' value (1) counts individual letters
count_klets("GCAAATGTACGCAGGGCCGA")

HHHEHHHEHEE A A A
get_klets

Generate all possible k-lets for a set of characters
get_klets(c("A", "C", "G", "T"), 3)

Note that each element in 'lets' is considered a single unit;

see:

get_klets(c("AA", "B"), k = 2)

I

view_logo 81

mask_ranges

Mask arbitrary ranges

if (requireNamespace("GenomicRanges"”, quiet = TRUE)) {

ranges <- GenomicRanges::GRanges("A"”, IRanges::IRanges(1, 5))
seq <- Biostrings::DNAStringSet(c(A = "ATGACTGATTACTTATA"))
mask_ranges(seq, ranges, "-"

3

HHHEHHHEEEE A A
mask_seqs

Mask repetitive segeuences

data(ArabidopsisPromoters)

mask_seqs(ArabidopsisPromoters, "AAAAAA™)

HHHEHHHEHEE AR AR A
meme_alph
Create MEME custom alphabet definition files
meme_alph(”ACm"”, complements = "TGM", alph.name = "MethDNA",
letter.names = c(A = "Adenine”, C = "Cytosine”, G = "Guanine",
T = "Thymine", m = "Methylcytosine”, M = "mC:Guanine"),
like = "DNA", ambiguity = c(N = "ACGTmM"))

HHH AR
shuffle_string

Shuffle any string of characters

shuffle_string("ASDADASDASDASD", k = 1)

HEHHHHHBEEEEHHEEEHEHHHEHAHREBHBHEEEHEHEHEHRHEEEHEEHEEHHEHHEHREEHEHEEEE R
slide_fun
Apply a function to a character vector along sliding windows
FUN <- function(x) grepl("[GC]", x)
data.frame(
Window = window_string("ATGCATCTATGCA", 2, 1),
HasGC = slide_fun("”ATGCATCTATGCA”, FUN, logical(1), 2, 1)
)

SHEHHHHHHEEHEHEEEHEEHHHEHAEHEEHHBHEEEHEHHHHHHREEEEHEEHEEHHEHHEHHEHEEHEEEE
window_string

Get sliding windows for a string of characters
window_string("ABCDEFGHIJ", 2, 1)

view_logo Plot logos from numeric matrices.

Description

This function provides the plotting capabilities of view_motif's() without requiring universalmotif-
class objects. Instead, it takes a numeric matrix with row names as input. Additionally, columns
can be of any height and letters can be a mix of different character lengths.

Usage

view_logo(x, fontDF = NULL, fill = "black”, colour.scheme = NULL,

82

view_logo

min.height = 0.01, x.spacer = 0.04, y.spacer = 0.01,
sort.positions = FALSE, sort.positions.decreasing = TRUE,
fit.to.height = NULL, flip.neg = FALSE)

Arguments

X

fontDF

fill

colour.scheme

min.height

X.spacer

y.spacer

sort.positions

A numeric matrix with row names. The row names can be a mix of different
character lengths.

data.frame or DataFrame Polygon data for letters used for plotting, as gen-
erated by the createPolygons() function from the gglogo package. See the
fontDFroboto data object (which is used by default when fontDF = NULL). See
Examples for how to generate your own font set. Expected columns: x, vy,
order, group; additional columns will be ignored.

character A single colour to fill all letters with. Ignored if colour.scheme is
provided.

character A named character vector of colour names. Provide colours for
individual letters, even if the row names are made up of multiple characters.

numeric(1) Minimum height for a letter to be plotted. The number is taken
as the fraction of the total height of the plot. The default value is to not show
letters which take up 1% or less of the vertical space. For smaller figures it is
recommended to increase this value, and vice versa for larger figures.

numeric(1) Add horizontal spacing between letters. The number is taken as the
fraction of the width of an individual position. Increasing this value is recom-
mended for letters made up of multiple characters.

numeric(1) Add vertical spacing between letters. The number is taken as the
fraction nof the total height of the plot.

logical(1) Sort letters vertically per position by height.

sort.positions.decreasing

fit.to.height

flip.neg

Value

logical(1) Sort in decreasing or increasing order based on letter height.

numeric(1) Normalize the per position height to this value. If NULL, no normal-
ization is applied. Note that this parameter is ignored if use. type = c("PWM",
n I CM n) .

logical(1) Flip letters with negative heights.

