Package ‘ttgsea’

January 30, 2026

Type Package
Title Tokenizing Text of Gene Set Enrichment Analysis

Description Functional enrichment analysis methods such as gene set enrichment analy-
sis (GSEA) have been widely used for analyzing gene expression data. GSEA is a power-
ful method to infer results of gene expression data at a level of gene sets by calculating enrich-
ment scores for predefined sets of genes. GSEA depends on the availability and accu-
racy of gene sets. There are overlaps between terms of gene sets or categories because multi-
ple terms may exist for a single biological process, and it can thus lead to redundancy within en-
riched terms. In other words, the sets of related terms are overlapping. Using deep learn-
ing, this pakage is aimed to predict enrichment scores for unique to-
kens or words from text in names of gene sets to resolve this overlapping set issue. Further-
more, we can coin a new term by combining tokens and find its enrichment score by predict-
ing such a combined tokens.

Version 1.18.0
Date 2021-11-12
LazyData TRUE
Depends keras

Imports tm, text2vec, tokenizers, textstem, stopwords, data.table,
purrr, DiagrammeR, stats

Suggests fgsea, knitr, testthat, reticulate, rmarkdown
SystemRequirement tensorflow

License Artistic-2.0

biocViews Software, GeneExpression, GeneSetEnrichment
NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ttgsea
git_branch RELEASE_3_22

git_last_commit 2003726

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-29

Author Dongmin Jung [cre, aut] (ORCID:
<https://orcid.org/0000-0001-7499-8422>)

Maintainer Dongmin Jung <dmdmjung@gmail.com>

1

https://orcid.org/0000-0001-7499-8422

2 bi_gru

Contents
bi_gru e e 2
bi_lstm . . . e s 3
fit model e 4
metric_pearson_correlation Lo 6
plot_model e 7
predict_modelo 8
sampling_generator L 9
texXt_toKen e e e 10
TOKEN_VECIOT o o o e e e e e 11

Index 13

bi_gru Bidirectional GRU with embedding layer
Description

A predefined function that is used as a model in "ttgsea". This is a simple model, but you can define
your own model. The loss function is "mean_squared_error" and the optimizer is "adam". Pearson
correlation is used as a metric.

Usage

bi_gru(num_tokens, embedding_dim, length_seq, num_units)

Arguments

num_tokens maximum number of tokens

embedding_dim a non-negative integer for dimension of the dense embedding

length_seq length of input sequences, input length of "layer_embedding""
num_units dimensionality of the output space in the GRU layer

Value
model

Author(s)

Dongmin Jung

See Also

keras::keras_model, keras::layer_input, keras::layer_embedding, keras::layer_gru, keras::bidirectional,
keras::layer_dense, keras::compile

bi_Istm 3

Examples

library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
num_tokens <- 1000
length_seq <- 30
embedding_dim <- 50
num_units <- 32
model <- bi_gru(num_tokens, embedding_dim, length_seq, num_units)

stacked gru

num_units_1 <- 32

num_units_2 <- 16

stacked_gru <- function(num_tokens, embedding_dim, length_seq,
num_units_1, num_units_2)

{
model <- keras::keras_model_sequential() %>%
keras: :layer_embedding(input_dim = num_tokens,
output_dim = embedding_dim,
input_length = length_seq,
mask_zero = TRUE) %>%
keras::layer_gru(units = num_units_1,
activation = "relu”,
return_sequences = TRUE) %>%
keras::layer_gru(units = num_units_2,
activation = "relu") %>%
keras: :layer_dense(1)
model %>%
keras::compile(loss = "mean_squared_error”,
optimizer = "adam",
metrics = custom_metric("”pearson_correlation”,
metric_pearson_correlation))
}
3
bi_lstm Bidirectional LSTM with embedding layer
Description

A predefined function that is used as a model in "ttgsea". This is a simple model, but you can define
your own model. The loss function is "mean_squared_error" and the optimizer is "adam". Pearson
correlation is used as a metric.

Usage

bi_lstm(num_tokens, embedding_dim, length_seq, num_units)

Arguments

num_tokens maximum number of tokens
embedding_dim a non-negative integer for dimension of the dense embedding

length_seq length of input sequences, input length of "layer_embedding
num_units dimensionality of the output space in the LSTM layer

4 fit_ model

Value

model

Author(s)

Dongmin Jung

See Also

keras::keras_model, keras::layer_input, keras::layer_embedding, keras::layer_Istm, keras::bidirectional,
keras::layer_dense, keras::compile

Examples

library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
num_tokens <- 1000
length_seq <- 30
embedding_dim <- 50
num_units <- 32
model <- bi_lstm(num_tokens, embedding_dim, length_seq, num_units)

stacked lstm

num_units_1 <- 32

num_units_2 <- 16

stacked_lstm <- function(num_tokens, embedding_dim, length_seq,
num_units_1, num_units_2)