A ggplot object. If you wish to plot the data yourself from polygon paths, access them using $data
on the output object. The theme theme_void() is applied to the object; apply your own theme or
adjust specific plot parameters with theme () to change this.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

view_motifs()

view_motifs

Examples

83

Feel free to mix and match row name character lengths and column sums.
data(examplemotif’)
toplot <- examplemotif["motif"]

toplot[4] <- 2

toplot[20] <- -0.5
rownames (toplot)[1] <- "AA"

view_logo(toplot)

view_motifs

Plot motif logos.

Description

Show sequence logo. If given a list of more than one motif, then the motifs are aligned with the first

in the list.

Usage

view_motifs(motifs, use.type = "ICM", method = "ALLR", tryRC = TRUE,
min.overlap = 6, min.mean.ic = 0.25, relative_entropy = FALSE,

normalise.scores = FALSE, min.position.ic = @, score.strat =

return.raw = FALSE, dedup.names = TRUE, show.positions = TRUE,

n n

sum”,

show.positions.once = TRUE, show.names = TRUE, names.pos = c("top",
"right"), use.freq = 1, colour.scheme = NULL, fontDF = NULL,
min.height = 0.01, x.spacer = if (use.freq == 1) 0.04 else 0.1,
y.spacer = 0.01, sort.positions = luse.type %in% c("PCM", "PPM"),
sort.positions.decreasing = TRUE, text.size = 16, fit.to.height = if

(use.type == "PPM") 1 else NULL, RC.text = " [RC]", flip.neg = FALSE,
L)

Arguments

motifs See convert_motifs() for acceptable motif formats.

use.type character (1) One of c('PCM', 'PPM', "PWM' 'ICM').

method character (1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,

MAN, ALLR_LL, WEUCL, WPCC. See details.
tryRC logical(1) Try the reverse complement of the motifs as well, report the best

min.overlap

min.mean.ic

score.

numeric(1) Minimum overlap required when aligning the motifs. Setting this
to a number higher then the width of the motifs will not allow any overhangs.
Can also be a number between 0 and 1, representing the minimum fraction that
the motifs must overlap.

numeric(1) Minimum mean information content between the two motifs for
an alignment to be scored. This helps prevent scoring alignments between
low information content regions of two motifs. Note that this can result in
some comparisons failing if no alignment passes the mean IC threshold. Use
average_ic() to filter out low IC motifs to get around this if you want to avoid
getting NAs in your output.

84

view_motifs

relative_entropy

logical (1) Change the ICM calculation affecting min.position.icandmin.mean.ic.

See convert_type().

normalise.scores
logical(1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

min.position.ic
numeric(1) Minimum information content required between individual align-
ment positions for it to be counted in the final alignment score. It is recom-
mended to use this together with normalise.scores = TRUE, as this will help
punish scores resulting from only a fraction of an alignment.

score.strat character (1) How to handle column scores calculated from motif alignments.
"sum": add up all scores. "a.mean": take the arithmetic mean. "g.mean":
take the geometric mean. "median": take the median. "wa.mean", "wg.mean":
weighted arithmetic/geometric mean. "fzt": Fisher Z-transform. Weights are the

total information content shared between aligned columns.

return.raw logical (1) Instead of returning a plot, return the aligned named matrices used
to generate the plot. This can be useful if you wish to use view_motifs() align-
ment capabilities for custom plotting uses. Alignment is performed by adding
empty columns to the left or right of motifs to generate matrices of equal length.

dedup.names logical(1) Plotting motifs with duplicated names is not allowed. Setting this
to TRUE allows the names to be modified for plotting.

show.positions logical(1) Show x-axis position tick labels.
show.positions.once

logical(1) When plotting multiple motifs, show x-axis position tick labels
only once. If FALSE, then x-axis tick labels are specific to each motif.

show.names logical(1) Add motif names when plotting multiple motifs.

names.pos character (1) Motif name locations. Either above (top) or to the right (right)
of the logos.

use.freq numeric(1) Plot higher order motifs from the multifreq slot.

colour.scheme character A named character vector of colour names. Default colours are pro-
vided for DNA, RNA, and AA motifs if left NULL.

fontDF data.frame or DataFrame Polygon data for letters used for plotting, as gen-
erated by the createPolygons() function from the gglogo package. See the
fontDFroboto data object (which is used by default when fontDF = NULL). See
Examples for how to generate your own font set. Expected columns: x, y,
order, group; additional columns will be ignored.

min.height numeric(1) Minimum height for a letter to be plotted. The number is taken
as the fraction of the total height of the plot. The default value is to not show
letters which take up 1% or less of the vertical space. For smaller figures it is
recommended to increase this value, and vice versa for larger figures.

X.spacer numeric(1) Add horizontal spacing between letters. The number is taken as the
fraction of the width of an individual position. Increasing this value is recom-
mended for plotting multifreq motifs.

y.spacer numeric(1) Add vertical spacing between letters. The number is taken as the
fraction nof the total height of the plot.

view_motifs 85

sort.positions logical(1) Sort letters vertically per position by height.

sort.positions.decreasing
logical(1) Sort in decreasing or increasing order based on letter height.

text.size numeric (1) Text size for labels.

fit.to.height numeric(1) Normalize the per position height to this value. If NULL, no normal-
ization is applied. Note that this parameter is ignored if use. type = c("PWM",
n I CM n) .

RC.text character (1) The text to display alongside the name of motifs shown as their
reverse complement.

flip.neg logical(1) Flip letters with negative heights.

Unused. Was previously in place to allow extra args to be given to ggseqlogo: : ggseqlogo,
however universalmotif now implements its own motif plotting code directly
with ggplot2.

Details
See compare_motifs() for more info on comparison parameters.

See view_logo() to plot from a numeric matrix with arbitrary values instead of a motif object.

Note: score.strat ="a.mean" is NOT recommended, as view_motifs() will not discriminate
between two alignments with equal mean scores, even if one alignment is longer than the other.

Note: if you want to plot the motifs yourself, you can set return. raw=TRUE to get the numeric motif
matrices and calculate the polygon paths on your own or access the polygon path data directly from
the final ggplot object using $data.

Value

A ggplot object. If return. raw = TRUE, a list of matrices.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

compare_motifs(), add_multifreq(), view_logo()

Examples

Plotting multifreq motifs:
data(examplemotif2)
view_motifs(examplemotif2, use.freq = 2)

Generate your own letter set:
Not run:

library(gglogo) # install from CRAN first if needed
fontDFtimes <- createPolygons(LETTERS, "Times"”, 800, scale = TRUE)
view_motifs(examplemotif2, fontDF = fontDFtimes)

Note: setting “scale = TRUE™ is necessary to properly align letters
vertically, but this has the effect of horizontally stretching out
letters which shouldn't be stretched (such as "I"). If you need to plot

86 write_homer

letters which have been badly horizontally scaled, you can fix them
manually as demonstrated here:

Retrieve the x-coordinates for the desired letter:

tofix <- fontDFtimes$x[fontDFtimes$group == "I"]

Scale the letter x-coordinates:

tofix <- tofix * @.35

Remember to center the letter around 0.5 again:

tofix <- tofix + (1 - max(tofix)) / 2

Apply the fix:

fontDFtimes$x[fontDFtimes$group == "I"] <- tofix
view_motifs(create_motif ("AIG", alphabet = "AA"), fontDF = fontDFtimes)

End(Not run)

write_homer Export motifs in HOMER format.

Description

Convert DNA motifs to HOMER format and write to file. See http://homer.ucsd.edu/homer/
motif/.

Usage

write_homer(motifs, file, logodds_threshold = NULL, overwrite = FALSE,
append = FALSE, threshold = 0.8, threshold.type = c("logodds",
"logodds.abs”, "pvalue"))

Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.

logodds_threshold
Deprecated. If set, read_homer () will behave like pre-version 1.12.0 of the
universalmotif package for backwards compatibility (though a warning will

be printed).
overwrite logical (1) Overwrite existing file.
append logical(1) Add to an existing file.
threshold numeric(1) Stringency required for HOMER to match a motif. See scan_sequences()

for how to use this argument. Can be a single value to be recycled for all motifs,
or a vector of equal length to the number of motifs.

threshold.type character(1) How the threshold value should be used to obtain the final
threshold value in the written motif. See scan_sequences() for how to use
this.

Value

NULL, invisibly.

http://homer.ucsd.edu/homer/motif/
http://homer.ucsd.edu/homer/motif/

write_jaspar 87

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass
CK (2010). “Simple combinations of lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and B cell identities.” Molecular Cell, 38, 576-589.