{
model <- keras::keras_model_sequential() %>%
keras: :layer_embedding(input_dim = num_tokens,
output_dim = embedding_dim,
input_length = length_seq,
mask_zero = TRUE) %>%
keras::layer_lstm(units = num_units_1,
activation = "relu”,
return_sequences = TRUE) %>%
keras::layer_lstm(units = num_units_2,
activation = "relu") %>%
keras: :layer_dense(1)
model %>%
keras::compile(loss = "mean_squared_error”,
optimizer = "adam",
metrics = custom_metric("pearson_correlation”,
metric_pearson_correlation))
}
3

fit_model Deep learning model fitting

fit_model 5

Description

From the result of GSEA, we can predict enrichment scores for unique tokens or words from text
in names of gene sets by using deep learning. The function "text_token" is used for tokenizing
text and the function "token_vector" is used for encoding. Then the encoded sequence is fed to the
embedding layer of the model.

Usage

fit_model(gseaRes, text, score, model, ngram_min = 1, ngram_max = 2,
num_tokens, length_seq, epochs, batch_size,

use_generator = TRUE, ...)
Arguments

gseaRes a table with GSEA result having rows for gene sets and columns for text and
scores

text column name for text data

score column name for enrichment score

model deep learning model, input dimension and length for the embedding layer must
be same to the "num_token" and "length_seq", respectively

ngram_min minimum size of an n-gram (default: 1)

ngram_max maximum size of an n-gram (default: 2)

num_tokens maximum number of tokens, it must be equal to the input dimension of "layer_embedding"

in the "model"

length_seq length of input sequences, it must be equal to the input length of "layer_embedding"
in the "model"

epochs number of epochs

batch_size batch size

use_generator if "use_generator" is TRUE, the function "sampling_generator" is used for "fit_generator".
Otherwise, the "fit" is used without a generator.

additional parameters for the "fit" or "fit_generator"

num_tokens

length_seq

Value
model trained model
tokens information for tokens
token_pred prediction for every token, each row has a token and its predicted score
token_gsea list of the GSEA result only for the corresponding token

maximum number of tokens

length of input sequences

Author(s)

Dongmin Jung

See Also

keras::fit_generator, keras::layer_embedding, keras::pad_sequences, textstem::lemmatize_strings,
text2vec::create_vocabulary, text2vec::prune_vocabulary

6 metric_pearson_correlation

Examples

library(reticulate)

if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names (examplePathways) <- gsub("_", " ",

substr(names(examplePathways), 9, 1000))

set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)

num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1

ttgseaRes <- fit_model(fgseaRes, "pathway”, "NES”,

model = bi_gru(num_tokens,
embedding_dims,
length_seq,
num_units),

num_tokens = num_tokens,

length_seq = length_seq,

epochs = epochs,

batch_size = batch_size,

use_generator = FALSE)

metric_pearson_correlation
Pearson correlation coefficient

Description

Pearson correlation coefficient can be seen as one of the model performance metrics. This is a
measure of how close the predicted value is to the true value. If it is close to 1, the model is
considered a good fit. If it is close to 0, the model is not good. A value of O corresponds to a
random prediction.

Author(s)

Dongmin Jung

See Also

keras::k_mean, keras::sum, keras::k_square, keras::k_sqrt

plot_model 7

Examples

library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
num_tokens <- 1000
length_seq <- 30
embedding_dims <- 50
num_units_1 <- 32
num_units_2 <- 16

stacked_gru <- function(num_tokens, embedding_dims, length_seq,
num_units_1, num_units_2)

{
model <- keras::keras_model_sequential() %>%
keras: :layer_embedding(input_dim = num_tokens,
output_dim = embedding_dims,
input_length = length_seq) %>%

keras::layer_gru(units = num_units_1,

activation = "relu",

return_sequences = TRUE) %>%
keras::layer_gru(units = num_units_2,

activation = "relu") %>%
keras: :layer_dense(1)

model %>%
keras::compile(loss = "mean_squared_error”,
optimizer = "adam”,
metrics = custom_metric("pearson_correlation”,
metric_pearson_correlation))
}
3
plot_model visualization of the model architecture
Description

You are allowed to create a visualization of your model architecture. This architecture displays the
information about the name, input shape, and output shape of layers in a flowchart.