See Also

read_homer ()

Other write_motifs: write_jaspar(),write_matrix(),write_meme(),write_motifs(),write_transfac()

Examples

motif <- create_motif()
write_homer(motif, tempfile())

write_jaspar Export motifs in JASPAR format.

Description

Convert motifs to JASPAR format and write to file. See http://jaspar.genereg.net/.

Usage

write_jaspar(motifs, file, overwrite = FALSE, append = FALSE)

Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.
overwrite logical (1) Overwrite existing file.
append logical(1) Add to an existing file.
Value

NULL, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A,
Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard
B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.” Nucleic Acids
Research, 46, D260-D266.

http://jaspar.genereg.net/

88 write_matrix

See Also

read_jaspar()

Other write_motifs: write_homer(),write_matrix(),write_meme(),write_motifs(),write_transfac()

Examples

transfac <- read_transfac(system.file("extdata”, "transfac.txt"”,
package = "universalmotif"))
write_jaspar(transfac, tempfile())

write_matrix Export motifs as raw matrices.

Description

Write motifs as simple matrices with optional headers to file.

Usage
write_matrix(motifs, file, positions = "columns”, rownames = FALSE, type,
sep = "", headers = TRUE, overwrite = FALSE, append = FALSE,
digits = 6)
Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.
positions character(1) One of c('columns', 'rows"'). Partial matching allowed.
rownames logical (1) Include alphabet letters as rownames.
type character(1) One of c('PCM', "PPM', "PWM', "ICM"). If missing will use
whatever type the motif is currently stored as.
sep character (1) Indicates how to separate individual motifs. Set as NULL to have
no seperating lines between motifs (the default is to use a blank line).
headers logical(1), character (1) Indicating if and how to write names.
overwrite logical(1) Overwrite existing file.
append logical(1) Add to an existing file.
digits numeric(1) Number of digits to use for motif positions.
Value

NULL, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

write_meme 89

See Also

read_matrix()

Other write_motifs: write_homer(),write_jaspar(),write_meme(),write_motifs(),write_transfac()

Examples

motif <- create_motif()

write_matrix(motif, tempfile(), headers = ">")
write_meme Export motifs in MEME format.
Description

Convert motifs to minimal MEME format and write to file. See http://meme-suite.org/doc/
meme-format.html.
Usage

write_meme(motifs, file, version = 5, bkg, strand, overwrite = FALSE,
append = FALSE)

Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.
version numeric(1) MEME version.
bkg numeric Background letter frequencies. If missing, will use background fre-
quencies from motif objects (if they are identical); else background frequencies
will be set to freq = 1/length(alphabet)
strand character If missing, will use strand from motif objects (if identical); other-
wise will default to "+ -"
overwrite logical(1) Overwrite existing file.
append logical(1) Add to an existing file. Motifs will be written in minimal format,
so it is recommended to only use this if the existing file is also a minimal MEME
format file.
Value

NULL, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009).
“MEME SUITE: tools for motif discovery and searching.” Nucleic Acids Research, 37, W202-
W208.

http://meme-suite.org/doc/meme-format.html
http://meme-suite.org/doc/meme-format.html

90 write_motifs

See Also

read_meme ()

Other write_motifs: write_homer(),write_jaspar(),write_matrix(),write_motifs(),write_transfac()

Examples

transfac <- read_transfac(system.file("extdata”, "transfac.txt"”,
package = "universalmotif"))
write_meme(transfac, tempfile())

write_motifs Export motifs in universalmotif format.

Description

Write motifs as universalmotif objects to file. For optimal storage of universalmotif class motifs,
consider using saveRDS() and readRDS (). Currently the universalmotif formatis YAML-based,
but this is subject to change.

Usage

write_motifs(motifs, file, minimal = FALSE, multifreq = TRUE,
progress = FALSE, overwrite = FALSE, append = FALSE, BP = FALSE)

Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.
minimal logical(1) Only write essential motif information.
multifreq logical(1) Write multifreq slot, if present.
progress logical(1) Show progress.
overwrite logical (1) Overwrite existing file.
append logical (1) Add to an existing motif file. Package version in existing motif file
must be greater than 1.2.0.
BP logical (1) Allows for the use of BiocParallel within write_motifs(). See
BiocParallel::register() to change the default backend.
Value

NULL, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

See Also

Other write_motifs: write_homer(),write_jaspar(),write_matrix(),write_meme(),write_transfac()

write_transfac 91

write_transfac Export motifs in TRANSFAC format.