Usage
plot_model(x)

Arguments

X deep learning model

Value

plot for the model architecture

Author(s)

Dongmin Jung

See Also

purrr::map, purtr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz

Examples

library(reticulate)

if (keras::is_keras_available() & reticulate::py_available()) {

inputs1 <- layer_input(shape = c(1000))
inputs2 <- layer_input(shape = c(1000))

predictions1 <- inputsl %>%

layer_dense(units = 128, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 32, activation = 'softmax')

predictions2 <- inputs2 %>%

layer_dense(units = 128, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 32, activation = 'softmax')

combined <- layer_concatenate(c(predictionsl, predictions2)) %>%

layer_dense(units = 16, activation = 'softmax')

model <- keras_model(inputs = c(inputs1, inputs2),
outputs = combined)
plot_model (model)

predict_model

predict_model Model prediction

Description

From the result of the function "ttgsea", we can predict enrichment scores. For each new term, lem-
matized text, predicted enrichment score, Monte Carlo p-value and adjusted p-value are provided.
The function "token_vector" is used for encoding as we did for training. Of course, mapping from

tokens to integers should be the same.

Usage

predict_model(object, new_text, num_simulations = 1000,
adj_p_method = "fdr")

Arguments
object result of "ttgsea"
new_text new text data

num_simulations

number of simulations for Monte Carlo p-value (default: 1000)

adj_p_method correction method (default: "fdr")

sampling_generator 9

Value

table for lemmatized text, predicted enrichment score, MC p-value and adjusted p-value

Author(s)

Dongmin Jung

See Also

stats::p.adjust

Examples

library(reticulate)

if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names (examplePathways) <- gsub("_", " ",

substr(names(examplePathways), 9, 1000))

set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)

num_tokens <- 1000
length_seq <- 30
batch_size <- 32
embedding_dims <- 50
num_units <- 32
epochs <- 1

ttgseaRes <- fit_model(fgseaRes, "pathway”, "NES”,
model = bi_gru(num_tokens,
embedding_dims,

length_seq,

num_units),
num_tokens = num_tokens,
length_seq = length_seq,

epochs = epochs,
batch_size = batch_size,
use_generator = FALSE)

set.seed(1)
predict_model(ttgseaRes, "Cell Cycle”)
3

sampling_generator Generator function

Description

This is a generator function that yields batches of training data then pass the function to the
"fit_generator" function.

10 text_token

Usage

sampling_generator(X_data, Y_data, batch_size)

Arguments
X_data inputs
Y_data targets
batch_size batch size
Value

generator for "fit_generator"

Author(s)

Dongmin Jung

Examples

X_data <- matrix(rnorm(200), ncol = 2)
Y_data <- matrix(rnorm(100), ncol = 1)
sampling_generator(X_data, Y_data, 32)

text_token Tokenizing text

Description

An n-gram is used for tokenization. This function can also be used to limit the total number of
tokens.

Usage

text_token(text, ngram_min = 1, ngram_max = 1, num_tokens)

Arguments
text text data
ngram_min minimum size of an n-gram (default: 1)
ngram_max maximum size of an n-gram (default: 1)
num_tokens maximum number of tokens
Value
token result of tokenizing text
ngram_min minimum size of an n-gram
ngram_max maximum size of an n-gram
Author(s)

Dongmin Jung

token_vector 11

See Also

tm::removeWords, stopwords::stopwords, textstem::lemmatize_strings, text2vec::create_vocabulary,
text2vec::prune_vocabulary

Examples

library(fgsea)
data(examplePathways)
data(exampleRanks)
names(examplePathways) <- gsub("_", " ",
substr(names(examplePathways), 9, 1000))
set.seed(1)
fgseaRes <- fgsea(examplePathways, exampleRanks)
tokens <- text_token(data.frame(fgseaRes)[,"pathway”],
num_tokens = 1000)

token_vector Vectorization of tokens

Description

A vectorization of words or tokens of text is necessary for machine learning. Vectorized sequences
are padded or truncated.

Usage

token_vector(text, token, length_seq)

Arguments
text text data
token result of tokenization (output of "text_token")
length_seq length of input sequences

Value

sequences of integers

Author(s)

Dongmin Jung

See Also

tm::removeWords, stopwords::stopwords, textstem::lemmatize_strings, tokenizers::tokenize_ngrams,
keras::pad_sequences

12 token_vector

Examples

library(reticulate)
if (keras::is_keras_available() & reticulate::py_available()) {
library(fgsea)
data(examplePathways)
data(exampleRanks)
names (examplePathways) <- gsub(
substr(names(examplePathways), 9, 1000))

non non
)

set.seed(1)

fgseaRes <- fgsea(examplePathways, exampleRanks)

tokens <- text_token(data.frame(fgseaRes)[, "pathway"],
num_tokens = 1000)

sequences <- token_vector("Cell Cycle”, tokens, 10)

Index

bi_gru, 2
bi_lstm, 3

fit_model, 4
metric_pearson_correlation, 6

plot_model, 7
predict_model, 8

sampling_generator, 9

text_token, 10
token_vector, 11

13

	bi_gru
	bi_lstm
	fit_model
	metric_pearson_correlation
	plot_model
	predict_model
	sampling_generator
	text_token
	token_vector
	Index