Description

Convert motifs to TRANSFAC format and write to file.

Usage

write_transfac(motifs, file, overwrite = FALSE, append = FALSE,
name.tag = "ID", altname.tag = "NA")

Arguments
motifs See convert_motifs() for acceptable formats.
file character (1) File name.
overwrite logical(1) Overwrite existing file.
append logical(1) Add to an existing file.
name.tag character (1) The tag to use when writing the motifs name slot.
altname.tag character (1) The tag to use when writing the motifs altname slot. Note that
no tag will be written if the slot is empty.
Details

If the family slot of a motif is not empty, then its contents will included using the HC tag. Similarly
for the organism slot using the tag OS. The default name and alternate name tags are ID and NA,
respectively, though these can be set manually.

Value

NULL, invisibly.

Author(s)

Benjamin Jean-Marie Tremblay, <benjamin. tremblay@uwaterloo.ca>

References

Wingender E, Dietze P, Karas H, Knuppel R (1996). “TRANSFAC: A Database on Transcription
Factors and Their DNA Binding Sites.” Nucleic Acids Research, 24, 238-241.

See Also

read_transfac()

Other write_motifs: write_homer(),write_jaspar(),write_matrix(),write_meme(),write_motifs()

Examples

jaspar <- read_jaspar(system.file("extdata”, "jaspar.txt",
package = "universalmotif"))
write_transfac(jaspar, tempfile())

Index

+ datasets
ArabidopsisMotif, 5
ArabidopsisPromoters, 5
examplemotif, 24
examplemotif2, 24
fontDFroboto, 26
JASPAR2018_CORE_DBSCORES, 28
* internal
reexports, 51
* read_motifs
read_cisbp, 43
read_homer, 44
read_jaspar, 45
read_matrix, 46
read_meme, 47
read_motifs, 48
read_transfac, 49
read_uniprobe, 50
* write_motifs
write_homer, 86
write_jaspar, 87
write_matrix, 88
write_meme, 89
write_motifs, 90
write_transfac, 91
[,universalmotif-method
(universalmotif-class), 67
[<-,universalmotif-method
(universalmotif-class), 67

AAStringSet, 18

add_gap (utils-motif), 71

add_multifreq, 3

add_multifreq(), 4, 17, 18, 22, 24, 54, 55,
57,68, 85

ArabidopsisMotif, 5

ArabidopsisPromoters, 5,5

as.data.frame, 51

as.data.frame (reexports), 51

as.data.frame,universalmotif-method
(universalmotif-class), 67

average_ic (utils-motif), 71

average_ic(), 6, 29, 31, 33,41, 83

BiocParallel: :register(), 35, 48, 90

Biostrings::injectHardMask(), 57

Biostrings: :mask(), 57

Biostrings: :matchPWM(), 56, 57

Biostrings::oligonucleotideFrequency(),
26

BStringSet, 18

calc_complexity (utils-sequence), 78
calc_complexity(), 59, 78, 80
calc_windows (utils-sequence), 78
calc_windows(), 80
cbind, 57
cbind (reexports), 51
cbind,universalmotif-method
(universalmotif-class), 67
colMeans, 51
colMeans (reexports), 51
colMeans,universalmotif-method
(universalmotif-class), 67
colnames, 51
colnames (reexports), 51
colnames,universalmotif-method
(universalmotif-class), 67
colSums, 51
colSums (reexports), 51
colSums,universalmotif-method
(universalmotif-class), 67
compare_columns (utils-motif), 71
compare_motifs, 6
compare_motifs(), 7, 28-34, 4042, 73, 85
consensus_to_ppm (utils-motif), 71
consensus_to_ppm(), 74
consensus_to_ppmAA (utils-motif), 71
consensus_to_ppmAA(), 74
convert_motifs, 9
convert_motifs(),3,4,6,8,11,13,15,22,
25, 31-34, 36, 40, 54, 61, 64, 66, 83,
86-91
convert_motifs,AsIs-method
(convert_motifs), 9
convert_motifs,ICMatrix-method
(convert_motifs), 9

INDEX

convert_motifs,list-method
(convert_motifs), 9
convert_motifs,matrix-method
(convert_motifs), 9
convert_motifs,Motif-method
(convert_motifs), 9
convert_motifs,MotifList-method
(convert_motifs), 9
convert_motifs,pcm-method
(convert_motifs), 9
convert_motifs,pfm-method
(convert_motifs), 9
convert_motifs,PFMatrix-method
(convert_motifs), 9
convert_motifs,PWM-method
(convert_motifs), 9
convert_motifs,pwm-method
(convert_motifs), 9
convert_motifs,PWMatrix-method
(convert_motifs), 9
convert_motifs, TFFMFirst-method
(convert_motifs), 9
convert_motifs,universalmotif-method
(convert_motifs), 9
convert_motifs,XMatrixList-method
(convert_motifs), 9
convert_type, 13
convert_type(), 6, 18, 31, 33, 36, 41, 66, 84
count_klets (utils-sequence), 78
count_klets(), 59, 80
create_motif, 16
create_motif (), 21, 29, 54, 64, 66, 67, 75
create_motif,AAStringSet-method
(create_motif), 16
create_motif,BStringSet-method
(create_motif), 16
create_motif,character-method
(create_motif), 16
create_motif,DNAStringSet-method
(create_motif), 16
create_motif,matrix-method
(create_motif), 16
create_motif,missing-method
(create_motif), 16
create_motif,numeric-method
(create_motif), 16
create_motif,RNAStringSet-method
(create_motif), 16
create_sequences, 20
create_sequences(), 18, 20, 21, 28, 53, 54,
63, 80

DataFrame, 26

DNAString, 57
DNAStringSet, 5, 18, 57

enrich_motifs, 21
enrich_motifs(), 57, 63
examplemotif, 24
examplemotif2, 24

filter_motifs, 25
filter_motifs(), 11,25
fontDFroboto, 26

get_bkg, 26
get_bkg(), 26, 27, 59, 80
get_consensus (utils-motif), 71
get_consensus(), 74
get_consensusAA (utils-motif), 71
get_consensusAA(), 74
get_klets (utils-sequence), 78
get_klets(), 80

get_matches (utils-motif), 71
get_matches(), 38, 74
get_scores (utils-motif), 71
get_scores(), 38

ggplot2: :ggplot(), 42

ggtree: :ggtree(), 40-42

icm_to_ppm (utils-motif), 71
icm_to_ppm(), 74

initialize,universalmotif-method
(universalmotif-class), 67

JASPAR2018_CORE_DBSCORES, 28

log_string_pval (utils-motif), 71
log_string_pval(), 47, 74

make_DBscores, 29
make_DBscores(), 8, 28, 30
mask_ranges (utils-sequence), 78
mask_ranges(), 59, 80

mask_seqs (utils-sequence), 78
mask_seqs(), 57, 59, 80
MaskedXString, 57

meme_alph (utils-sequence), 78
meme_alph(), 52, 80
merge_motifs, 31
merge_motifs(), 32-34
merge_similar, 32
merge_similar(), 32
motif_peaks, 34
motif_peaks(), 35
motif_pvalue, 36
motif_pvalue(), 22-24, 37, 55-57

93

94

motif_range (utils-motif), 71
motif_range(), 38, 74
motif_rc, 39

motif_rc(), 40

motif_score (utils-motif), 71
motif_score(), 38, 74
motif_tree, 40
motif_tree(), 8, 40
motifStack: :motifStack(), 42

ncol, 57

ncol (reexports), 51

ncol,universalmotif-method
(universalmotif-class), 67

normalize, 51

normalize (reexports), 51

normalize,universalmotif-method
(universalmotif-class), 67

nrow, 5/

nrow (reexports), 51

nrow,universalmotif-method
(universalmotif-class), 67

pcm_to_ppm (utils-motif), 71
pcm_to_ppm(), 74
position_icscore (utils-motif), 71
position_icscore(), 74
ppm_to_icm (utils-motif), 71
ppm_to_icm(), 74

ppm_to_pcm (utils-motif), 71
ppm_to_pcm(), 74

ppm_to_pwm (utils-motif), 71
ppm_to_pwm(), 74

prob_match (utils-motif), 71
prob_match(), 38, 74
prob_match_bkg (utils-motif), 71
prob_match_bkg(), 38
processx::run(), 53

pwm_to_ppm (utils-motif), 71
pwm_to_ppm(), 74

read_cisbp, 43, 44-46, 48-50
read_homer, 43, 44, 45, 46, 48-50
read_homer(), 86, 87
read_jaspar, 43, 44, 45, 46, 48-50
read_jaspar(), 88
read_matrix, 4345, 46, 48-50
read_matrix(), 89
read_meme, 43—46, 47, 48-50
read_meme(), 53, 90
read_motifs, 4346, 48, 48, 49, 50
read_motifs(), 48
read_transfac, 43-46, 48, 49, 50

INDEX

read_transfac(), 91

read_uniprobe, 43-46, 48, 49, 50

readRDS (), 48, 90

reexports, 51

requires_update (tidy-motifs), 64

requires_update(), 65

RNAStringSet, 18, 57

round_motif (utils-motif), 71

round_motif (), 74

rowMeans, 5/

rowMeans (reexports), 51

rowMeans,universalmotif-method
(universalmotif-class), 67

rownames, 51/

rownames (reexports), 51

rownames,universalmotif-method
(universalmotif-class), 67

rowSums, 5/

rowSums (reexports), 51

rowSums,universalmotif-method
(universalmotif-class), 67

run_meme, 51

run_meme(), 51, 53

sample(), 21, 37,62
sample_sites, 54
saveRDS(), 48, 90
scan_sequences, 54
scan_sequences(), 3, 4, 22-24, 28, 34, 35,
44,55, 57,63, 86
score_match (utils-motif), 71
score_match(), 38, 74
sequence_complexity, 58
sequence_complexity(), 58, 79, 80
show, universalmotif-method
(universalmotif-class), 67
shuffle_motifs, 61
shuffle_motifs(), 18, 29, 61, 63
shuffle_sequences, 62
shuffle_sequences(), 21, 22, 24, 28, 53, 61,
62,79, 80
shuffle_string (utils-sequence), 78
shuffle_string(), 79, 80
slide_fun (utils-sequence), 78
slide_fun(), 80
stats::fisher.test(), 23
stats::p.adjust(), 22
subset, 5/
subset (reexports), 51
subset,universalmotif-method
(universalmotif-class), 67
summarise_motifs (utils-motif), 71
summarise_motifs(), 74

INDEX

switch_alph, 64

tidy-motifs, 64

to_df (tidy-motifs), 64
to_df (), 12,65

to_list (tidy-motifs), 64
to_list(), 12,65
trim_motifs, 66

ungap (utils-motif), 71

universalmotif, 3-5, 12, 13,17, 24, 25,41,
43-50, 68, 69, 73, 74

universalmotif (universalmotif-class),
67

universalmotif-class, 67

universalmotif-package
(universalmotif-pkg), 70

universalmotif-pkg, 70

update_motifs (tidy-motifs), 64

update_motifs(), 65

utilities, 71

utils-motif, 71, 71

utils-sequence, 71,78

view_logo, 81

view_logo(), 85

view_motifs, 83
view_motifs(), 8, 26, 81, 82, 84, 85

window_string (utils-sequence), 78
window_string(), 80
write_homer, 86, 8891
write_jaspar, 87, 87, 89-91
write_matrix, 87, 88, 88, 90, 91
write_meme, 87-89, 89, 90, 91
write_motifs, 8§7-90, 90, 91
write_motifs(), 4, 48, 90
write_transfac, 87-90, 91

XStringSet, 3, 17, 20-22, 27, 51, 54, 55, 57,
58,62, 63

95

	add_multifreq
	ArabidopsisMotif
	ArabidopsisPromoters
	compare_motifs
	convert_motifs
	convert_type
	create_motif
	create_sequences
	enrich_motifs
	examplemotif
	examplemotif2
	filter_motifs
	fontDFroboto
	get_bkg
	JASPAR2018_CORE_DBSCORES
	make_DBscores
	merge_motifs
	merge_similar
	motif_peaks
	motif_pvalue
	motif_rc
	motif_tree
	read_cisbp
	read_homer
	read_jaspar
	read_matrix
	read_meme
	read_motifs
	read_transfac
	read_uniprobe
	reexports
	run_meme
	sample_sites
	scan_sequences
	sequence_complexity
	shuffle_motifs
	shuffle_sequences
	switch_alph
	tidy-motifs
	trim_motifs
	universalmotif-class
	universalmotif-pkg
	utilities
	utils-motif
	utils-sequence
	view_logo
	view_motifs
	write_homer
	write_jaspar
	write_matrix
	write_meme
	write_motifs
	write_transfac
	Index

